EP2946160B1 - Melting installation to consolidate contaminated waste - Google Patents
Melting installation to consolidate contaminated waste Download PDFInfo
- Publication number
- EP2946160B1 EP2946160B1 EP14701015.1A EP14701015A EP2946160B1 EP 2946160 B1 EP2946160 B1 EP 2946160B1 EP 14701015 A EP14701015 A EP 14701015A EP 2946160 B1 EP2946160 B1 EP 2946160B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- crucible
- chamber
- melting
- installation
- die
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002844 melting Methods 0.000 title claims description 84
- 230000008018 melting Effects 0.000 title claims description 84
- 238000009434 installation Methods 0.000 title claims description 19
- 239000002699 waste material Substances 0.000 title description 8
- 239000000463 material Substances 0.000 claims description 62
- 238000000034 method Methods 0.000 claims description 28
- 239000000155 melt Substances 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 19
- 238000011049 filling Methods 0.000 claims description 16
- 239000012768 molten material Substances 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 230000006698 induction Effects 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 238000004320 controlled atmosphere Methods 0.000 claims description 2
- 238000013461 design Methods 0.000 claims description 2
- 230000036961 partial effect Effects 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims 1
- 230000032258 transport Effects 0.000 description 37
- 239000007789 gas Substances 0.000 description 18
- 230000008569 process Effects 0.000 description 11
- 238000010309 melting process Methods 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 6
- 238000007596 consolidation process Methods 0.000 description 6
- 238000011068 loading method Methods 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- 229910052793 cadmium Inorganic materials 0.000 description 4
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 239000012857 radioactive material Substances 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 238000003723 Smelting Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000004880 explosion Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000003779 heat-resistant material Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000002927 high level radioactive waste Substances 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002925 low-level radioactive waste Substances 0.000 description 1
- -1 magnesium Chemical class 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011824 nuclear material Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000011214 refractory ceramic Substances 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 210000002023 somite Anatomy 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000009997 thermal pre-treatment Methods 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
- G21F9/30—Processing
- G21F9/308—Processing by melting the waste
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B14/00—Crucible or pot furnaces
- F27B14/04—Crucible or pot furnaces adapted for treating the charge in vacuum or special atmosphere
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B14/00—Crucible or pot furnaces
- F27B14/08—Details specially adapted for crucible or pot furnaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D7/00—Forming, maintaining or circulating atmospheres in heating chambers
- F27D7/06—Forming or maintaining special atmospheres or vacuum within heating chambers
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/008—Apparatus specially adapted for mixing or disposing radioactively contamined material
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
- G21F9/30—Processing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B14/00—Crucible or pot furnaces
- F27B14/08—Details specially adapted for crucible or pot furnaces
- F27B2014/0825—Crucible or pot support
- F27B2014/0831—Support or means for the transport of crucibles
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D1/00—Details of nuclear power plant
- G21D1/003—Nuclear facilities decommissioning arrangements
Definitions
- This invention relates to a fusing apparatus for consolidating contaminated scrap and a consolidation method that can be carried out using the fusing apparatus.
- process equipment When dismantling the nuclear facilities, process equipment, such. As containers, pipelines, fittings, measuring equipment, storage racks, linings but also metallic structural elements, such as stages, scaffolding, stairs, etc., which are located in contaminated areas, or have come into contact with radioactive media, disposed of in a repository. These components are cut during dismantling with appropriate measures and fall as a mixture of lumpy scrap and chips.
- the material is not always sorted, but is a mixture of different qualities, such as carbon steel, stainless steel, copper, brass, aluminum, magnesium, cadmium and others.
- the storage of unconsolidated material would leave many voids that would massively increase the repository volume and therefore the cost. Furthermore, such scraps provide a very large surface from which radionuclides could be removed or released.
- DE 34 04 106 A1 describes a process for the recovery of metallic components of nuclear power plants.
- a crucible is described which is introduced into the smelting furnace.
- the furnace comprises a furnace chamber with furnace chamber bottom.
- the oven is not hermetically sealed. Rather, a part of the resulting exhaust gas is sucked by means of a suction hood.
- This melting furnace can therefore only be operated in a large security area, which has facilities that prevent the contamination of the environment. Thus, the system described there can not be used as a mobile system.
- FR2447592 discloses a fusing apparatus and method for filling a storable container with solid radioactive material.
- numerous melting devices are known from the prior art. All have in common that the melting devices are not or only with great effort transportable. Therefore, the scrap to be processed always had to be transported to the melting device. Transports of radioactive material are risky, however, and regularly encounter opposition from the population.
- the object is solved by the subject matters of claims 1-12.
- the present invention provides an improved method by providing a novel mobile fusing device and method as defined in the claims.
- the invention provides a plant and a method suitable for achieving a volume reduction of such radioactively contaminated material as obtained in the deconstruction of nuclear installations (hereinafter "material to be melted”).
- material to be melted The system can be operated cost-effectively and does not pose any risks to people and the environment during operation.
- the melting device is a mobile melting device with a crucible base and a crucible chamber, which is suitable for receiving the crucible.
- the crucible base comprises a chamber bottom and the crucible chamber comprises a Shell.
- the melting device has a transport device which is suitable for moving the crucible base with the crucible from a first position outside the crucible chamber to a second position within the crucible chamber (also: melting position).
- the chamber bottom and the shell are designed so that they together form a gas-tight furnace housing in the second position.
- the crucible can thus be moved from a location outside the crucible chamber to a location within the crucible chamber and vice versa.
- the transport device is preferably arranged below the crucible chamber during operation so that the crucible can be lifted upwards by means of the transport device into the crucible chamber.
- the transport device may be a scissor lift.
- a lifting table can be used, which works with tension spindles or hydraulic cylinders and a web guide.
- the crucible is preferably arranged on the crucible base.
- the crucible is preferably made of a heat-resistant material, in particular of ceramic, graphite, Tongraphit or mixtures thereof.
- the crucible preferably has a cylindrical shape, wherein the lateral surface of the cylinder is delimited by a crucible wall and the base surface by a crucible bottom.
- the crucible can be moved from the second position to the first position using the transport device.
- the crucible and the crucible base are accessible on the one hand for maintenance purposes and on the other hand facilitate the removal of the crucible with its contents.
- the crucible can then be removed from the crucible chamber and another crucible can be inserted into the crucible chamber.
- the crucible is thus preferably a replaceable crucible. Due to the relatively thin crucible walls and the relatively thin crucible bottom, which are preferably reinforced in operation by support elements or a bottom plate, the crucible is relatively easy to handle. In the case of a broken pot, it can be disposed of without large amounts of additional waste.
- One component of the crucible base is preferably a bottom plate on which the crucible can be arranged.
- the bottom plate reinforces the crucible. This supports the crucible bottom without making the crucible heavier.
- the bottom plate is preferably thicker than the crucible bottom to ensure sufficient stability. In preferred embodiments, the bottom plate is more than twice as thick as the crucible bottom.
- the bottom plate is preferably made of a heat-resistant material, in particular of ceramic.
- the crucible base preferably comprises a collecting trough.
- the drip pan serves to catch escaping melt, should the crucible be damaged. At the outlet of the melt due to a pot damage, the melt is in the drip pan in the portable crucible base and is moved out by means of the transport device. Thus, the melting device can be operated without maintenance. Only the crucible base has to be processed.
- the drip tray is preferably made of refractory material.
- the shell preferably represents the outer shell of the crucible chamber.
- the shell contributes to the fact that the furnace housing is gas-tight.
- the shell is a closed shell.
- it comprises at least one opening to introduce the crucible, and preferably at least one chamber opening to be able to reload the material to be melted.
- it may comprise one or more openings for the passage of leads for the heating device.
- it may comprise an opening which allows the connection of a suction device.
- the shell is preferably made of metal, in particular steel.
- the chamber bottom is designed so that it forms together with the shell a gas-tight oven housing. It is preferably made of the same material as the shell.
- the bottom of the chamber preferably closes the crucible base downwards.
- the remaining components of the crucible base, in particular bottom plate and drip pan, are located inside the chamber bottom, ie on the side which faces in the melting position of the crucible chamber.
- at least one sealing element is arranged. The sealing element seals the furnace housing. It is preferably a lip seal made of a rubber-elastic material.
- the crucible chamber is shaped so that it can receive the crucible.
- the crucible is then preferably arranged in the crucible chamber during the melt
- Support elements stabilized.
- the support members are configured to relieve the crucible wall from the hydrostatic pressure of the melt when the crucible is within the crucible chamber.
- the support elements are in the melting position between the crucible and the shell.
- the support elements preferably form a common contact surface with the bottom plate.
- the support elements are particularly resistant to withstand the high loads during the melting process.
- the support elements are preferably designed so that they can be withdrawn if the crucible is to be removed from the melting position. The shape of the support elements is thus adapted to the shape of the crucible wall.
- the melting device furthermore has a heating device which is suitable for heating the material in the crucible.
- the heating device is in particular a component of the crucible chamber.
- the heating device is preferably an induction heater and / or a resistance heater.
- the heating device is preferably a component of the crucible chamber.
- the heating device is preferably arranged with a minimum distance from the crucible, so that no contact between the heating device and the melt is to be feared even in cases of escaping melt.
- the heater is an induction heater. This has the advantage that the material to be consolidated can be heated very quickly because the heat is generated directly in the crucible.
- the heater is a resistance heater. This has the advantage that no cooling water must be used in the vicinity of the melt. This minimizes the risk of water vapor explosion.
- the heater is preferably located substantially within the envelope, except for the leads to the heater.
- the melting device according to the invention preferably has a charging device which is suitable for filling the scrap to be consolidated into the crucible.
- the charging device is preferably arranged above the crucible chamber during operation, so that the material to be melted can be discharged from above into the crucible chamber and thus into the crucible. This process can be done remotely, so that contamination risks are avoided.
- the shell of the crucible chamber preferably has a chamber opening.
- the chamber opening is preferably in the upper area the shell arranged.
- the chamber opening can be closed with any closing element, such as a lid.
- a lock is arranged on the chamber opening, which is also part of the crucible chamber.
- the lock is preferably hermetically sealed.
- the lock is part of the crucible chamber.
- the filling of the crucible through the lock takes place when the crucible is in the melting position, the shell and the chamber bottom thus together form a gas-tight furnace housing.
- the lock is then arranged between the gas-tight oven housing and charging device.
- the charging device may include a crane that can pivot a charging basket to an area above the chamber opening. There, the charging basket can be lowered, so that the material to be melted passes through the chamber opening in the crucible.
- a movable charging trolley is conceivable, which can preferably be moved on rails from a position above the chamber opening to a receiving position.
- the charging trolley may have a pulley system such that a charging basket at the picking position, e.g. can be pulled up from a place at ground level next to the transport device, and at a position above the chamber opening, the filling of the crucible can be made.
- Charging trolleys, rails and cable system are then part of the charging facility.
- the charging trolley is preferably provided with a housing into which the charging basket can be guided.
- the charging trolley can be hermetically sealed.
- the housing of the charging trolley may be designed so that it closes with the upper end of the lock, that when the material to be melted into the lock no dusts or vapors can escape.
- the melting device according to the invention preferably comprises an exhaust gas purification system. It can be connected via a connecting element, e.g. a tube to be connected to the crucible chamber.
- the exhaust gas purification system may be part of the chamber module or else of the optionally present feed module. But it can also be arranged separately.
- the melting device comprises a vacuum pump, which is suitable for evacuating the gas-tight oven housing.
- the vacuum pump can be connected via a connecting element, e.g. a tube to be connected to the crucible chamber.
- a connecting element e.g. a tube to be connected to the crucible chamber.
- an emission control system located behind the vacuum pump, an emission control system. From the exhaust gas purification system, the exhaust gas can be passed into an exhaust gas disposal system, which is usually already present in nuclear facilities.
- An inventively preferred melting device is a fixed furnace system, in which the crucible are retracted and locked on the crucible base from below.
- a charging device is provided which operates with a hermetically sealed lock.
- the melting device according to the invention is designed as a mobile system which can be used at the location where e.g. a nuclear facility is built back, can be temporarily built in an existing building with a nuclear control area.
- Auxiliary systems for operating the melting device may be located in containers which may be set up outside the control area.
- Such auxiliary systems are, for example, the melt power supply, the cooling water distribution, the process gas supply and the electrical switchgear with the control panel.
- this melting device according to the invention can be degraded again and be moved to another point of use, because it is preferably modular.
- Module design means that the melting device can be easily disassembled into parts or assemblies that can each be easily transported individually.
- the construction of the melting device contributes to the need for a transportable Plant also account for the fact that it can be brought into a state in which the parts of the melting device, which can come into contact with radioactive material, are encapsulated.
- needed auxiliary systems are already in suitable transport containers and the modules of the melting device can be easily introduced into a transport container. This reliably prevents stress on people and the environment during transport. Melting devices of the prior art can not be disassembled with reasonable effort. In addition, their decomposition would pose a high risk of contamination for the workers involved in the dismantling.
- the melting device according to the invention therefore preferably has a plurality of modules. These are preferably at least one chamber module, a charging module and a transport module. Each module in the modules is grouped in such a way that each module is easy to transport per se.
- the melting device therefore preferably has at least one chamber module.
- the chamber module is the most important module because it is where the actual melting process takes place.
- the chamber module comprises the crucible chamber.
- the charging module comprises at least the charging device.
- the transport module comprises at least the transport device.
- the crucible base is not part of the mentioned modules, but is transported separately.
- the melting device according to the invention can be operated with several different crucible bases. Thus, after a melting process, a crucible base with the crucible thereon can be removed from the crucible chamber, and immediately thereafter another crucible base can be introduced into the crucible chamber with another crucible. This allows a particularly economical process management.
- the transport module can also be designed to optimize the process flow so that the transport device can be moved on a rail system.
- a crucible base can be loaded with a crucible at a loading position, then moved to the first position below the crucible chamber, then lifted to the melt position, lowered back to the first position after the melt, and finally to one Unloading position is spent.
- This has the advantage that the loading of a second crucible in the loading position can already take place during the melt in a first crucible. Once the contents of the first crucible have melted and the first crucible base has been moved to the unloading position with the first crucible, the second crucible base may be brought to the melt position with the second crucible.
- two crucible bases can be used simultaneously.
- the modules can be easily reconnected to build up the melting device.
- the transport module is preferably arranged below the chamber module.
- the charging module is preferably arranged above the chamber module. So that the modules can be transported well, they are preferably provided with support elements.
- the support elements reinforce the modules and secure the individual components within a module against damage during transport.
- the support elements may e.g. Be steel beam.
- the size of the individual modules is preferably chosen so that they can be easily transported. Before transport, for example, the chamber module is separated from the transport module and possibly the charging module and loaded individually. Preferably, the modules are designed so that they can be loaded well on trucks or railroad cars.
- Advantageous embodiments relate to modules sized to be loaded into 20-foot standard containers or 40-foot standard containers. This means that the modules are preferably each no longer than 5.71 m long, not more than 2.352 m wide and not more than 2.385 m high.
- the mass of the modules should preferably not exceed a value of 20,000 kg each, preferably 10,000 kg and more preferably 5,000 kg.
- the filling of the crucible can take place with the aid of a charging device, which is preferably arranged above the crucible chamber.
- the crucible can also be filled at least partially outside the crucible chamber.
- the crucible is then placed in the crucible chamber with the material to be melted. After this first portion has been melted down, one or more further portions can be recharged using the charging device.
- the crucible volume can be optimally utilized.
- the melting device is built up before filling the crucible.
- the first filling can therefore take place outside the melting position (ie outside the crucible chamber), e.g. in a loading position in a scrap warehouse.
- the filling of the crucible with a sheet metal drum is conceivable in which the material to be melted.
- damage to the crucible can be avoided.
- the tin drum is melted together with the material to be melted.
- the material to be melted is thus filled through a chamber opening in the crucible located in the gastight furnace housing, e.g. by means of a charging basket.
- the charging basket can be lowered and its contents are then introduced into the crucible.
- the crucible may already contain molten material at the moment.
- the chamber opening can be designed as a lock.
- the crucible may already contain scrap to be consolidated when it is introduced into the crucible chamber.
- the charging device can then be used to reload additional material to be melted in order to achieve a higher degree of filling of the crucible.
- the method according to the invention preferably provides the step of recharging material to be melted after a first portion of material to be melted has already been melted in the crucible. Melting reduces the volume of the material, leaving the crucible room for another portion of consolidating material.
- the material to be melted is preferably heated to temperatures of at least 1000 ° C, more preferably at least 1350 ° C, and most preferably at least 1500 ° C.
- the chosen temperature depends on the material to be melted.
- the material to be melted is held for a certain time at the high temperature, so that the material melts as completely as possible.
- the melting process which begins with heating and ends immediately before solidification, preferably lasts at least 4 hours, more preferably at least 6 hours. If too short a period is selected, the melt may not be complete.
- overheating should be avoided too quickly, as it may cause local overheating in or on the crucible that would stress the crucible too much. Furthermore, this can cause excessive convection, which would also increase the erosion of the pot. Thus, the life of the crucible would decrease.
- the melting of the material to be melted takes place within the crucible, if it is at the melting position, ie inside the gas-tight furnace housing.
- the melting device is constructed so that the crucible chamber and the crucible base through the shell and the chamber bottom form a gas-tight furnace housing.
- the melting can be carried out under vacuum or inert gas atmosphere, wherein an oxidation of the material to be melted is avoided.
- reactive metal scrap e.g. Magnesium or cadmium contained, be consolidated.
- less volatile products are formed.
- the protective gas and any by-products of the melt contained therein are preferably removed by suction and preferably an exhaust gas purification subjected.
- the exhaust gas purification can be carried out with the aid of an exhaust gas purification system, which can be a condensation trap.
- Other cleaning methods are also conceivable, eg filtering, in particular using HEPA filters.
- Impurities of the material to be melted can be removed by means of vacuum-thermal pretreatment in the crucible. These are e.g. moisture, solvents, paints, oils, greases and / or plastics.
- the process is preferably carried out depending on the material-specific requirements in vacuum or under protective gas. This ensures that reactive constituents of the material to be melted do not form explosions or volatile oxides, which can not be ruled out when working under air atmosphere.
- the chamber opening is preferably closed with a closing element during the melting process.
- the closure member may be part of a lock which allows the material to be melted to be filled into the crucible without the crucible contents being able to contaminate the environment. This measure helps ensure that the safety area around the melting device can be kept very small. Furthermore, material to be melted during operation can be recharged if a volume contraction has occurred due to the consolidation of a first scrap portion. Thus, vacuum or a protective gas atmosphere is maintained in the furnace housing even during recharging.
- the solidification of the molten material is preferably carried out while the crucible is within the furnace housing.
- the material already cools down at least partially and forms a block. It is not necessary for the block to cool to ambient temperature in this position. It is enough that it cools down so far that it can be removed safely. Cooling to room temperature then preferably takes place at another location, e.g. at the unloading position mentioned above. Meanwhile, another crucible, possibly on another crucible base, can be introduced into the crucible chamber.
- the block can be removed from the crucible or disposed of together with the crucible.
- the crucible with the aid of Transport device moves from the second position to the first position outside the crucible chamber. It is preferred that the crucible is lowered from the second position to the first position. This means that the crucible is removed in a downward movement from the crucible chamber.
- the crucible can then be removed from the area below the crucible chamber. This can be done by the transport device mediated or using a separate further transport device.
- the transport device with crucible base and crucible arranged thereon can preferably be moved on rails.
- the melting device has the advantage that in a crucible failure, the melt can flow into a collecting trough located in the crucible base. There, the melt can solidify. The crucible base with the defective crucible can then be removed from the crucible chamber and the consolidation process can be continued with another crucible on a further crucible base.
- the atmosphere within the crucible chamber which is substantially free of oxygen.
- the oxygen partial pressure there is less than 10 kPa, more preferably less than 1 kPa.
- a preferred shielding gas is nitrogen because it effectively suppresses the formation of volatile oxides and is inexpensive.
- the melting device at the same throughput in their dimensions may be smaller than is the case with other systems. This in turn facilitates the transport.
- the crucible and thus the entire melting device can be designed more easily because a check of the crucible is possible after each melting cycle.
- the crucibles became extremely robust because they were partly used in continuous operation, which does not allow for checks in the process.
- the molten material in the crucible can solidify, so that forms a block, which has no voids and thus a much higher density compared to the starting material.
- the block may be removed from the crucible and transferred, for example, to a standardized waste package (e.g., a tin drum).
- a standardized waste package e.g., a tin drum.
- the crucible is thus preferably designed so that a block is obtained which fits into a standardized waste container.
- the block is preferably a cylindrical body having a diameter of about 400 to 600 mm and a height of about 800 to 1000 mm.
- the tightness of the furnace housing and the charging device can be verified at each start of a new consolidation melt, so preferably before heating, by a short pressure rise test and thus ensured.
- the oven housing is preferably hermetically sealed. This means that the pressure increase at a vacuum of 20 mbar for 1 hour is less than 20 mbar. The same applies preferably also for the lock and in particular also for the charging device.
- the method according to the invention is furthermore preferably characterized in that the steps of filling, heating, melting, possibly recharging and solidification to a block for batch of material to be melted take place in a single exchangeable crucible, preferably under a vacuum and / or controlled atmosphere.
- the preferably metallic block can be used at a later time, if necessary, after further modification for disposal or storage.
- An inventive feature is that the melt is not poured from the crucible.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Crucibles And Fluidized-Bed Furnaces (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
Diese Erfindung betrifft eine Schmelzeinrichtung zum Konsolidieren von kontaminiertem Schrott sowie ein Konsolidierungsverfahren, das unter Verwendung der Schmelzeinrichtung durchgeführt werden kann.This invention relates to a fusing apparatus for consolidating contaminated scrap and a consolidation method that can be carried out using the fusing apparatus.
Beim Rückbau von nukleartechnischen Anlagen, wie z. B. Kernkraftwerken, Forschungszentren, Urananreicherungsanlagen und Wiederaufarbeitungsanlagen fallen kontaminierte Schrotte an, die beispielsweise in die Kategorie "schwach radioaktive Abfälle" fallen. Diese können ggf. durch den Umschmelzprozess dekontaminiert und wieder in den normalen Materialkreislauf zurückgeführt werden. Es können auch mittelschwer kontaminierte Schrotte und ebenso hoch radioaktiver Schrott anfallen. Diese Schrotte können nicht mehr in den normalen Materialkreislauf zurückgeführt werden und müssen in einem Endlager entsorgt werden. Um die Endlagerkosten möglichst gering zu halten, ist es erforderlich, das Volumen des anfallenden Schrottes durch Einschmelzen in einen massiven Block zu konsolidieren. Die vorliegende Erfindung beschreibt eine speziell auf diese Aufgabe ausgerichtete Schmelzeinrichtung und das zugehörige Verfahren.When dismantling nuclear facilities, such. As nuclear power plants, research centers, uranium enrichment plants and reprocessing plants are contaminated scraps fall, for example, in the category "low-level radioactive waste". If necessary, these can be decontaminated by the remelting process and returned to the normal material cycle. It may also be medium-contaminated scrap and equally high-level radioactive waste. These scraps can no longer be returned to the normal material cycle and must be disposed of in a repository. In order to keep the disposal costs as low as possible, it is necessary to consolidate the volume of the resulting scrap by melting into a solid block. The present invention describes a melting device specifically designed for this task and the associated method.
Beim Rückbau der kerntechnischen Anlagen müssen Prozesseinrichtungen, wie z. B. Behälter, Rohrleitungen, Armaturen, Messgeräte, Lagergestelle, Auskleidungen aber auch metallische Strukturelemente, wie Bühnen, Gerüste, Treppen usw., die sich in kontaminierten Bereichen befinden, oder die mit radioaktiven Medien in Berührung gekommen sind, in einem Endlager entsorgt werden. Diese Bauteile werden beim Rückbau mit geeigneten Maßnahmen zerschnitten und fallen dabei als ein Gemisch aus stückigem Schrott und Spänen an. Das Material ist nicht in jedem Fall sortenrein, sondern ist ein Gemisch verschiedener Qualitäten, wie z.B. Kohlenstoffstahl, Edelstahl, Kupfer, Messing, Aluminium, Magnesium, Cadmium und anderen. Beim Einlagern von nicht konsolidiertem Material würden viele Hohlräume übrig bleiben, die das Endlagervolumen und damit die Kosten massiv erhöhen würden. Weiterhin bieten solche Schrotthalden eine sehr große Oberfläche, von denen Radionuklide abgetragen bzw. freigesetzt werden könnten.When dismantling the nuclear facilities, process equipment, such. As containers, pipelines, fittings, measuring equipment, storage racks, linings but also metallic structural elements, such as stages, scaffolding, stairs, etc., which are located in contaminated areas, or have come into contact with radioactive media, disposed of in a repository. These components are cut during dismantling with appropriate measures and fall as a mixture of lumpy scrap and chips. The material is not always sorted, but is a mixture of different qualities, such as carbon steel, stainless steel, copper, brass, aluminum, magnesium, cadmium and others. The storage of unconsolidated material would leave many voids that would massively increase the repository volume and therefore the cost. Furthermore, such scraps provide a very large surface from which radionuclides could be removed or released.
Derzeit sind zum Einschmelzen des Schrottes aus nuklearen Anlagen Schmelzeinrichtungen bekannt, die als luftoffene Induktionsöfen ausgeführt sind, bei denen die flüssige Schmelze in Kokillen abgegossen wird. Die Erfinder der erfindungsgemäßen Schmelzeinrichtung haben in den Lösungen des Standes der Technik unter anderem folgende Einschränkungen identifiziert:
- Die Abgase aus den Anlagen werden in den Raum abgegeben und müssen über eine aufwändige Abgasreinigungsanlage entsorgt werden.
- Die Schmelztiegel dieser Anlagen sind aus Feuerfestkeramik hergestellt, unterliegen aufgrund thermischer sowie mechanischer Belastung einem Verschleiß und müssen nach einer Schmelzkampagne ausgebrochen werden. Bei diesem Vorgang werden die keramischen Tiegel zerstört und in definierte Reststücke zerkleinert. Dabei fallen zusätzlich große Mengen an kontaminiertem Abfall und Staub als Sekundärabfall an.
- Der nukleare Kontrollbereich dieser Anlagen ist relativ groß.
- Bei den bekannten Anlagen handelt es sich um ortsfeste Anlagen, zu denen der radioaktiv kontaminierte Schrott transportiert werden muss.
- Schrotte, die reaktive Metalle enthalten, wie z.B. Magnesium, können nicht eingeschmolzen werden.
- Schrottbestandteile, die gesundheitsgefährdende Dämpfe entwickeln, wie z.B. Cadmium, können nur eingeschränkt eingeschmolzen werden.
- Leichtflüchtige radioaktive Isotope können nicht zurückgehalten werden.
- Der Rückbau solcher Anlagen ist sehr aufwändig.
- The exhaust gases from the plants are released into the room and have to be disposed of via a complex emission control system.
- The crucibles of these plants are made of refractory ceramics, are subject to wear due to thermal and mechanical stress and must be broken after a smelting campaign. In this process, the ceramic crucible are destroyed and crushed into defined remnants. In addition, large amounts of contaminated waste and dust accumulate as secondary waste.
- The nuclear control area of these plants is relatively large.
- The known systems are fixed installations to which the radioactively contaminated scrap must be transported.
- Scrap containing reactive metals, such as magnesium, can not be melted down.
- Scrap components that develop harmful vapors, such as cadmium, can only be melted to a limited extent.
- Volatile radioactive isotopes can not be retained.
- The dismantling of such systems is very expensive.
Die bisher bekannten Schmelzanlagen sind alle an zentrale Entsorgungszentren angegliedert, wo große Kontrollbereiche eingerichtet sind. Dies führt dazu, dass kontaminiertes Material von der Rückbaustelle zu den Entsorgungszentren transportiert werden muss, wodurch erhöhte Kosten für ein großes Transportvolumen von Nuklearmaterial anfallen.The previously known melting plants are all affiliated to central disposal centers, where large control areas are set up. As a result, contaminated material has to be transported from the decommissioning site to the disposal centers, resulting in increased costs for a large transport volume of nuclear material.
Es ist die Aufgabe dieser Erfindung, eine Schmelzeinrichtung zur Volumenreduktion von radioaktiv belastetem Material bereit zu stellen, die es ermöglicht, die Transporte von radioaktivem Material signifikant zu reduzieren.It is the object of this invention to provide a melting device for reducing the volume of radioactively contaminated material, which makes it possible to significantly reduce the transport of radioactive material.
Die Aufgabe wird durch die Gegenstände der Patentansprüche 1-12 gelöst. Die vorliegende Erfindung ermöglicht ein verbessertes Verfahren, indem sie eine neuartige mobile Schmelzeinrichtung und ein Verfahren zur Verfügung stellt, wie es in den Ansprüchen definiert ist. Die Erfindung stellt eine Anlage und ein Verfahren zur Verfügung, das geeignet ist, eine Volumenreduktion von solchem radioaktiv belasteten Material zu erzielen, wie es beim Rückbau von kerntechnischen Anlagen anfällt (hiernach: "zu schmelzendes Material"). Die Anlage kann kostengünstig betrieben werden und verursacht im Betrieb keine Risiken für Mensch und Umwelt.The object is solved by the subject matters of claims 1-12. The present invention provides an improved method by providing a novel mobile fusing device and method as defined in the claims. The invention provides a plant and a method suitable for achieving a volume reduction of such radioactively contaminated material as obtained in the deconstruction of nuclear installations (hereinafter "material to be melted"). The system can be operated cost-effectively and does not pose any risks to people and the environment during operation.
Die erfindungsgemäße Schmelzeinrichtung ist eine mobile Schmelzeinrichtung mit einer Tiegelbasis und einer Tiegelkammer, die zur Aufnahme des Tiegels geeignet ist. Die Tiegelbasis umfasst einen Kammerboden und die Tiegelkammer umfasst eine Hülle. Die Schmelzeinrichtung weist eine Transporteinrichtung auf, die dazu geeignet ist, die Tiegelbasis mit dem Tiegel von einer ersten Position außerhalb der Tiegelkammer an eine zweite Position innerhalb der Tiegelkammer (auch: Schmelzposition) zu bewegen. Der Kammerboden und die Hülle sind so ausgestaltet, dass sie in der zweiten Position zusammen ein gasdichtes Ofengehäuse ausbilden.The melting device according to the invention is a mobile melting device with a crucible base and a crucible chamber, which is suitable for receiving the crucible. The crucible base comprises a chamber bottom and the crucible chamber comprises a Shell. The melting device has a transport device which is suitable for moving the crucible base with the crucible from a first position outside the crucible chamber to a second position within the crucible chamber (also: melting position). The chamber bottom and the shell are designed so that they together form a gas-tight furnace housing in the second position.
Der Tiegel kann also von einem Ort außerhalb der Tiegelkammer an einen Ort innerhalb der Tiegelkammer bewegt werden und umgekehrt. Die Transporteinrichtung ist im Betrieb vorzugsweise unterhalb der Tiegelkammer angeordnet, so dass der Tiegel mittels der Transporteinrichtung aufwärts in die Tiegelkammer gehoben werden kann. Die Transporteinrichtung kann ein Scherenhubtisch sein. Alternativ kann ein Hubtisch eingesetzt werden, der mit Zugspindeln oder hydraulischen Zylindern und einer Bahnführung arbeitet.The crucible can thus be moved from a location outside the crucible chamber to a location within the crucible chamber and vice versa. The transport device is preferably arranged below the crucible chamber during operation so that the crucible can be lifted upwards by means of the transport device into the crucible chamber. The transport device may be a scissor lift. Alternatively, a lifting table can be used, which works with tension spindles or hydraulic cylinders and a web guide.
Der Tiegel ist vorzugsweise auf der Tiegelbasis angeordnet. Der Tiegel besteht vorzugsweise aus einem hitzebeständigen Material, insbesondere aus Keramik, Graphit, Tongraphit oder Mischungen daraus. Der Tiegel weist vorzugsweise eine zylindrische Form auf, wobei die Mantelfläche des Zylinders durch eine Tiegelwand und die Grundfläche durch einen Tiegelboden begrenzt ist. Der Tiegel kann unter Verwendung der Transporteinrichtung aus der zweiten Position in die erste Position bewegt werden. Dadurch werden der Tiegel und die Tiegelbasis einerseits zu Wartungszwecken zugänglich und andererseits die Entnahme des Tiegels mit seinem Inhalt erleichtert. Der Tiegel kann dann aus der Tiegelkammer entnommen werden und ein weiterer Tiegel kann in die Tiegelkammer eingeführt werden. So ist eine hohe Auslastung der Anlage möglich, ohne dass lange Abkühlzeiten abgewartet werden müssen. Der Tiegel ist also vorzugsweise ein Wechseltiegel. Aufgrund der relativ dünnen Tiegelwände und des relativ dünnen Tiegelbodens, die im Betrieb vorzugsweise von Unterstützungselementen bzw. einer Bodenplatte verstärkt werden, ist der Tiegel relativ leicht zu handhaben. Im Falle eines defekten Tiegels kann dieser entsorgt werden, ohne dass große Mengen zusätzlichen Abfalles anfallen.The crucible is preferably arranged on the crucible base. The crucible is preferably made of a heat-resistant material, in particular of ceramic, graphite, Tongraphit or mixtures thereof. The crucible preferably has a cylindrical shape, wherein the lateral surface of the cylinder is delimited by a crucible wall and the base surface by a crucible bottom. The crucible can be moved from the second position to the first position using the transport device. As a result, the crucible and the crucible base are accessible on the one hand for maintenance purposes and on the other hand facilitate the removal of the crucible with its contents. The crucible can then be removed from the crucible chamber and another crucible can be inserted into the crucible chamber. Thus, a high utilization of the system is possible without long cooling times must be waited. The crucible is thus preferably a replaceable crucible. Due to the relatively thin crucible walls and the relatively thin crucible bottom, which are preferably reinforced in operation by support elements or a bottom plate, the crucible is relatively easy to handle. In the case of a broken pot, it can be disposed of without large amounts of additional waste.
Ein Bestandteil der Tiegelbasis ist vorzugsweise eine Bodenplatte, auf welcher der Tiegel angeordnet werden kann. Die Bodenplatte verstärkt den Tiegel. Dadurch wird der Tiegelboden unterstützt, ohne dass der Tiegel dadurch schwerer wird. Die Bodenplatte ist vorzugsweise dicker als der Tiegelboden, um eine ausreichende Stabilität zu gewährleisten. In bevorzugten Ausführungsformen ist die Bodenplatte mehr als doppelt so dick wie der Tiegelboden. Die Bodenplatte besteht vorzugsweise aus einem hitzebeständigen Material, insbesondere aus Keramik.One component of the crucible base is preferably a bottom plate on which the crucible can be arranged. The bottom plate reinforces the crucible. This supports the crucible bottom without making the crucible heavier. The bottom plate is preferably thicker than the crucible bottom to ensure sufficient stability. In preferred embodiments, the bottom plate is more than twice as thick as the crucible bottom. The bottom plate is preferably made of a heat-resistant material, in particular of ceramic.
Die Tiegelbasis umfasst vorzugsweise eine Auffangwanne. Die Auffangwanne dient dazu, austretende Schmelze aufzufangen, sollte der Tiegel beschädigt werden. Beim Auslauf der Schmelze infolge eines Tiegelschadens, befindet sich die Schmelze in der Auffangwanne in der transportablen Tiegelbasis und wird mittels der Transporteinrichtung herausgefahren. Damit kann die Schmelzeinrichtung ohne Wartungsaufwand weiterbetrieben werden. Lediglich die Tiegelbasis muss aufbereitet werden. Die Auffangwanne besteht vorzugsweise aus Feuerfestmaterial.The crucible base preferably comprises a collecting trough. The drip pan serves to catch escaping melt, should the crucible be damaged. At the outlet of the melt due to a pot damage, the melt is in the drip pan in the portable crucible base and is moved out by means of the transport device. Thus, the melting device can be operated without maintenance. Only the crucible base has to be processed. The drip tray is preferably made of refractory material.
Die Hülle stellt vorzugsweise die äußere Hülle der Tiegelkammer dar. Die Hülle trägt dazu bei, dass das Ofengehäuse gasdicht ist. Zu diesem Zweck ist die Hülle eine geschlossene Hülle. Sie umfasst allerdings wenigstens eine Öffnung, um den Tiegel einzuführen, und vorzugsweise wenigstens eine Kammeröffnung, um zu schmelzendes Material nachchargieren zu können. Ferner kann sie eine oder mehrere Öffnungen zur Durchführung von Zuleitungen für die Heizeinrichtung umfassen. Außerdem kann sie eine Öffnung umfassen, die den Anschluss einer Absaugeinrichtung erlaubt. Die Hülle besteht vorzugsweise aus Metall, insbesondere Stahl.The shell preferably represents the outer shell of the crucible chamber. The shell contributes to the fact that the furnace housing is gas-tight. For this purpose, the shell is a closed shell. However, it comprises at least one opening to introduce the crucible, and preferably at least one chamber opening to be able to reload the material to be melted. Furthermore, it may comprise one or more openings for the passage of leads for the heating device. In addition, it may comprise an opening which allows the connection of a suction device. The shell is preferably made of metal, in particular steel.
Der Kammerboden ist so ausgestaltet, dass er mit der Hülle zusammen ein gasdichtes Ofengehäuse ausbildet. Er ist vorzugsweise aus demselben Material gefertigt wie die Hülle. Der Kammerboden schließt die Tiegelbasis vorzugsweise nach unten ab. Die übrigen Bestandteile der Tiegelbasis, insbesondere Bodenplatte und Auffangwanne, befinden sich innerhalb des Kammerbodens, also auf der Seite, die in der Schmelzposition der Tiegelkammer zugewandt ist. Dort wo Kammerboden und Hülle aufeinander treffen, ist vorzugsweise wenigstens ein Dichtungselement angeordnet. Das Dichtungselement dichtet das Ofengehäuse ab. Es ist vorzugsweise eine Lippendichtung aus einem gummielastischen Material.The chamber bottom is designed so that it forms together with the shell a gas-tight oven housing. It is preferably made of the same material as the shell. The bottom of the chamber preferably closes the crucible base downwards. The remaining components of the crucible base, in particular bottom plate and drip pan, are located inside the chamber bottom, ie on the side which faces in the melting position of the crucible chamber. Where chamber bottom and shell meet, preferably at least one sealing element is arranged. The sealing element seals the furnace housing. It is preferably a lip seal made of a rubber-elastic material.
Die Tiegelkammer ist so geformt, dass sie den Tiegel aufnehmen kann. Der Tiegel wird dann vorzugsweise während der Schmelze von in der Tiegelkammer angeordneten Unterstützungselementen stabilisiert. Die Unterstützungselemente sind so ausgestaltet, dass sie die Tiegelwand gegen den hydrostatischen Druck der Schmelze entlasten, wenn sich der Tiegel innerhalb der Tiegelkammer befindet. Die Unterstützungselemente befinden sich in der Schmelzposition also zwischen Tiegel und Hülle. Die Unterstützungselemente bilden vorzugsweise mit der Bodenplatte eine gemeinsame Kontaktfläche. Die Unterstützungselemente sind besonders widerstandsfähig, um den großen Belastungen während des Schmelzvorganges standzuhalten. Die Unterstützungselemente sind vorzugsweise so ausgestaltet, dass sie zurückgezogen werden können, wenn der Tiegel aus der Schmelzposition entnommen werden soll. Die Form der Unterstützungselemente ist also an die Form der Tiegelwand angepasst.The crucible chamber is shaped so that it can receive the crucible. The crucible is then preferably arranged in the crucible chamber during the melt Support elements stabilized. The support members are configured to relieve the crucible wall from the hydrostatic pressure of the melt when the crucible is within the crucible chamber. The support elements are in the melting position between the crucible and the shell. The support elements preferably form a common contact surface with the bottom plate. The support elements are particularly resistant to withstand the high loads during the melting process. The support elements are preferably designed so that they can be withdrawn if the crucible is to be removed from the melting position. The shape of the support elements is thus adapted to the shape of the crucible wall.
Die Schmelzeinrichtung weist ferner eine Heizeinrichtung auf, die geeignet ist, das im Tiegel befindliche Material zu erhitzen. Die Heizeinrichtung ist insbesondere ein Bestandteil der Tiegelkammer. Die Heizeinrichtung ist vorzugsweise eine Induktionsheizeinrichtung und/oder eine Widerstandsheizung. Die Heizeinrichtung ist vorzugsweise ein Bestandteil der Tiegelkammer. Die Heizeinrichtung ist vorzugsweise mit einem Mindestabstand zum Tiegel angeordnet, damit auch in Fällen austretender Schmelze kein Kontakt zwischen Heizeinrichtung und Schmelze zu befürchten ist. In einer Ausführungsform ist die Heizeinrichtung eine Induktionsheizung. Diese hat den Vorteil, dass das zu konsolidierende Material sehr schnell erhitzt werden kann, weil die Wärme direkt im Tiegel erzeugt wird. In einer anderen Ausführungsform ist die Heizeinrichtung eine Widerstandsheizung. Diese hat den Vorteil, dass keinerlei Kühlwasser in der Nähe der Schmelze eingesetzt werden muss. Dies minimiert die Gefahr einer Wasserdampfexplosion. Die Heizeinrichtung befindet sich vorzugsweise im Wesentlichen innerhalb der Hülle, ausgenommen sind die Zuleitungen zur Heizeinrichtung.The melting device furthermore has a heating device which is suitable for heating the material in the crucible. The heating device is in particular a component of the crucible chamber. The heating device is preferably an induction heater and / or a resistance heater. The heating device is preferably a component of the crucible chamber. The heating device is preferably arranged with a minimum distance from the crucible, so that no contact between the heating device and the melt is to be feared even in cases of escaping melt. In one embodiment, the heater is an induction heater. This has the advantage that the material to be consolidated can be heated very quickly because the heat is generated directly in the crucible. In another embodiment, the heater is a resistance heater. This has the advantage that no cooling water must be used in the vicinity of the melt. This minimizes the risk of water vapor explosion. The heater is preferably located substantially within the envelope, except for the leads to the heater.
Ferner weist die erfindungsgemäße Schmelzeinrichtung vorzugsweise eine Chargiereinrichtung auf, die geeignet ist, den zu konsolidierenden Schrott in den Tiegel zu füllen. Die Chargiereinrichtung ist im Betrieb vorzugsweise oberhalb der Tiegelkammer angeordnet, so dass das zu schmelzende Material von oben in die Tiegelkammer und somit in den Tiegel abgegeben werden kann. Dieser Vorgang kann fernbedient erfolgen, so dass Kontaminationsrisiken vermieden werden. Damit der Tiegel in der Schmelzposition befüllt werden kann, weist die Hülle der Tiegelkammer vorzugsweise eine Kammeröffnung auf. Die Kammeröffnung ist vorzugsweise im oberen Bereich der Hülle angeordnet. Die Kammeröffnung kann mit einem beliebigen Schließelement, wie einem Deckel, verschlossen sein. Vorzugsweise ist auf der Kammeröffnung eine Schleuse angeordnet, die ebenfalls Teil der Tiegelkammer ist.Furthermore, the melting device according to the invention preferably has a charging device which is suitable for filling the scrap to be consolidated into the crucible. The charging device is preferably arranged above the crucible chamber during operation, so that the material to be melted can be discharged from above into the crucible chamber and thus into the crucible. This process can be done remotely, so that contamination risks are avoided. So that the crucible can be filled in the melting position, the shell of the crucible chamber preferably has a chamber opening. The chamber opening is preferably in the upper area the shell arranged. The chamber opening can be closed with any closing element, such as a lid. Preferably, a lock is arranged on the chamber opening, which is also part of the crucible chamber.
Die Schleuse ist vorzugsweise hermetisch abgeschlossen. Somit kann das zu konsolidierende Material in den Tiegel abgegeben werden, ohne dass dabei Stäube und Dämpfe in den Raum entweichen können. Die Schleuse ist Teil der Tiegelkammer. Die Befüllung des Tiegels durch die Schleuse erfolgt, wenn sich der Tiegel in der Schmelzposition befindet, die Hülle und der Kammerboden also zusammen ein gasdichtes Ofengehäuse bilden. Dadurch und durch die hermetisch dichte Schleuse kann zu schmelzendes Material in den Tiegel abgegeben werden, ohne dass die Umgebung kontaminiert wird. Die Schleuse ist dann zwischen gasdichtem Ofengehäuse und Chargiereinrichtung angeordnet.The lock is preferably hermetically sealed. Thus, the material to be consolidated can be discharged into the crucible without dusts and vapors escaping into the room. The lock is part of the crucible chamber. The filling of the crucible through the lock takes place when the crucible is in the melting position, the shell and the chamber bottom thus together form a gas-tight furnace housing. Thereby, and through the hermetically sealed lock, material to be melted can be discharged into the crucible without contaminating the environment. The lock is then arranged between the gas-tight oven housing and charging device.
Die Chargiereinrichtung kann zum Beispiel einen Kran umfassen, der einen Chargierkorb an einen Bereich oberhalb der Kammeröffnung schwenken kann. Dort kann der Chargierkorb abgesenkt werden, so dass das zu schmelzende Material durch die Kammeröffnung in den Tiegel gelangt. Es sind aber auch andere Chargiereinrichtungen denkbar. Insbesondere ist ein bewegbarer Chargierwagen denkbar, der vorzugsweise auf Schienen von einer Position über der Kammeröffnung an eine Aufnahmeposition bewegt werden kann. Der Chargierwagen kann über ein Seilzugsystem verfügen, so dass ein Chargierkorb an der Aufnahmeposition, z.B. von einem Ort auf Bodenniveau neben der Transporteinrichtung, hinauf gezogen werden kann und an einer Position über der Kammeröffnung die Befüllung des Tiegels vorgenommen werden kann. Chargierwagen, Schienen und Seilzugsystem sind dann Teil der Chargiereinrichtung.For example, the charging device may include a crane that can pivot a charging basket to an area above the chamber opening. There, the charging basket can be lowered, so that the material to be melted passes through the chamber opening in the crucible. But there are also other Chargiereinrichtungen conceivable. In particular, a movable charging trolley is conceivable, which can preferably be moved on rails from a position above the chamber opening to a receiving position. The charging trolley may have a pulley system such that a charging basket at the picking position, e.g. can be pulled up from a place at ground level next to the transport device, and at a position above the chamber opening, the filling of the crucible can be made. Charging trolleys, rails and cable system are then part of the charging facility.
Der Chargierwagen ist vorzugsweise mit einem Gehäuse versehen, in den der Chargierkorb hineingeführt werden kann. Somit kann auch der Chargierwagen hermetisch abgedichtet sein. Das Gehäuse des Chargierwagens kann so ausgestaltet sein, dass es so mit dem oberen Ende der Schleuse abschließt, dass bei der Abgabe des zu schmelzenden Materials in die Schleuse keine Stäube oder Dämpfe entweichen können.The charging trolley is preferably provided with a housing into which the charging basket can be guided. Thus, the charging trolley can be hermetically sealed. The housing of the charging trolley may be designed so that it closes with the upper end of the lock, that when the material to be melted into the lock no dusts or vapors can escape.
Die erfindungsgemäße Schmelzeinrichtung umfasst vorzugsweise eine Abgasreinigungsanlage. Sie kann über ein Verbindungselement, z.B. ein Rohr, mit der Tiegelkammer verbunden sein. Die Abgasreinigungsanlage kann ein Teil des Kammermoduls oder auch des ggf. vorhandenen Beschickungsmoduls sein. Sie kann aber auch separat angeordnet sein.The melting device according to the invention preferably comprises an exhaust gas purification system. It can be connected via a connecting element, e.g. a tube to be connected to the crucible chamber. The exhaust gas purification system may be part of the chamber module or else of the optionally present feed module. But it can also be arranged separately.
Bevorzugt umfasst die Schmelzeinrichtung eine Vakuumpumpe, die geeignet ist, das gasdichte Ofengehäuse zu evakuieren. Die Vakuumpumpe kann über ein Verbindungselement, z.B. ein Rohr, mit der Tiegelkammer verbunden sein. In einer Ausführungsform befindet sich hinter der Vakuumpumpe eine Abgasreinigungsanlage. Von der Abgasreinigungsanlage kann das Abgas in ein Abgasentsorgungssystem geleitet werden, welches üblicherweise in kerntechnischen Anlagen bereits vorhanden ist.Preferably, the melting device comprises a vacuum pump, which is suitable for evacuating the gas-tight oven housing. The vacuum pump can be connected via a connecting element, e.g. a tube to be connected to the crucible chamber. In one embodiment, located behind the vacuum pump, an emission control system. From the exhaust gas purification system, the exhaust gas can be passed into an exhaust gas disposal system, which is usually already present in nuclear facilities.
Eine erfindungsgemäß bevorzugte Schmelzeinrichtung ist eine feststehende Ofenanlage, in die der Tiegel auf der Tiegelbasis von unten eingefahren und verriegelt werden. Außerdem ist vorzugsweise eine Chargiereinrichtung vorhanden, die mit einer hermetisch dichten Schleuse arbeitet. Dadurch wird in Verbindung mit einer Kameraüberwachung des Schmelzraumes eine komplette Fernbedienung der Schmelzeinrichtung ermöglicht.An inventively preferred melting device is a fixed furnace system, in which the crucible are retracted and locked on the crucible base from below. In addition, preferably a charging device is provided which operates with a hermetically sealed lock. As a result, a complete remote control of the melting device is made possible in conjunction with a camera monitoring of the melting chamber.
Die erfindungsgemäße Schmelzeinrichtung ist als mobile Anlage ausgeführt, die an dem Ort, wo z.B. eine kerntechnische Anlage zurück gebaut wird, in einem bereits vorhandenen Gebäude mit nuklearem Kontrollbereich temporär aufgebaut werden kann. Hilfssysteme zum Betrieb der Schmelzeinrichtung können sich in Containern befinden, die außerhalb des Kontrollbereichs aufgestellt werden können. Solche Hilfssysteme sind beispielsweise die Schmelzstromversorgung, die Kühlwasserverteilung, die Prozessgasversorgung und die elektrische Schaltanlage mit dem Steuerpult.The melting device according to the invention is designed as a mobile system which can be used at the location where e.g. a nuclear facility is built back, can be temporarily built in an existing building with a nuclear control area. Auxiliary systems for operating the melting device may be located in containers which may be set up outside the control area. Such auxiliary systems are, for example, the melt power supply, the cooling water distribution, the process gas supply and the electrical switchgear with the control panel.
Nach Abschluss der Arbeiten kann diese erfindungsgemäße Schmelzeinrichtung wieder abgebaut werden und an eine andere Verwendungsstelle verbracht werden, weil sie vorzugsweise modular aufgebaut ist.After completion of the work, this melting device according to the invention can be degraded again and be moved to another point of use, because it is preferably modular.
"Modularer Aufbau" meint dabei, dass die Schmelzeinrichtung leicht in Teile oder Baugruppen zerlegt werden kann, die jeweils einzeln gut transportiert werden können. Die Konstruktion der Schmelzeinrichtung trägt dem Bedürfnis nach einer transportfähigen Anlage auch dadurch Rechnung, dass sie in einen Zustand gebracht werden kann, in welchem die Teile der Schmelzeinrichtung, die mit radioaktivem Material in Berührung kommen können, eingekapselt sind. Dabei befinden sich benötigte Hilfssysteme bereits in geeigneten Transportcontainern und die Module der Schmelzeinrichtung lassen sich leicht in einen Transportcontainer einbringen. Dadurch wird eine Belastung von Mensch und Umwelt während des Transports sicher verhindert. Schmelzeinrichtungen aus dem Stand der Technik können nicht mit vertretbarem Aufwand zerlegt werden. Außerdem würde bei deren Zerlegung ein großes Kontaminationsrisiko für die mit der Zerlegung beauftragten Arbeiter bestehen."Modular design" means that the melting device can be easily disassembled into parts or assemblies that can each be easily transported individually. The construction of the melting device contributes to the need for a transportable Plant also account for the fact that it can be brought into a state in which the parts of the melting device, which can come into contact with radioactive material, are encapsulated. In this case, needed auxiliary systems are already in suitable transport containers and the modules of the melting device can be easily introduced into a transport container. This reliably prevents stress on people and the environment during transport. Melting devices of the prior art can not be disassembled with reasonable effort. In addition, their decomposition would pose a high risk of contamination for the workers involved in the dismantling.
Die erfindungsgemäße Schmelzeinrichtung weist also vorzugsweise mehrere Module auf. Dies sind vorzugsweise wenigstens ein Kammermodul, ein Chargiermodul und ein Transportmodul. In den Modulen sind jeweils einige Bauteile so zusammengefasst, dass jedes Modul für sich genommen gut transportabel ist.The melting device according to the invention therefore preferably has a plurality of modules. These are preferably at least one chamber module, a charging module and a transport module. Each module in the modules is grouped in such a way that each module is easy to transport per se.
Vorzugsweise weist die Schmelzeinrichtung also wenigstens ein Kammermodul auf. Das Kammermodul ist das wichtigste Modul, weil darin der eigentliche Schmelzvorgang abläuft. Das Kammermodul umfasst die Tiegelkammer. Das Chargiermodul umfasst wenigstens die Chargiereinrichtung. Das Transportmodul umfasst wenigstens die Transporteinrichtung.The melting device therefore preferably has at least one chamber module. The chamber module is the most important module because it is where the actual melting process takes place. The chamber module comprises the crucible chamber. The charging module comprises at least the charging device. The transport module comprises at least the transport device.
Die Tiegelbasis ist kein Bestandteil der genannten Module, sondern wird separat transportiert. Die erfindungsgemäße Schmelzeinrichtung kann mit mehreren verschiedenen Tiegelbasen betrieben werden. Es kann also nach einem Schmelzvorgang eine Tiegelbasis mit dem darauf befindlichen Tiegel aus der Tiegelkammer entfernt werden und gleich darauf eine weitere Tiegelbasis mit einem weiteren Tiegel in die Tiegelkammer eingeführt werden. Das ermöglicht eine besonders wirtschaftliche Verfahrensführung.The crucible base is not part of the mentioned modules, but is transported separately. The melting device according to the invention can be operated with several different crucible bases. Thus, after a melting process, a crucible base with the crucible thereon can be removed from the crucible chamber, and immediately thereafter another crucible base can be introduced into the crucible chamber with another crucible. This allows a particularly economical process management.
Das Transportmodul kann zur Optimierung des Prozessablaufes auch so gestaltet sein, dass die Transporteinrichtung auf einem Schienensystem verfahren werden kann. So eine Ausführungsform ist vorzugsweise so ausgestaltet, dass eine Tiegelbasis mit einem Tiegel an einer Beladeposition beladen werden kann, dann an die erste Position unterhalb der Tiegelkammer bewegt wird, dann in die Schmelzposition gehoben wird, nach der Schmelze wieder in die erste Position abgesenkt wird und schließlich an eine Entladeposition verbracht wird. Dies hat den Vorteil, dass bereits während der Schmelze in einem ersten Tiegel die Beladung eines zweiten Tiegels in der Beladeposition stattfinden kann. Sobald der Inhalt des ersten Tiegels geschmolzen ist und die erste Tiegelbasis mit dem ersten Tiegel in die Entladeposition verschoben wurde, kann die zweite Tiegelbasis mit dem zweiten Tiegel in die Schmelzposition gebracht werden. Es können also gleichzeitig zwei Tiegelbasen verwendet werden.The transport module can also be designed to optimize the process flow so that the transport device can be moved on a rail system. Such an embodiment is preferably such that a crucible base can be loaded with a crucible at a loading position, then moved to the first position below the crucible chamber, then lifted to the melt position, lowered back to the first position after the melt, and finally to one Unloading position is spent. This has the advantage that the loading of a second crucible in the loading position can already take place during the melt in a first crucible. Once the contents of the first crucible have melted and the first crucible base has been moved to the unloading position with the first crucible, the second crucible base may be brought to the melt position with the second crucible. Thus, two crucible bases can be used simultaneously.
Nach dem Transport der Schmelzeinrichtung können die Module einfach wieder miteinander verbunden werden, um die Schmelzeinrichtung aufzubauen. Dabei wird vorzugsweise das Transportmodul unter dem Kammermodul angeordnet. Das Chargiermodul wird vorzugsweise oberhalb des Kammermoduls angeordnet. Damit die Module gut transportiert werden können, sind diese vorzugsweise mit Stützelementen versehen. Die Stützelemente verstärken die Module und sichern die einzelnen Bauteile innerhalb eines Moduls gegen Beschädigung während des Transports. Die Stützelemente können z.B. Stahlträger sein.After the transport of the melting device, the modules can be easily reconnected to build up the melting device. In this case, the transport module is preferably arranged below the chamber module. The charging module is preferably arranged above the chamber module. So that the modules can be transported well, they are preferably provided with support elements. The support elements reinforce the modules and secure the individual components within a module against damage during transport. The support elements may e.g. Be steel beam.
Die Größe der einzelnen Module ist vorzugsweise so gewählt, dass sie gut transportiert werden können. Vor dem Transport wird beispielsweise das Kammermodul von dem Transportmodul und ggf. dem Chargiermodul getrennt und einzeln verladen. Vorzugsweise sind die Module so ausgestaltet, dass sie gut auf LKW oder Bahnwaggons verladen werden können. Vorteilhafte Ausführungsformen betreffen Module, die so bemessen sind, dass sie in 20-Fuss-Standardcontainer oder 40-Fuss-Standardcontainer verladen werden können. Das bedeutet, dass die Module vorzugsweise jeweils nicht mehr als 5,71 m lang, nicht mehr als 2,352 m breit und nicht mehr als 2,385 m hoch sind. Die Masse der Module soll vorzugsweise einen Wert von jeweils 20 000 kg, vorzugsweise 10 000 kg und besonders bevorzugt 5 000 kg nicht übersteigen.The size of the individual modules is preferably chosen so that they can be easily transported. Before transport, for example, the chamber module is separated from the transport module and possibly the charging module and loaded individually. Preferably, the modules are designed so that they can be loaded well on trucks or railroad cars. Advantageous embodiments relate to modules sized to be loaded into 20-foot standard containers or 40-foot standard containers. This means that the modules are preferably each no longer than 5.71 m long, not more than 2.352 m wide and not more than 2.385 m high. The mass of the modules should preferably not exceed a value of 20,000 kg each, preferably 10,000 kg and more preferably 5,000 kg.
Das erfindungsgemäße Verfahren sieht folgende Schritte vor:
- a. Befüllen des Tiegels mit dem zu schmelzenden Material,
- b. Aufheizen des zu schmelzenden Materials innerhalb des Tiegels,
- c. optional Nachchargieren einer weiteren Portion zu schmelzenden Materials in den Tiegel,
- d. Erstarrenlassen des geschmolzenen Materials im Tiegel zu einem Block.
- a. Filling the crucible with the material to be melted,
- b. Heating the material to be melted inside the crucible,
- c. optionally recharging a further portion of material to be melted into the crucible,
- d. Solidifying the molten material in the crucible to a block.
Die Befüllung des Tiegels kann mit Hilfe einer Chargiereinrichtung erfolgen, die vorzugsweise oberhalb der Tiegelkammer angeordnet ist. Alternativ kann der Tiegel auch außerhalb der Tiegelkammer wenigstens zum Teil befüllt werden. Der Tiegel wird dann mit dem zu schmelzenden Material in die Tiegelkammer verbracht. Nachdem diese erste Portion eingeschmolzen wurde, kann unter Verwendung der Chargiereinrichtung eine oder mehrere weitere Portionen nachchargiert werden. So kann das Tiegelvolumen optimal ausgenutzt werden. Sofern erforderlich, wird die Schmelzeinrichtung vor dem Befüllen des Tiegels aufgebaut. Die Erstbefüllung kann also außerhalb der Schmelzposition (also außerhalb der Tiegelkammer) erfolgen, z.B. in einer Beladeposition in einem Schrottlager. Hierbei ist auch die Befüllung des Tiegels mit einem Blechfass vorstellbar, in dem sich das zu schmelzende Material befindet. Damit kann eine Beschädigung des Tiegels vermieden werden. Am Ende wird das Blechfass zusammen mit dem zu schmelzenden Material eingeschmolzen.The filling of the crucible can take place with the aid of a charging device, which is preferably arranged above the crucible chamber. Alternatively, the crucible can also be filled at least partially outside the crucible chamber. The crucible is then placed in the crucible chamber with the material to be melted. After this first portion has been melted down, one or more further portions can be recharged using the charging device. Thus, the crucible volume can be optimally utilized. If necessary, the melting device is built up before filling the crucible. The first filling can therefore take place outside the melting position (ie outside the crucible chamber), e.g. in a loading position in a scrap warehouse. Here, the filling of the crucible with a sheet metal drum is conceivable in which the material to be melted. Thus, damage to the crucible can be avoided. At the end, the tin drum is melted together with the material to be melted.
Bei der Befüllung unter Verwendung der Chargiereinrichtung wird das zu schmelzende Material also durch eine Kammeröffnung in den im gasdichten Ofengehäuse befindlichen Tiegel eingefüllt, z.B. mittels eines Chargierkorbes. Zu diesem Zweck kann der Chargierkorb abgesenkt werden und sein Inhalt dann in den Tiegel eingebracht werden. Der Tiegel kann in dem Moment bereits geschmolzenes Material enthalten. Die Kammeröffnung kann als Schleuse ausgeführt sein.When filling using the charging device, the material to be melted is thus filled through a chamber opening in the crucible located in the gastight furnace housing, e.g. by means of a charging basket. For this purpose, the charging basket can be lowered and its contents are then introduced into the crucible. The crucible may already contain molten material at the moment. The chamber opening can be designed as a lock.
Abhängig von der Verfahrensführung kann der Tiegel bereits zu konsolidierendem Schrott enthalten, wenn er in die Tiegelkammer eingeführt wird. Mit der Chargiereinrichtung kann dann weiteres zu schmelzendes Material nachchargiert werden, um einen höheren Füllungsgrad des Tiegels zu erreichen. Das erfindungsgemäße Verfahren sieht vorzugsweise den Schritt des Nachchargierens von zu schmelzendem Material vor, nachdem bereits eine erste Portion an zu schmelzendem Material in dem Tiegel eingeschmolzen wurde. Durch das Einschmelzen verringert sich das Volumen des Materials, so dass der Tiegel Raum für eine weitere Portion zu konsolidierenden Materials bietet.Depending on the process, the crucible may already contain scrap to be consolidated when it is introduced into the crucible chamber. The charging device can then be used to reload additional material to be melted in order to achieve a higher degree of filling of the crucible. The method according to the invention preferably provides the step of recharging material to be melted after a first portion of material to be melted has already been melted in the crucible. Melting reduces the volume of the material, leaving the crucible room for another portion of consolidating material.
Das zu schmelzende Material wird vorzugsweise auf Temperaturen von wenigstens 1000°C, weiter bevorzugt wenigstens 1350°C und besonders bevorzugt wenigstens 1500°C aufgeheizt. Selbstverständlich hängt die gewählte Temperatur von dem zu schmelzenden Material ab. Nach dem Aufheizen wird das zu schmelzende Material für eine gewisse Zeit auf der hohen Temperatur gehalten, damit das Material möglichst vollständig schmilzt. Der Schmelzvorgang, der mit dem Aufheizen beginnt und unmittelbar vor dem Erstarrenlassen endet, dauert vorzugsweise wenigstens 4 Stunden, weiter bevorzugt wenigstens 6 Stunden. Wird ein zu kurzer Zeitraum gewählt, ist die Schmelze unter Umständen nicht vollständig. Außerdem sollte ein zu schnelles Aufheizen vermieden werden, weil dadurch lokale Überhitzungen in oder am Tiegel entstehen können, die den Tiegel zu stark beanspruchen würden. Ferner kann dadurch eine zu starke Konvektion ausgelöst werden, die ebenfalls die Tiegelerosion verstärken würde. Somit würde die Lebensdauer des Tiegels abnehmen.The material to be melted is preferably heated to temperatures of at least 1000 ° C, more preferably at least 1350 ° C, and most preferably at least 1500 ° C. Of course, the chosen temperature depends on the material to be melted. After heating, the material to be melted is held for a certain time at the high temperature, so that the material melts as completely as possible. The melting process, which begins with heating and ends immediately before solidification, preferably lasts at least 4 hours, more preferably at least 6 hours. If too short a period is selected, the melt may not be complete. In addition, overheating should be avoided too quickly, as it may cause local overheating in or on the crucible that would stress the crucible too much. Furthermore, this can cause excessive convection, which would also increase the erosion of the pot. Thus, the life of the crucible would decrease.
Allerdings hat es sich heraus gestellt, dass eine Schmelzdauer von 16 Stunden, insbesondere 10 Stunden nicht überschritten werden muss, weil die Schmelze dann üblicherweise vollständig ist und eine kürzere Schmelzdauer aufgrund der niedrigeren Kosten immer von Vorteil ist. Auch wenn sich in dem zu schmelzenden Material hochschmelzende Anteile befinden, die bei den genannten Temperaturen noch nicht schmelzen, so würde es trotzdem zu einer Ausfüllung der Hohlräume im Material durch niedriger schmelzendes Material kommen.However, it has been found that a melting time of 16 hours, especially 10 hours must not be exceeded, because the melt is then usually complete and a shorter melting time due to the lower cost is always beneficial. Even if there are refractory fractions in the material to be melted, which do not melt at the stated temperatures, it would nevertheless lead to a filling of the cavities in the material by lower melting material.
Das Einschmelzen des zu schmelzenden Materials erfolgt innerhalb des Tiegels, wenn dieser sich an der Schmelzposition also innerhalb des gasdichten Ofengehäuses befindet. In dieser Position ist die Schmelzeinrichtung so konstruiert, dass die Tiegelkammer und die Tiegelbasis durch die Hülle und den Kammerboden ein gasdichtes Ofengehäuse ausbilden. Dadurch kann das Einschmelzen unter Vakuum oder Schutzgasatmosphäre durchgeführt werden, wobei eine Oxidation des zu schmelzenden Materials vermieden wird. Dadurch können sogar reaktive Metallschrotte, die z.B. Magnesium oder Cadmium enthalten, konsolidiert werden. Außerdem bilden sich weniger flüchtige Produkte.The melting of the material to be melted takes place within the crucible, if it is at the melting position, ie inside the gas-tight furnace housing. In this position, the melting device is constructed so that the crucible chamber and the crucible base through the shell and the chamber bottom form a gas-tight furnace housing. Thereby, the melting can be carried out under vacuum or inert gas atmosphere, wherein an oxidation of the material to be melted is avoided. As a result even reactive metal scrap, e.g. Magnesium or cadmium contained, be consolidated. In addition, less volatile products are formed.
Bevor der Tiegel entnommen wird, wird vorzugsweise das Schutzgas und ggf. darin enthaltene Nebenprodukte der Schmelze abgesaugt und bevorzugt einer Abgasreinigung unterworfen. Die Abgasreinigung kann mithilfe einer Abgasreinigungsanlage durchgeführt werden, bei der es sich um eine Kondensationsfalle handeln kann. Auch andere Reinigungsmethoden sind denkbar, z.B. eine Filterung, insbesondere unter Verwendung von HEPA-Filtern.Before the crucible is removed, preferably the protective gas and any by-products of the melt contained therein are preferably removed by suction and preferably an exhaust gas purification subjected. The exhaust gas purification can be carried out with the aid of an exhaust gas purification system, which can be a condensation trap. Other cleaning methods are also conceivable, eg filtering, in particular using HEPA filters.
Verunreinigungen des zu schmelzenden Materials können mittels vakuum-thermischer Vorbehandlung im Tiegel entfernt werden. Dabei handelt es sich z.B. um Feuchtigkeit, Lösungsmittel, Lacke, Öle, Fette und/oder Kunststoffe.Impurities of the material to be melted can be removed by means of vacuum-thermal pretreatment in the crucible. These are e.g. moisture, solvents, paints, oils, greases and / or plastics.
Der Prozess wird vorzugsweise je nach materialspezifischen Erfordernissen im Vakuum oder unter Schutzgas ausgeführt. Dadurch wird erreicht, dass reaktive Bestandteile des zu schmelzenden Materials keine Explosionen oder flüchtige Oxide bilden, was sich bei Arbeit unter Luftatmosphäre nicht ausschließen lässt.The process is preferably carried out depending on the material-specific requirements in vacuum or under protective gas. This ensures that reactive constituents of the material to be melted do not form explosions or volatile oxides, which can not be ruled out when working under air atmosphere.
Die Kammeröffnung ist während des Schmelzvorgangs vorzugsweise mit einem Schließelement verschlossen. Das Schließelement kann Teil einer Schleuse sein, die es ermöglicht, das zu schmelzende Material in den Tiegel einzufüllen, ohne dass der Tiegelinhalt die Umgebung verunreinigen kann. Diese Maßnahme trägt dazu bei, dass der Sicherheitsbereich um die Schmelzeinrichtung sehr klein gehalten werden kann. Ferner kann während des Betriebs zu schmelzendes Material nachchargiert werden, wenn aufgrund der Konsolidierung einer ersten Schrottportion eine Volumenkontraktion erfolgt ist. Damit wird im Ofengehäuse selbst während des Nachchargierens Vakuum oder eine Schutzgasatmosphäre aufrechterhalten.The chamber opening is preferably closed with a closing element during the melting process. The closure member may be part of a lock which allows the material to be melted to be filled into the crucible without the crucible contents being able to contaminate the environment. This measure helps ensure that the safety area around the melting device can be kept very small. Furthermore, material to be melted during operation can be recharged if a volume contraction has occurred due to the consolidation of a first scrap portion. Thus, vacuum or a protective gas atmosphere is maintained in the furnace housing even during recharging.
Das Erstarrenlassen des geschmolzenen Materials erfolgt vorzugsweise während der Tiegel sich innerhalb des Ofengehäuses befindet. Dabei kühlt das Material bereits wenigstens teilweise ab und bildet einen Block. Es ist nicht erforderlich, dass der Block in dieser Position auf Umgebungstemperatur abkühlt. Es reicht, dass er soweit abkühlt, dass er gefahrlos entnommen werden kann. Das Abkühlen auf Raumtemperatur findet dann vorzugsweise an einem anderen Ort statt, z.B. an der oben erwähnten Entladeposition. Währenddessen kann schon ein weiterer Tiegel, ggf. auf einer weiteren Tiegelbasis, in die Tiegelkammer eingeführt werden.The solidification of the molten material is preferably carried out while the crucible is within the furnace housing. The material already cools down at least partially and forms a block. It is not necessary for the block to cool to ambient temperature in this position. It is enough that it cools down so far that it can be removed safely. Cooling to room temperature then preferably takes place at another location, e.g. at the unloading position mentioned above. Meanwhile, another crucible, possibly on another crucible base, can be introduced into the crucible chamber.
Der Block kann aus dem Tiegel entnommen werden oder mitsamt dem Tiegel entsorgt werden. Vor einer Entnahme des Blockes aus dem Tiegel wird der Tiegel mit Hilfe der Transporteinrichtung aus der zweiten Position in die erste Position außerhalb der Tiegelkammer bewegt. Es ist bevorzugt, dass der Tiegel aus der zweiten Position in die erste Position abgesenkt wird. Das bedeutet, dass der Tiegel in einer Abwärtsbewegung aus der Tiegelkammer entfernt wird. Der Tiegel kann dann aus dem Bereich unterhalb der Tiegelkammer entfernt werden. Dies kann durch die Transporteinrichtung vermittelt erfolgen oder unter Verwendung einer separaten weiteren Transporteinrichtung. In einer besonderen Ausführungsform ist die Transporteinrichtung mit darauf angeordneter Tiegelbasis und Tiegel vorzugsweise auf Schienen verfahrbar. Dadurch, dass der Tiegel aus dem Bereich unterhalb der Tiegelkammer entfernt wird, kann ein weiterer Tiegel in die Tiegelkammer eingeführt werden. Hierdurch ist es möglich, die Restwärme in der Tiegelkammer zu nutzen und die Schmelzeinrichtung gut auszulasten. Während des Abkühlens auf der Entladeposition, der Blockentnahme und der Wiederbeladung in der Beladeposition kann bereits mit einem weiteren Tiegel ein neuer Schmelzvorgang durchgeführt werden.The block can be removed from the crucible or disposed of together with the crucible. Before removing the block from the crucible, the crucible with the aid of Transport device moves from the second position to the first position outside the crucible chamber. It is preferred that the crucible is lowered from the second position to the first position. This means that the crucible is removed in a downward movement from the crucible chamber. The crucible can then be removed from the area below the crucible chamber. This can be done by the transport device mediated or using a separate further transport device. In a particular embodiment, the transport device with crucible base and crucible arranged thereon can preferably be moved on rails. By removing the crucible from the area below the crucible chamber, another crucible can be inserted into the crucible chamber. This makes it possible to use the residual heat in the crucible chamber and to use the melting device well. During the cooling on the unloading position, the block removal and the reloading in the loading position, a new melting process can already be carried out with another crucible.
Ferner hat die Schmelzeinrichtung den Vorteil, dass bei einem Tiegelversagen die Schmelze in eine in der Tiegelbasis befindliche Auffangwanne abfließen kann. Dort kann die Schmelze erstarren. Die Tiegelbasis mit dem defekten Tiegel kann dann aus der Tiegelkammer entnommen werden und der Konsolidierungsvorgang kann mit einem weiteren Tiegel auf einer weiteren Tiegelbasis fortgesetzt werden.Furthermore, the melting device has the advantage that in a crucible failure, the melt can flow into a collecting trough located in the crucible base. There, the melt can solidify. The crucible base with the defective crucible can then be removed from the crucible chamber and the consolidation process can be continued with another crucible on a further crucible base.
Während des Schmelzvorganges herrscht innerhalb der Tiegelkammer eine Atmosphäre, die im Wesentlichen sauerstofffrei ist. Das bedeutet, dass der Sauerstoffpartialdruck dort weniger als 10 kPa, weiter bevorzugt weniger als 1 kPa beträgt. Dies kann entweder durch ein Vakuum oder eine Schutzgasatmosphäre im Tiegel erreicht werden. Ein bevorzugtes Schutzgas ist Stickstoff, weil es die Bildung flüchtiger Oxide effektiv unterdrückt und kostengünstig ist.During the melting process, there is an atmosphere within the crucible chamber which is substantially free of oxygen. This means that the oxygen partial pressure there is less than 10 kPa, more preferably less than 1 kPa. This can be achieved either by a vacuum or a protective gas atmosphere in the crucible. A preferred shielding gas is nitrogen because it effectively suppresses the formation of volatile oxides and is inexpensive.
Dadurch, dass eine hohe Auslastung wegen der Verwendung von Wechseltiegeln möglich ist, kann die Schmelzeinrichtung bei gleichem Durchsatz in ihren Ausmaßen kleiner sein als dies bei anderen Anlagen der Fall ist. Dies erleichtert wiederum den Transport. Außerdem kann der Tiegel und damit die ganze Schmelzeinrichtung leichter konstruiert werden, weil nach jedem Schmelzdurchgang eine Überprüfung des Tiegels möglich ist. In herkömmlichen Schmelzeinrichtungen wurden die Tiegel extrem robust ausgeführt, weil sie teilweise in kontinuierlichem Betrieb eingesetzt wurden, der keine Überprüfungen im Prozess erlaubt.The fact that a high utilization is possible because of the use of replaceable seals, the melting device at the same throughput in their dimensions may be smaller than is the case with other systems. This in turn facilitates the transport. In addition, the crucible and thus the entire melting device can be designed more easily because a check of the crucible is possible after each melting cycle. In conventional melting devices, the crucibles became extremely robust because they were partly used in continuous operation, which does not allow for checks in the process.
Nach Abschluss des Schmelzvorganges kann das geschmolzene Material im Tiegel erstarren, so dass sich ein Block bildet, der im Vergleich zum Ausgangsmaterial keine Hohlräume und somit eine wesentlich höhere Dichte aufweist.After completion of the melting process, the molten material in the crucible can solidify, so that forms a block, which has no voids and thus a much higher density compared to the starting material.
Nach dem Abkühlen des Blockes, vorzugsweise innerhalb des Tiegels, kann der Block aus dem Tiegel entnommen werden und beispielsweise in ein standardisiertes Abfallgebinde (z.B. ein Blechfass) überführt werden. Der Tiegel ist also vorzugsweise so ausgestaltet, dass ein Block erhalten wird, der in ein standardisiertes Abfallgebinde passt. Der Block ist vorzugsweise ein zylindrischer Körper mit einem Durchmesser von etwa 400 bis 600 mm und einer Höhe von etwa 800 bis 1000 mm.After cooling the block, preferably within the crucible, the block may be removed from the crucible and transferred, for example, to a standardized waste package (e.g., a tin drum). The crucible is thus preferably designed so that a block is obtained which fits into a standardized waste container. The block is preferably a cylindrical body having a diameter of about 400 to 600 mm and a height of about 800 to 1000 mm.
Tiegel, die das Ende ihrer Lebensdauer erreicht haben, können gemeinsam mit dem erstarrten Block in einem ebenfalls standardisierten größeren Abfallgebinde zur Endlagerung bereitgestellt werden, ohne den Tiegel dabei zu zerstören.Crucibles that have reached the end of their life can be provided together with the solidified block in a likewise standardized larger waste packages for final disposal, without destroying the crucible thereby.
Die Dichtigkeit des Ofengehäuses und der Chargiereinrichtung kann zu jedem Start einer neuen Konsolidierungsschmelze, also vorzugsweise vor dem Aufheizen, durch einen kurzen Druckanstiegstest verifiziert und somit sichergestellt werden. Das Ofengehäuse ist vorzugsweise hermetisch abgedichtet. Das bedeutet, dass der Druckanstieg bei einem Vakuum von 20 mbar während 1 Stunde weniger als 20 mbar beträgt. Gleiches gilt vorzugsweise auch für die Schleuse und insbesondere auch für die Chargiereinrichtung.The tightness of the furnace housing and the charging device can be verified at each start of a new consolidation melt, so preferably before heating, by a short pressure rise test and thus ensured. The oven housing is preferably hermetically sealed. This means that the pressure increase at a vacuum of 20 mbar for 1 hour is less than 20 mbar. The same applies preferably also for the lock and in particular also for the charging device.
Das erfindungsgemäße Verfahren zeichnet sich ferner bevorzugt dadurch aus, dass die Schritte Befüllen, Aufheizen, Schmelzen, ggf. Nachchargieren und Erstarren zu einem Block für Charge zu schmelzenden Materials in einem einzigen wechselbaren Tiegel vorzugsweise unter Vakuum und/oder kontrollierter Atmosphäre stattfinden. Der vorzugsweise metallische Block kann zu einem späteren Zeitpunkt ggf. nach weiterer Modifikation für die Endlagerung oder Lagerung genutzt werden. Ein erfindungsgemäßes Verfahrensmerkmal ist, dass die Schmelze nicht aus dem Tiegel abgegossen wird.The method according to the invention is furthermore preferably characterized in that the steps of filling, heating, melting, possibly recharging and solidification to a block for batch of material to be melted take place in a single exchangeable crucible, preferably under a vacuum and / or controlled atmosphere. The preferably metallic block can be used at a later time, if necessary, after further modification for disposal or storage. An inventive feature is that the melt is not poured from the crucible.
Die erfindungsgemäße Schmelzeinrichtung bietet eine Reihe von Vorteilen gegenüber herkömmlichen Schmelzeinrichtungen:
- Unbehandelte nukleare Schrotte müssen nicht über öffentliche Verkehrswege transportiert werden, weil die mobile Schmelzeinrichtung zum zu konsolidierenden Material transportiert werden kann.
- Der erstarrte Block an konsolidiertem Material kann direkt in ein Endlagergebinde eingebracht werden und es werden keine zusätzlichen Kokillen benötigt.
- Das Einschmelzen, Nachchargieren und Erstarren des Blockes erfolgt in einem hermetisch abgeschlossenen Ofengehäuse unter weitgehendem Sauerstoffausschluss, wodurch eine Freisetzung von Dämpfen und Stäuben in den Kontrollbereich verhindert wird.
- Die Dämpfe und Stäube können in einem Abgasreinigungssystem zurückgehalten werden.
- Die Schmelzeinrichtung ist vorzugsweise so ausgeführt, dass im Falle eines Tiegelversagens die austretende Schmelze sicher in eine vorzugsweise ungekühlte Auffangwanne abgeführt wird, ohne dabei eine Wasserdampfexplosion oder Belastung der Umgebung zu riskieren.
- Das Feuerfestmaterial des Tiegels muss nicht ausgebrochen werden, daher entsteht kein Sekundärabfall und der Kontrollbereich ist entsprechend reduziert.
- Die Anlage benutzt einen bereits bauseits vorhandenen Kontrollbereich, somit fallen keine zusätzlichen Rückbaukosten an.
- Untreated nuclear scrap does not have to be transported by public transport because the mobile melting equipment can be transported to the material to be consolidated.
- The solidified block of consolidated material can be placed directly into a repository container and no additional molds are needed.
- The smelting, recharging and solidification of the block takes place in a hermetically sealed oven housing with extensive exclusion of oxygen, whereby a release of vapors and dusts in the control area is prevented.
- The vapors and dusts can be retained in an exhaust gas purification system.
- The melting device is preferably designed so that in the event of a crucible failure, the exiting melt is safely removed into a preferably uncooled drip pan, without risking a water vapor explosion or environmental stress.
- The refractory of the crucible does not have to be broken, so there is no secondary waste and the control area is correspondingly reduced.
- The system uses an on-site control area, so there are no additional costs for dismantling.
Die nachfolgende Figurenbeschreibung betrifft eine bevorzugte Ausgestaltung der Schmelzeinrichtung und ihrer Bestandteile.
-
Figur 1
Der Tiegel (2) weist eine Tiegelwand (11) und einen Tiegelboden (12) auf, die aus einem feuerfesten Material, insbesondere aus Graphit, Tongraphit oder Keramik, bestehen. Die Tiegelwand (11) und der Tiegelboden (12) sind vergleichsweise dünn ausgestaltet. Dies hat den Vorteil, dass die Masse des Tiegels (2) geringer ist als bei üblichen Tiegeln. Das erleichtert die Handhabung des Tiegels (2). Die notwendige Stabilität, um den hohen Belastungen während des Betriebes standzuhalten, erhält der Tiegel insbesondere durch eine Bodenplatte (13), die unterhalb des Tiegelbodens (12) angeordnet ist, und durch Unterstützungselemente (14), die Bestandteil der Tiegelkammer (3) sind. Die Unterstützungselemente (14) können nach der Schmelze zurückgezogen werden, um den Tiegel (2) absenken zu können.
Die Tiegelkammer (3) weist ferner eine Hülle (15) auf, welche vorzugsweise die äußere Begrenzung der Tiegelkammer (3) darstellt.
Die Tiegelbasis (9) umfasst einen Kammerboden (16), der so ausgestaltet ist, dass er zusammen mit der Hülle (15) der Tiegelkammer (3) einen hermetisch abgedichteten Raum darstellt, wenn sich die Tiegelbasis (9) in der zweiten Position befindet.
Damit die erforderliche hermetische Abdichtung erzielt werden kann, sind am unteren Rand der Hülle (15) und am oberen Rand des Kammerbodens (16) Dichtungselemente (17) angeordnet, die dazu dienen, ein gasdichtes Ofengehäuse zu bilden, wenn der Kammerboden (16) die Tiegelkammer (3) schließt.
Im oberen Bereich der Tiegelkammer (3) befindet sich eine Kammeröffnung (18), die geeignet ist, zu schmelzendes Material in den Tiegel (2) zu füllen. Die Kammeröffnung (18) kann mit einem Schließelement (19) verschlossen werden, welches Teil einer Schleuse sein kann. -
Figur 2
Es ist zu erkennen, dass die Bodenplatte (13) mit den Unterstützungselementen (14) gemeinsame Kontaktflächen (20) ausgebildet hat. Dadurch wird der Tiegel (2) während des Konsolidierungsverfahrens stabilisiert. Sollte es dennoch zu einer Beschädigung des Tiegels (2) kommen, die ein Austreten der Schmelze zur Folge hat, so würde die Auffangwanne (6) die Schmelze auffangen. Die Schmelze wäre dann sicher in der gasdichten Zelle (10) eingeschlossen, weil weder die Hülle (15) noch der Kammerboden (16) dadurch beeinträchtigt werden können. In einem solchen Fall könnte abgewartet werden, bis die ausgetretene Schmelze in der Auffangwanne (6) erstarrt ist und sicher entnommen werden kann. Während die ausgetretene Schmelze in der Auffangwanne (6) weiter abkühlt, kann bereits ein weiterer Tiegel auf einer weiteren Tiegelbasis in die Tiegelkammer (3) eingeführt und der Konsolidierungsvorgang fortgesetzt werden. -
Figur 3
Es ist erkennbar, dass das Kammermodul (21) unter anderem die Tiegelkammer (3) mit ihren Bestandteilen umfasst. Auf dieser Abbildung ist auch ein Verbindungselement (24) gezeigt, das die Tiegelkammer (3) einerseits und eine Schleuse (25) mit einer Abgasreinigungsanlage und/oder einer Vakuumpumpe (nicht gezeigt) verbindet.
Das Basismodul (22) umfasst hingegen die Transporteinrichtung (7), die hier ein Scherenhubtisch ist.
Es ist gut erkennbar, dass die einzelnen Module durch Stützelemente (26) stabilisiert werden, die hier als Stahlträger ausgeführt sind. Dadurch wird den Modulen eine Form und Stabilität verliehen, die den Transport vereinfacht und auch die Komplexität des Zusammenbaus der Schmelzeinrichtung reduziert.
Es ist auch ein Chargiermodul (23) gezeigt, welches über eine Schleuse (25) mit der Tiegelkammer (3) verbunden ist. Das Chargiermodul (23) umfasst die Chargiereinrichtung, die einen auf Schienen verfahrbaren Chargierwagen mit einem Gehäuse umfasst. -
Figur 4 -
Figur 5 zeigt zwei Ansichten einer aufgebauten mobilen Schmelzeinrichtung mit Hilfssystemen.
-
FIG. 1 shows a sectional view of the crucible chamber (3) and the crucible (2) with the crucible base (9) in the first position, ie the crucible (2) is located outside the Crucible chamber (3). The crucible base (9) is located below the crucible (2) and comprises a sump (6) suitable for receiving molten material when the crucible (2) should be leaking. In the position shown, the crucible (2), the crucible chamber (3) and the crucible base (9) can be maintained.
The crucible (2) has a crucible wall (11) and a crucible bottom (12), which consist of a refractory material, in particular of graphite, Tongraphite or ceramic. The crucible wall (11) and the crucible bottom (12) are made comparatively thin. This has the advantage that the mass of the crucible (2) is lower than in conventional crucibles. This facilitates the handling of the crucible (2). The necessary stability to withstand the high loads during operation, the crucible receives in particular by a bottom plate (13), which is arranged below the crucible bottom (12), and by support elements (14) which are part of the crucible chamber (3). The support elements (14) can be withdrawn after the melt in order to lower the crucible (2) can.
The crucible chamber (3) further comprises a sheath (15), which preferably represents the outer boundary of the crucible chamber (3).
The crucible base (9) comprises a chamber bottom (16) adapted to constitute, together with the shell (15) of the crucible chamber (3), a hermetically sealed space when the crucible base (9) is in the second position.
So that the required hermetic seal can be achieved, sealing elements (17) are arranged at the lower edge of the shell (15) and at the upper edge of the chamber bottom (16), which serve to form a gas-tight furnace housing when the chamber bottom (16) Crucible chamber (3) closes.
In the upper region of the crucible chamber (3) there is a chamber opening (18) which is suitable for filling material to be melted into the crucible (2). The chamber opening (18) can be closed with a closing element (19), which may be part of a lock. -
FIG. 2 is also a sectional view and shows how the chamber bottom (16) together with the sheath (15) forms a gas-tight oven housing (10) when the crucible (2) was brought to the second position (melting position) using the transport device (not shown). The sealing elements (17) ensure a hermetic seal of the gas-tight furnace housing (10). Also, the closing element (19) is preferably designed gas-tight.
It can be seen that the bottom plate (13) has formed with the support elements (14) common contact surfaces (20). This stabilizes the crucible (2) during the consolidation process. Should it nevertheless come to a damage of the crucible (2), which has a leakage of the melt result, the drip pan (6) would catch the melt. The melt would then be safely enclosed in the gas-tight cell (10), because neither the shell (15) nor the chamber bottom (16) can be affected thereby. In such a case, it could be waited until the leaked melt in the drip pan (6) is solidified and can be safely removed. While the leaked melt in the sump (6) continues to cool, another crucible on another crucible base can already be introduced into the crucible chamber (3) and the consolidation process can be continued. -
FIG. 3 is a sectional view showing a mobile melting device (1) according to the invention. It can be seen that the melting device has a modular construction. The chamber module (21) is arranged above a transport module (22). Above the chamber module (21) is shown a charging module (23). The modules are designed so that they can easily be separated from each other and disassembled individually when disassembling the system.
It can be seen that the chamber module (21) comprises inter alia the crucible chamber (3) with its components. In this figure, a connecting element (24) is shown, which connects the crucible chamber (3) on the one hand and a lock (25) with an exhaust gas purification system and / or a vacuum pump (not shown).
By contrast, the base module (22) comprises the transport device (7), which here is a scissor lift table.
It can easily be seen that the individual modules are stabilized by supporting elements (26), which are designed here as steel beams. This will give the modules a shape and stability that simplifies transportation and also reduces the complexity of assembling the fuser.
There is also shown a charging module (23), which is connected via a lock (25) with the crucible chamber (3). The charging module (23) comprises the charging device, which comprises a rail-mounted charging trolley with a housing. -
FIG. 4 shows the mobile melting device in transport ready state. -
FIG. 5 shows two views of a constructed mobile melting device with auxiliary systems.
- (1)(1)
- mobile Schmelzeinrichtungmobile melting device
- (2)(2)
- Tiegelcrucible
- (3)(3)
- Tiegelkammerpot chamber
- (4)(4)
- Chargiereinrichtungcharging device
- (5)(5)
- Heizeinrichtungheater
- (6)(6)
- Auffangwannedrip tray
- (7)(7)
- Transporteinrichtungtransport means
- (8)(8th)
- Blockblock
- (9)(9)
- Tiegelbasiscrucible base
- (10)(10)
- gasdichtes Ofengehäusegas-tight oven housing
- (11)(11)
- Tiegelwandcrucible wall
- (12)(12)
- Tiegelbodencrucible bottom
- (13)(13)
- Bodenplattebaseplate
- (14)(14)
- Unterstützungselementsupport element
- (15)(15)
- Hülleshell
- (16)(16)
- Kammerbodenchamber floor
- (17)(17)
- Dichtungselementsealing element
- (18)(18)
- Kammeröffnungchamber opening
- (19)(19)
- Schließelementclosing element
- (20)(20)
- Kontaktflächecontact area
- (21)(21)
- Kammermodulchamber module
- (22)(22)
- Transportmodultransport module
- (23)(23)
- ChargiermodulChargiermodul
- (24)(24)
- Verbindungselementconnecting element
- (25)(25)
- Schleuselock
- (26)(26)
- Stützelementsupport element
Claims (12)
- A mobile melting installation (1) having a crucible basis (9) and a crucible chamber (3) which is suitable for taking-up a crucible (2),
characterized in that the
crucible basis (9) comprises a chamber bottom (16) and the crucible chamber (3) comprises a casing (15),
wherein the installation further comprises a transport installation (7) which is suitable for moving the crucible basis (9) together with the crucible (2) from a first position to a second position, wherein the crucible (2) is in the first position outside the crucible chamber (3) and in the second position inside the crucible chamber (3),
and wherein the chamber bottom (16) and the casing (15) are designed such that they form in the second position a gastight oven housing (10),
wherein the transport installation (7) together with the crucible basis (9) and crucible (2) arranged on it is portable so that the crucible (2) can be removed from the area below the crucible chamber (3) and a further crucible (2) can be introduced into the crucible chamber (3),
wherein the melting installation (1) comprises a charging installation (4) which is arranged above the crucible chamber (3),
and wherein in the crucible chamber (3) support elements (14) are arranged which stabilize the crucible (2) during the melting. - The melting installation (1) according to claim 1, wherein the charging installation (4) is gastight.
- The melting installation (1) according to one of claims 1 or 2, wherein the crucible chamber (3) comprises a heating installation which makes it possible to heat the crucible (2).
- The melting installation (1) according to claim 3, wherein the heating installation is an induction heater.
- The melting installation (1) according to one of claims 1 to 4 having a collecting tray (6) which is arranged below the crucible (2) in the crucible basis (9).
- The melting installation (1) according to one of claims 1 to 5, wherein the melting installation is characterized by a modular design.
- A method for consolidating a material in a melting installation according to one of claims 1 to 6, comprising the stepsa. filling of a crucible (2) with a material to be consolidated,b. heating of the material to be melted in the crucible (2) so that at least a part of the material to be melted melts,c. recharging of material to be melted,d. solidifying of the molten material in the crucible (2) to a block (8).
- The method according to claim 7, wherein in the crucible chamber (3) during the heating a non-oxidizing atmosphere is present.
- The method according to claim 7, wherein the crucible (2) during the method steps heating, melting, recharging and solidifying is arranged in the crucible chamber (3).
- The method according to one of claims 7 to 9, wherein the crucible (2) after solidifying is removed from the crucible chamber (3) and is cooled and during said cooling a further crucible is introduced into the crucible chamber (3).
- The method according to one of claims 7 to 10, wherein the partial pressure of oxygen in the crucible chamber (3) during said melting is lower than 10 kPa.
- The method according to one of claims 7 to 11, wherein the steps filling, heating, melting and optionally recharging are conducted in one single crucible under vacuum and/or controlled atmosphere.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013100463.6A DE102013100463B3 (en) | 2013-01-17 | 2013-01-17 | Melting device for consolidating contaminated scrap |
PCT/EP2014/050812 WO2014111474A1 (en) | 2013-01-17 | 2014-01-16 | Melting device for consolidating contaminated scrap |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2946160A1 EP2946160A1 (en) | 2015-11-25 |
EP2946160B1 true EP2946160B1 (en) | 2017-12-13 |
Family
ID=49999917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14701015.1A Active EP2946160B1 (en) | 2013-01-17 | 2014-01-16 | Melting installation to consolidate contaminated waste |
Country Status (9)
Country | Link |
---|---|
US (1) | US9721690B2 (en) |
EP (1) | EP2946160B1 (en) |
JP (1) | JP6353854B2 (en) |
DE (1) | DE102013100463B3 (en) |
ES (1) | ES2662583T3 (en) |
LT (1) | LT2946160T (en) |
RU (1) | RU2650653C2 (en) |
UA (1) | UA116896C2 (en) |
WO (1) | WO2014111474A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013100463B3 (en) * | 2013-01-17 | 2014-06-12 | Ald Vacuum Technologies Gmbh | Melting device for consolidating contaminated scrap |
WO2018226326A1 (en) * | 2017-06-07 | 2018-12-13 | Inductoheat, Inc. | Railless support of billets within electric induction heating coils |
CN113357910B (en) * | 2021-07-14 | 2022-11-15 | 闽南师范大学 | Smelting device for preparing high-entropy alloy material |
KR102462270B1 (en) * | 2022-07-14 | 2022-11-07 | 하나원자력기술주식회사 | Batch Pyrolysis Treatment Apparatus and Method of Low-Level Radioactive Waste using Induction Heating |
CN116253496A (en) * | 2023-02-20 | 2023-06-13 | 中广核研究院有限公司 | Incineration ash induction heating glass curing treatment system and method |
DE102023115175B3 (en) | 2023-06-09 | 2023-11-09 | Dornier Nuclear Services GmbH | Process for processing activated and/or contaminated metallic residues and use of big bags |
DE102023115174B3 (en) | 2023-06-09 | 2023-11-09 | Dornier Nuclear Services GmbH | Process for processing activated and/or contaminated metallic residues and use of big bags |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2447592A1 (en) * | 1979-01-27 | 1980-08-22 | Daido Steel Co Ltd | METHOD FOR FILLING A CONTAINER WITH SOLID RADIO-ACTIVE WASTE |
US4227033A (en) * | 1978-02-27 | 1980-10-07 | Institute Po Metaloznanie I Technologia Na Metalite | Induction crucible furnace |
EP0394516A1 (en) * | 1989-04-25 | 1990-10-31 | Vsesojuzny Nauchno-Issledovatelsky Proektno-Konstruktorsky I Tekhnologichesky Inst. Elektrotermicheskogo Oborudovania Vniieto | Vacuum induction furnace |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1357744A (en) | 1963-02-26 | 1964-04-10 | Kuhlmann Ets | Device for accelerated cooling and handling of loads or castings in vacuum induction furnaces |
DE3331383A1 (en) | 1983-08-31 | 1985-03-14 | Siempelkamp Gießerei GmbH & Co, 4150 Krefeld | PLANT FOR RECOVERY OF METALLIC COMPONENTS OF NUCLEAR POWER PLANTS |
DE3404106C2 (en) | 1984-02-07 | 1986-10-02 | Siempelkamp Gießerei GmbH & Co, 4150 Krefeld | Furnace system for melting metallic components of nuclear power plants |
JPS6114597A (en) * | 1984-06-29 | 1986-01-22 | 日本碍子株式会社 | Method and device for melting and solidifying radioactive waste |
US5009511A (en) | 1987-10-20 | 1991-04-23 | Inorganic Recycling Incorporated | Inorganic recycling process |
SU1786353A1 (en) * | 1990-06-29 | 1993-01-07 | Nii Metallurg | Vacuum induction furnace |
JP3073852B2 (en) | 1993-03-19 | 2000-08-07 | 日本碍子株式会社 | Radioactive waste melting equipment |
DE4409145A1 (en) * | 1994-03-17 | 1995-09-21 | Gutehoffnungshuette Man | Electric arc furnace plant for residue melting |
JP4502300B2 (en) * | 2001-03-02 | 2010-07-14 | 日本碍子株式会社 | Moving system |
JP3847231B2 (en) * | 2002-08-13 | 2006-11-22 | 川崎重工業株式会社 | High frequency induction furnace for miscellaneous solid waste melting and miscellaneous solid waste melting method |
RU2241080C1 (en) * | 2003-06-17 | 2004-11-27 | Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "Луч" | Melting device for growing silicon mono-crystals from melt |
JP2005016812A (en) | 2003-06-25 | 2005-01-20 | Furness Kakoki Kk | Treatment device for molten metal |
DE102004003518A1 (en) * | 2004-01-20 | 2005-08-04 | Bayerische Motoren Werke Ag | Turning hanger for melting crucible, has supporting units resting over entire crucible length and against external lateral surface of crucible, in hanging state, such that crucible can not be tilted over |
JP4815640B2 (en) * | 2009-02-20 | 2011-11-16 | 独立行政法人日本原子力研究開発機構 | Glass melting furnace |
DE102013100463B3 (en) * | 2013-01-17 | 2014-06-12 | Ald Vacuum Technologies Gmbh | Melting device for consolidating contaminated scrap |
JP6273587B2 (en) * | 2016-05-27 | 2018-02-07 | 三井金属アクト株式会社 | Vehicle door latch device |
-
2013
- 2013-01-17 DE DE102013100463.6A patent/DE102013100463B3/en active Active
-
2014
- 2014-01-16 UA UAA201508126A patent/UA116896C2/en unknown
- 2014-01-16 RU RU2015134120A patent/RU2650653C2/en active
- 2014-01-16 ES ES14701015.1T patent/ES2662583T3/en active Active
- 2014-01-16 EP EP14701015.1A patent/EP2946160B1/en active Active
- 2014-01-16 JP JP2015553076A patent/JP6353854B2/en active Active
- 2014-01-16 LT LTEP14701015.1T patent/LT2946160T/en unknown
- 2014-01-16 WO PCT/EP2014/050812 patent/WO2014111474A1/en active Application Filing
- 2014-01-16 US US14/761,357 patent/US9721690B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4227033A (en) * | 1978-02-27 | 1980-10-07 | Institute Po Metaloznanie I Technologia Na Metalite | Induction crucible furnace |
FR2447592A1 (en) * | 1979-01-27 | 1980-08-22 | Daido Steel Co Ltd | METHOD FOR FILLING A CONTAINER WITH SOLID RADIO-ACTIVE WASTE |
EP0394516A1 (en) * | 1989-04-25 | 1990-10-31 | Vsesojuzny Nauchno-Issledovatelsky Proektno-Konstruktorsky I Tekhnologichesky Inst. Elektrotermicheskogo Oborudovania Vniieto | Vacuum induction furnace |
Also Published As
Publication number | Publication date |
---|---|
ES2662583T3 (en) | 2018-04-09 |
JP6353854B2 (en) | 2018-07-04 |
RU2650653C2 (en) | 2018-04-16 |
US9721690B2 (en) | 2017-08-01 |
JP2016509663A (en) | 2016-03-31 |
US20150380118A1 (en) | 2015-12-31 |
DE102013100463B3 (en) | 2014-06-12 |
LT2946160T (en) | 2018-05-25 |
WO2014111474A1 (en) | 2014-07-24 |
UA116896C2 (en) | 2018-05-25 |
EP2946160A1 (en) | 2015-11-25 |
RU2015134120A (en) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2946160B1 (en) | Melting installation to consolidate contaminated waste | |
Hesson et al. | Description and proposed operation of the fuel cycle facility for the second experimental breeder reactor (EBR-II) | |
EP3152335B1 (en) | Station and method for transferring molten metal from a melting furnace into a transport crucible, as well as an arrangement and a system with such a station | |
EP3086894B1 (en) | Device and method for treating metallic materials | |
EP0036982B1 (en) | Housing for radioactive materials in transport and/or storage containers | |
DE2233443B2 (en) | Converter system | |
KR102073272B1 (en) | The Melting Decontamination Equipment for Radioactive Metal Waste | |
DE3213764C2 (en) | Device for melting metal waste by electroslag melting | |
DE2147897B2 (en) | ||
EP2678456B1 (en) | Process for treating aluminium slags | |
DE3404106C2 (en) | Furnace system for melting metallic components of nuclear power plants | |
DE3324696C2 (en) | Method and device for filling a metal container with a glass melt containing highly radioactive fission products | |
EP4142963B1 (en) | Material cartridge and method of making a material cartridge | |
US4919190A (en) | Radioactive waste material melter apparatus | |
GB2146166A (en) | Equipment for reclaiming radioactive metallic components from spent nuclear power plants | |
EP2413330B1 (en) | Method for dry recycling of spent (irradiated) solid nuclear fuels and a device for performing the method | |
DE2731548A1 (en) | Radioactive waste solidified and embedded in metal matrix - solidification carried out in hot cell but embedding in disposal coffin | |
DE3140020A1 (en) | METHOD FOR PRODUCING A DENSITY AND HOMOGENEOUS CAST COVER FOR A CONTAINER WITH HIGH RADIOACTIVE CONTENT AND DEVICE FOR IMPLEMENTING THE METHOD | |
EP4474069A1 (en) | Method for processing activated and/or contaminated metallic residues and use of big bags | |
DE3002697A1 (en) | METHOD FOR STORING RADIOACTIVE WASTE | |
EP4384333A1 (en) | Systems and methods for vitrification process control | |
EP3957939A1 (en) | Assembly for recycling contaminated metal scrap | |
DE10148146A1 (en) | Process for the disposal of an object made of ceramic, graphite and / or coal stone contaminated with at least one toxic, in particular radiotoxic | |
EP2603616A1 (en) | Melt metallurgical installation comprising a charging element | |
JP2020060376A (en) | Method for manufacturing clearance metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150813 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20161104 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502014006552 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F27B0014040000 Ipc: F27B0014080000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALD VACUUM TECHNOLOGIES GMBH |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G21F 9/30 20060101ALI20170615BHEP Ipc: F27B 14/04 20060101ALI20170615BHEP Ipc: G21F 9/00 20060101ALI20170615BHEP Ipc: G21D 1/00 20060101ALI20170615BHEP Ipc: F27B 14/08 20060101AFI20170615BHEP |
|
INTG | Intention to grant announced |
Effective date: 20170712 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALD VACUUM TECHNOLOGIES GMBH |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R108 Ref document number: 502014006552 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 954809 Country of ref document: AT Kind code of ref document: T Effective date: 20171215 Ref country code: CH Ref legal event code: EP |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R107 Ref document number: 502014006552 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2662583 Country of ref document: ES Kind code of ref document: T3 Effective date: 20180409 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171213 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180313 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171213 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171213 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171213 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171213 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171213 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171213 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171213 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180413 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171213 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171213 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180116 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
26N | No opposition filed |
Effective date: 20180914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171213 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 954809 Country of ref document: AT Kind code of ref document: T Effective date: 20190116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140116 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171213 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230522 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240123 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LT Payment date: 20240102 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240216 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240103 Year of fee payment: 11 Ref country code: CH Payment date: 20240202 Year of fee payment: 11 Ref country code: GB Payment date: 20240124 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240123 Year of fee payment: 11 Ref country code: FR Payment date: 20240124 Year of fee payment: 11 Ref country code: BE Payment date: 20240122 Year of fee payment: 11 |