EP2794217B1 - Hoop tow modification for a fabric preform for a composite component - Google Patents
Hoop tow modification for a fabric preform for a composite component Download PDFInfo
- Publication number
- EP2794217B1 EP2794217B1 EP12816192.4A EP12816192A EP2794217B1 EP 2794217 B1 EP2794217 B1 EP 2794217B1 EP 12816192 A EP12816192 A EP 12816192A EP 2794217 B1 EP2794217 B1 EP 2794217B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fabric
- hoop
- tows
- tow
- axial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004744 fabric Substances 0.000 title claims description 315
- 239000002131 composite material Substances 0.000 title claims description 43
- 238000012986 modification Methods 0.000 title description 2
- 230000004048 modification Effects 0.000 title description 2
- 238000000034 method Methods 0.000 claims description 42
- 230000015572 biosynthetic process Effects 0.000 claims description 17
- 239000000835 fiber Substances 0.000 claims description 17
- 238000000926 separation method Methods 0.000 claims description 16
- 238000005096 rolling process Methods 0.000 claims description 14
- 230000000737 periodic effect Effects 0.000 claims description 13
- 238000005520 cutting process Methods 0.000 claims description 11
- 238000004080 punching Methods 0.000 claims description 2
- 229920005989 resin Polymers 0.000 description 22
- 239000011347 resin Substances 0.000 description 22
- 239000000463 material Substances 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 10
- 238000005056 compaction Methods 0.000 description 8
- 239000002243 precursor Substances 0.000 description 7
- 230000004323 axial length Effects 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 238000001721 transfer moulding Methods 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 230000000979 retarding effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B11/00—Making preforms
- B29B11/14—Making preforms characterised by structure or composition
- B29B11/16—Making preforms characterised by structure or composition comprising fillers or reinforcement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/403—Casings; Connections of working fluid especially adapted for elastic fluid pumps
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D1/00—Woven fabrics designed to make specified articles
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D13/00—Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
- D03D13/004—Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft with weave pattern being non-standard or providing special effects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/16—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
- B29C70/22—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
- B29C70/222—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure the structure being shaped to form a three dimensional configuration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
- B29C70/32—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/54—Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
- B29C70/545—Perforating, cutting or machining during or after moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/25—Solid
- B29K2105/253—Preform
- B29K2105/258—Tubular
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2023/00—Tubular articles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/1362—Textile, fabric, cloth, or pile containing [e.g., web, net, woven, knitted, mesh, nonwoven, matted, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24777—Edge feature
Definitions
- This disclosure relates to the formation of fabric preforms for composite components.
- this application relates to manipulation of a fabric to improve fabric preform quality.
- Composite components are often used in applications in which having a high strength-to-weight ratio is important such as, for example, aircraft components.
- Many structural composite components can be made by wrapping a high-strength fabric around a form to create what is known as a fabric preform, applying a resin to the fabric preform, and then curing the resin to form the final composite component.
- FR 2 633 213 discloses separating tows in making a composite component. However, the patent does not disclose use of a tri-axial fabric nor an apparatus for separating the tows.
- Improved methods of forming a fabric preform are disclosed that enable enhanced deformation of fabric without total elimination of hoop tows.
- at least some of the axial tows or hoop tows in the fabric are modified to have segments that are separable from one another within the fabric sheet.
- the segments of the hoop tows can separate from one another to accommodate this change.
- the segments can still be substantially retained in the deformed portions of the fabric and can structurally reinforce these regions.
- a method is disclosed of forming a fabric preform for a composite component from a fabric having a plurality of hoop tows and a plurality of bi-axial tows.
- One end of the fabric is received on the form such that the hoop tows of the fabric extend in a direction generally perpendicular to a central axis of the form.
- the fabric is wrapped around the form by rotating the fabric and the form relative to one another about the central axis of the form. At least some of the hoop tows are separated into hoop tow segments while the fabric is under a tension during wrapping to enable a space to develop between ends of adjacent hoop tow segments along the length of the hoop tow.
- the separation of the hoop tows can facilitate deformation of the fabric.
- this improved fabric deformation can be exploited to create a feature that extends at least in part in a radial direction away from the central axis of the form such as, for example, a flange. Accordingly, this method can be particularly beneficial for the formation of components such as fan containment cases, which have features, curvatures, and flanges that can demand increased amounts of fabric deformation.
- the fabric could be prepared for the separation of the hoop tows into hoop tow segments in a number of ways. At least some of the hoop tows could be stretch broken at periodic intervals to define the hoop tow segments.
- the method could further include the step of cutting the hoop tows at periodic intervals to define the hoop tow segments. This cutting may be performed by a device that separates the bias fibers surrounding a hoop tow at a point to be cut and then cutting at the point to be cut.
- a tool may be used to cut the hoop tows at periodic intervals and this tool may include a rolling drum and/or a punching tool.
- Other means or multiple different means of preparing the hoop tows for separation could also be employed. Moreover, in some instances, some of the hoop tows may not be separated or even be prepared to be separated.
- adjacent hoop tows may be arranged so that points of separation in the adjacent hoop tows are out of phase from adjacent hoop tows along the direction of hoop tow extension.
- a separation gap between two hoop tow segments in one hoop tow may be supported by the presence of a hoop tow segment in an adjacent hoop tow.
- the length of the hoop tow segments may be configured to not be less than 10 times the width of a hoop tow.
- a fabric preform for a composite component and a composite component are also disclosed.
- the fabric preform and the composite component include a body formed from the fabric in which the body has a central axis extending there through. They also include at least one feature formed in the body in which at least some of the hoop tows in the feature are separated into hoop tow segments that are spaced from one another along the length of the hoop tow.
- the fabric of the fabric preform receives a resin to retain the tows of the fabric in place.
- the feature formed in the body with the separated hoop tows may extend, at least in part, in a radial direction away from the central axis.
- This feature may be, for example, a flange; however, the feature could be something other than a flange.
- the separation of the hoop tows is of particular benefit in forming features in which relatively high amounts of fabric deformation are imparted to the fabric in the formation of the feature.
- This technology may be used in the formation of a wide array of fabric preforms and composite components.
- One particular application would in the formation of a composite component for a fan containment case (or in making a fabric preform which is a precursor to the composite component for the fan containment case).
- This disclosure is directed at improved methods of producing fabric preforms that can be further processed to make composite components or parts.
- resin can be introduced into the fabric preform to form a composite component.
- This resin could be provided in any of a number of ways including, but not limited to, injection molding and transfer molding such as resin transfer molding (RTM) and vacuum-assisted resin transfer molding (VARTM). After curing the resin, the high-strength fibers of the fabric are held in place within the resin matrix to provide the composite material.
- FIG. 1 a portion of a turbofan engine 10 for an aircraft is illustrated.
- This turbofan engine 10 includes a fan assembly 12 that is rotatable about a central axis A-A of the turbofan engine 10 to intake air and, ultimately, produce propulsion.
- the fan assembly 12 has a central rotor 14 that extends along the central axis A-A and includes a plurality of blades 16 that extend generally radially outward from the central rotor 14.
- This fan assembly 12 is surrounded, at least in part, by a fan containment case 18.
- This fan containment case 18 is made of a high-strength composite material such as a fabric encased in a resin.
- the fabric may be made of a carbon fiber material and the resin may be an epoxy or a high-temperature resin such as bismaleimide or polyamide to make an extremely strong and rigid component that is stable at high temperatures.
- the resin may be an epoxy or a high-temperature resin such as bismaleimide or polyamide to make an extremely strong and rigid component that is stable at high temperatures.
- other fabrics and resin material might be used depending on the demands of the application.
- the fan containment case 18 helps to prevent any projectiles from radially exiting the turbofan engine 10 in a direction that could damage the engine 10 or the aircraft. For example, if one of the blades 16 of the fan assembly 12 fails in a "blade out" event in which some or all of a blade 16 breaks from the central rotor 14, then the fan containment case 18 helps to contain the fractured portion of the blade 16. Likewise, if an outside object is sucked into the turbo engine 10 during gas intake, then the fan containment case 18 can prevent a potentially catastrophic event from occurring if this item is shot radially outward after it contacts the blade 16.
- FIG. 1 also shows a fan case 19 attached behind the fan containment case 18.
- This fan case 19 can be made of similar materials to the fan containment case 18 and continues the duct within which the engine bypass air flows.
- the fabric preform 20 for a fan containment case 18 having an axis B-B is illustrated before and after flanges 22 are formed on the axial ends 24 and 26.
- the fabric preform 20 has a generally tubular body 28 extending between the two axial ends 24 and 26.
- the body 28 includes a radially-inward facing surface 30 that contacts a form or mandrel during formation and a radially-outward facing surface 32.
- the body 28 includes a joggle or a portion of curvature 34 that separates the body 28 of the fan containment case 18 into two sections 36 and 38 of different diameter or radius.
- This joggle or portion of curvature 34 conceptually is a feature of the body 28 that extends, at least in part, in the radial direction.
- the fabric preform 20 for the fan containment case 18 may be formed such that the axial ends 24 and 26 are thinner than the remainder of the generally tubular body 28 to define precursor flange regions 40 on the axial ends 24 and 26.
- these precursor flange regions 40 might be bent upward at the line 41 on FIG. 4 to form the flanges 22 that are used to attach the fan containment case 18 to adjacent components in the final assembly. It is likewise possible that these precursor flange regions 40 might be bent downward at the line 41 on FIG. 4 to form the flanges 22.
- the flanges 22 might be formed concurrently with the wrapping of the fabric. It is likewise possible to conceive of a design that has only one flange at either end 24 or 26, or no flanges at all.
- the fabric preform 20 for the fan containment case 18 includes multiple wrapped layers of fabric.
- the thickness of the fan containment case 18 is dictated in part by the number of layers of fabric and the thickness of the fabric.
- the quality of the wrapping and bulkiness of the fabric will also affect the thickness of the fabric preform 20 and the resultant composite component.
- a fabric preform that is thoroughly debulked will typically have an average thickness that is less than a fabric preform that is not thoroughly debulked because imperfections in the wrapping of the fabric can create irregular regions.
- a tri-axial fabric 42 is shown as including various tows of the fabric material which are braided together to form a fabric sheet 44.
- the tri-axial fabric 42 includes a plurality of hoop or axial tows 46 and a plurality of bi-axial tows 48 and 50.
- tows refer to a bundle of fibers or filaments so arranged as to form a continuous length of material.
- tows are made of carbon fibers or graphite, which have excellent strength for their weight.
- the hoop or axial tows 46 are arranged to be generally parallel with one another. For the sake of clarity, these tows 46 extend in a direction that is generally parallel with the direction of travel of the fabric sheet 44 as the fabric sheet 44 is wrapped around a form or mandrel. Therefore, in the context of the fabric feeding or wrapping, these tows may be said to be axial. Because these tows 46 are then wrapped about a central axis of the form or mandrel, these tows 46 may also be referred to as "hoop tows" because they extend around the form in the hoop direction once the fabric 44 is laid onto the form.
- the plurality of bi-axial tows 48 and 50 include two sets of tows that are oriented at a positive angle from the axial tows 46 and at a negative angle from the axial tows 46, respectively.
- the bi-axial tows 48 and 50 are alternatively passed over and under axial tows 46 to form the fabric sheet 44 as is best illustrated in FIG. 8 so as to form a braid in the fabric sheet. This means that the axial tows 46 extend roughly linearly through the fabric sheet 44.
- each of the sets of bi-axial tows 48 and 50 are generally parallel with one another (i.e., the various tows in the first set of bi-axial tows 48 are parallel with one another and the various tows in the second set of bi-axial tows 50 are parallel with one another).
- multiple layers of the tri-axial fabric 42 are wrapped upon one another to create the fabric preform 20.
- the tri-axial fabric 42 is disposed in the fabric preform 20 such that the axial tows 46 extend along the hoop direction of the fabric preform 20 and are generally perpendicular to the axis B-B, while the bi-axial tows 48 and 58 are generally helically disposed around the generally tubular body 28.
- one end of the fabric 44 is received on the form such that the axial tows of the fabric extend in a direction generally perpendicular to the central axis of the form.
- the fabric 44 is then wrapped about the form, normally by the rotation of the form pulling the fabric 44 onto the form, to lay down the layers of the fabric 44 (although it is possible that the free end of the fabric may be orbited around the form either while the form is held stationary or while the form also rotates).
- the fabric 44 might be periodically debulked or could be continuously debulked using the apparatus and process described below.
- the fabric 42 might be cut prior to being laid on the form. In this way, fewer layers of the tri-axial fabric 42 are laid down on the axial ends of the form.
- the described methods provide for better control of the fabric during the wrapping process and for improved continuous debulking of the preform as it is wrapped. This means that the resultant fabric preform is more tightly wrapped, has less bulk than preforms made using conventional wrapping, and has fewer wrinkles and waviness in the as-wrapped fabric preform.
- the composite component is formed by application of resin to the preform, the final composite component has a higher fabric-to-resin volume ratio (also known as fiber volume ratio or fiber fraction) which improves the strength to weight ratio of the composite and provides a more consistent fiber structure within the composite component.
- FIG. 9 an apparatus 52 is shown that can be used to wrap the fabric 44 around a form 54 while simultaneously tensioning each of the axial or hoop tows 46 separately and independently from each other.
- the apparatus 52 includes the form 54 having a central or rotational axis C-C and a table 56 spaced from the form 54 that supports a plurality of separate tensioning mechanisms 58.
- the form 54 is a rotatable mandrel that receives one end of the fabric 44 there on.
- the reception of the end of fabric 44 could be made in any of a number of ways including, for example, attachment of one end of the fabric 44 to the form 54 by taping, adhesive, fasteners, clamping, or so forth.
- the fabric 44 could also be received on the form 54 by wrapping the fabric 44 around the form 54 at least one full rotation and then holding the fabric 44 taut such that the tension of the fabric 44 wrapped over itself holds the fabric 44 on the form 54.
- the form 54 has a cylindrical shape (i.e., having a constant radius over the axial length of the form 54 onto which the fabric is wrapped thereby defining an outwardly-facing cylindrical surface 60 centered about the axis C-C).
- the form 54 could have a different shape.
- the form could have a square or rectangular cross section which would result in a tubular rectangular shape for the fabric preform.
- the form could have a radius that varies over at least a portion of the axial length of the form. This variable radius could be used to form a joggle or a like, such as is found on the fan containment case 18 depicted in FIG. 1 .
- the tensioning mechanisms 58 are fanned out or spread out across the table 56.
- Each of the tensioning mechanisms 58 have a line 62 that feeds out there from.
- These lines 62 are each coupled to one of the axial tows 46 on a free end 64 of the fabric 44 (that is, the end of the fabric 44 opposite to the end of the fabric 44 that is initially wrapped around or received on the form 54 such that the axial tows 46 extend from one end to the other).
- the lines 62 from the tensioning mechanisms 58 are fed through a guide or comb 66 such that the each of the lines 62 are generally collinear with a corresponding axial tow 46 to which a line 62 is coupled.
- each of the tensioning mechanisms 58 which are considerably larger than the size of the axial tows 46, can be spaced apart from one another on the table 56 and provide ample clearance for the running of the lines 62.
- each of the tensioning mechanisms 58 is a magnetic clutch.
- Each of the magnetic clutches have a spool that feeds the line 62 out there from. During this feed out of the line 62, the magnetic clutch provides controlled resistance against the rotation of the spool as the line 62 is pulled or unwound from the spool. Because each line 62 is attached to an axial tow 46, as will be described in greater detail below, each of the axial tows 46 are separately and independently tensioned and paid out.
- an axial tow to be "separately tensioned" means that the axial tow is tensioned apart from at least some of the other axial tows in the fabric.
- each and every one of the axial tows of the fabric are separately tensioned from one another. This separate tensioning can result in one or more of the axial tows 46 slipping within the bi-axial tows 48 and 50 of the fabric 44.
- the separate tensioning of the axial tows may be performed in groups. For example, two or more axial tows might be tensioned apart from the other tows. This may be beneficial to minimize the size and/or cost of the apparatus.
- Individually paid out means that the tows can be paid out in different lengths.
- One tow may be fed at a different rate than another tow, at least for a period of time.
- each of the axial tows 46 receives a different tension.
- the tensioning mechanisms 58 may be set to provide the same tension or substantially the same tension to each of the axial tows 46. Due to either differences in the fabric 44 itself, or in the shape of the form 54 over its axial length, separately maintaining a constant axial tension over the various axial tows 46 can result in a differential pay out of the axial tows 46 in the fabric 44. In contrast, if the fabric 44 was clamped across its entire width, then the clamping force would inhibit the movement or individual pay out of the axial tows 46 of the fabric 46 relative to one another.
- the ability for the axial tows 46 to pay out differentially can be used to improve the quality and consistency of the fabric preform 20. Whereas a singularly tensioned fabric needs to be very carefully aligned with respect to the form to prevent uneven wrapping of the fabric, the disclosed apparatus 52 is more forgiving and greater misalignment can be accommodated. Additionally, because the axial tows 46 can slip relative to one another, a form having different cross sections over its width might be better accommodated because the axial tows 46 being wrapped around a portion of the form having a shorter periphery can pay out more than the axial tows 46 being wrapped around a portion of the form having a longer periphery. This might be the case for a form that is used to produce the fabric preform 20 for the fan containment case 18 that is illustrated in FIGS. 1 through 5 .
- the lines 62 from the tensioning mechanisms 58 might be directly connected to the axial tows 46 or that the axial tows 46 might be connected to the lines 62 via an intermediate connector.
- the intermediate connector may attach to both the line 62 and to the axial tow 46.
- the connection of the intermediate connector to the corresponding line 62 can be made in such a manner as to preserve the integrity of the line 62.
- a direct connection might involve knotting or adherence of the line to the axial tow and can be difficult to reverse without sacrificing some length of the line
- an intermediate connector could be used to reversibly connect an axial tow 46 to a line 62.
- This intermediate connector 68 includes a pair of pads 70 with apertures 72.
- the pads 70 can be disposed on either side of an end 74 of an axial tow 46 and then put together to sandwich the end 74 of the axial tow 46 there between.
- the pads 70 could be used in conjunction with adhesive to attach to the axial tow 46.
- one or more of the pads 70 might be magnetically attracted toward one another.
- a mechanical pressure might be applied to the pads 70 such that they pinch the end 74 of the axial tow 46.
- a hook 76 tied to the end of the line 62 can then be directed through the aperture 72 in the pads 70 to temporarily link the pads 70 to the lines 62 of the tensioning mechanisms 58.
- the fabric is more densely wrapped than in a fabric preform not formed by separately tensioning at least some of the plurality of axial tows, a higher fabric-to-resin volumetric ratio can be realized in the composite component formed after resin is applied to the fabric preform.
- edge strips 78a, 78b, 78c, and 78d are shown which can be attached to ends of the bi-axial tows 48 and 50 of the fabric 44.
- these edge strips 78a, 78b, 78c, and 78d can be moved to better control shear angles within the fabric and to steer the various tows. This represents yet another mode of manipulating the fabric 44 before and during wrapping of the fabric preform 20 to control the fiber structure.
- edge strips 78a, 78b, 78c, and 78d are attached to ends of one of the sets of bi-axial tows 48 or 50 on one of the lateral edges 80 and 82 of the fabric 44.
- the lateral edges 80 and 82 are "lateral" relative to the feed direction (depicted by arrow D in FIG. 11 ) of the fabric 44 onto the form 54, which is generally perpendicular to its rotation axis C-C.
- edge strip 78a is attached to the ends of the first set of bi-axial tows 48 and edge strip 78b is attached to the ends of the second set of bi-axial tows 50 on the lateral edge 80 of the fabric 44 as can be seen in FIG. 12 .
- edge strip 76c is attached to the other ends of the first set of bi-axial tows 48 and the edge strip 76d is attached to the other ends of the second set of bi-axial tows 50.
- Edge strips 78a, 78b, 78c, and 78d could be attached to the ends of the respective set of tows in any of a number of ways.
- the edge strips 78a, 78b, 78c, and 78d may be adhered to the tows.
- the edge strips 78a, 78b, 78c, and 78d may each include multiple components that clamp together under an applied force to grasp the ends of the tows.
- the edge strips 78a, 78b, 78c, and 78d each have a row of openings 84 formed therein that can be, for example, engaged by a line of hooks to selectively and independently move the edge strips 78a, 78b, 78c, and 78d.
- Such hooks might be used to move the edge strips 78a, 78b, 78c, and 78d forward or backward relative to the fabric 44 (i.e., parallel or anti-parallel to the direction of arrow D, respectively) and/or laterally outward with respect to the fabric 44 (i.e., perpendicular to the direction of arrow D in the plane of the fabric 44).
- Other or alternative means of engagement of the edge strips 78a, 78b, 78c, and 78d might also be used, such as, but not limited to, sprockets.
- edge strips 78a, 78b, 78c, and 78d can be controlled independently of one another. Because they are attached to two sets of bias tows (which are, in the form illustrated, the first and second sets of bi-axial tows 48 and 50), the first set of bias tows can be controlled independently of the second set of bias tows by the four edge strips 78a, 78b, 78c, and 78d. By moving one or more of the edge strips 78a, 78b, 78c, and 78d, the attached set of bi-axial tows 48 and 50 can be directed before and/or during wrapping of the fabric 44 around the form 54 to create the fabric preform 20. This directing of the bi-axial tows 48 and 50 might be used to steer tows for performance purposes or to otherwise induce shear or stress in the fabric 44 in a manner that is beneficial during the formation of the fabric preform 20 and the resultant composite component.
- bi-axial tow in order to fully steer a bi-axial tow as it is wrapped onto a form, it may be desirable to maintain the force on the edge strips until the entire tow is placed on the form. Accordingly, it may be the case that the end of a bi-axial tow that is first received on the form may be held until the second end is also received on the form. Because the bi-axial or bias tows are at an angle relative to the feed direction of the fabric, this may mean that the tows need to be held for some distance after they are received on the form.
- one or more of the edge strips 78a, 78b, 78c, and 78d might be advanced or retarded relative to the fabric 44 to control the orientation of the respectively attached set of tows and to change the angle between the first set of bias tows and the second set of bias tows.
- the edge strip 78a could be advanced relative to the feed direction D of the fabric 44 along a direction indicated by arrow A and the edge strip 78c retarded relative to the feed direction D of the fabric 44 along a direction indicated by arrow R to sharpen the angle between the axial tows 46 and the first set of bi-axial tows 48.
- each of the edge strips 78a, 78b, 78c, and 78d could be moved in the opposite direction (i.e., advanced rather than retarded and vise-versa), to cause the bi-axial tows 48 and 50 to have angles that become larger with respect to the axial tows 46. This results in the fabric 44 effectively becoming wider under the applied movement of the edge strips 78a, 78b, 78c, and 78d.
- edge strips 78a, 78b, 78c, and 78d may be pulled laterally outwardly along a direction indicated by arrows L to maintain tautness over the width of the fabric 44. This could be done with or separately from advancing or retarding the edge strips 78a, 78b, 78c, and 78d.
- each of the edge strips 78a, 78b, 78c, and 78d could have a force applied thereto with a direction of applied force anywhere along an arc of 180 degrees in the plane of the fabric 44 from a pure advance direction A to a pure reverse direction R and that passes through the laterally outward direction L.
- a force having a combination of the (A or R) and/or L directions could be applied to each of the edge strips 78a, 78b, 78c, and 78d.
- This force or these forces could be applied as separately discrete vectors in the (A or R) and/or L directions or as a single combined vector depending on the apparatus that applies the force to the edge strips 78a, 78b, 78c, and 78d.
- each of the edges strips 78a, 78b, 78c, and 78d can be independently moved or held stationary relative to the direction and rate of fabric feed D to provide many modes of fabric manipulation.
- each of the four edge strips 78a, 78b, 78c, and 78d could be advanced, retarded, held stationary and/or moved laterally outward relative to fabric feed direction D.
- the fore/aft movement for each of the edge strips 78a, 78b, 78c, and 78d could be combined with a laterally outward force such as that each of the edge strips 78a, 78b, 78c, and 78d could be pulled in any direction within 180 degrees in the plane of fabric.
- all four edge strips 78a, 78b, 78c, and 78d can be separately controlled this results in many combinations of potentially applied forces.
- edge strips 78a, 78b, 78c, and 78d are illustrated, it is contemplated that fewer than four edge strips 78a, 78b, 78c, and 78d might be used to steer or guide the tows.
- a single edge strip might be used to guide or steer one end of a single set of tows.
- a pair of edge strips might be attached to only a single lateral edge of the fabric such that each of the edge strips are attached to one of the set of edges of each of the sets of the bias fibers. Then by advancing one and retarding the other of the edge strips, a localized shear can be induced in that side of the fabric.
- bias fibers can be controlled or directed to be better contoured to the surface (e.g., have fewer wrinkles, lay flatter on the form, etc.). This may be done, by example, by the selective inducement of shear to facilitate formation of a feature on the fabric preform 20.
- this fabric shaping or contouring can be preserved or locked into the fabric 44 in the fabric preform 20.
- the fabric 44 can be coaxed into shapes and contours that would be difficult, if not impossible, to obtain using conventional wrapping techniques and then frozen into that configuration by further wrapping, which initially holds the underlying fibers in the stressed condition and, ultimately, the application of resin.
- this shaping of the fabric is captured on the form during wrapping, the fabric will tend to flex back toward its original relatively generally planar state as the stress is naturally worked out of the fabric.
- fabric preforms and composite components can be formed having heretofore unseen tow architecture in the as-laid fabrics.
- the fabric preform includes a first volume in which the first and second set of bias or bi-axial tows are disposed at a first angle relative to one another and a second volume in which the first and second set of bias or bi-axial tows are disposed at a second angle relative to one another in which the first angle is different than the second angle.
- the fabric may be selectively stretched over certain regions of the form to meet a selected geometry.
- the bias or bi-axial tows are under an induced stress by alteration of their orientation in comparison to a relaxed fabric and the induced stress is locked into the fabric preform during wrapping to maintain the orientation of the bias or bi-axial tows. This may result in induced stress or shear in the fabric of the preform, although this induced stress or shear could be uniform throughout the preform.
- features can be formed on the fabric preform that extend, at least in part, in a radial direction relative to a central axis of the fabric preform such as a joggle or change in diameter.
- any of the as-laid tow architectures could be locked into place by applying a resin to the fabric preform and curing it to form the composite component.
- this edge manipulation of fabric might be practiced with any type of fabric having at least two sets of bias fibers.
- it might be practiced with bias woven fabrics, bi-axial fabrics, and tri-axial fabrics.
- the fabric is a tri-axial fabric 42 as described herein, then one of the two sets of bi-axial tows 48 can constitute the first set of bias tows and the other of the two sets of bi-axial tows 50 can constitute the second set of bias tows.
- the tows comprise the carbon fibers, which are commonly used in aircraft composite components.
- the fabric 44 wrapped around the form 54 has hoop tows 46 and these hoop tows 46 are capable of being separated into segments to permit improved flexure of the fabric 44.
- This improved flexure as a result of hoop tow segment separation assists in forming features which require particularly high amounts of deformation or elongation (e.g., flange formation).
- one end of the fabric 44 is received on the form 54 such that the hoop tows 46 of the fabric 44 extend in a direction generally perpendicular to a central axis C-C of the form 54 such as was generally depicted in FIG. 9 .
- the fabric 44 is then wrapped around the form 54 by rotating the fabric 44 and the form 54 relative to one another about the central axis C-C of the form 54. Either during wrapping or after wrapping, at least some of the hoop tows 46 are separated into hoop tow segments while the fabric 44 is under tension, stress, or shear. This separation enables spaces to form between the ends of adjacent hoop tow segments along the length of the hoop tow 46.
- hoop tows by separating at least some of the hoop tows into hoop tow segments to enable spaces to develop between adjacent hoop tow segments, increased deformation of the fabric is accommodated during formation of the fabric preform. Moreover, this accommodation occurs while still maintaining a presence of hoop tow segments in at least portions of the fabric for strength.
- the hoop tows 46 would be eliminated from the sections of the fabric 44 that would be formed into that feature. This is because the hoop tows 46 would typically inhibit the formation of a radially-extending feature such as a flange 22 to be formed, as the act of bending the precursor flange regions 40 into flanges 22 would be greatly resisted by the hoop tows 46 in the initial fabric preform 20. However, the elimination of the hoop tows 46 left certain regions of the fabric preform 20 with only bi-axial tows 48 and 50 and made these regions comparably weaker to the rest of the part.
- the hoop tows 46 may be made separable by preparing the fabric 44 prior to wrapping. In some embodiments, at least some of the hoop tows 46 are stretch broken at periodic intervals to define the hoop tow segments. In other embodiments, the hoop tows 46 might be cut at periodic intervals to define the hoop tow segments.
- This apparatus 86 includes a pair of rolling drums 88 and 90 between which the fabric 44 can be fed.
- One of the pair of rolling drums 88 has radially-extending blades or punches 92 that can be used to selectively cut the hoop tows 46.
- the rolling drum 90 may have corresponding slots into which the punches 92 of the rolling drum 88 are received (so as to ensure a complete cut) or the rolling drums 88 and 90 may be spaced sufficiently that there is inter-roller clearance between the rolling drums 88 and 90 through which the blades 92 can pass.
- bias fibers or bi-axial tows 48 and 50 could be separated to provide access to the hoop tow 46 before the hoop tow 46 is cut so as to minimize the damage to the bi-axial tows 48 and 50.
- the spacing of the cuts 94 of the hoop tows 46 in the fabric 44 can be selected to be at periodic intervals. Based on the illustrated spacing of the punches 92 on the rolling drum 90, points of separation in the hoop tows are out of phase from those in adjacent hoop tows along the direction of hoop tow extension. This periodic spacing of the cuts 94 can be beneficial because, once spaces or gaps develop during forming of the fabric 44, a separation gap between two hoop tow segments in one hoop tow can be supported by a hoop tow segment in an adjacent hoop tow.
- a side-on view of a flange 22 after it is bent up is provided in which the hoop tows 46 are schematically illustrated (although the bi-axial tows are absent for the sake of clarity).
- some of the hoop tows 46 are separated into hoop tow segments 87 such that spaces develop between the ends of adjacent hoop tow segments along the length of the hoop tows 46.
- each of the hoop tows 46 can break and/or separate at the points of separation to relieve the tension.
- the spacing between the hoop tow segments 87 can vary throughout the preform 20 (or resultant component 18). For example, near the inner circumference 96 of the flange 22, the hoop tows 46 have cuts 94 but are minimally, if at all, separated. However, near the outer circumference 98, the required deformation of the fabric 44 during forming demands that the hoop tows 46 expand into hoop tow segments 87 with gaps or spaces 100 between the hoop tow segments 87. As can be seen, these spaces 100 between the hoop tow segments 87 are greater in areas of the flange 22 where the fabric 44 is exposed to increased diametrical dimension. Moreover, because the cuts 94 are out of phase with one another, lines of gaps or spaces are avoided, which prevents lines of weakness in the final composite component.
- the hoop tow segments 87 may be selected to be at least some minimal length based on the width or diameter of the tow. For example, in one embodiment, the length of the hoop tow segments 87 are not less than 10 times the width of a hoop tow.
- the amount of separation or the space of the gaps 100 between the hoop tow segments 87 can be substantial and non-trivial.
- the gaps 100 between the hoop tow segments 87 could be at least as long as the fabric tows are wide.
- the overall length of a hoop tow, including the gaps 100 formed after the hoop tow segments 87 are separated, could exceed the maximum length of the same hoop tow under elastic deformation due to an applied tension without the provided points of separation in the hoop tow.
- the fabric structure could be modified to limit the relative placement of the hoop tow segments 87 in adjacent hoop tows.
- a lateral connecting thread could be separately linked to various adjacent hoop tow segments 87 to keep them together. If the connection of the thread to the hoop tow segments 87 is greater than the force required to separate the hoop tow segments 87 in a particular hoop tow from one another, this lateral connecting thread could generally limit the placement and spacing of the hoop tow segments 87 from one another. This could be used, for example, to inhibit the formation of a single large gap in a hoop tow rather than a plurality of smaller gaps. Additionally, where the points of separation are intentionally out of phase with one another, such a lateral connecting thread could be used to make sure that the gaps do not form lines of weakness.
- a fabric preform or a composite component includes a body formed from the fabric and at least one feature formed in the body. At least some of the hoop tows in the feature (e.g., a flange in a fan containment case) are separated into hoop tow segments that are spaced from one another along the length of the hoop tow.
- the feature (which includes the hoop tows) may extend, at least in part in a radial direction away from the central axis of the body. Again, some of the hoop tows in the base fabric may be separable while others may not be to maximize the strength of the structure.
- FIGS. 15 through 17 an apparatus 102 for continuously debulking a fabric preform is illustrated.
- This apparatus applies a compaction pressure to a portion of the top layer of the fabric as it is being laid down.
- the apparatus 102 includes a form 104 rotatable about a central axis D-D for receiving a fabric 44 for the fabric preform 20.
- this form 104 is similar to other forms in that the fabric 44 is pulled onto the form for wrapping the fabric preform 20.
- the apparatus 102 is different than a traditional wrapping apparatus in that it is also configured to concurrently run a film 106 around at least a part of the form 104.
- the film 106 is fed off of a film supply spool 108 and has a film path that extends to the form 104, around at least a portion of the form 104 (which as illustrated is approximately 300 degrees), around an intermediate roller 110, and onto a film take-up spool 112 that is spaced from the form 104.
- This film 106 is disposed radially outward of the form 104 such that the fabric 44 of the fabric preform 20 is captured between the film 106 and the form 104. Because the film 106 extends around only a portion of the form 104 before the film 106 is routed onto the take-up spool 112, the film 106 is not made part of the fabric preform 20, but rather surrounds a portion of the fabric preform 20.
- the film 106 and the fabric 44 may be fed onto the form 104 together such that the film 106 is disposed outward of the fabric 44 relative to the form. In this way, it might be said that the film 106 serves as a backing sheet that carries the fabric 44 as it is initially wrapped onto the form 104.
- FIGS. 16 and 17 further details of the apparatus 102 are illustrated. Specifically, a structure is illustrated for drawing a vacuum between the form 104 and the film 106 such that the fabric 44 is compressed there between.
- seals should be formed at the lateral or axial ends of the form 104 between the form 104 and the film. In the embodiment shown, because the form 104 is generally cylindrical, the seals extend over an arc.
- the other spots that need to be “sealed” are the lines transverse to the fabric feed path at (1) the point at which the fed fabric initially contacts the form 104 (or the fabric 44 already wrapped around the form) and (2) the point at which the film 106 separates from the outer periphery of the form. By keeping the film 106 and the fabric 44 taut, these lines can form a pseudo-seal through which little gas can pass.
- a vacuum source (depicted by arrows 114) is used to draw a vacuum between the film 106 and the form 104. This vacuum causes the film 106 to be pulled toward the form 104, thereby applying a compaction pressure to the outwardly facing surface of the fabric being wrapped into the fabric preform 20.
- the vacuum is drawn through a portion of the form 104.
- the form 104 includes a fixed portion 116 and a rotating or rotatable portion 118 which are both generally annular because of shape of the form 104.
- the rotating portion 118 includes a central section 120 with lateral sections 122 fixedly connected at the ends thereof. The outwardly facing portions of the central section 120 and the lateral sections 122 generally define the surface of the form 104 that the fabric 44 is wrapped around.
- the lateral sections 122 are generally upside-down U-shaped channels. These lateral sections 122 include a plurality of openings 124 that extend from the outwardly-facing side of the section 112 (that defines a part of the form 104) to an inwardly-facing side on the inside of the "U".
- the fixed portions 116 are a generally U-shaped channel that is roughly received in the upside-down shaped "U".
- a pair of annular seals 126 is fixed to one of the fixed portion 116 and the rotating portion 118 for forming an annular shaped vacuum chamber 128 there between.
- the seals 126 are connected to the fixed portion 116 and are pressed against the inwardly-facing surface of the rotating portion 118.
- a series of vacuum lines 130 are connected to the fixed portion 116 and are in communication with the vacuum chamber 128. Through these vacuum lines 130, it is possible to draw a vacuum in the vacuum chamber 128 using the vacuum source 114. Because the openings 124 are in communication with the vacuum chamber 128, a vacuum drawn in the vacuum chamber 128 is communicated to the area between the film 106 and the form 104. When sufficient seals are provided on the lateral edges of the form 104 and the lines transverse to the fabric feed path, this vacuum causes the film 106 to be drawn down such that the film applies a compaction pressure to the partially-wrapped fabric preform 20.
- the lateral seals are formed by placing a pair of raised gaskets 132 axially outward of the portion of the form 104 around which the fabric 44 is wrapped. Some openings 124 are placed between the gaskets 132 to place the space between the gaskets 132 in communication with the vacuum chamber 128. When a vacuum is drawn, the film 106 is sucked down onto the gaskets 132 and a lateral seal is formed.
- a compaction pressure can be continuously applied to a fabric during formation of a fabric preform.
- one end of the fabric 44 is applied to the form 104.
- the form 104 with the fabric 44 applied thereto is at least partially surrounded by the film 106 in which the film 106 extends along a film path from the film supply spool 108 to the form 104 and around at least a portion of the form 104.
- the fabric 44 and the film 106 is fed onto the form 104 such that the fabric 44 is wrapped around the form 104 to form the fabric preform 20 while the film 106 is fed around the form 104 (although not made part of the preform 20).
- a vacuum is drawn to evacuate a gas from between the form 104 and the film 106, thereby pressing the film 106 onto the fabric 44 and applying the compaction pressure to the fabric 44.
- This compaction pressure could be applied simultaneously with wrapping and may be constant. It is contemplated, however, that alternatively variable and/or periodic pressures could be applied using the apparatus 102.
- the compaction pressure applied by the film 106 to the fabric 104 can be approximately 12 psi; however, different compact pressures might be applied based on the mechanical properties of the fabric 44, the geometry of the form 104, the forces applied to the fabric 44 during wrapping, and so forth.
- the film 106 can surround a substantial portion, but not all of the fabric 44 wrapped around the form 104. This means that the compaction pressure is applied to the fabric over less than one full rotation of the form 104. It is contemplated 75 percent or more of the surface area of the topmost fabric layer may be compressed against the form by the film 106. Accordingly, in contrast to typical debulking methods, only a portion of the fabric preform is debulked at a given time, and that particular portion is constantly changing during the rotation of the form 104.
- the intermediate roller 110 routes and redirects the film 106 from around at least a portion of the form 104 to the take-up spool 112.
- This intermediate roller 110 can have an axis that is parallel with, but spaced from, the central axis D-D of the form 104 and, moreover, can be biased into contact with the form 104 to assist in forming a good seal.
- a fabric preform for a composite component such as a fan containment case or fan case may be formed.
- the resultant fabric preform would be substantially free of bulk and wrinkles as the fabric is continuously debulked during wrapping. Accordingly, this technique provides a fiber architecture in the underlying fabric that is superior to conventional wrapping techniques.
- Prepreg fabrics are those which contain some amount of resin in the fabric as supplied and can therefore be said to be pre-impregnated with the resin material.
- prepreg fabrics are solid and not very permeable to gas in comparison to non-prepreg fabrics, it is contemplated that the film 106 could be textured to transfer the vacuum over the axial length of the form 104 between the bottom surface of film 106 and the upper surface of the topmost prepreg fabric layer.
- this debulking technique might be combined with the other fabric manipulation techniques to synergistically result in fabric preforms for ultra-high strength composite components.
- the debulking technique could be combined with the separate axial tensioning method to result in a preform having extremely high fiber volume ratio.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Moulding By Coating Moulds (AREA)
- Reinforced Plastic Materials (AREA)
- Woven Fabrics (AREA)
Description
- This disclosure relates to the formation of fabric preforms for composite components. In particular, this application relates to manipulation of a fabric to improve fabric preform quality.
- Composite components are often used in applications in which having a high strength-to-weight ratio is important such as, for example, aircraft components. Many structural composite components can be made by wrapping a high-strength fabric around a form to create what is known as a fabric preform, applying a resin to the fabric preform, and then curing the resin to form the final composite component.
- Certain features, however, are problematic to form. For example, in a fan containment case with one or more end flanges, the end flanges typically must be separately formed from the remainder of the cylindrical body. Because fan containment cases are often made with a tri-axial fabric (hoop tows in a first direction and bias tows in two other directions) to increase strength, it is not trivial to form the end flanges with the same piece of fabric used to form the cylindrical or near-cylindrical body.
- Traditional methods of forming an end flange are (1) including recurring linear darts in each ply, (2) eliminating hoop tows and allowing the bias tows to shear, and (3) adding a separate flange detail. However, all of these approaches add cost and weight since they generally require more material to reinforce the flange.
- Hence, a need exists for improved ways to form fabric preforms with features that require high amounts of fabric shear without significantly compromising the structural integrity of the resultant component.
-
FR 2 633 213 - Particular aspects of the invention are set out in the appended claims.
- Improved methods of forming a fabric preform are disclosed that enable enhanced deformation of fabric without total elimination of hoop tows. In order to do this, at least some of the axial tows or hoop tows in the fabric are modified to have segments that are separable from one another within the fabric sheet. Upon the application of deformation to the fabric, the segments of the hoop tows can separate from one another to accommodate this change. However, the segments can still be substantially retained in the deformed portions of the fabric and can structurally reinforce these regions.
- A method is disclosed of forming a fabric preform for a composite component from a fabric having a plurality of hoop tows and a plurality of bi-axial tows. One end of the fabric is received on the form such that the hoop tows of the fabric extend in a direction generally perpendicular to a central axis of the form. The fabric is wrapped around the form by rotating the fabric and the form relative to one another about the central axis of the form. At least some of the hoop tows are separated into hoop tow segments while the fabric is under a tension during wrapping to enable a space to develop between ends of adjacent hoop tow segments along the length of the hoop tow. By separating at least some of the hoop tows into hoop tow segments to enable spaces to develop between adjacent hoop tow segments, increased deformation of the fabric is accommodated during formation of the fabric preform. This occurs while still maintaining a presence of hoop tow segments in at least portions of the fabric.
- The separation of the hoop tows can facilitate deformation of the fabric. In some forms, this improved fabric deformation can be exploited to create a feature that extends at least in part in a radial direction away from the central axis of the form such as, for example, a flange. Accordingly, this method can be particularly beneficial for the formation of components such as fan containment cases, which have features, curvatures, and flanges that can demand increased amounts of fabric deformation.
- The fabric could be prepared for the separation of the hoop tows into hoop tow segments in a number of ways. At least some of the hoop tows could be stretch broken at periodic intervals to define the hoop tow segments. In some forms, the method could further include the step of cutting the hoop tows at periodic intervals to define the hoop tow segments. This cutting may be performed by a device that separates the bias fibers surrounding a hoop tow at a point to be cut and then cutting at the point to be cut. A tool may be used to cut the hoop tows at periodic intervals and this tool may include a rolling drum and/or a punching tool. Other means or multiple different means of preparing the hoop tows for separation could also be employed. Moreover, in some instances, some of the hoop tows may not be separated or even be prepared to be separated.
- In some embodiments, adjacent hoop tows may be arranged so that points of separation in the adjacent hoop tows are out of phase from adjacent hoop tows along the direction of hoop tow extension. In this way, a separation gap between two hoop tow segments in one hoop tow may be supported by the presence of a hoop tow segment in an adjacent hoop tow. To insure the segments do not become too small to be retained in the fabric, the length of the hoop tow segments may be configured to not be less than 10 times the width of a hoop tow.
- A fabric preform for a composite component and a composite component are also disclosed. The fabric preform and the composite component include a body formed from the fabric in which the body has a central axis extending there through. They also include at least one feature formed in the body in which at least some of the hoop tows in the feature are separated into hoop tow segments that are spaced from one another along the length of the hoop tow. In the instance of the composite component, the fabric of the fabric preform receives a resin to retain the tows of the fabric in place.
- The feature formed in the body with the separated hoop tows may extend, at least in part, in a radial direction away from the central axis. This feature may be, for example, a flange; however, the feature could be something other than a flange. It is contemplated that the separation of the hoop tows is of particular benefit in forming features in which relatively high amounts of fabric deformation are imparted to the fabric in the formation of the feature. As noted above, it is contemplated that not all of the hoop tows need to be separable into hoop tow segments. In some instances, some of the hoop tows may not be prepared for separation and, even if they are, they need not all be separated.
- This technology may be used in the formation of a wide array of fabric preforms and composite components. One particular application would in the formation of a composite component for a fan containment case (or in making a fabric preform which is a precursor to the composite component for the fan containment case).
- These and still other advantages of the invention will be apparent from the detailed description and drawings. What follows is merely a description of some preferred embodiments of the present invention. To assess the full scope of the invention the claims should be looked to as these preferred embodiments are not intended to be the only embodiments within the scope of the claims.
-
-
FIG. 1 is a partial cross-sectional side view of a turbofan engine including a fan containment case and a fan case; -
FIG. 2 is one embodiment of a fabric preform for a fan containment case or fan case; -
FIG. 3 is a fan containment case or fan case similar toFIG. 2 , but after flanges have been formed at the axial ends of the generally tubular body; -
FIG. 4 is a partial view of the fabric preform ofFIG. 2 with a cross section taken there through; -
FIG. 5 is a partial view of the fan containment case or fan case ofFIG. 3 with a cross section taken there through; -
FIG. 6 illustrates a tri-axial fabric material that can be used to fabricate fabric preforms and composite components; -
FIG. 7 is a detailed view of a segment of tri-axial fabric in which the axial or hoop tows extend from the end of the fabric; -
FIG. 8 is a cross-sectional side view of the tri-axial fabric; -
FIG. 9 is an illustration of a schematic for an apparatus used to form a fabric preform while separately tensioning each of the axial tows; -
FIG. 10 is one embodiment of an intermediate connector that may be used to connect an axial tow to a tensioning mechanism; -
FIG. 11 illustrates the fabric with edge strips for directing the bias tows in the fabric; -
FIG. 12 is a detailed view of the edge strips attached to the fabric as inFIG. 11 that provides further detail about the attachment of the edge strips to the bi-axial tows; -
FIG. 13 is an apparatus for periodically cutting or severing the axial tows; -
FIG. 14 is a side view of a portion of a flange that illustrates the placement and spacing of some of the hoop tow segments; -
FIG. 15 is a side view of an apparatus that enables the continuous application of pressure during wrapping of the fabric preform by drawing a film against the preform using a vacuum; -
FIG. 16 is a partial perspective view of the apparatus ofFIG. 15 in which the various elements of the apparatus in the form are illustrated in greater detail; and -
FIG. 17 is a cross-sectional view of the apparatus ofFIG. 15 in which there is a sliding seal between a rotating portion of the form and a fixed portion connected to a vacuum. - This disclosure is directed at improved methods of producing fabric preforms that can be further processed to make composite components or parts. Typically, once the fabric preform is wrapped, resin can be introduced into the fabric preform to form a composite component. This resin could be provided in any of a number of ways including, but not limited to, injection molding and transfer molding such as resin transfer molding (RTM) and vacuum-assisted resin transfer molding (VARTM). After curing the resin, the high-strength fibers of the fabric are held in place within the resin matrix to provide the composite material.
- In this detailed description, some specific embodiments of fabric preforms and composite components are provided in which composite components for aircraft are described. However, the illustrated preforms and components should not be construed as the only preforms and components to which the recited methods are applicable. The methods described herein might also be used to make non-aircraft composite components, as well as any other process in which fabric is wrapped around a form to create a fabric preform.
- Referring first to
FIG. 1 , a portion of aturbofan engine 10 for an aircraft is illustrated. Thisturbofan engine 10 includes afan assembly 12 that is rotatable about a central axis A-A of theturbofan engine 10 to intake air and, ultimately, produce propulsion. Thefan assembly 12 has acentral rotor 14 that extends along the central axis A-A and includes a plurality ofblades 16 that extend generally radially outward from thecentral rotor 14. - This
fan assembly 12 is surrounded, at least in part, by afan containment case 18. Thisfan containment case 18 is made of a high-strength composite material such as a fabric encased in a resin. For aircraft components, the fabric may be made of a carbon fiber material and the resin may be an epoxy or a high-temperature resin such as bismaleimide or polyamide to make an extremely strong and rigid component that is stable at high temperatures. However, other fabrics and resin material might be used depending on the demands of the application. Some of the materials that may be used to construct composite materials will be discussed in further detail below. - The
fan containment case 18 helps to prevent any projectiles from radially exiting theturbofan engine 10 in a direction that could damage theengine 10 or the aircraft. For example, if one of theblades 16 of thefan assembly 12 fails in a "blade out" event in which some or all of ablade 16 breaks from thecentral rotor 14, then thefan containment case 18 helps to contain the fractured portion of theblade 16. Likewise, if an outside object is sucked into theturbo engine 10 during gas intake, then thefan containment case 18 can prevent a potentially catastrophic event from occurring if this item is shot radially outward after it contacts theblade 16. -
FIG. 1 also shows afan case 19 attached behind thefan containment case 18. Thisfan case 19 can be made of similar materials to thefan containment case 18 and continues the duct within which the engine bypass air flows. - Turning now to
FIGS. 2 through 5 , afabric preform 20 for afan containment case 18 having an axis B-B is illustrated before and afterflanges 22 are formed on the axial ends 24 and 26. Thefabric preform 20 has a generallytubular body 28 extending between the twoaxial ends body 28 includes a radially-inward facing surface 30 that contacts a form or mandrel during formation and a radially-outward facingsurface 32. In the particular embodiment shown, thebody 28 includes a joggle or a portion ofcurvature 34 that separates thebody 28 of thefan containment case 18 into twosections sections FIG. 1 ) and may also serve to direct the air flow through theturbofan engine 10. This joggle or portion ofcurvature 34 conceptually is a feature of thebody 28 that extends, at least in part, in the radial direction. - As best seen in
FIGS. 2 and4 , thefabric preform 20 for thefan containment case 18 may be formed such that the axial ends 24 and 26 are thinner than the remainder of the generallytubular body 28 to defineprecursor flange regions 40 on the axial ends 24 and 26. Before the introduction of the resin, theseprecursor flange regions 40 might be bent upward at theline 41 onFIG. 4 to form theflanges 22 that are used to attach thefan containment case 18 to adjacent components in the final assembly. It is likewise possible that theseprecursor flange regions 40 might be bent downward at theline 41 onFIG. 4 to form theflanges 22. However, it is also contemplated that by employing the fabric manipulation techniques below, that theflanges 22 might be formed concurrently with the wrapping of the fabric. It is likewise possible to conceive of a design that has only one flange at either end 24 or 26, or no flanges at all. - The
fabric preform 20 for thefan containment case 18 includes multiple wrapped layers of fabric. The thickness of thefan containment case 18 is dictated in part by the number of layers of fabric and the thickness of the fabric. However, the quality of the wrapping and bulkiness of the fabric will also affect the thickness of thefabric preform 20 and the resultant composite component. For example, a fabric preform that is thoroughly debulked will typically have an average thickness that is less than a fabric preform that is not thoroughly debulked because imperfections in the wrapping of the fabric can create irregular regions. - To provide some understanding of the fiber structure of the
fabric preform 20 in thefan containment case 18, a description of one preferred fabric for forming thefabric preform 20 is now described in greater detail with additional reference toFIGS. 6 through 8 . InFIGS. 6 through 8 , atri-axial fabric 42 is shown as including various tows of the fabric material which are braided together to form afabric sheet 44. Thetri-axial fabric 42 includes a plurality of hoop oraxial tows 46 and a plurality ofbi-axial tows - As used herein, tows refer to a bundle of fibers or filaments so arranged as to form a continuous length of material. Typically, for aircraft composite structures, such tows are made of carbon fibers or graphite, which have excellent strength for their weight.
- The hoop or
axial tows 46 are arranged to be generally parallel with one another. For the sake of clarity, thesetows 46 extend in a direction that is generally parallel with the direction of travel of thefabric sheet 44 as thefabric sheet 44 is wrapped around a form or mandrel. Therefore, in the context of the fabric feeding or wrapping, these tows may be said to be axial. Because thesetows 46 are then wrapped about a central axis of the form or mandrel, thesetows 46 may also be referred to as "hoop tows" because they extend around the form in the hoop direction once thefabric 44 is laid onto the form. - The plurality of
bi-axial tows axial tows 46 and at a negative angle from theaxial tows 46, respectively. The bi-axial tows 48 and 50 are alternatively passed over and underaxial tows 46 to form thefabric sheet 44 as is best illustrated inFIG. 8 so as to form a braid in the fabric sheet. This means that theaxial tows 46 extend roughly linearly through thefabric sheet 44. When thefabric sheet 44 is laid flat, each of the sets ofbi-axial tows bi-axial tows 48 are parallel with one another and the various tows in the second set ofbi-axial tows 50 are parallel with one another). - Although a tri-axial fabric has been described and provides the base material for the production of the
fabric preform 20 illustrated in the example composite component of afan containment case 18, it is contemplated that other types of fabric might be used with some of the methods described herein. Accordingly, it should be understood that other types of fabric might be used, although some techniques may be inherently limited by the characteristics of the fabric. For example, the separate and independent tensioning of hoop tows might not be readily practiced if the fabric does not contain axial tows. - Returning now to
FIGS. 2 through 5 and more specifically with reference toFIGS. 4 and 5 , multiple layers of thetri-axial fabric 42 are wrapped upon one another to create thefabric preform 20. Thetri-axial fabric 42 is disposed in thefabric preform 20 such that theaxial tows 46 extend along the hoop direction of thefabric preform 20 and are generally perpendicular to the axis B-B, while thebi-axial tows tubular body 28. - Generally, to form the
fabric preform 20, one end of thefabric 44 is received on the form such that the axial tows of the fabric extend in a direction generally perpendicular to the central axis of the form. Thefabric 44 is then wrapped about the form, normally by the rotation of the form pulling thefabric 44 onto the form, to lay down the layers of the fabric 44 (although it is possible that the free end of the fabric may be orbited around the form either while the form is held stationary or while the form also rotates). During this wrapping, thefabric 44 might be periodically debulked or could be continuously debulked using the apparatus and process described below. - To form the comparably thinner sections of the
precursor flange regions 40, thefabric 42 might be cut prior to being laid on the form. In this way, fewer layers of thetri-axial fabric 42 are laid down on the axial ends of the form. - Now, various improvements to the wrapping process will be described that can help to provide a fabric preform with a fiber architecture that promotes the formation of a strong composite component. The described methods provide for better control of the fabric during the wrapping process and for improved continuous debulking of the preform as it is wrapped. This means that the resultant fabric preform is more tightly wrapped, has less bulk than preforms made using conventional wrapping, and has fewer wrinkles and waviness in the as-wrapped fabric preform. When the composite component is formed by application of resin to the preform, the final composite component has a higher fabric-to-resin volume ratio (also known as fiber volume ratio or fiber fraction) which improves the strength to weight ratio of the composite and provides a more consistent fiber structure within the composite component.
- Turning to
FIG. 9 , anapparatus 52 is shown that can be used to wrap thefabric 44 around aform 54 while simultaneously tensioning each of the axial or hoop tows 46 separately and independently from each other. Theapparatus 52 includes theform 54 having a central or rotational axis C-C and a table 56 spaced from theform 54 that supports a plurality ofseparate tensioning mechanisms 58. - In the embodiment illustrated, the
form 54 is a rotatable mandrel that receives one end of thefabric 44 there on. The reception of the end offabric 44 could be made in any of a number of ways including, for example, attachment of one end of thefabric 44 to theform 54 by taping, adhesive, fasteners, clamping, or so forth. Thefabric 44 could also be received on theform 54 by wrapping thefabric 44 around theform 54 at least one full rotation and then holding thefabric 44 taut such that the tension of thefabric 44 wrapped over itself holds thefabric 44 on theform 54. - As shown, the
form 54 has a cylindrical shape (i.e., having a constant radius over the axial length of theform 54 onto which the fabric is wrapped thereby defining an outwardly-facingcylindrical surface 60 centered about the axis C-C). However, in other embodiments, theform 54 could have a different shape. For example, the form could have a square or rectangular cross section which would result in a tubular rectangular shape for the fabric preform. In another example, the form could have a radius that varies over at least a portion of the axial length of the form. This variable radius could be used to form a joggle or a like, such as is found on thefan containment case 18 depicted inFIG. 1 . - Looking at the other half of the
apparatus 52, thetensioning mechanisms 58 are fanned out or spread out across the table 56. Each of thetensioning mechanisms 58 have aline 62 that feeds out there from. Theselines 62 are each coupled to one of theaxial tows 46 on afree end 64 of the fabric 44 (that is, the end of thefabric 44 opposite to the end of thefabric 44 that is initially wrapped around or received on theform 54 such that theaxial tows 46 extend from one end to the other). Thelines 62 from thetensioning mechanisms 58 are fed through a guide or comb 66 such that the each of thelines 62 are generally collinear with a correspondingaxial tow 46 to which aline 62 is coupled. In this way, each of thetensioning mechanisms 58, which are considerably larger than the size of theaxial tows 46, can be spaced apart from one another on the table 56 and provide ample clearance for the running of thelines 62. - In the illustrated embodiment of
FIG. 9 , each of thetensioning mechanisms 58 is a magnetic clutch. Each of the magnetic clutches have a spool that feeds theline 62 out there from. During this feed out of theline 62, the magnetic clutch provides controlled resistance against the rotation of the spool as theline 62 is pulled or unwound from the spool. Because eachline 62 is attached to anaxial tow 46, as will be described in greater detail below, each of theaxial tows 46 are separately and independently tensioned and paid out. - As used herein, for an axial tow to be "separately tensioned" means that the axial tow is tensioned apart from at least some of the other axial tows in the fabric. In one preferred embodiment, each and every one of the axial tows of the fabric are separately tensioned from one another. This separate tensioning can result in one or more of the
axial tows 46 slipping within thebi-axial tows fabric 44. However, in other forms the separate tensioning of the axial tows may be performed in groups. For example, two or more axial tows might be tensioned apart from the other tows. This may be beneficial to minimize the size and/or cost of the apparatus. Individually paid out means that the tows can be paid out in different lengths. One tow may be fed at a different rate than another tow, at least for a period of time. - Returning now to the illustrated embodiment of the
apparatus 52 inFIG. 9 , although the individualaxial tows 46 are separately tensioned, this does not necessarily mean that each of theaxial tows 46 receives a different tension. In fact, thetensioning mechanisms 58 may be set to provide the same tension or substantially the same tension to each of theaxial tows 46. Due to either differences in thefabric 44 itself, or in the shape of theform 54 over its axial length, separately maintaining a constant axial tension over the variousaxial tows 46 can result in a differential pay out of theaxial tows 46 in thefabric 44. In contrast, if thefabric 44 was clamped across its entire width, then the clamping force would inhibit the movement or individual pay out of theaxial tows 46 of thefabric 46 relative to one another. - The ability for the
axial tows 46 to pay out differentially can be used to improve the quality and consistency of thefabric preform 20. Whereas a singularly tensioned fabric needs to be very carefully aligned with respect to the form to prevent uneven wrapping of the fabric, the disclosedapparatus 52 is more forgiving and greater misalignment can be accommodated. Additionally, because theaxial tows 46 can slip relative to one another, a form having different cross sections over its width might be better accommodated because theaxial tows 46 being wrapped around a portion of the form having a shorter periphery can pay out more than theaxial tows 46 being wrapped around a portion of the form having a longer periphery. This might be the case for a form that is used to produce thefabric preform 20 for thefan containment case 18 that is illustrated inFIGS. 1 through 5 . - It is contemplated that the
lines 62 from the tensioningmechanisms 58 might be directly connected to theaxial tows 46 or that theaxial tows 46 might be connected to thelines 62 via an intermediate connector. When an intermediate connector is used, the intermediate connector may attach to both theline 62 and to theaxial tow 46. By using some kind of linkage, the connection of the intermediate connector to thecorresponding line 62 can be made in such a manner as to preserve the integrity of theline 62. While a direct connection might involve knotting or adherence of the line to the axial tow and can be difficult to reverse without sacrificing some length of the line, an intermediate connector could be used to reversibly connect anaxial tow 46 to aline 62. - One type of
intermediate connector 68 is partially illustrated inFIG. 10 . Thisintermediate connector 68 includes a pair ofpads 70 withapertures 72. Thepads 70 can be disposed on either side of an end 74 of anaxial tow 46 and then put together to sandwich the end 74 of theaxial tow 46 there between. In some forms, thepads 70 could be used in conjunction with adhesive to attach to theaxial tow 46. In other forms, one or more of thepads 70 might be magnetically attracted toward one another. In still other forms, a mechanical pressure might be applied to thepads 70 such that they pinch the end 74 of theaxial tow 46. Ahook 76 tied to the end of theline 62 can then be directed through theaperture 72 in thepads 70 to temporarily link thepads 70 to thelines 62 of thetensioning mechanisms 58. - Because the fabric is more densely wrapped than in a fabric preform not formed by separately tensioning at least some of the plurality of axial tows, a higher fabric-to-resin volumetric ratio can be realized in the composite component formed after resin is applied to the fabric preform.
- Referring now to
FIGS. 11 and12 , edge strips 78a, 78b, 78c, and 78d are shown which can be attached to ends of thebi-axial tows fabric 44. When attached to the ends of thebi-axial tows edge strips fabric 44 before and during wrapping of thefabric preform 20 to control the fiber structure. - Each of the edge strips 78a, 78b, 78c, and 78d are attached to ends of one of the sets of
bi-axial tows fabric 44. The lateral edges 80 and 82 are "lateral" relative to the feed direction (depicted by arrow D inFIG. 11 ) of thefabric 44 onto theform 54, which is generally perpendicular to its rotation axis C-C. In the form illustrated,edge strip 78a is attached to the ends of the first set ofbi-axial tows 48 andedge strip 78b is attached to the ends of the second set ofbi-axial tows 50 on thelateral edge 80 of thefabric 44 as can be seen inFIG. 12 . On the otherlateral edge 82 of the fabric 44 (which is opposite the first lateral edge 80), the edge strip 76c is attached to the other ends of the first set ofbi-axial tows 48 and the edge strip 76d is attached to the other ends of the second set ofbi-axial tows 50. - Edge strips 78a, 78b, 78c, and 78d could be attached to the ends of the respective set of tows in any of a number of ways. For example, the edge strips 78a, 78b, 78c, and 78d may be adhered to the tows. In another example, the edge strips 78a, 78b, 78c, and 78d may each include multiple components that clamp together under an applied force to grasp the ends of the tows.
- In the embodiment illustrated, the edge strips 78a, 78b, 78c, and 78d each have a row of
openings 84 formed therein that can be, for example, engaged by a line of hooks to selectively and independently move the edge strips 78a, 78b, 78c, and 78d. Such hooks might be used to move the edge strips 78a, 78b, 78c, and 78d forward or backward relative to the fabric 44 (i.e., parallel or anti-parallel to the direction of arrow D, respectively) and/or laterally outward with respect to the fabric 44 (i.e., perpendicular to the direction of arrow D in the plane of the fabric 44). Other or alternative means of engagement of the edge strips 78a, 78b, 78c, and 78d might also be used, such as, but not limited to, sprockets. - These edge strips 78a, 78b, 78c, and 78d can be controlled independently of one another. Because they are attached to two sets of bias tows (which are, in the form illustrated, the first and second sets of
bi-axial tows 48 and 50), the first set of bias tows can be controlled independently of the second set of bias tows by the fouredge strips bi-axial tows fabric 44 around theform 54 to create thefabric preform 20. This directing of thebi-axial tows fabric 44 in a manner that is beneficial during the formation of thefabric preform 20 and the resultant composite component. - It should be appreciated that in order to fully steer a bi-axial tow as it is wrapped onto a form, it may be desirable to maintain the force on the edge strips until the entire tow is placed on the form. Accordingly, it may be the case that the end of a bi-axial tow that is first received on the form may be held until the second end is also received on the form. Because the bi-axial or bias tows are at an angle relative to the feed direction of the fabric, this may mean that the tows need to be held for some distance after they are received on the form.
- A number of examples of movements of the edge strips 78a, 78b, 78c, and 78d are now described to highlight potential ways in which the
fabric 44 might be manipulated. The examples are intended to be illustrative, but not the only examples of how the edge strips 78a, 78b, 78c, and 78d might be employed. - To induce stress or shear in the
fabric 44, one or more of the edge strips 78a, 78b, 78c, and 78d might be advanced or retarded relative to thefabric 44 to control the orientation of the respectively attached set of tows and to change the angle between the first set of bias tows and the second set of bias tows. For example, theedge strip 78a could be advanced relative to the feed direction D of thefabric 44 along a direction indicated by arrow A and theedge strip 78c retarded relative to the feed direction D of thefabric 44 along a direction indicated by arrow R to sharpen the angle between theaxial tows 46 and the first set ofbi-axial tows 48. This might result in shift in this set ofbi-axial tows 48 from -60 degrees to -50 degrees, for example. Simultaneously, theedge strip 78b might be retarded relative to the feed direction D of thefabric 44 and theedge strip 78d might be advanced relative to the feed direction D of thefabric 44 to sharpen the angle between theaxial tows 46 and the second set ofbi-axial tows 50. Again, this might be a change from +60 degrees to +50 degrees. This has the effect of narrowing thefabric 44 and scissoring thebi-axial tows axial tows 46. This may result in differential spacing of theaxial tows 46 depending on the shape of theform 54 and the amount of localized shear induced in thefabric 44. - Alternatively, each of the edge strips 78a, 78b, 78c, and 78d could be moved in the opposite direction (i.e., advanced rather than retarded and vise-versa), to cause the
bi-axial tows axial tows 46. This results in thefabric 44 effectively becoming wider under the applied movement of the edge strips 78a, 78b, 78c, and 78d. - In another example, the edge strips 78a, 78b, 78c, and 78d may be pulled laterally outwardly along a direction indicated by arrows L to maintain tautness over the width of the
fabric 44. This could be done with or separately from advancing or retarding the edge strips 78a, 78b, 78c, and 78d. - It is contemplated that each of the edge strips 78a, 78b, 78c, and 78d could have a force applied thereto with a direction of applied force anywhere along an arc of 180 degrees in the plane of the
fabric 44 from a pure advance direction A to a pure reverse direction R and that passes through the laterally outward direction L. Essentially, this means that a force having a combination of the (A or R) and/or L directions could be applied to each of the edge strips 78a, 78b, 78c, and 78d. This force or these forces could be applied as separately discrete vectors in the (A or R) and/or L directions or as a single combined vector depending on the apparatus that applies the force to the edge strips 78a, 78b, 78c, and 78d. - Ultimately, this means each of the edges strips 78a, 78b, 78c, and 78d can be independently moved or held stationary relative to the direction and rate of fabric feed D to provide many modes of fabric manipulation. As noted above, each of the four
edge strips edge strips - Although four
edge strips edge strips - This localized deformation of fabric can be exploited during wrapping of complex shapes. For example, if a joggle or some other feature is present on the
form 54, then the bias fibers can be controlled or directed to be better contoured to the surface (e.g., have fewer wrinkles, lay flatter on the form, etc.). This may be done, by example, by the selective inducement of shear to facilitate formation of a feature on thefabric preform 20. - Moreover, by application of some amount of tension or force to the bias or bi-axial tows as the
fabric 44 is laid down on theform 54, this fabric shaping or contouring can be preserved or locked into thefabric 44 in thefabric preform 20. This means that thefabric 44 can be coaxed into shapes and contours that would be difficult, if not impossible, to obtain using conventional wrapping techniques and then frozen into that configuration by further wrapping, which initially holds the underlying fibers in the stressed condition and, ultimately, the application of resin. Unless this shaping of the fabric is captured on the form during wrapping, the fabric will tend to flex back toward its original relatively generally planar state as the stress is naturally worked out of the fabric. - It should be appreciated that some consideration needs to be made to balancing the strength of the various applied forces to the fabric. The forces applied to the bias or bi-axial tows must be sufficiently great to overcome the forces used to keep the fabric taut in the feed or machine direction. If the forces applied to the bias or bi-axial tows of the fabric are too small, then it is possible that the strength of the forces used to keep the fabric taut will overcome them and neutralize their effect.
- Accordingly, using this method, fabric preforms and composite components can be formed having heretofore unseen tow architecture in the as-laid fabrics.
- In some embodiments, the fabric preform includes a first volume in which the first and second set of bias or bi-axial tows are disposed at a first angle relative to one another and a second volume in which the first and second set of bias or bi-axial tows are disposed at a second angle relative to one another in which the first angle is different than the second angle. This means the fabric may be selectively stretched over certain regions of the form to meet a selected geometry.
- In other embodiments, the bias or bi-axial tows are under an induced stress by alteration of their orientation in comparison to a relaxed fabric and the induced stress is locked into the fabric preform during wrapping to maintain the orientation of the bias or bi-axial tows. This may result in induced stress or shear in the fabric of the preform, although this induced stress or shear could be uniform throughout the preform.
- In some embodiments, features can be formed on the fabric preform that extend, at least in part, in a radial direction relative to a central axis of the fabric preform such as a joggle or change in diameter.
- As noted above, any of the as-laid tow architectures could be locked into place by applying a resin to the fabric preform and curing it to form the composite component.
- It should be appreciated that this edge manipulation of fabric might be practiced with any type of fabric having at least two sets of bias fibers. For example, it might be practiced with bias woven fabrics, bi-axial fabrics, and tri-axial fabrics. If the fabric is a
tri-axial fabric 42 as described herein, then one of the two sets ofbi-axial tows 48 can constitute the first set of bias tows and the other of the two sets ofbi-axial tows 50 can constitute the second set of bias tows. In one preferred embodiment, the tows comprise the carbon fibers, which are commonly used in aircraft composite components. - A third method of manipulating the fabric to facilitate the formation of fabric preforms and their resultant composite components is now described. According to this third method, the
fabric 44 wrapped around theform 54 has hoop tows 46 and these hoop tows 46 are capable of being separated into segments to permit improved flexure of thefabric 44. This improved flexure as a result of hoop tow segment separation assists in forming features which require particularly high amounts of deformation or elongation (e.g., flange formation). - According to the general method, one end of the
fabric 44 is received on theform 54 such that the hoop tows 46 of thefabric 44 extend in a direction generally perpendicular to a central axis C-C of theform 54 such as was generally depicted inFIG. 9 . Thefabric 44 is then wrapped around theform 54 by rotating thefabric 44 and theform 54 relative to one another about the central axis C-C of theform 54. Either during wrapping or after wrapping, at least some of the hoop tows 46 are separated into hoop tow segments while thefabric 44 is under tension, stress, or shear. This separation enables spaces to form between the ends of adjacent hoop tow segments along the length of thehoop tow 46. - Advantageously, by separating at least some of the hoop tows into hoop tow segments to enable spaces to develop between adjacent hoop tow segments, increased deformation of the fabric is accommodated during formation of the fabric preform. Moreover, this accommodation occurs while still maintaining a presence of hoop tow segments in at least portions of the fabric for strength.
- Historically, in order to form features that require high levels of fabric deformation such as, for example,
flanges 22, the hoop tows 46 would be eliminated from the sections of thefabric 44 that would be formed into that feature. This is because the hoop tows 46 would typically inhibit the formation of a radially-extending feature such as aflange 22 to be formed, as the act of bending theprecursor flange regions 40 intoflanges 22 would be greatly resisted by the hoop tows 46 in theinitial fabric preform 20. However, the elimination of the hoop tows 46 left certain regions of thefabric preform 20 with onlybi-axial tows - It has been found desirable to modify the
fabric 44 so as to permit the hoop tows 46 to selectively separate under tensions, stresses, or shear, so that hoop tows 46 can be maintained in regions of the composite component such as flanges without impairing the ability of the feature to be formed in the first instance. - The hoop tows 46 may be made separable by preparing the
fabric 44 prior to wrapping. In some embodiments, at least some of the hoop tows 46 are stretch broken at periodic intervals to define the hoop tow segments. In other embodiments, the hoop tows 46 might be cut at periodic intervals to define the hoop tow segments. - Looking now at
FIG. 13 , an apparatus 86 is shown for cutting the hoop tows 46 at periodic intervals intohoop tow segments 87. This apparatus 86 includes a pair of rollingdrums fabric 44 can be fed. One of the pair of rollingdrums 88 has radially-extending blades or punches 92 that can be used to selectively cut the hoop tows 46. Although not shown, the rollingdrum 90 may have corresponding slots into which thepunches 92 of the rollingdrum 88 are received (so as to ensure a complete cut) or the rollingdrums drums blades 92 can pass. Although not illustrated, it is contemplated the bias fibers orbi-axial tows hoop tow 46 before thehoop tow 46 is cut so as to minimize the damage to thebi-axial tows - By spacing the
punches 92 over the axial length of the rollingdrum 88 and over the circumference of the rollingdrum 88, the spacing of thecuts 94 of the hoop tows 46 in thefabric 44 can be selected to be at periodic intervals. Based on the illustrated spacing of thepunches 92 on the rollingdrum 90, points of separation in the hoop tows are out of phase from those in adjacent hoop tows along the direction of hoop tow extension. This periodic spacing of thecuts 94 can be beneficial because, once spaces or gaps develop during forming of thefabric 44, a separation gap between two hoop tow segments in one hoop tow can be supported by a hoop tow segment in an adjacent hoop tow. - For example and with additional reference to
FIG. 14 , a side-on view of aflange 22 after it is bent up is provided in which the hoop tows 46 are schematically illustrated (although the bi-axial tows are absent for the sake of clarity). As can be seen, in portions of theflange 22 that are subjected to shear, some of the hoop tows 46 are separated intohoop tow segments 87 such that spaces develop between the ends of adjacent hoop tow segments along the length of the hoop tows 46. Under locally applied tension or pulling, each of the hoop tows 46 can break and/or separate at the points of separation to relieve the tension. - The spacing between the
hoop tow segments 87 can vary throughout the preform 20 (or resultant component 18). For example, near theinner circumference 96 of theflange 22, the hoop tows 46 havecuts 94 but are minimally, if at all, separated. However, near theouter circumference 98, the required deformation of thefabric 44 during forming demands that the hoop tows 46 expand intohoop tow segments 87 with gaps orspaces 100 between thehoop tow segments 87. As can be seen, thesespaces 100 between thehoop tow segments 87 are greater in areas of theflange 22 where thefabric 44 is exposed to increased diametrical dimension. Moreover, because thecuts 94 are out of phase with one another, lines of gaps or spaces are avoided, which prevents lines of weakness in the final composite component. - To ensure that the
gaps 100 are sufficiently covered and that thehoop tow segments 87 are retained in thefabric 44, thehoop tow segments 87 may be selected to be at least some minimal length based on the width or diameter of the tow. For example, in one embodiment, the length of thehoop tow segments 87 are not less than 10 times the width of a hoop tow. - The amount of separation or the space of the
gaps 100 between thehoop tow segments 87 can be substantial and non-trivial. For example, thegaps 100 between thehoop tow segments 87 could be at least as long as the fabric tows are wide. In still another example, the overall length of a hoop tow, including thegaps 100 formed after thehoop tow segments 87 are separated, could exceed the maximum length of the same hoop tow under elastic deformation due to an applied tension without the provided points of separation in the hoop tow. - Moreover, it should be observed that in preparation of
fabric 44, only certain regions of thefabric 44 could be prepared to have separable hoop tows 46. For example, in the example offabric preform 20 for thefan containment case 18, only theprecursor flange regions 40 and/or thejoggle 34 might be prepared to have separable hoop tows, because these are the only regions that will require heightened levels of fabric deformation and stretching to be formed. The generally cylindrical portions of the body may have standard non-separable hoop tows 46 to maximize the structural strength of these regions. - It is contemplated that in fabrics with separable hoop tows, certain features might be formable during wrapping that conventionally have been difficult to produce. For example, by guiding a fabric with selectively separable hoop tows (and perhaps by further moving the
bi-axial tows flange 22 could be formed in the as-laid preform rather than requiring secondary bending of the preform to obtain this feature. - It is also contemplated that the fabric structure could be modified to limit the relative placement of the
hoop tow segments 87 in adjacent hoop tows. For example, a lateral connecting thread could be separately linked to various adjacenthoop tow segments 87 to keep them together. If the connection of the thread to thehoop tow segments 87 is greater than the force required to separate thehoop tow segments 87 in a particular hoop tow from one another, this lateral connecting thread could generally limit the placement and spacing of thehoop tow segments 87 from one another. This could be used, for example, to inhibit the formation of a single large gap in a hoop tow rather than a plurality of smaller gaps. Additionally, where the points of separation are intentionally out of phase with one another, such a lateral connecting thread could be used to make sure that the gaps do not form lines of weakness. - Accordingly, a fabric preform or a composite component is provided that includes a body formed from the fabric and at least one feature formed in the body. At least some of the hoop tows in the feature (e.g., a flange in a fan containment case) are separated into hoop tow segments that are spaced from one another along the length of the hoop tow. To exploit the benefit of the expandable or separable hoop tows, the feature (which includes the hoop tows) may extend, at least in part in a radial direction away from the central axis of the body. Again, some of the hoop tows in the base fabric may be separable while others may not be to maximize the strength of the structure.
- Finally, a method of continuously debulking the fabric preform could be employed, either separately from the fabric manipulation techniques described herein or in conjunction with one or more of the fabric manipulation techniques.
- Referring now to
FIGS. 15 through 17 , anapparatus 102 for continuously debulking a fabric preform is illustrated. This apparatus applies a compaction pressure to a portion of the top layer of the fabric as it is being laid down. - Looking first at the simplified schematic of
FIG. 15 , theapparatus 102 includes aform 104 rotatable about a central axis D-D for receiving afabric 44 for thefabric preform 20. In some respects, thisform 104 is similar to other forms in that thefabric 44 is pulled onto the form for wrapping thefabric preform 20. - However, the
apparatus 102 is different than a traditional wrapping apparatus in that it is also configured to concurrently run afilm 106 around at least a part of theform 104. Thefilm 106 is fed off of afilm supply spool 108 and has a film path that extends to theform 104, around at least a portion of the form 104 (which as illustrated is approximately 300 degrees), around anintermediate roller 110, and onto a film take-upspool 112 that is spaced from theform 104. Thisfilm 106 is disposed radially outward of theform 104 such that thefabric 44 of thefabric preform 20 is captured between thefilm 106 and theform 104. Because thefilm 106 extends around only a portion of theform 104 before thefilm 106 is routed onto the take-upspool 112, thefilm 106 is not made part of thefabric preform 20, but rather surrounds a portion of thefabric preform 20. - The
film 106 and thefabric 44 may be fed onto theform 104 together such that thefilm 106 is disposed outward of thefabric 44 relative to the form. In this way, it might be said that thefilm 106 serves as a backing sheet that carries thefabric 44 as it is initially wrapped onto theform 104. - Now with additional reference to
FIGS. 16 and17 , further details of theapparatus 102 are illustrated. Specifically, a structure is illustrated for drawing a vacuum between theform 104 and thefilm 106 such that thefabric 44 is compressed there between. - It should be noted that in order to draw a vacuum, seals should be formed at the lateral or axial ends of the
form 104 between theform 104 and the film. In the embodiment shown, because theform 104 is generally cylindrical, the seals extend over an arc. - The other spots that need to be "sealed" are the lines transverse to the fabric feed path at (1) the point at which the fed fabric initially contacts the form 104 (or the
fabric 44 already wrapped around the form) and (2) the point at which thefilm 106 separates from the outer periphery of the form. By keeping thefilm 106 and thefabric 44 taut, these lines can form a pseudo-seal through which little gas can pass. - A vacuum source (depicted by arrows 114) is used to draw a vacuum between the
film 106 and theform 104. This vacuum causes thefilm 106 to be pulled toward theform 104, thereby applying a compaction pressure to the outwardly facing surface of the fabric being wrapped into thefabric preform 20. - In the particular embodiment of the
apparatus 102 shown, the vacuum is drawn through a portion of theform 104. As best seen inFIGS. 16 and17 , theform 104 includes a fixedportion 116 and a rotating orrotatable portion 118 which are both generally annular because of shape of theform 104. As illustrated, the rotatingportion 118 includes acentral section 120 withlateral sections 122 fixedly connected at the ends thereof. The outwardly facing portions of thecentral section 120 and thelateral sections 122 generally define the surface of theform 104 that thefabric 44 is wrapped around. - In cross section, the
lateral sections 122 are generally upside-down U-shaped channels. Theselateral sections 122 include a plurality ofopenings 124 that extend from the outwardly-facing side of the section 112 (that defines a part of the form 104) to an inwardly-facing side on the inside of the "U". - In cross section, the fixed
portions 116 are a generally U-shaped channel that is roughly received in the upside-down shaped "U". A pair ofannular seals 126 is fixed to one of the fixedportion 116 and therotating portion 118 for forming an annular shapedvacuum chamber 128 there between. In the particular form illustrated, theseals 126 are connected to the fixedportion 116 and are pressed against the inwardly-facing surface of therotating portion 118. - A series of
vacuum lines 130 are connected to the fixedportion 116 and are in communication with thevacuum chamber 128. Through thesevacuum lines 130, it is possible to draw a vacuum in thevacuum chamber 128 using thevacuum source 114. Because theopenings 124 are in communication with thevacuum chamber 128, a vacuum drawn in thevacuum chamber 128 is communicated to the area between thefilm 106 and theform 104. When sufficient seals are provided on the lateral edges of theform 104 and the lines transverse to the fabric feed path, this vacuum causes thefilm 106 to be drawn down such that the film applies a compaction pressure to the partially-wrappedfabric preform 20. - In the form illustrated, the lateral seals are formed by placing a pair of raised
gaskets 132 axially outward of the portion of theform 104 around which thefabric 44 is wrapped. Someopenings 124 are placed between thegaskets 132 to place the space between thegaskets 132 in communication with thevacuum chamber 128. When a vacuum is drawn, thefilm 106 is sucked down onto thegaskets 132 and a lateral seal is formed. - Accordingly, using an
apparatus 102 of the type described above, a compaction pressure can be continuously applied to a fabric during formation of a fabric preform. Initially one end of thefabric 44 is applied to theform 104. Theform 104 with thefabric 44 applied thereto is at least partially surrounded by thefilm 106 in which thefilm 106 extends along a film path from thefilm supply spool 108 to theform 104 and around at least a portion of theform 104. Thefabric 44 and thefilm 106 is fed onto theform 104 such that thefabric 44 is wrapped around theform 104 to form thefabric preform 20 while thefilm 106 is fed around the form 104 (although not made part of the preform 20). During this feeding a vacuum is drawn to evacuate a gas from between theform 104 and thefilm 106, thereby pressing thefilm 106 onto thefabric 44 and applying the compaction pressure to thefabric 44. - This compaction pressure could be applied simultaneously with wrapping and may be constant. It is contemplated, however, that alternatively variable and/or periodic pressures could be applied using the
apparatus 102. The compaction pressure applied by thefilm 106 to thefabric 104 can be approximately 12 psi; however, different compact pressures might be applied based on the mechanical properties of thefabric 44, the geometry of theform 104, the forces applied to thefabric 44 during wrapping, and so forth. - Again, the
film 106 can surround a substantial portion, but not all of thefabric 44 wrapped around theform 104. This means that the compaction pressure is applied to the fabric over less than one full rotation of theform 104. It is contemplated 75 percent or more of the surface area of the topmost fabric layer may be compressed against the form by thefilm 106. Accordingly, in contrast to typical debulking methods, only a portion of the fabric preform is debulked at a given time, and that particular portion is constantly changing during the rotation of theform 104. - In some forms of the method, the
intermediate roller 110 routes and redirects thefilm 106 from around at least a portion of theform 104 to the take-upspool 112. Thisintermediate roller 110 can have an axis that is parallel with, but spaced from, the central axis D-D of theform 104 and, moreover, can be biased into contact with theform 104 to assist in forming a good seal. - Using this method a fabric preform for a composite component, such as a fan containment case or fan case may be formed. The resultant fabric preform would be substantially free of bulk and wrinkles as the fabric is continuously debulked during wrapping. Accordingly, this technique provides a fiber architecture in the underlying fabric that is superior to conventional wrapping techniques.
- This method might also be used to debulk prepreg or non-prepreg fabrics. Prepreg fabrics are those which contain some amount of resin in the fabric as supplied and can therefore be said to be pre-impregnated with the resin material. However, because prepreg fabrics are solid and not very permeable to gas in comparison to non-prepreg fabrics, it is contemplated that the
film 106 could be textured to transfer the vacuum over the axial length of theform 104 between the bottom surface offilm 106 and the upper surface of the topmost prepreg fabric layer. - It should again be stressed that this debulking technique might be combined with the other fabric manipulation techniques to synergistically result in fabric preforms for ultra-high strength composite components. For example, the debulking technique could be combined with the separate axial tensioning method to result in a preform having extremely high fiber volume ratio.
- It should be appreciated that various other modifications and variations to the preferred embodiments can be made within the scope of the invention. Therefore, the invention should not be limited to the described embodiments. To ascertain the full scope of the invention, the following claims should be referenced.
Claims (7)
- A method of forming a fabric preform (20) for a composite component from a fabric (44) having a plurality of hoop tows (46) and a plurality of bi-axial tows(48) (50), the method comprising:receiving one end (64) of the fabric on the form (54) such that the hoop tows of the fabric extend in a direction generally perpendicular to a central axis of the form;wrapping the fabric around the form by rotating the fabric and the form relative to one another about the central axis of the form; andcutting at least some of the hoop tows into hoop tow segments (87) at periodic intervals with a tool (86) while the fabric is under a tension to enable a space (100) to develop between ends of adjacent hoop tow segments along the length of the hoop tow;wherein cutting at least some of the hoop tows into hoop tow segments to enable spaces to develop between adjacent hoop tow segments accommodating increased deformation of the fabric during formation of the fabric preform while maintaining a presence of hoop tow segments in at least portions of the fabric; andthe tool includes two rolling drums (88)(90) between which the fabric can be fed, one of the rolling drums having radially extending punches(92) and the other of the rolling drums having slots into which the punches are received.
- The method of claim 1 wherein at least some of the hoop tows are stretch broken at periodic intervals to define the hoop tow segments.
- The method of claim 1 further comprising the step of cutting the hoop tows at periodic intervals to define the hoop tow segments, wherein the step of cutting is performed by a device that separates the bias fibers surrounding a hoop tow at a point to be cut and then cutting at the point to be cut, wherein a tool cuts the hoop tows at periodic intervals, and wherein the tool is a rolling drum or is a punching tool.
- The method of claim 1 wherein adjacent hoop tows are arranged so that cuts in the hoop tows are out of phase from adjacent hoop tows along the direction of hoop tow extension and wherein a separation gap between two hoop tow segments in one hoop tow is supported by a hoop tow segment in an adjacent hoop tow.
- The method of claim 1 wherein the length of the hoop tow segments are not less than 10 times the width of a hoop tow.
- The method of claim 1 wherein a feature that extends at least in part in a radial direction away from the central axis of the form is created on the fabric preform and wherein cutting of the hoop tows facilitates deformation of the fabric to create the feature that extends at least in part in a radial direction away from the central axis of the form or wherein the feature is a flange.
- The method of claim 1 wherein the fabric preform is for a fan containment case or wherein the form is a mandrel that is rotatable about the central axis.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/333,645 US8918970B2 (en) | 2011-12-21 | 2011-12-21 | Hoop tow modification for a fabric preform for a composite component |
PCT/US2012/070114 WO2013096207A2 (en) | 2011-12-21 | 2012-12-17 | Hoop tow modification for a fabric preform for a composite component |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2794217A2 EP2794217A2 (en) | 2014-10-29 |
EP2794217B1 true EP2794217B1 (en) | 2020-04-08 |
Family
ID=47561825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12816192.4A Active EP2794217B1 (en) | 2011-12-21 | 2012-12-17 | Hoop tow modification for a fabric preform for a composite component |
Country Status (5)
Country | Link |
---|---|
US (2) | US8918970B2 (en) |
EP (1) | EP2794217B1 (en) |
JP (1) | JP6166276B2 (en) |
CN (1) | CN104185539B (en) |
WO (1) | WO2013096207A2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3007064B1 (en) * | 2013-06-13 | 2018-06-29 | Composite Industrie | ABRADABLE ANNULAR JOINT SECTOR FOR TURBOMACHINE AND METHOD OF MANUFACTURING SUCH A PART |
FR3007063B1 (en) | 2013-06-13 | 2015-07-03 | Composite Ind | ABRADABLE MATERIAL PART FOR MANUFACTURING ABRADABLE ANNULAR JOINT SECTOR FOR TURBOMACHINE AND METHOD OF MANUFACTURING SUCH PART |
DE102014209524A1 (en) | 2014-05-20 | 2015-11-26 | Bayerische Motoren Werke Aktiengesellschaft | Positioning body for positioning a semifinished product and method for preparing the semifinished product and semifinished product |
US9796117B2 (en) | 2014-06-03 | 2017-10-24 | Gkn Aerospace Services Structures Corporation | Apparatus for forming a flange |
WO2016007885A1 (en) * | 2014-07-11 | 2016-01-14 | A&P Technology, Inc. | Stabilized braided biaxial structure and method of manufacture of the same |
EP3034814B1 (en) * | 2014-12-15 | 2017-09-27 | United Technologies Corporation | Liners for turbomachinery cases |
US9869036B2 (en) | 2015-04-13 | 2018-01-16 | Gkn Aerospace Services Structures Corporation | Apparatus and method for controlling fabric web |
EP3708347B1 (en) * | 2016-04-06 | 2022-01-05 | Rolls-Royce plc | A method of manufacturing a composite component |
US11519291B2 (en) | 2018-01-11 | 2022-12-06 | Raytheon Technologies Corporation | Integral stiffening rail for braided composite gas turbine engine component |
FI130227B (en) * | 2020-11-24 | 2023-05-03 | Patria Land Oy | Projectile and method for stopping aerial vehicles |
US11565483B2 (en) | 2021-01-04 | 2023-01-31 | The Boeing Company | Contour forming in fiber-placement system |
CN114086294B (en) * | 2021-11-19 | 2023-11-21 | 北京方硕复合材料技术有限公司 | Fabric and die assembly with deformation easy to regulate and control |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2117954A (en) * | 1936-12-24 | 1938-05-17 | Goodall Worsted Company | Tufted fabric and method of making the same |
US2402709A (en) * | 1943-08-27 | 1946-06-25 | Electric Boat Co | Camouflage net |
US2664920A (en) * | 1949-12-22 | 1954-01-05 | Aileen Mills Company | Float cutting method for looms |
US3426804A (en) * | 1966-12-20 | 1969-02-11 | Product & Process Dev Associat | High speed bias weaving and braiding |
JPS60224530A (en) * | 1984-04-23 | 1985-11-08 | Mazda Motor Corp | Composite resin sheet containing reinforcing fiber |
GB2159886B (en) * | 1984-06-07 | 1988-01-27 | Rolls Royce | Fan duct casing |
FR2633213B1 (en) | 1988-06-27 | 1990-12-28 | Europ Propulsion | PROCESS FOR PRODUCING A FIBROUS PREFORM FOR THE MANUFACTURE OF COMPONENT MATERIAL HAVING A COMPLEX FORM |
US5735083A (en) * | 1995-04-21 | 1998-04-07 | Brown; Glen J. | Braided airbeam structure |
US5921754A (en) * | 1996-08-26 | 1999-07-13 | Foster-Miller, Inc. | Composite turbine rotor |
US5809805A (en) * | 1996-09-03 | 1998-09-22 | Mcdonnell Douglas Corporation | Warp/knit reinforced structural fabric |
JP3882274B2 (en) * | 1997-06-11 | 2007-02-14 | 日東紡績株式会社 | Molding materials for fiber reinforced thermoplastic composites |
EP1160072A3 (en) * | 2000-05-30 | 2002-11-06 | Nippon Steel Composite Co., Ltd. | Continuous reinforcing fiber sheet and manufacturing method thereof |
JP4522796B2 (en) * | 2004-09-06 | 2010-08-11 | 本田技研工業株式会社 | Manufacturing method of fiber reinforced composite material annular structure and annular frame for aircraft fuselage comprising the structure |
US7246990B2 (en) * | 2004-12-23 | 2007-07-24 | General Electric Company | Composite fan containment case for turbine engines |
CN101489767B (en) * | 2006-05-22 | 2015-04-29 | 尤米柯结构材料(德比)有限公司 | Moulding materials |
US7770837B1 (en) * | 2006-07-07 | 2010-08-10 | A&P Technology, Inc. | Method and apparatus for shipping braided composite reinforcing fabric |
US20080116334A1 (en) * | 2006-11-21 | 2008-05-22 | Ming Xie | Methods for fabricating composite structures having mounting flanges |
US9017814B2 (en) | 2007-10-16 | 2015-04-28 | General Electric Company | Substantially cylindrical composite articles and fan casings |
JP5551411B2 (en) * | 2009-11-06 | 2014-07-16 | 株式会社Ihi | Case manufacturing method and case |
-
2011
- 2011-12-21 US US13/333,645 patent/US8918970B2/en active Active
-
2012
- 2012-12-17 WO PCT/US2012/070114 patent/WO2013096207A2/en active Application Filing
- 2012-12-17 CN CN201280063418.6A patent/CN104185539B/en active Active
- 2012-12-17 EP EP12816192.4A patent/EP2794217B1/en active Active
- 2012-12-17 JP JP2014549180A patent/JP6166276B2/en active Active
-
2014
- 2014-11-24 US US14/551,274 patent/US20150078891A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
JP6166276B2 (en) | 2017-07-19 |
US20130164503A1 (en) | 2013-06-27 |
WO2013096207A3 (en) | 2013-08-22 |
EP2794217A2 (en) | 2014-10-29 |
US8918970B2 (en) | 2014-12-30 |
CN104185539A (en) | 2014-12-03 |
WO2013096207A2 (en) | 2013-06-27 |
CN104185539B (en) | 2019-08-06 |
JP2015504984A (en) | 2015-02-16 |
US20150078891A1 (en) | 2015-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2794219B1 (en) | Method and apparatus for forming a fabric preform for a composite material by separately tensioning tows | |
EP2794217B1 (en) | Hoop tow modification for a fabric preform for a composite component | |
EP2794218B1 (en) | Method and apparatus for applying a compaction pressure to a fabric preform during wrapping | |
US8900392B2 (en) | Bias fiber control during wrapping of a fabric preform for a composite component | |
AU2009215014B2 (en) | Multidirectionally reinforced shape woven preforms for composite structures | |
EP2314445B1 (en) | A method for manufacturing a composite body and a composite body manufacturing arrangement | |
EP3283267B1 (en) | Apparatus and method for controlling fabric web |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140721 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20161019 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GKN AEROSPACE SERVICES STRUTURES LLC |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191030 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1253764 Country of ref document: AT Kind code of ref document: T Effective date: 20200415 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012069170 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200408 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200808 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200709 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200817 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1253764 Country of ref document: AT Kind code of ref document: T Effective date: 20200408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012069170 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
26N | No opposition filed |
Effective date: 20210112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201217 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231026 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231009 Year of fee payment: 12 Ref country code: DE Payment date: 20231024 Year of fee payment: 12 |