EP2774202B1 - Fuel cell including a cathode having channels - Google Patents
Fuel cell including a cathode having channels Download PDFInfo
- Publication number
- EP2774202B1 EP2774202B1 EP12794423.9A EP12794423A EP2774202B1 EP 2774202 B1 EP2774202 B1 EP 2774202B1 EP 12794423 A EP12794423 A EP 12794423A EP 2774202 B1 EP2774202 B1 EP 2774202B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel cell
- ions
- cathode
- channels
- central membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
- H01M8/04156—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1213—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
- H01M8/126—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to the field of fuel cells.
- Fuel cells are set to become a source of alternative energy production to those coming directly from fossil fuels, for stationary applications, but also for embedded applications (for example the automobile) in the longer term.
- the CAP is such that the first compound M1 is hydrogen (H 2 ) and the second compound N2 is oxygen (O 2 ), and the overall chemical reaction is ⁇ H 2 + 1 ⁇ 2 O 2 ⁇ H 2 O ⁇ .
- the product compound of this reaction is H 2 O.
- Solid oxide fuel cells hereinafter referred to as "SOFC”
- PCFC proton conductive fuel cells
- the water is formed at the anode, and discharged through the anode, resulting in undesirable dilution of the fuel (hydrogen) by the water at the anode, as well as a decrease in the catalytic activity, the water appearing on the active sites of the anode
- Anode 100 is the seat of an oxidation reaction of hydrogen: ⁇ H 2 ⁇ 2H + + 2 e - ⁇ .
- This first electrolyte 200 is a material capable of driving H + protons.
- the e - produced electrons flow from the outside of the fuel cell from the anode 100 through a conductor 90 to join the cathode 500 and supply it with electrons (see below).
- Cathode C is the seat of an oxygen reduction reaction: ⁇ 1 ⁇ 2 O 2 + 2e - ⁇ O 2- ⁇
- This second electrolyte 400 is a material capable of conducting O 2 ions.
- a first face of the central membrane 300 is in contact with the first electrolyte 200, and a second face of the central membrane 300, opposite this first face, is in contact with the second electrolyte 400.
- the central membrane 300 is a composite of the first electrolyte 200 and the second electrolyte 400, so as to be able to conduct both H + protons and O 2- ions.
- This central membrane 300 is also porous with porosities 380, in order to allow better evacuation of the water thus produced by this central layer 300.
- Such a fuel cell is shown for example in the document US 2008/0213639 and, compared to single-conduction fuel cells (SOFC and PCFC), the advantage of avoiding the anode fuel dilution that occurs in SOFC and the dilution of oxygen at the cathode that occurs in a PCFC. Corrosion of the inter-connectors is also avoided and the overvoltages associated with the presence of water at the electrodes are limited in a standard SOFC and PCFC type cell.
- SOFC and PCFC single-conduction fuel cells
- the present invention aims to remedy these disadvantages.
- the aim of the invention is to propose a fuel cell in which the power density is substantially greater than that of a mixed-combustion membrane fuel cell according to the prior art, and in which the product P (for example from water) is evacuated effectively and without substantial dilution of the compound M1 (eg hydrogen) at the anode or significant dilution of the compound M2 (eg oxygen) at the cathode.
- the product P for example from water
- the cathode is traversed by a network of channels, each of which opens on the central membrane and on a free surface of the cathode, the minimum dimension of a cross-section of any one of these channels being greater at 20 ⁇ m so that the evacuation of the product P resulting from the reaction of the M (m +) ions and N (n-) ions from the central membrane towards the outside of the fuel cell through these channels is possible.
- the evacuation of water is more efficient on the one hand because the path of evacuation of water through the channels is shorter, and secondly because the water is evacuated over the entire surface of the channels, a larger area than in the case of the mixed conduction membrane fuel cell according to the prior art where the water is discharged only through the faces of the central membrane which are perpendicular to the interfaces of the central membrane with the first or the second electrolyte.
- the power density of a battery according to the invention is thus substantially increased.
- the first electrolyte and the central membrane consist of the same material which is capable of conducting both the M (m +) ions and the N (n-) ions.
- the manufacture of the fuel cell is greatly simplified, since the assembly consisting of the first electrolyte and the central membrane can be manufactured in a single operation, for example by sintering. The mechanical strength and durability of this assembly are also improved.
- a heat pump is considered where the first compound M1 is hydrogen H 2 capable of being oxidized to H + ions, the second compound is oxygen O 2 capable of being reduced to O 2 ions, and the product P is water H 2 O.
- the invention also applies to reactions where the first compound M1 is not hydrogen and the second compound M2 is not oxygen.
- Anode 10 is the seat of an oxidation reaction of hydrogen: ⁇ H 2 ⁇ 2H + + 2 e - ⁇ .
- This first electrolyte 20 is therefore a material capable of conducting the H + protons.
- the e - produced electrons flow from the outside of the fuel cell from the anode 10 through a conductor 90 to reach the cathode 50 and supply it with electrons (see below).
- the cathode 50 is the seat of an oxygen reduction reaction: ⁇ 1 ⁇ 2 O 2 + 2 e - ⁇ O 2- ⁇
- a first face 32 of the central membrane 30 is in contact with the first electrolyte 20, and a second face 35 of the central membrane 30, opposite this first face 32, is in contact with the cathode 50.
- the first electrolyte 20 is made of a material capable of conducting the protons H + (or more generally in the case where the first compound is M1, the ions M (m +) ).
- the central membrane 30 is made of a material capable of conducting protons H + and capable of conducting O 2- ions (or more generally in the case where the first compound is M 1 and the second compound is M 2, the M ions ( m +) and N (n-) ions.
- This central membrane 30 is also porous with porosities 38, in order to allow better evacuation towards the cathode 50 of the water thus produced by this central membrane 30.
- the first electrolyte 20 and the central membrane 30 consist of the same material which is capable of conducting both the H + protons (or, in the general case, the M (m +) ions) and the O 2- ions (or in the general case N (n-) ions).
- the manufacture of the fuel cell 1 is thus facilitated.
- the material of the central membrane 30 (and the first electrolyte 20) is a ceramic, which has the advantage of controlling its porosity during the manufacture of the fuel cell 1, for example by sintering.
- such a mixed conduction ceramic that can be used as material for the fuel cell 1 is, for example, a barium cerate of formula BaCe 0.85 Y 0.15 O 3 - ⁇ with ⁇ positive.
- ⁇ is less than 0.3.
- This material is designated BCY15 and has good conduction of both H + protons and O 2- ions.
- the cathode 50 has within it, that is to say in its volume, channels 52.
- Each channel 52 opens at one end on the central membrane 30, and at its other end on a free surface 59 of the cathode 50.
- These channels 52 may have any geometry, and be in any number.
- each channel 52 is rectilinear and extends along the main axis A, that is to say perpendicularly to the central membrane 30.
- Each channel 52 is thus perpendicular to the second face 35 of the central membrane 30.
- This geometry allows a faster evacuation of water from this second face 35 because the channels then have a minimized length.
- the cathode 50 has parallel channels 52 which are each separated from the channel or channels adjacent thereto by a strip 55 of the material of the cathode 50, these strips 55 extending along the main axis A.
- the cathode 50 is a cylinder whose axis is the main axis A, of circular section.
- Each channel 52 has a substantially trapezoidal shape, and is separated from the channel or channels adjacent thereto by a strip 55 of the material of the cathode 50.
- the cathode 50 has strips 55 which extend along the main axis A and intersect to form a network of parallel channels 52 surrounded by these bands.
- the strips 55 are divided into two groups, each band 55 being parallel to the bands of its group and perpendicular to the bands of the other group, so as to form an array of parallel channels 52 each of rectangular section (except possibly at the periphery of the cathode 50) and surrounded by four bands 55 (or less than four bands if the channel is at the periphery of the cathode 50).
- This embodiment of the cathode 50 is represented on the figure 3 .
- each of these channels 52 may be of circular section.
- This minimum size of the channels allows a flow of water.
- the minimum size of the channels 52 is greater than that of the pores of the cathode.
- the power density of the fuel cell according to the invention is substantially greater than the power density of a mixed conduction membrane fuel cell.
- This manufacturing method facilitates the manufacture of a fuel cell 1 according to the invention.
- Densification of the first electrolyte 20 can be achieved by adding a densification agent such as ZnO or CuO during sintering.
- the porosity of the central membrane 30 may be made and / or adjusted by the addition of pore-forming additives during sintering, and / or a lower sintering temperature.
- the anode 10 and the cathode 50 are for example a ceramic or a cermet (ceramic-metal composite) which are manufactured according to known methods.
- LSCF designates the ceramic of formula La 1-X Sr X Co 1 -Y Fe Y O 3- ⁇ with X and Y between 0 and 1, and ⁇ positive.
- a fuel cell 1 according to the invention can for example operate at a temperature above 400 ° C, which increases its efficiency.
- the invention is also applicable to other cases, for example fuel cells where the first compound M1 is ethanol, methane or methanol.
- the fuel cell according to the invention has been described above in the case where it operates by electrochemical oxidation-reduction of a first compound M1 and a second compound N2 to produce a compound P and the electricity.
- the fuel cell according to the invention is also capable of operating in an inverse manner, that is to say as an electrolyzer:
- the compound P is brought into the stack 1 by means of the channels 52 of the cathode 50, and a potential difference is applied to the cell 1. It then triggers within the cell 1 the global chemical reaction.
- the electrons of the electrical current resulting from this potential difference are taken from the N (n-) ions at the cathode 50 (which functions in this case as an anode) and reach the anode 10 (which functions in this case as a cathode where they recombine with the M (m +) ions.
- Such an electrolyzer is therefore able to produce compounds M1 and M2 by electrolysis of compound P.
- the electrolyser produces hydrogen H 2 and oxygen O 2 .
- This electrolyser by the channel structure of the cathode 50, allows a contribution of the compound P more efficiently, and therefore has a better yield.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Description
La présente invention concerne le domaine des piles à combustible.The present invention relates to the field of fuel cells.
En particulier, la présente invention concerne une pile à combustible comprenant
- une anode apte à oxyder un premier composé M1 en premiers ions M(m+) avec m entier non-nul,
- un premier électrolyte qui est en contact avec ladite anode,
- une cathode apte à réduire un second composé N2 en seconds ions N(n-) avec n entier non-nul,
- une membrane centrale poreuse dont une des faces est en contact avec ledit premier électrolyte, et dont la face opposée est en contact avec ladite cathode,
- an anode capable of oxidizing a first compound M1 to first ions M (m +) with m non-zero integer,
- a first electrolyte which is in contact with said anode,
- a cathode capable of reducing a second compound N2 into second ions N (n-) with n non-zero integer,
- a porous central membrane, one of the faces of which is in contact with said first electrolyte, and the opposite face of which is in contact with said cathode,
Les piles à combustible (PAC) sont amenées à devenir une source de production d'énergie alternative à celles provenant directement des ressources fossiles, pour les applications stationnaires, mais aussi pour les applications embarquées (par exemple l'automobile) à plus long terme.Fuel cells (PAC) are set to become a source of alternative energy production to those coming directly from fossil fuels, for stationary applications, but also for embedded applications (for example the automobile) in the longer term.
Une PAC fonctionne sur le principe d'une oxydo-réduction électrochimique et contrôlée d'un premier composé M1 et d'un second composé N2, avec production simultanée d'électricité, du composé P et de chaleur, selon la réaction chimique globale
{n M1 + m N2 → p P}
- avec n, m, et p entiers non-nuls.
- M1 désigne un composé d'atomes identiques ou distincts qui, en s'oxydant, donne un premier ion M(m+) (ou m premiers ions M+) et m électrons.
- N2 désigne un composé d'atomes identiques ou distincts qui, par réduction en présence de n électrons, donne un second ion N(n-) (ou n seconds ions N-).
{n M1 + m N2 → p P}
- with n, m, and p non-zero integers.
- M1 denotes a compound of identical or distinct atoms which, by oxidizing, gives a first ion M (m +) (or m first M + ions) and m electrons.
- N2 denotes a compound of identical or distinct atoms which, by reduction in the presence of n electrons, gives a second ion N (n-) (or n second ions N - ).
C'est cette électricité produite qui peut ensuite alimenter en énergie un dispositif.It is this electricity produced that can then supply energy to a device.
Par exemple, la PAC est telle que le premier composé M1 est l'hydrogène (H2) et le second composé N2 est l'oxygène (O2), et la réaction chimique globale est
{H2 + ½ O2 → H2O}.
For example, the CAP is such that the first compound M1 is hydrogen (H 2 ) and the second compound N2 is oxygen (O 2 ), and the overall chemical reaction is
{H 2 + ½ O 2 → H 2 O}.
Le composé produit de cette réaction est l'eau H2O.The product compound of this reaction is H 2 O.
On considère ci-dessous l'exemple d'une telle PAC.Below is an example of such a PAC.
On connait les piles à combustible à oxyde solide, ou « Solid Oxyde Fuel Cell » (ci-après appelées « SOFC »), et les piles à combustible à conduction protonique, ou « Proton Conducting Fuel Cell » (ci-après appelées PCFC).Solid oxide fuel cells (hereinafter referred to as "SOFC") and proton conductive fuel cells (hereinafter referred to as PCFC) are known. .
Dans une SOFC, l'eau est formée à l'anode, et évacuée par l'anode, ce qui entraîne une dilution indésirable du combustible (hydrogène) par l'eau au niveau de l'anode, ainsi qu'une diminution de l'activité catalytique, l'eau apparaissant sur les sites actifs de l'anodeIn a SOFC, the water is formed at the anode, and discharged through the anode, resulting in undesirable dilution of the fuel (hydrogen) by the water at the anode, as well as a decrease in the catalytic activity, the water appearing on the active sites of the anode
Dans une PCFC, l'eau est formée à la cathode, et évacuée par la cathode, ce qui entraîne une dilution indésirable de l'oxygène par l'eau au niveau de la cathode, ainsi qu'une diminution de l'activité catalytique, l'eau apparaissant sur les sites actifs de la cathode.In a PCFC, water is formed at the cathode, and discharged through the cathode, resulting in undesirable dilution of oxygen by water at the cathode, as well as a decrease in catalytic activity, the water appearing on the active sites of the cathode.
Dans les deux cas, la performance de la pile à combustible est diminuée, et est insuffisante.In both cases, the performance of the fuel cell is diminished, and is insufficient.
Pour résoudre ce problème, il a été élaboré une pile à combustible à membrane à conduction mixte. Le fonctionnement d'une telle pile à combustible est rappelé ci-après en référence à la
Cette pile à combustible, représentée en coupe, comprend cinq couches principales qui sont deux à deux en contact et dont l'empilement selon un axe principal A est, dans cet ordre :
- Une
anode 100, - Un
premier électrolyte 200, - Une membrane centrale 300,
- Un
second électrolyte 400, - Une
cathode 500.
-
Anode 100, - A
first electrolyte 200, - A
central membrane 300, - A
second electrolyte 400, - A
cathode 500.
L'anode 100 est le siège d'une réaction d'oxydation de l'hydrogène :
{H2 → 2H+ + 2 e-}.
{H 2 → 2H + + 2 e - }.
Les protons H+ ainsi créés migrent vers la membrane centrale 300 au travers du premier électrolyte 200. Ce premier électrolyte 200 est donc un matériau apte à conduire les protons H+.H + protons thus created migrate to the
Les électrons e- produits circulent par l'extérieur de la pile à combustible depuis l'anode 100 au travers d'un conducteur 90 pour rejoindre la cathode 500 et l'alimenter en électrons (voir ci-dessous).The e - produced electrons flow from the outside of the fuel cell from the
La cathode C est le siège d'une réaction de réduction de l'oxygène :
{½ O2 + 2e- → O2-}
Cathode C is the seat of an oxygen reduction reaction:
{½ O 2 + 2e - → O 2- }
Les ions O2- ainsi créés migrent vers la membrane centrale 300 au travers du second électrolyte 400. Ce second électrolyte 400 est donc un matériau apte à conduire les ions O2-.O 2- ions thus created migrate to the
Ainsi une première face de la membrane centrale 300 est en contact avec le premier électrolyte 200, et une seconde face de la membrane centrale 300, opposée à cette première face, est en contact avec le second électrolyte 400.Thus a first face of the
La membrane centrale 300 est un composite du premier électrolyte 200 et du second électrolyte 400, de façon à être apte à conduire à la fois les protons H+ et les ions O2-.The
Au sein de cette membrane centrale 300, ces protons H+ et ces ions O2- réagissent selon la réaction suivante afin de produire de l'eau :
{2H+ +O2- → H2O}
Within this
{2H + + O 2- → H 2 O}
Cette membrane centrale 300 est en outre poreuse avec des porosités 380, afin de permettre une meilleure évacuation de l'eau ainsi produite par cette couche centrale 300.This
Une telle pile à combustible est présentée par exemple dans le document
L'évacuation de l'eau (c'est-à-dire une évacuation qui ne réduise pas les performances de la pile à combustible) dans une telle pile à combustible à membrane à conduction mixte n'est cependant pas satisfaisante car cette évacuation est limitée par l'épaisseur et par les dimensions de la porosité de la membrane centrale de cette pile.The evacuation of water (ie evacuation which does not reduce the performance of the fuel cell) in such a mixed conduction membrane fuel cell is however not satisfactory because this evacuation is limited by the thickness and the dimensions of the porosity of the central membrane of this stack.
La présente invention vise à remédier à ces inconvénients.The present invention aims to remedy these disadvantages.
L'invention vise à proposer une pile à combustible dans laquelle la densité de puissance est sensiblement supérieure à celle d'une pile à combustible à membrane à combustion mixte selon l'art antérieur, et dans laquelle le produit P (par exemple de l'eau) est évacué efficacement et sans dilution notable du composé M1 (par exemple de l'hydrogène) au niveau de l'anode ni de dilution notable du composé M2 (par exemple de l'oxygène) au niveau de la cathode.The aim of the invention is to propose a fuel cell in which the power density is substantially greater than that of a mixed-combustion membrane fuel cell according to the prior art, and in which the product P (for example from water) is evacuated effectively and without substantial dilution of the compound M1 (eg hydrogen) at the anode or significant dilution of the compound M2 (eg oxygen) at the cathode.
Ce but est atteint grâce au fait que la cathode est traversée par un réseau de canaux qui débouchent chacun sur la membrane centrale et sur une surface libre de la cathode, la dimension minimale d'une section transversale d'un quelconque de ces canaux étant supérieure à 20 µm de telle sorte que l'évacuation du produit P résultant de la réaction des ions M(m+) et des ions N(n-) depuis la membrane centrale vers l'extérieur de la pile à combustible au travers de ces canaux est possible.This object is achieved by virtue of the fact that the cathode is traversed by a network of channels, each of which opens on the central membrane and on a free surface of the cathode, the minimum dimension of a cross-section of any one of these channels being greater at 20 μm so that the evacuation of the product P resulting from the reaction of the M (m +) ions and N (n-) ions from the central membrane towards the outside of the fuel cell through these channels is possible.
Grâce à ces dispositions, l'évacuation de l'eau s'effectue de façon plus efficace d'une part car le chemin d'évacuation de l'eau par les canaux est plus court, et d'autre part car l'eau est évacuée sur toute la surface des canaux, soit une surface plus grande que dans le cas de la pile à combustible à membrane à conduction mixte selon l'art antérieur où l'eau est évacuée uniquement par les faces de la membrane centrale qui sont perpendiculaires aux interfaces de la membrane centrale avec le premier ou le second électrolyte. La densité de puissance d'une pile selon l'invention est ainsi sensiblement augmentée.Thanks to these arrangements, the evacuation of water is more efficient on the one hand because the path of evacuation of water through the channels is shorter, and secondly because the water is evacuated over the entire surface of the channels, a larger area than in the case of the mixed conduction membrane fuel cell according to the prior art where the water is discharged only through the faces of the central membrane which are perpendicular to the interfaces of the central membrane with the first or the second electrolyte. The power density of a battery according to the invention is thus substantially increased.
Avantageusement, le premier électrolyte et la membrane centrale sont constitués du même matériau qui est apte à conduire à la fois les ions M(m+) et les ions N(n-).Advantageously, the first electrolyte and the central membrane consist of the same material which is capable of conducting both the M (m +) ions and the N (n-) ions.
Ainsi, la fabrication de la pile à combustible est grandement simplifiée, car l'ensemble constitué du premier électrolyte et de la membrane centrale peut être fabriqué en une seule opération, par exemple par frittage. La résistance mécanique et la durabilité de cet ensemble sont également améliorées.Thus, the manufacture of the fuel cell is greatly simplified, since the assembly consisting of the first electrolyte and the central membrane can be manufactured in a single operation, for example by sintering. The mechanical strength and durability of this assembly are also improved.
L'invention sera bien comprise et ses avantages apparaîtront mieux, à la lecture de la description détaillée qui suit, d'un mode de réalisation représenté à titre d'exemple non limitatif. La description se réfère aux dessins annexés sur lesquels :
- la
figure 1 illustre schématiquement une pile à combustible selon l'invention, - la
figure 2 est une vue en coupe selon le plan II-II perpendiculaire à l'axe principal A de la cathode de la pile à combustible de lafigure 1 , - la
figure 3 est une vue en coupe d'un autre mode de réalisation de la cathode d'une pile à combustible selon l'invention, - la
figure 4 illustre schématiquement une pile à combustible selon l'art antérieur.
- the
figure 1 schematically illustrates a fuel cell according to the invention, - the
figure 2 is a sectional view along the plane II-II perpendicular to the main axis A of the cathode of the fuel cell of thefigure 1 , - the
figure 3 is a sectional view of another embodiment of the cathode of a fuel cell according to the invention, - the
figure 4 schematically illustrates a fuel cell according to the prior art.
Une pile à combustible 1 selon l'invention est illustrée schématiquement sur la
Une anode 10,- Un
premier électrolyte 20, Une membrane centrale 30,Une cathode 50.
-
Anode 10, - A
first electrolyte 20, - A
central membrane 30, - A
cathode 50.
Dans la description ci-dessous, et en
Cependant, l'invention s'applique aussi à des réactions où le premier composé M1 n'est pas l'hydrogène et où le second composé M2 n'est pas l'oxygène.However, the invention also applies to reactions where the first compound M1 is not hydrogen and the second compound M2 is not oxygen.
L'anode 10 est le siège d'une réaction d'oxydation de l'hydrogène :
{H2 → 2H+ + 2 e-}.
{H 2 → 2H + + 2 e - }.
Les protons H+ ainsi créés migrent vers la membrane centrale 30 au travers du premier électrolyte 20. Ce premier électrolyte 20 est donc un matériau apte à conduire les protons H+.The H + protons thus created migrate towards the
Les électrons e- produits circulent par l'extérieur de la pile à combustible depuis l'anode 10 au travers d'un conducteur 90 pour rejoindre la cathode 50 et l'alimenter en électrons (voir ci-dessous).The e - produced electrons flow from the outside of the fuel cell from the
La cathode 50 est le siège d'une réaction de réduction de l'oxygène :
{½ O2 + 2 e- → O2-}
The
{½ O 2 + 2 e - → O 2- }
Les ions O2- ainsi créés migrent vers la membrane centrale 30.O 2- ions thus created migrate to the
Ainsi une première face 32 de la membrane centrale 30 est en contact avec le premier électrolyte 20, et une seconde face 35 de la membrane centrale 30, opposée à cette première face 32, est en contact avec la cathode 50.Thus a
Le premier électrolyte 20 est constitué d'un matériau apte à conduire les protons H+ (ou plus généralement dans le cas où le premier composé est M1, les ions M(m+)).The
La membrane centrale 30 est constituée d'un matériau apte à conduire les protons H+ et apte à conduire les ions O2- (ou plus généralement dans le cas où le premier composé est M1 et le second composé est M2, les ions M(m+) et les ions N(n-)).The
Au sein de cette membrane centrale 30, ces protons H+ et ces ions O2- réagissent selon la réaction suivante afin de produire de l'eau (ou plus généralement dans le cas où le premier composé est M1 et le second composé est M2, produire un produit P) :
{2H+ + O2- → H2O}
Within this
{2H + + O 2- → H 2 O}
Cette membrane centrale 30 est en outre poreuse avec des porosités 38, afin de permettre une meilleure évacuation vers la cathode 50 de l'eau ainsi produite par cette membrane centrale 30.This
Avantageusement, le premier électrolyte 20 et la membrane centrale 30 sont constitués du même matériau qui est apte à conduire à la fois les protons H+ (ou, dans le cas général les ions M(m+)) et les ions O2- (ou, dans le cas général ions N(n-)).Advantageously, the
La fabrication de la pile à combustible 1 est ainsi facilitée.The manufacture of the
Par exemple, le matériau de la membrane centrale 30 (et du premier électrolyte 20) est une céramique, qui présente l'avantage d'un contrôle de sa porosité durant la fabrication de la pile à combustible 1, par exemple par frittage.For example, the material of the central membrane 30 (and the first electrolyte 20) is a ceramic, which has the advantage of controlling its porosity during the manufacture of the
Les essais réalisés par les inventeurs ont montré qu'une telle céramique à conduction mixte utilisable comme matériau pour la pile à combustible 1 est par exemple un cérate de barium de formule BaCe0,85Y0,15O3-δ avec δ positif.The tests carried out by the inventors have shown that such a mixed conduction ceramic that can be used as material for the
Par exemple, δ est inférieur à 0,3.For example, δ is less than 0.3.
Ce matériau est désigné par BCY15 et présente une bonne conduction à la fois des protons H+ et des ions O2-.This material is designated BCY15 and has good conduction of both H + protons and O 2- ions.
D'autres matériaux peuvent être utilisés, par exemple BaCe0.5Zr0.35Sc0.1Zn0.05O3-δ ou BaCe0.9Y0.1Ru0.1O3-δ avec δ positif.Other materials can be used, for example BaCe 0.5 Zr 0.35 Sc 0.1 Zn 0.05 O 3-δ or BaCe 0.9 Y 0.1 Ru 0.1 O 3-δ with δ positive.
La cathode 50 présente en son sein, c'est-à-dire dans son volume, des canaux 52.The
Chaque canal 52 débouche à une extrémité sur la membrane centrale 30, et à son autre extrémité sur une surface libre 59 de la cathode 50. Ces canaux 52 peuvent présenter une géométrie quelconque, et être en nombre quelconque.Each
Avantageusement, chaque canal 52 est rectiligne et s'étend selon l'axe principal A, c'est-à-dire perpendiculairement à la membrane centrale 30.Advantageously, each
Chaque canal 52 est ainsi perpendiculaire à la seconde face 35 de la membrane centrale 30.Each
Cette géométrie permet une évacuation de l'eau plus rapide depuis cette seconde face 35 car les canaux ont alors une longueur minimisée.This geometry allows a faster evacuation of water from this
Par exemple la cathode 50 présente des canaux 52 parallèles qui sont chacun séparés du ou des canaux qui lui sont adjacents par une bande 55 du matériau de la cathode 50, ces bandes 55 s'étendant selon l'axe principal A.For example, the
Par exemple, comme représenté sur la
Alternativement, la cathode 50 présente des bandes 55 qui s'étendent selon l'axe principal A et se croisent pour former un réseau de canaux 52 parallèles entourés par ces bandes.Alternatively, the
Par exemple, comme représenté sur la
Alternativement, chacun de ces canaux 52 peut être de section circulaire.Alternatively, each of these
Dans tous les cas, la taille minimale des canaux 52 est d'au moins 20 µm (avec 1 µm = 10-6 m).In all cases, the minimum size of the
Cette taille minimale des canaux permet un écoulement de l'eau.This minimum size of the channels allows a flow of water.
La taille minimale des canaux 52 est supérieure à celle des pores de la cathode.The minimum size of the
Les essais effectués par les inventeurs ont montré que la densité de puissance de la pile à combustible selon l'invention est sensiblement supérieure à la densité de puissance d'une pile à combustible à membrane à conduction mixte.The tests carried out by the inventors have shown that the power density of the fuel cell according to the invention is substantially greater than the power density of a mixed conduction membrane fuel cell.
Les inventeurs ont réalisé une pile à combustible 1 selon l'invention comprenant plusieurs couches par combinaison des procédés suivants :
- La formation et l'assemblage du
premier électrolyte 20 et de lamembrane centrale 30 par une compression à froid et un frittage du matériau constituant ces couches, - La fixation de l'anode 10 sur le
premier électrolyte 20 et de lacathode 50 sur lamembrane centrale 30 par un procédé de déposition, par exemple la sérigraphie ou le coulage en bande (en anglais "tape casting"), - La densification du premier électrolyte 20 lors du frittage,
- L'ajustement de la porosité de la
membrane centrale 30.
- The formation and assembly of the
first electrolyte 20 and thecentral membrane 30 by cold pressing and sintering the material constituting these layers, - Fixing the
anode 10 on thefirst electrolyte 20 and thecathode 50 on thecentral membrane 30 by a deposition process, for example screen printing or tape casting (in English "tape casting"), - Densification of the
first electrolyte 20 during sintering, - The adjustment of the porosity of the
central membrane 30.
Ce procédé de fabrication permet de faciliter la fabrication d'une pile à combustible 1 selon l'invention.This manufacturing method facilitates the manufacture of a
La densification du premier électrolyte 20 peut être réalisée par l'ajout d'un agent de densification tel que ZnO ou CuO lors du frittage.Densification of the
La porosité de la membrane centrale 30 peut être réalisée et/ou ajustée par l'ajout d'additifs favorisant la formation de pores lors du frittage, et/ou une température de frittage plus basse.The porosity of the
L'anode 10 et la cathode 50 sont par exemple une céramique ou un cermet (composite céramique-métal) qui sont fabriqués selon des procédés connus.The
Par exemple, la composition d'une pile à combustible 1, où on utilise la notation {anode/ 1er électrolyte/ membrane centrale/ cathode} est une des suivantes :
- BCY15-Ni/ BCY15 dense/ BCY15 poreux/ BCY15-LSCF
ou - BCY15-Ni/ BCY15 dense/ BCY15 poreux/ BCY15-Ag
- BCY15-Ni / BCY15 dense / BCY15 porous / BCY15-LSCF
or - BCY15-Ni / BCY15 dense / BCY15 porous / BCY15-Ag
Dans les compositions ci-dessus LSCF désigne la céramique de formule La1-XSrXCo1-YFeYO3-δ avec X et Y compris entre 0 et 1, et δ positif.In the above compositions LSCF designates the ceramic of formula La 1-X Sr X Co 1 -Y Fe Y O 3-δ with X and Y between 0 and 1, and δ positive.
Une pile à combustibles 1 selon l'invention peut par exemple fonctionner à une température supérieure à 400°C, ce qui augmente son efficacité.A
L'invention a été décrite ci-dessus dans le cas de réactions chimiques où le premier composé M1 est l'hydrogène et où le second composé M2 est l'oxygène.The invention has been described above in the case of chemical reactions where the first compound M1 is hydrogen and the second compound M2 is oxygen.
L'invention s'applique également à d'autres cas, par exemple les piles à combustible où le premier composé M1 est de l'éthanol, du méthane ou du méthanol.The invention is also applicable to other cases, for example fuel cells where the first compound M1 is ethanol, methane or methanol.
En outre, la pile à combustible selon l'invention a été décrite ci-dessus dans le cas où elle fonctionne par oxydo-réduction électrochimique d'un premier composé M1 et d'un second composé N2 pour produire un composé P et de l'électricité. La pile à combustible selon l'invention est également apte à fonctionner de façon inverse, c'est-à-dire comme électrolyseur :
ainsi, on apporte le composé P dans la pile 1 grâce aux canaux 52 de la cathode 50, et on applique une différence de potentiel à la pile 1. Il se déclenche alors au sein de la pile 1 la réaction chimique globale
{p P → n M1 + m N2}
In addition, the fuel cell according to the invention has been described above in the case where it operates by electrochemical oxidation-reduction of a first compound M1 and a second compound N2 to produce a compound P and the electricity. The fuel cell according to the invention is also capable of operating in an inverse manner, that is to say as an electrolyzer:
Thus, the compound P is brought into the
{p P → n M1 + m N2}
Les électrons du courant électrique résultant de cette différence de potentiel sont prélevés aux ions N(n-) à la cathode 50 (qui fonctionne dans ce cas comme une anode) et parviennent à l'anode 10 (qui fonctionne dans ce cas comme une cathode) où ils se recombinent avec les ions M(m+).The electrons of the electrical current resulting from this potential difference are taken from the N (n-) ions at the cathode 50 (which functions in this case as an anode) and reach the anode 10 (which functions in this case as a cathode where they recombine with the M (m +) ions.
Un tel électrolyseur est donc apte à produire les composés M1 et M2 par électrolyse du composé P. Dans le cas où le composé P est H2O, l'électrolyseur produit de l'hydrogène H2 et de l'oxygène O2.Such an electrolyzer is therefore able to produce compounds M1 and M2 by electrolysis of compound P. In the case where compound P is H 2 O, the electrolyser produces hydrogen H 2 and oxygen O 2 .
Cet électrolyseur, de par la structure en canaux de la cathode 50, permet un apport du composé P de façon plus efficace, et donc possède un meilleur rendement.This electrolyser, by the channel structure of the
Claims (10)
- A fuel cell (1) comprising:· an anode (10) suitable for oxidizing a first compound M1 into first ions M(m+), with m a nonzero integer;· a first electrolyte (20) that is in contact with said anode (10);· a cathode (50) suitable for reducing a second compound N2 into second ions N(n-), with n a nonzero integer; and· a porous central membrane (30) having one of its faces (32) in contact with said first electrolyte (20), and having its opposite face (35) in contact with said cathode (50);said first electrolyte (20) being constituted by a material suitable for conducting the ions M(m+), said central membrane (30) being constituted by a material suitable for conducting both the ions M(m+) and the ions N(n-), said fuel cell being characterized in that said cathode (50) has an array of channels (52) passing therethrough, each channel opening out at said central membrane (30) and at a free surface of the cathode (50), the minimum dimension of a cross-section of any one of the channels (52) being greater than 20 µm, such that it is possible to discharge the product P resulting from the reaction of the ions M(m+) and the ions N(n-) from said central membrane (30) to the outside of the fuel cell (1) via said channels (52).
- A fuel cell according to claim 1, characterized in that said first electrolyte (20) and said central membrane (30) are made of the same material that is suitable for conducting both the ions M(m+) and the ions N(n-).
- A fuel cell according to claim 1 or claim 2, characterized in that said first compound is hydrogen H2 suitable for oxidizing into H+ ions, said second compound is oxygen O2 suitable for reducing into O2- ions, and said product P is water H2O.
- A fuel cell (1) according to claim 2 or claim 3, characterized in that said material constituting said central membrane (30) is a ceramic.
- A fuel cell (1) according to claim 4, characterized in that said ceramic is barium cerate having the formula BaCe0.85Y0.15O3-δ, where δ is positive.
- A fuel cell (1) according to any one of claims 1 to 5, characterized in that each of said channels (52) is rectilinear and extends along said main axis A, i.e. perpendicularly to said central membrane (30).
- A fuel cell (1) according to claim 6, characterized in that said cathode (50) presents parallel channels (52), each separated from the adjacent channel(s) by a respective strip (55) of the material of the cathode (50), these strips (55) extending along the main axis A.
- A fuel cell (1) according to claim 6, characterized in that said cathode (50) presents strips (55) that extend along the main axis A and cross one another to form an array of parallel channels (52) surrounded by the strips.
- A fuel cell (1) according to claim 8, characterized in that each of said channels (52) is of rectangular section.
- A fuel cell (1) according to claim 8, characterized in that each of said channels (52) is of circular section.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1159969A FR2982426B1 (en) | 2011-11-03 | 2011-11-03 | FUEL CELL WITH CATHODE WITH CHANNELS |
PCT/FR2012/052529 WO2013064783A1 (en) | 2011-11-03 | 2012-10-31 | Fuel cell including a cathode having channels |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2774202A1 EP2774202A1 (en) | 2014-09-10 |
EP2774202B1 true EP2774202B1 (en) | 2015-08-12 |
Family
ID=47263457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12794423.9A Not-in-force EP2774202B1 (en) | 2011-11-03 | 2012-10-31 | Fuel cell including a cathode having channels |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2774202B1 (en) |
ES (1) | ES2554456T3 (en) |
FR (1) | FR2982426B1 (en) |
WO (1) | WO2013064783A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11697108B2 (en) | 2021-06-11 | 2023-07-11 | Amogy Inc. | Systems and methods for processing ammonia |
US11724245B2 (en) | 2021-08-13 | 2023-08-15 | Amogy Inc. | Integrated heat exchanger reactors for renewable fuel delivery systems |
US11764381B2 (en) | 2021-08-17 | 2023-09-19 | Amogy Inc. | Systems and methods for processing hydrogen |
US11795055B1 (en) | 2022-10-21 | 2023-10-24 | Amogy Inc. | Systems and methods for processing ammonia |
US11834985B2 (en) | 2021-05-14 | 2023-12-05 | Amogy Inc. | Systems and methods for processing ammonia |
US11834334B1 (en) | 2022-10-06 | 2023-12-05 | Amogy Inc. | Systems and methods of processing ammonia |
US11866328B1 (en) | 2022-10-21 | 2024-01-09 | Amogy Inc. | Systems and methods for processing ammonia |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2883420B1 (en) * | 2005-03-17 | 2007-05-11 | Armines Ass Loi De 1901 | HIGH TEMPERATURE FUEL CELL WITH ANIONIC AND PROTONIC MIXED CONDUCTION CELL |
-
2011
- 2011-11-03 FR FR1159969A patent/FR2982426B1/en not_active Expired - Fee Related
-
2012
- 2012-10-31 EP EP12794423.9A patent/EP2774202B1/en not_active Not-in-force
- 2012-10-31 ES ES12794423.9T patent/ES2554456T3/en active Active
- 2012-10-31 WO PCT/FR2012/052529 patent/WO2013064783A1/en active Application Filing
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12000333B2 (en) | 2021-05-14 | 2024-06-04 | AMOGY, Inc. | Systems and methods for processing ammonia |
US11994062B2 (en) | 2021-05-14 | 2024-05-28 | AMOGY, Inc. | Systems and methods for processing ammonia |
US11834985B2 (en) | 2021-05-14 | 2023-12-05 | Amogy Inc. | Systems and methods for processing ammonia |
US11994061B2 (en) | 2021-05-14 | 2024-05-28 | Amogy Inc. | Methods for reforming ammonia |
US11697108B2 (en) | 2021-06-11 | 2023-07-11 | Amogy Inc. | Systems and methods for processing ammonia |
US12097482B2 (en) | 2021-06-11 | 2024-09-24 | AMOGY, Inc. | Systems and methods for processing ammonia |
US11724245B2 (en) | 2021-08-13 | 2023-08-15 | Amogy Inc. | Integrated heat exchanger reactors for renewable fuel delivery systems |
US11843149B2 (en) | 2021-08-17 | 2023-12-12 | Amogy Inc. | Systems and methods for processing hydrogen |
US11769893B2 (en) | 2021-08-17 | 2023-09-26 | Amogy Inc. | Systems and methods for processing hydrogen |
US11764381B2 (en) | 2021-08-17 | 2023-09-19 | Amogy Inc. | Systems and methods for processing hydrogen |
US11840447B1 (en) | 2022-10-06 | 2023-12-12 | Amogy Inc. | Systems and methods of processing ammonia |
US11912574B1 (en) | 2022-10-06 | 2024-02-27 | Amogy Inc. | Methods for reforming ammonia |
US11975968B2 (en) | 2022-10-06 | 2024-05-07 | AMOGY, Inc. | Systems and methods of processing ammonia |
US11834334B1 (en) | 2022-10-06 | 2023-12-05 | Amogy Inc. | Systems and methods of processing ammonia |
US11866328B1 (en) | 2022-10-21 | 2024-01-09 | Amogy Inc. | Systems and methods for processing ammonia |
US11795055B1 (en) | 2022-10-21 | 2023-10-24 | Amogy Inc. | Systems and methods for processing ammonia |
Also Published As
Publication number | Publication date |
---|---|
EP2774202A1 (en) | 2014-09-10 |
ES2554456T3 (en) | 2015-12-21 |
FR2982426B1 (en) | 2013-12-27 |
FR2982426A1 (en) | 2013-05-10 |
WO2013064783A1 (en) | 2013-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2774202B1 (en) | Fuel cell including a cathode having channels | |
JP4950882B2 (en) | Method for forming membrane electrode assembly | |
KR20040038786A (en) | Fuel cell with embedded current collector | |
EP2580797B1 (en) | Method for manufacturing basic electrochemical cells for energy or hydrogen-producing electrochemical systems, in particular of the sofc and hte type | |
US20060275649A1 (en) | Method and apparatus for forming electrode interconnect contacts for a solid-oxide fuel cell stack | |
US20100255406A1 (en) | Solid-state fuel cell including chemical electrolyte protection layer and method of manufacturing same | |
US20200295379A2 (en) | Intermediate-Temperature Fuel Cell Tailored for Efficient Utilization of Methane | |
JP5101564B2 (en) | Membrane electrode structure for polymer electrolyte fuel cell | |
CA3008699C (en) | Proton-conductive electrochemical device with integrated reforming and associated production method | |
KR101290577B1 (en) | Solid oxide electrolyte membrane, manufacturing method thereof, and fuel cell employing the same | |
EP1522111B1 (en) | Electrolyte for a fuel cell | |
KR102427681B1 (en) | Thin film solid oxide fuel cell having hydrogen oxidation reaction catalyst layer and method of manufacturing the same | |
JP4390530B2 (en) | Electrolyte / electrode assembly and method for producing the same | |
JP2004111145A (en) | Unit cell for solid oxide fuel cell and its manufacturing method | |
US8895205B2 (en) | Solid oxide fuel cell comprising a coated wire current collector | |
EP2466673B1 (en) | Fuel cell with monolithic electrolyte-membrane assembly | |
KR102410881B1 (en) | Single chamber typed stacked thin film solid oxide fuel cell and method of manufacturing the same | |
EP1735864B1 (en) | Electrolyte electrode assembly and method of producing the same | |
US20240178406A1 (en) | Solid oxide cell | |
JP4390531B2 (en) | Electrolyte / electrode assembly | |
JP2009087876A (en) | Single-chamber fuel cell and single-chamber fuel cell laminate | |
KR20180073394A (en) | Metallic current collector for solid oxide fuel cell and solid oxide fuel cell stack comprising the same | |
JP2008034157A (en) | Fuel cell | |
FR3143634A1 (en) | Interconnector for stacking of SOEC/SOFC type solid oxide cells comprising a perforated contact layer | |
JP2005310700A (en) | Fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140527 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: VLADIKOVA, DARIA, EVGENIEVA Inventor name: THOREL, ALAIN Inventor name: BARBUCCI, ANTONIO Inventor name: STOYNOV, ZDRAVKO, BORISSOV Inventor name: VIVIANI, MASSIMO Inventor name: CHESNAUD, ANTHONY |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150220 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BARBUCCI, ANTONIO Inventor name: STOYNOV, ZDRAVKO, BORISSOV Inventor name: VLADIKOVA, DARIA, EVGENIEVA Inventor name: VIVIANI, MASSIMO Inventor name: THOREL, ALAIN Inventor name: CHESNAUD, ANTHONY |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 742847 Country of ref document: AT Kind code of ref document: T Effective date: 20150815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012009669 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: MICHELI AND CIE SA, CH |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2554456 Country of ref document: ES Kind code of ref document: T3 Effective date: 20151221 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 742847 Country of ref document: AT Kind code of ref document: T Effective date: 20150812 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151112 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151212 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151214 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012009669 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151031 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 |
|
26N | No opposition filed |
Effective date: 20160513 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151031 Ref country code: BG Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20121031 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150812 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20180913 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20181009 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20181023 Year of fee payment: 7 Ref country code: GB Payment date: 20181017 Year of fee payment: 7 Ref country code: ES Payment date: 20181126 Year of fee payment: 7 Ref country code: IT Payment date: 20181012 Year of fee payment: 7 Ref country code: CH Payment date: 20181022 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602012009669 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20191101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200501 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20191031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20210414 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191101 |