EP2741876B2 - Method for casting monocrystalline metal parts - Google Patents
Method for casting monocrystalline metal parts Download PDFInfo
- Publication number
- EP2741876B2 EP2741876B2 EP12758546.1A EP12758546A EP2741876B2 EP 2741876 B2 EP2741876 B2 EP 2741876B2 EP 12758546 A EP12758546 A EP 12758546A EP 2741876 B2 EP2741876 B2 EP 2741876B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- casting
- mold
- core
- metal
- cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005266 casting Methods 0.000 title claims description 51
- 229910052751 metal Inorganic materials 0.000 title claims description 45
- 239000002184 metal Substances 0.000 title claims description 45
- 238000000034 method Methods 0.000 title claims description 30
- 229910045601 alloy Inorganic materials 0.000 claims description 30
- 239000000956 alloy Substances 0.000 claims description 30
- 230000007704 transition Effects 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 16
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 230000000149 penetrating effect Effects 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 230000008569 process Effects 0.000 description 12
- 238000001953 recrystallisation Methods 0.000 description 12
- 239000013078 crystal Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000007711 solidification Methods 0.000 description 6
- 230000008023 solidification Effects 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 5
- 229910052727 yttrium Inorganic materials 0.000 description 4
- 229910000990 Ni alloy Inorganic materials 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910000995 CMSX-10 Inorganic materials 0.000 description 2
- 229910001011 CMSX-4 Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000035784 germination Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 230000002051 biphasic effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 210000005045 desmin Anatomy 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/04—Influencing the temperature of the metal, e.g. by heating or cooling the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/02—Sand moulds or like moulds for shaped castings
- B22C9/04—Use of lost patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D29/00—Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
Definitions
- the present invention relates to the field of foundry, and in particular the foundry of monocrystalline metal parts.
- the traditional metal alloys are polycrystalline equiaxes: in the solid state, they form a plurality of grains of substantially identical size, typically of the order of 1 mm, but more or less random orientation.
- the grain boundaries are weak points in a metal part produced from such an alloy.
- the use of additives to reinforce these inter-grain seals has the drawback of reducing the temperature of the melting point, which is particularly disadvantageous when the parts thus produced are intended to be used at high temperature.
- columnar polycrystalline alloys were initially proposed whose grains solidify with a determined orientation. This makes it possible, by orienting the grains in the main load direction of the metal part, to increase the resistance of these parts in a particular direction.
- phase Y has a center face cubic crystal lattice, in which the atoms of nickel, aluminum and / or titanium can occupy any of the positions.
- phase Y ' the atoms of aluminum and / or titanium form a cubic configuration, occupying the eight corners of the cube, whereas nickel atoms occupy the faces of the cube.
- One of these new alloys is the "AM1" nickel alloy jointly developed by SNECMA and the ONERA laboratories, the concluded des Mines de Paris, and IMPHY SA.
- the parts produced in such an alloy can achieve not only particularly high mechanical strength in all axes of effort, but also an improved thermal resistance, since it can dispense with additives intended to bind more strongly between them crystalline grains.
- metal parts produced from such monocrystalline alloys can be advantageously used, for example, in the hot parts of turbines.
- the molten alloy is poured into a cavity of a mold through at least one casting channel in the mold, the mold is unhooked after solidification of the alloy, to release the workpiece, and this is then subjected to a heat treatment, such as for example a quenching in which the metal is first heated, and then cooled rapidly, in order to homogenize the phases Y and Y 'in the single crystal without causing its melting .
- the mechanical shocks to which the parts are subjected after the casting can locally destabilize the crystal lattice of the single crystal. Then, the heat treatment can trigger unwanted recrystallizations in the places thus destabilized, thereby losing the monocrystalline character of the room and introducing weak points therein. Even with great efforts, it is very difficult to avoid mechanical shocks in the handling of molds that can have a mass of several dozen pounds, especially since the shakeout of the mold involves, in itself, mechanical shocks. On the other hand, a limited reduction in the heat treatment temperature, alone, does not substantially prevent these recrystallization phenomena.
- the present invention aims to remedy these disadvantages.
- the invention aims to provide a foundry process that allows to largely limit the recrystallization phenomena following the heat treatment of the parts after solidification of the cast alloy in the mold.
- the casting channel comprises at least at least one transition zone adjacent to said cavity, with a rounding radius of not less than 0, 3 mm between said casting channel and said cavity in order to avoid a pronounced bend in the flow of molten alloy, bend which could give rise to a recrystallization zone of the alloy.
- the casting channel has, in this transition zone, an enlarged section, with respect to an upstream section, in the direction of a main axis of a section of the cavity perpendicular to the casting channel. More particularly, after casting, this transition zone could form at least one thinner metal film than the upstream casting channel, and more particularly at least one such metal film from each of two opposite sides of the casting channel.
- said transition zone may form, after casting, at least one metal veil adjacent to said core and thinner than the upstream casting channel.
- Each metal web adjacent the core may have an outer edge along a substantially concave line adjacent to a surface of the core.
- the transition zone may form at least one metal veil on each side of said core.
- said metal webs adjacent to the core may have outer edges joining at the ends, so as to surround the core.
- this transition zone makes it possible to fill the cavity substantially simultaneously over its entire width, thus avoiding creating, during the solidification of the alloy, irregularities in the crystal structure of the single crystal. These irregularities could indeed cause, during the heat treatment step, a local recrystallization forming a weak point in the metal part.
- the mold may contain a plurality of cavities, arranged in a cluster, for molding a plurality of metal parts simultaneously.
- the process according to the invention is particularly suitable for the production of certain metal parts, such as turbomachine blades.
- the present invention also relates to metal parts obtained by this method.
- FIG. figure 1 A conventional foundry process, as used for example in the production of turbomachine blades and more particularly of high pressure turbine blades, is illustrated in FIG. figure 1 .
- a ceramic mold 150 is produced, typically by the lost wax process, although other conventional methods may be used alternately.
- This ceramic mold 150 comprises a cluster of cavities 151 connected by casting channels 152 to an orifice 153 outside the mold 150.
- Each cavity 151 is shaped to mold a metal part to be produced.
- the mold 150 also comprises cores 155 penetrating into each of the cavities 151.
- a molten alloy 154 is poured into the orifice 153 to fill the cavities 151 through the channels of casting 152.
- the hammer 150 is initially shaken off, in order to release from the mold 150 the metal parts 156 united in a cluster 157.
- an additional step of water jet shaking is then carried out.
- the individual pieces 156 are cut from the cluster 157.
- the cores 155 are then unchecked from each piece 156 in the next step, and the pieces 156 are finally heat-treated.
- This heat treatment can be, for example, quenching, in which the parts 156 are briefly heated, and then quickly cooled, to harden the alloy parts.
- the alloys that can be used in this process include so-called monocrystalline alloys, which allow the production of parts formed by a single crystal grain or monocrystal.
- the heat treatment the object of which is in fact the homogenization of the phases Y and Y 'in the single crystal, can trigger recrystallization phenomena locally weakening the parts.
- the order of the operations is modified, so as to advance the heat treatment step.
- the first step is also the production of a ceramic mold 250.
- this ceramic mold 250 can also be produced by the lost wax process, or by another alternative method among those known to the person of career.
- this ceramic mold 250 comprises a cluster of cavities 251 connected by channels 252 to an orifice 253 outside the mold 250. Each cavity 251 is also shaped to mold a metal part at produce.
- the mold 250 also comprises cores 255 penetrating into each of the cavities 251.
- a molten alloy 254 is poured into the orifice 253 to fill the cavities 251 through the pouring channels 252.
- the mold 250 is also initially shaken off, in order to release the metal pieces 256 united in a cluster 257 from the mold 250.
- gold proceeds directly to the heat treatment step.
- the metal parts 256 still forming a cluster 257 with still remains of the mold 250, are directly subjected to, for example, quenching, in which the parts 256 are briefly heated, and then quickly cooled.
- these channels 252 comprise transition zones adjacent to the cavities 251.
- the casting channel 252 widens progressively in the direction of a main axis X of a section S of the cavity 251 in a plane A perpendicular to the pouring channel, so that the radius of rounding between the pouring channel 252 and the cavity 251 is not less than 0.3 mm.
- this transition zone widens on one side and the other of the core 253, as well as on the side opposite the core 253.
- the presence of the transition zone thus makes it possible to distribute the flow of molten alloy substantially throughout the width of the cavity 251, thus avoiding the formation of subsequent recrystallization zones.
- the monocrystalline piece 256 illustrated on the figure 4 is a turbine blade. It is illustrated in the raw state of demoulding, that is to say, with the solidified metal out of the mold release channel 252. This metal thus forms a central rod 275, sails 261, 262 and 263, and a section 276 adjacent to the blade head 265.
- the molten alloy flows from the blade head 265, through the blade root 266, to a casting channel 252 connected to a nozzle. another cavity 251 further downstream.
- the flow of molten alloy thus substantially follows the direction of the main axis Z of the blade.
- the web 261, which extends towards the trailing edge 267 of the blade, has an outer edge 268 with a concave upstream segment and a convex downstream segment.
- this outer edge 268 has a radius of curvature R which evolves only very gradually from the central rod 275 to the enlarged section 276.
- the webs 262 and 263, which extend towards the leading edge 269 dawn on each side of the core 253, have respective outer edges 270,271 substantially concave along the core 253.
- These outer edges 270, 271 are joined by their ends above the core 253 and in front thereof, thus forming two connections 272,273, so as to surround the core 253.
- these sails 262, 263 have radii of curvature R 'and R "on the surfaces adjacent to the outer edges 270, 271 in order to avoid the germination of undesirable metallurgical defects in the vicinity of the core 253.
- the transition surface 277 of the sails 261, 262 and 263 and the stem 275 at the enlarged section 276 is also rounded to prevent germination of such defects.
- nickel monocrystalline alloys such as, in particular, AM1 and AM3 from SNECMA, but also others such as CMSX-2®, CMSX-4®, CMSX- 6 ®, and CMSX-10 ® from CM Group, René® N5 and N6 from General Electric, RR2000 and SRR99 from Rolls-Royce, and PWA 1480, 1484 and 1487 from Pratt & Whitney, among others.
- Table 1 illustrates the compositions of these alloys: ⁇ b> Table 1: Compositions of monocrystalline nickel alloys in mass% ⁇ / b> Alloy Cr Co MB W al Ti Your Nb Re Hf VS B Or CMSX-2 8.0 5.0 0.6 8.0 5.6 1.0 6.0 - - - - Ball CMSX-4 6.5 9.6 0.6 6.4 5.6 1.0 6.5 - 3.0 0.1 - - Ball CMSX-6 10.0 5.0 3.0 - 4.8 4.7 6.0 - - 0.1 - - Ball CMSX-10 2.0 3.0 0.4 5.0 5.7 0.2 8.0 - 6.0 0.03 - - Ball René N5 7.0 8.0 2.0 5.0 6.2 - 7.0 - 3.0 0.2 - - Ball René N6 4.2 12.5 1.4 6.0 5.75 - 7.2 - 5.4 0.15 0.05 0,004 Ball RR2000 10.0 15.0 3.0 - 5.5 4.0 - - - - - Ball S
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
La présente invention concerne le domaine de la fonderie, et en particulier la fonderie de pièces métalliques monocristallines.The present invention relates to the field of foundry, and in particular the foundry of monocrystalline metal parts.
Les alliages métalliques traditionnels sont polycristallins équiaxes : à l'état solide, ils forment une pluralité de grains de taille sensiblement identique, typiquement de l'ordre de 1 mm, mais d'orientation plus ou moins aléatoire. Les joints entre grains constituent des points faibles dans une pièce métallique produite en un tel alliage. L'utilisation d'additifs pour renforcer ces joints inter-grains présente toutefois le défaut de réduire la température du point de fusion, ce qui est particulièrement inconvénient quand les pièces ainsi produites sont destinées à être utilisées à haute température.The traditional metal alloys are polycrystalline equiaxes: in the solid state, they form a plurality of grains of substantially identical size, typically of the order of 1 mm, but more or less random orientation. The grain boundaries are weak points in a metal part produced from such an alloy. The use of additives to reinforce these inter-grain seals, however, has the drawback of reducing the temperature of the melting point, which is particularly disadvantageous when the parts thus produced are intended to be used at high temperature.
Afin de résoudre cet inconvénient, des alliages polycristallins colonnaires ont été initialement proposés dont les grains se solidifient avec une orientation déterminée. Ceci permet, en orientant les grains dans la direction de charge principale de la pièce métallique, d'augmenter la résistance de ces pièces dans une direction particulière. Toutefois, même dans des pièces soumis à des efforts fortement orientés suivant un axe particulier, comme par exemple les aubes de turbine soumises aux forces centrifuges, il peut aussi être avantageux d'offrir une résistance accrue dans les autres axes.In order to overcome this drawback, columnar polycrystalline alloys were initially proposed whose grains solidify with a determined orientation. This makes it possible, by orienting the grains in the main load direction of the metal part, to increase the resistance of these parts in a particular direction. However, even in parts subjected to highly oriented forces along a particular axis, such as turbine blades subjected to centrifugal forces, it may also be advantageous to offer increased resistance in the other axes.
Avec cet objet, depuis la fin des années 1979, des nouveaux alliages métalliques dits monocristallins ont été développés permettant la production en fonderie de pièces formées par un seul grain. Typiquement ces alliages monocristallins sont des alliages de nickel avec une concentration de titanium et/ou d'aluminium inférieure à 10% molaire. Ainsi, après leur solidification, ces alliages forment des solides biphasiques, avec une première phase Y et une deuxième phase Y'. La phase Y présente un réseau cristallin cubique à face centrée, dans lequel les atomes de nickel, aluminium et/ou titanium peuvent occuper n'importe quelle des positions. Par contre, dans la phase Y', les atomes d'aluminium et/ou titanium forment une configuration cubique, occupant les huit coins du cube, tandis que des atomes de nickel occupent les faces du cube.With this object, since the end of 1979, new metal alloys called monocrystalline have been developed allowing the production in the foundry of pieces formed by a single grain. Typically these monocrystalline alloys are nickel alloys with a concentration of titanium and / or aluminum less than 10 mol%. Thus, after their solidification, these alloys form biphasic solids, with a first phase Y and a second phase Y '. Phase Y has a center face cubic crystal lattice, in which the atoms of nickel, aluminum and / or titanium can occupy any of the positions. On the other hand, in phase Y ', the atoms of aluminum and / or titanium form a cubic configuration, occupying the eight corners of the cube, whereas nickel atoms occupy the faces of the cube.
Un de ces nouveaux alliages est l'alliage de nickel « AM1 » développé conjointement par la SNECMA et les laboratoires de l'ONERA, l'Ecole des Mines de Paris, et IMPHY SA. Les pièces produites en un tel alliage peuvent atteindre non seulement des tenues mécaniques particulièrement élevées dans tous les axes d'effort, mais aussi une tenue thermique améliorée, puisqu'on peut se passer des additifs destinés à lier plus fortement entre eux les grains cristallins. Ainsi, des pièces métalliques produites à base de tels alliages monocristallins peuvent être avantageusement utilisées, par exemple, dans les parties chaudes de turbines.One of these new alloys is the "AM1" nickel alloy jointly developed by SNECMA and the ONERA laboratories, the Ecole des Mines de Paris, and IMPHY SA. The parts produced in such an alloy can achieve not only particularly high mechanical strength in all axes of effort, but also an improved thermal resistance, since it can dispense with additives intended to bind more strongly between them crystalline grains. Thus, metal parts produced from such monocrystalline alloys can be advantageously used, for example, in the hot parts of turbines.
Toutefois, même en utilisant ces alliages spéciaux, il peut être difficile d'éviter un phénomène de recristallisation pendant la production de telles pièces, introduisant des nouveaux grains cristallins, et donc des nouveaux points faibles dans la pièce. Dans un procédé de fonderie traditionnel, l'alliage fondu est coulé dans une cavité d'un moule à travers au moins un canal de coulée dans le moule, le moule est décoché après solidification de l'alliage, afin de libérer la pièce, et celle-ci est ensuite soumise à un traitement thermique, tel que par exemple une trempe dans lequel le métal est d'abord chauffé, pour ensuite être refroidi rapidement, afin d'homogénéiser les phases Y et Y' dans le monocristal sans provoquer sa fusion.However, even using these special alloys, it can be difficult to avoid a recrystallization phenomenon during the production of such pieces, introducing new crystalline grains, and thus new weak spots in the piece. In a traditional casting process, the molten alloy is poured into a cavity of a mold through at least one casting channel in the mold, the mold is unhooked after solidification of the alloy, to release the workpiece, and this is then subjected to a heat treatment, such as for example a quenching in which the metal is first heated, and then cooled rapidly, in order to homogenize the phases Y and Y 'in the single crystal without causing its melting .
Toutefois, les chocs mécaniques auxquels les pièces sont soumises après la coulée peuvent déstabiliser localement le réseau cristallin du monocristal. Ensuite, le traitement thermique peut déclencher des recristallisations intempestives dans les endroits ainsi déstabilisés, perdant ainsi le caractère monocristallin de la pièce et introduisant des points faibles dans celle-ci. Même avec des grands efforts, il est très difficile d'éviter des chocs mécaniques dans la manipulation de moules pouvant avoir une masse de plusieurs dizaine de kilos, d'autant plus que le décochage du moule implique, en soi, des chocs mécaniques. D'autre part, une réduction limitée de la température de traitement thermique, seule, ne permet pas d'empêcher sensiblement ces phénomènes de recristallisation.However, the mechanical shocks to which the parts are subjected after the casting can locally destabilize the crystal lattice of the single crystal. Then, the heat treatment can trigger unwanted recrystallizations in the places thus destabilized, thereby losing the monocrystalline character of the room and introducing weak points therein. Even with great efforts, it is very difficult to avoid mechanical shocks in the handling of molds that can have a mass of several dozen pounds, especially since the shakeout of the mold involves, in itself, mechanical shocks. On the other hand, a limited reduction in the heat treatment temperature, alone, does not substantially prevent these recrystallization phenomena.
La présente invention vise à remédier à ces inconvénients. Pour cela, l'invention vise à proposer un procédé de fonderie qui permette de limiter en grande partie les phénomènes de recristallisation suite au traitement thermique des pièces après solidification de l'alliage coulé dans le moule.The present invention aims to remedy these disadvantages. For this, the invention aims to provide a foundry process that allows to largely limit the recrystallization phenomena following the heat treatment of the parts after solidification of the cast alloy in the mold.
Suivant un aspect de la présente invention, dans un procédé de fonderie suivant le préambule de la revendication 1, le canal de coulée comporte au moins au moins une zone de transition adjacente à ladite cavité, avec un rayon d'arrondi non inférieur à 0,3 mm entre ledit canal de coulée et ladite cavité afin d'éviter un coude prononcé dans l'écoulement de l'alliage fondu, coude qui pourrait donner lieu à une zone de recristallisation de l'alliage. En particulier, le canal de coulée présente, dans cette zone de transition, une section élargie, par rapport à une section en amont, en direction d'un axe principal d'une section de la cavité perpendiculaire au canal de coulée. Plus particulièrement, après la coulée, cette zone de transition pourrait former au moins un voile métallique plus fin que le canal de coulée en amont, et plus particulièrement au moins un tel voile métallique de chacun de deux côtés opposés du canal de coulée. Quand le moule contient au moins un noyau pénétrant dans ladite cavité et occupant un espace adjacent audit canal de coulée afin de former une cavité dans la pièce métallique, ladite zone de transition peut former, après la coulée, au moins un voile métallique adjacent audit noyau et plus fin que le canal de coulée en amont. Chaque voile métallique adjacent au noyau peut présenter un bord extérieur suivant une ligne sensiblement concave adjacente sur une surface du noyau. La zone de transition peut former au moins un voile métallique de chaque côté dudit noyau. Dans ce cas, lesdits voiles métalliques adjacents au noyau peuvent présenter des bords extérieurs se rejoignant aux extrémités, de manière à entourer le noyau.According to one aspect of the present invention, in a casting process according to the preamble of claim 1, the casting channel comprises at least at least one transition zone adjacent to said cavity, with a rounding radius of not less than 0, 3 mm between said casting channel and said cavity in order to avoid a pronounced bend in the flow of molten alloy, bend which could give rise to a recrystallization zone of the alloy. In particular, the casting channel has, in this transition zone, an enlarged section, with respect to an upstream section, in the direction of a main axis of a section of the cavity perpendicular to the casting channel. More particularly, after casting, this transition zone could form at least one thinner metal film than the upstream casting channel, and more particularly at least one such metal film from each of two opposite sides of the casting channel. When the mold contains at least one core penetrating into said cavity and occupying a space adjacent said casting channel to form a cavity in the metal part, said transition zone may form, after casting, at least one metal veil adjacent to said core and thinner than the upstream casting channel. Each metal web adjacent the core may have an outer edge along a substantially concave line adjacent to a surface of the core. The transition zone may form at least one metal veil on each side of said core. In this case, said metal webs adjacent to the core may have outer edges joining at the ends, so as to surround the core.
De cette manière, lors de la coulée, cette zone de transition permet de remplir la cavité de manière sensiblement simultanée sur toute sa largeur, évitant ainsi de créer, lors de la solidification de l'alliage, des irrégularités dans la structure cristalline du monocristal. Ces irrégularités pourraient en effet provoquer, lors de l'étape de traitement thermique, une recristallisation locale formant un point faible dans la pièce métallique.In this way, during casting, this transition zone makes it possible to fill the cavity substantially simultaneously over its entire width, thus avoiding creating, during the solidification of the alloy, irregularities in the crystal structure of the single crystal. These irregularities could indeed cause, during the heat treatment step, a local recrystallization forming a weak point in the metal part.
Afin d'augmenter la production de pièces métalliques, le moule peut contenir une pluralité de cavités, arrangées en grappe, pour mouler une pluralité de pièces métalliques simultanément.In order to increase the production of metal parts, the mold may contain a plurality of cavities, arranged in a cluster, for molding a plurality of metal parts simultaneously.
Le procédé suivant l'invention est particulièrement approprié pour la production de certaines pièces métalliques, comme les aubes de turbomachine. La présente invention se rapporte aussi aux pièces métalliques obtenues par ce procédé.The process according to the invention is particularly suitable for the production of certain metal parts, such as turbomachine blades. The present invention also relates to metal parts obtained by this method.
L'invention sera bien comprise et ses avantages apparaîtront mieux, à la lecture de la description détaillée qui suit, d'un mode de réalisation représenté à titre d'exemple non limitatif. La description se réfère aux dessins annexés sur lesquels :
- la
figure 1 illustre un procédé de fonderie de l'art antérieur ; - la
figure 2 illustre un procédé de fonderie suivant un mode de réalisation de la présente invention ; - la
figure 3 illustre la connexion entre un canal de coulée et une cavité de moulage d'un moule de l'art antérieur ; - la
figure 4 est une vue en perspective d'une pièce métallique produite suivant le procédé de lafigure 2 ; et - la
figure 5 et une coupe transversale de la pièce métallique de lafigure 4 dans le plan V-V.
- the
figure 1 illustrates a foundry process of the prior art; - the
figure 2 illustrates a foundry process according to one embodiment of the present invention; - the
figure 3 illustrates the connection between a casting channel and a molding cavity of a mold of the prior art; - the
figure 4 is a perspective view of a metal part produced according to the method offigure 2 ; and - the
figure 5 and a cross-section of the metal piece of thefigure 4 in the VV plane.
Un procédé classique de fonderie, tel qu'utilisé par exemple dans la production d'aubes de turbomachine et plus particulièrement d'aubes de turbine haute pression, est illustré sur la
Après solidification de l'alliage, dans une troisième étape, on procède au décochage initial du moule 150 au marteau, afin de libérer du moule 150 les pièces métalliques 156 unies en une grappe 157. Afin d'éliminer les derniers restes du moule 150, on procède ensuite à une étape supplémentaire de décochage par jet d'eau. Dans l'étape suivante S105, les pièces individuelles 156 sont découpées de la grappe 157. Les noyaux 155 sont ensuite décochés de chaque pièce 156 dans l'étape suivante, et les pièces 156 sont finalement traitées thermiquement. Ce traitement thermique peut être, par exemple, une trempe, dans laquelle les pièces 156 sont brièvement chauffées, pour être ensuite rapidement refroidies, afin d'endurcir l'alliage des pièces.After solidification of the alloy, in a third step, the
Parmi les alliages pouvant être utilisés dans ce procédé, on compte notamment les alliages dits monocristallins, qui permettent la production de pièces formées par un seul grain cristallin, ou monocristal. Toutefois, dans ce procédé de l'art antérieur, le traitement thermique, dont l'objet est en fait l'homogénéisation des phases Y et Y' dans le monocristal, peut déclencher des phénomènes de recristallisation fragilisant localement les pièces. Afin d'éviter cet inconvénient, dans un procédé de fonderie suivant un mode de réalisation de l'invention illustré sur la
Ainsi, dans ce procédé illustré sur la
Après la première étape, et aussi comme dans l'art antérieur, dans une étape de coulée, un alliage fondu 254 est versé dans l'orifice 253 pour remplir les cavités 251 à travers les canaux de coulée 252. Après solidification de l'alliage, dans une troisième étape, on procède aussi au décochage initial du moule 250 au marteau, afin de libérer du moule 250 les pièces métalliques 256 unies en une grappe 257. Toutefois, dans ce procédé, après ce décochage initial, or procède directement à l'étape de traitement thermique. Pendant ce traitement thermique, les pièces métalliques 256, formant encore une grappe 257 avec encore des restes du moule 250, sont directement soumises à, par exemple, une trempe, dans laquelle les pièces 256 sont brièvement chauffées, pour être ensuite rapidement refroidies.After the first step, and also as in the prior art, in a casting step, a
Afin d'éliminer les derniers restes du moule 250, on peut procéder ensuite au décochage par jet d'eau dans l'étape suivante. Finalement, les pièces individuelles 256 sont découpées de la grappe 257, et les noyaux 255 sont ensuite décochés de chaque pièce 256, déjà traitée thermiquement avant le décochage au jet d'eau.In order to eliminate the last remains of the
Grâce à l'avancement de l'étape de traitement thermique, il est possible de réduire les phénomènes de recristallisation lors de cette étape. Toutefois, afin de réduire cette recristallisation de manière encore plus complète et surtout plus fiable, il convient aussi de donner une forme appropriée aux canaux de coulée 252. Dans la
Dans le moule 250 du procédé illustré sur la
Lors de l'étape de coulée, la présence de la zone de transition permet ainsi de distribuer le débit d'alliage fondu sensiblement dans toute la largeur de la cavité 251, évitant ainsi la formation de zones de recristallisation subséquente.During the casting step, the presence of the transition zone thus makes it possible to distribute the flow of molten alloy substantially throughout the width of the
La pièce monocristalline 256 illustrée sur la
Parmi les alliages pouvant être utilisés dans ce procédé, on compte notamment les alliages monocristallins de nickel, tels que, notamment, les AM1 et AM3 de SNECMA, mais aussi d'autres comme les CMSX-2®, CMSX-4®, CMSX-6 ®, et CMSX-10 ® du C-M Group, les René® N5 et N6 de General Electric, les RR2000 et SRR99 de Rolls-Royce, et les PWA 1480, 1484 et 1487 de Pratt & Whitney, entre autres. Le tableau 1 illustre les compositions de ces alliages :
Quoique la présente invention ait été décrite en se référant à un exemple de réalisation spécifique, il est évident que des différentes modifications et changements peuvent être effectués sur ces exemples sans sortir de la portée générale de l'invention telle que définie par les revendications. Par exemple, dans un mode de réalisation alternatif, le traitement thermique pourrait être effectué même avant le décochage initial du moule. En outre, des caractéristiques individuelles des différents modes de réalisation évoqués peuvent être combinées dans des modes de réalisation additionnels. Par conséquent, la description et les dessins doivent être considérés dans un sens illustratif plutôt que restrictif.Although the present invention has been described with reference to a specific exemplary embodiment, it is obvious that various modifications and changes can be made to these examples without departing from the general scope of the invention as defined by the claims. For example, in an alternative embodiment, the heat treatment could be performed even before the initial shakeout of the mold. In addition, individual features of the various embodiments mentioned can be combined in additional embodiments. Therefore, the description and drawings should be considered in an illustrative rather than restrictive sense.
Claims (12)
- A foundry method of casting monocrystalline metal parts (256), the method comprising at least the steps of:casting a molten alloy (254) into a cavity (251) of a mold (250) through at least one casting channel (252) in the mold (250);subjecting the alloy to heat treatment; andremoving the mold (250);characterized in that said casting channel (252) includes at least one transition zone adjacent to said cavity (251), with a rounded portion of radius not less than 0.3 mm between said casting channel (252) and said cavity (251) and presenting, relative to an upstream section, a cross-section that is enlarged in the direction of a main axis (X) of a section (S) of the cavity (251) in a plane (A) that is perpendicular to the casting channel (252).
- A foundry method of casting monocrystalline metal parts according to claim 1, wherein, after casting, said transition zone forms at least one metal web (261, 262, 263) that is thinner than the casting channel (252) upstream.
- A foundry method of casting monocrystalline parts (256) according to claim 2, wherein, after casting, said transition zone forms at least one metal web (261, 262, 263) on each of two opposite sides of the casting channel (252), which at least one metal web is thinner than the casting channel (252) upstream.
- A foundry method of casting monocrystalline metal parts (256) according to claim 3, wherein said mold contains at least one core (255) penetrating into said cavity and occupying a space adjacent to said casting channel (252) so as to form a cavity in the metal part (256), and wherein, after casting, said transition zone forms at least one metal web (262, 263) adjacent to said core (255) and thinner than the casting channel (252) upstream.
- A foundry method of casting monocrystalline metal parts (256) according to claim 4, wherein said metal web (262, 263) adjacent to the core (255) presents an outer edge (270, 271) following a substantially concave line adjacent on a surface of the core (255).
- A foundry method of casting monocrystalline metal parts (256) according to claim 4 or claim 5, wherein, after casting, said transition zone forms at least one metal web (262, 263) adjacent to said core (255) on each of two opposite sides of the core (255).
- A foundry method of casting monocrystalline metal parts (256) according to claim 6, wherein said metal webs (262, 263) adjacent to the core (255) present outer edges (270, 271) that join together at the ends so as to surround the core (255).
- A foundry method according to any one of claims 1 to 7, wherein said metal part (256) is a turbine engine blade.
- A foundry method according to any one of claims 1 to 8, wherein said mold (250) contains a plurality of cavities (251) arranged as a bunch in order to mold a plurality of metal parts (256) simultaneously.
- A foundry method according to any one of claims 1 to 9, wherein the heat treatment is performed after the alloy has solidified in the mold (250) and before the end of mold removal.
- A foundry method according to any one of claims 1 to 10, wherein said removal of the mold (250) comprises a first step of removal by hammering and a subsequent step of removal by water jet, said heat treatment being performed at least before the removal by water jet.
- A monocrystalline metal part (256) produced by a foundry method according to any one of claims 1 to 11.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1157264A FR2978927B1 (en) | 2011-08-09 | 2011-08-09 | FOUNDRY PROCESS OF SINGLE CRYSTALLINE METAL PARTS |
PCT/FR2012/051852 WO2013021130A1 (en) | 2011-08-09 | 2012-08-06 | Method for casting monocrystalline metal parts |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2741876A1 EP2741876A1 (en) | 2014-06-18 |
EP2741876B1 EP2741876B1 (en) | 2015-12-09 |
EP2741876B2 true EP2741876B2 (en) | 2018-10-17 |
Family
ID=46832472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12758546.1A Active EP2741876B2 (en) | 2011-08-09 | 2012-08-06 | Method for casting monocrystalline metal parts |
Country Status (8)
Country | Link |
---|---|
US (1) | US9731350B2 (en) |
EP (1) | EP2741876B2 (en) |
CN (1) | CN103747896B (en) |
BR (1) | BR112014003169B1 (en) |
CA (1) | CA2844584C (en) |
FR (1) | FR2978927B1 (en) |
RU (1) | RU2605023C2 (en) |
WO (1) | WO2013021130A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9676028B2 (en) * | 2012-07-06 | 2017-06-13 | Pcc Structurals, Inc. | Method for processing castings |
DE202015003228U1 (en) | 2015-05-05 | 2015-08-19 | Bernd Rothenburg | Magnetic bottom closure for a drinking vessel containing a transponder |
CN109530673A (en) * | 2019-01-16 | 2019-03-29 | 江苏海金非晶科技有限公司 | Amorphous master alloy particle manufacture mold and production technology |
CN114515818B (en) * | 2020-11-18 | 2024-04-26 | 中国航发商用航空发动机有限责任公司 | Manufacturing method and mold of aircraft engine combustion chamber swirler |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2820266A (en) † | 1955-03-11 | 1958-01-21 | Everard F Kohl | Shell mold structure |
US3494709A (en) † | 1965-05-27 | 1970-02-10 | United Aircraft Corp | Single crystal metallic part |
DE2450602A1 (en) † | 1973-10-26 | 1975-04-30 | United Aircraft Corp | PROCESS AND CASTING FORM FOR MANUFACTURING CASTINGS WITH STEM STRUCTURE FROM A HIGH TEMPERATURE-RESISTANT ALLOY |
GB2286786A (en) † | 1994-02-18 | 1995-08-30 | New Pro Foundries Limited | Metal composite casting |
DE3334473C1 (en) † | 1982-09-28 | 1997-01-30 | Snecma | Process for the production of monocrystalline pieces |
US5706881A (en) † | 1994-05-12 | 1998-01-13 | Howmet Research Corporation | Heat treatment of superalloy casting with partial mold removal |
US6364001B1 (en) † | 2000-08-15 | 2002-04-02 | Pcc Airfoils, Inc. | Method of casting an article |
US20050258577A1 (en) † | 2004-05-20 | 2005-11-24 | Holowczak John E | Method of producing unitary multi-element ceramic casting cores and integral core/shell system |
EP2027952A2 (en) † | 2002-08-08 | 2009-02-25 | Consolidated Engineering Company, Inc. | Methods and apparatus for heat treatment and sand removal for castings |
US20100006253A1 (en) † | 2008-07-08 | 2010-01-14 | Newcomb Thomas P | Method and system for internal cleaning of complex castings |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4116723A (en) * | 1976-11-17 | 1978-09-26 | United Technologies Corporation | Heat treated superalloy single crystal article and process |
US4385939A (en) * | 1981-11-13 | 1983-05-31 | Trw Inc. | Method of producing a single crystal article |
FR2557598B1 (en) | 1983-12-29 | 1986-11-28 | Armines | SINGLE CRYSTAL ALLOY WITH NICKEL-BASED MATRIX |
JP2501455B2 (en) * | 1987-12-23 | 1996-05-29 | 松下電工株式会社 | Electrode holder |
GB8829818D0 (en) * | 1988-12-21 | 1989-02-15 | Ae Turbine Components | Processing of castings |
RU2034681C1 (en) * | 1992-04-22 | 1995-05-10 | Многопрофильное малое предприятие "Техматус" | Method to produce extended thin-walled castings |
FR2691166B1 (en) * | 1992-05-13 | 1994-08-19 | Europ Propulsion | Monocrystalline superalloy based on iron-nickel, in particular for blades of rocket engine turbines, and process for obtaining them. |
US5549765A (en) * | 1993-03-18 | 1996-08-27 | Howmet Corporation | Clean single crystal nickel base superalloy |
US5327955A (en) * | 1993-05-04 | 1994-07-12 | The Board Of Trustees Of Western Michigan University | Process for combined casting and heat treatment |
JP3395019B2 (en) * | 1994-03-10 | 2003-04-07 | 株式会社日立製作所 | Manufacturing method of single crystal blade for gas turbine |
EP0763604B1 (en) * | 1995-09-18 | 2007-08-22 | Howmet Corporation | Clean single crystal nickel base superalloy |
US6910519B2 (en) * | 2001-11-28 | 2005-06-28 | Mpi Incorporated | Process and apparatus for assembly of wax trees |
JP4257162B2 (en) * | 2003-07-30 | 2009-04-22 | 株式会社木村鋳造所 | Stainless steel casting manufacturing method |
RU2254962C1 (en) * | 2004-01-22 | 2005-06-27 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Method for producing nickel-alloy castings |
US7093645B2 (en) * | 2004-12-20 | 2006-08-22 | Howmet Research Corporation | Ceramic casting core and method |
JP5567331B2 (en) * | 2006-04-19 | 2014-08-06 | ホーメット コーポレーション | Continuous mold filling method, mold assembly and casting |
US7625178B2 (en) * | 2006-08-30 | 2009-12-01 | Honeywell International Inc. | High effectiveness cooled turbine blade |
FR2924155B1 (en) * | 2007-11-26 | 2014-02-14 | Snecma | TURBINE DAWN |
US8167608B2 (en) * | 2009-04-27 | 2012-05-01 | Mold-Masters (2007) Limited | Melt channel geometries for an injection molding system |
-
2011
- 2011-08-09 FR FR1157264A patent/FR2978927B1/en active Active
-
2012
- 2012-08-06 RU RU2014108855/02A patent/RU2605023C2/en active
- 2012-08-06 WO PCT/FR2012/051852 patent/WO2013021130A1/en active Application Filing
- 2012-08-06 BR BR112014003169-0A patent/BR112014003169B1/en active IP Right Grant
- 2012-08-06 CN CN201280038946.6A patent/CN103747896B/en active Active
- 2012-08-06 CA CA2844584A patent/CA2844584C/en active Active
- 2012-08-06 EP EP12758546.1A patent/EP2741876B2/en active Active
- 2012-08-06 US US14/237,982 patent/US9731350B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2820266A (en) † | 1955-03-11 | 1958-01-21 | Everard F Kohl | Shell mold structure |
US3494709A (en) † | 1965-05-27 | 1970-02-10 | United Aircraft Corp | Single crystal metallic part |
DE2450602A1 (en) † | 1973-10-26 | 1975-04-30 | United Aircraft Corp | PROCESS AND CASTING FORM FOR MANUFACTURING CASTINGS WITH STEM STRUCTURE FROM A HIGH TEMPERATURE-RESISTANT ALLOY |
DE3334473C1 (en) † | 1982-09-28 | 1997-01-30 | Snecma | Process for the production of monocrystalline pieces |
GB2286786A (en) † | 1994-02-18 | 1995-08-30 | New Pro Foundries Limited | Metal composite casting |
US5706881A (en) † | 1994-05-12 | 1998-01-13 | Howmet Research Corporation | Heat treatment of superalloy casting with partial mold removal |
US6364001B1 (en) † | 2000-08-15 | 2002-04-02 | Pcc Airfoils, Inc. | Method of casting an article |
EP2027952A2 (en) † | 2002-08-08 | 2009-02-25 | Consolidated Engineering Company, Inc. | Methods and apparatus for heat treatment and sand removal for castings |
US20050258577A1 (en) † | 2004-05-20 | 2005-11-24 | Holowczak John E | Method of producing unitary multi-element ceramic casting cores and integral core/shell system |
US20100006253A1 (en) † | 2008-07-08 | 2010-01-14 | Newcomb Thomas P | Method and system for internal cleaning of complex castings |
Non-Patent Citations (2)
Title |
---|
DONACHIE, MATTHEW J. ET AL, SUPERALLOYS- TECHNICAL GUIDE, April 2008 (2008-04-01), pages 86 - 87 † |
TIMINGS, R.L. ET AL: "Designing for investment casting", MANUFACTURING TECHNOLOGY, vol. 2, July 2000 (2000-07-01), pages 36 - 37, XP055306282 † |
Also Published As
Publication number | Publication date |
---|---|
BR112014003169A2 (en) | 2017-03-01 |
CN103747896A (en) | 2014-04-23 |
CA2844584C (en) | 2019-08-27 |
FR2978927A1 (en) | 2013-02-15 |
BR112014003169B1 (en) | 2018-11-27 |
US20140193291A1 (en) | 2014-07-10 |
RU2605023C2 (en) | 2016-12-20 |
CA2844584A1 (en) | 2013-02-14 |
EP2741876A1 (en) | 2014-06-18 |
FR2978927B1 (en) | 2013-09-27 |
CN103747896B (en) | 2016-10-19 |
EP2741876B1 (en) | 2015-12-09 |
US9731350B2 (en) | 2017-08-15 |
WO2013021130A1 (en) | 2013-02-14 |
RU2014108855A (en) | 2015-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2900403B1 (en) | Shell mould having a heat shield | |
CA2909031C (en) | Monocrystalline smelting mould | |
EP2741876B2 (en) | Method for casting monocrystalline metal parts | |
EP2895285B1 (en) | Foundry model | |
EP3414031B1 (en) | Method for forming dust-removal holes for a turbine blade and associated ceramic core | |
EP3134219B1 (en) | Mould for monocrystalline casting | |
WO2017207933A1 (en) | Mould for manufacturing a single-crystal blade by casting, installation and method of manufacture implementing same | |
WO2015155448A1 (en) | Heat treatment of an alloy based on titanium aluminide | |
FR3042725B1 (en) | MOLD FOR MANUFACTURING A PIECE BY METAL CASTING AND EPITAXIAL GROWTH, AND METHOD THEREOF | |
FR2991612A1 (en) | PROCESS FOR THE FOUNDED PRODUCTION OF A PIECE COMPRISING AN EFFICIENT PORTION | |
FR3033721A1 (en) | FLEXIBLE THERMAL SCREEN MOLD | |
FR3070286A1 (en) | CASTING TREE FOR LOST MODEL FOUNDING MANUFACTURING PROCESS AND METHOD OF MANUFACTURE | |
EP4061557B1 (en) | Foundry mold, method for manufacturing the mold and foundry method | |
FR2977510B1 (en) | FOUNDRY CORE, METHOD FOR MANUFACTURING TURBINE BLADE UTILIZING SUCH CORE. | |
FR3108539A1 (en) | DIRECTED SOLIDIFICATION PROCESS FOR METAL ALLOYS AND MODEL IN ELIMINABLE MATERIAL FOR THE PROCESS | |
FR3033720B1 (en) | FOUNDRY MOLD | |
WO2020229055A1 (en) | Mould for manufacturing a component by pouring metal and epitaxial growth, and associated manufacturing method | |
FR3127144A1 (en) | Process for manufacturing a bi-material aeronautical part |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140225 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150619 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 764343 Country of ref document: AT Kind code of ref document: T Effective date: 20151215 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012012938 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20151209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 764343 Country of ref document: AT Kind code of ref document: T Effective date: 20151209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160310 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160409 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160411 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602012012938 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: SIEMENS AKTIENGESELLSCHAFT Effective date: 20160906 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160806 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: SIEMENS AKTIENGESELLSCHAFT Effective date: 20160906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: SAFRAN AIRCRAFT ENGINES, FR Effective date: 20170719 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SAFRAN AIRCRAFT ENGINES |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20181017 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 602012012938 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: RPEO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240723 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240723 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240723 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240723 Year of fee payment: 13 Ref country code: IT Payment date: 20240723 Year of fee payment: 13 |