Nothing Special   »   [go: up one dir, main page]

EP2741862B1 - Device for generating a pulsating fluid jet subjected to pressure - Google Patents

Device for generating a pulsating fluid jet subjected to pressure Download PDF

Info

Publication number
EP2741862B1
EP2741862B1 EP12725005.8A EP12725005A EP2741862B1 EP 2741862 B1 EP2741862 B1 EP 2741862B1 EP 12725005 A EP12725005 A EP 12725005A EP 2741862 B1 EP2741862 B1 EP 2741862B1
Authority
EP
European Patent Office
Prior art keywords
fluid
nozzle
chamber
workpiece
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12725005.8A
Other languages
German (de)
French (fr)
Other versions
EP2741862A1 (en
Inventor
Hermann-Josef David
Egon KÄSKE
Norbert Klinkhammer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecoclean GmbH
Original Assignee
Ecoclean GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecoclean GmbH filed Critical Ecoclean GmbH
Publication of EP2741862A1 publication Critical patent/EP2741862A1/en
Application granted granted Critical
Publication of EP2741862B1 publication Critical patent/EP2741862B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0623Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F3/00Severing by means other than cutting; Apparatus therefor
    • B26F3/004Severing by means other than cutting; Apparatus therefor by means of a fluid jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/02Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery
    • B05B12/06Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery for effecting pulsating flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/06Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00 specially designed for treating the inside of hollow bodies
    • B05B13/0627Arrangements of nozzles or spray heads specially adapted for treating the inside of hollow bodies
    • B05B13/0636Arrangements of nozzles or spray heads specially adapted for treating the inside of hollow bodies by means of rotatable spray heads or nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/021Cleaning pipe ends or pipe fittings, e.g. before soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/0804Cleaning containers having tubular shape, e.g. casks, barrels, drums
    • B08B9/0813Cleaning containers having tubular shape, e.g. casks, barrels, drums by the force of jets or sprays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/093Cleaning containers, e.g. tanks by the force of jets or sprays
    • B08B9/0936Cleaning containers, e.g. tanks by the force of jets or sprays using rotating jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/08Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives
    • B24C1/086Descaling; Removing coating films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C5/00Devices or accessories for generating abrasive blasts
    • B24C5/005Vibratory devices, e.g. for generating abrasive blasts by ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0046Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a gaseous carrier
    • B24C7/0053Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a gaseous carrier with control of feed parameters, e.g. feed rate of abrasive material or carrier
    • B24C7/0061Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a gaseous carrier with control of feed parameters, e.g. feed rate of abrasive material or carrier of feed pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/06Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00 specially designed for treating the inside of hollow bodies
    • B05B13/0645Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00 specially designed for treating the inside of hollow bodies the hollow bodies being rotated during treatment operation
    • B05B13/0672Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00 specially designed for treating the inside of hollow bodies the hollow bodies being rotated during treatment operation and the inclination or the distance of a treating nozzle being modified relative to the rotation axis, e.g. for treating irregular internal surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/364By fluid blast and/or suction

Definitions

  • the invention relates to a device for generating a pulsating fluid jet of pressurized fluid with a conduit system containing at least one nozzle having a nozzle mouth from which a fluid jet of pressurized fluid can escape, and which has a chamber in a pressure wave generating device for generating fluid pressure waves is formed, which communicates with the line system through an outlet opening for the generated fluid pressure waves.
  • Such a device is known from WO 2006/097887 A1 known.
  • the object of the invention is to provide a device for the efficient machining of the surface of workpieces with fluid jets, which can operate with comparatively low fluid pressures.
  • the device according to the invention is particularly suitable for applying a fluid to a workpiece surface in the form of wash liquor and / or water and / or emulsion, in particular water-oil emulsion and / or oil.
  • the invention is based on the idea that can be generated by coupling of vibration energy in the form of pressure waves in a fluid jet, in particular in a fluid jet, which is subjected to an increased pressure, which may be 20 bar, 30 bar or more, generate fluid pulses, in which the vibration energy is converted into kinetic energy.
  • a fluid jet in particular in a fluid jet, which is subjected to an increased pressure, which may be 20 bar, 30 bar or more, generate fluid pulses, in which the vibration energy is converted into kinetic energy.
  • an increased pressure which may be 20 bar, 30 bar or more
  • the kinetic energy transferable to the fluid by generating pressure waves can be maximized by ensuring that the reflections of pressure waves in a conduit system for supplying pressurized fluid to a nozzle do not cancel the generated pressure waves but reinforce due to interference.
  • the ratio of the effective path length, which the pressure waves in the conduit system from the outlet opening of the chamber to the nozzle mouth of a nozzle cover and the wavelength of the fluid pressure waves, ie, a fluid pressure waves in the line system characterizing Helmholtz number are set.
  • the line system may include a first line piece and a at least partially received in the first line piece and communicating with this second line piece, which can be displaced relative to the first line piece in the longitudinal direction. It is advantageous in this case, if the second line piece, e.g. is guided linearly movable with a thread on the first line piece. Conveniently, a fixing device is provided, with which the second line piece can be fixed to the first line piece.
  • the device may include frequency adjustment means for adjusting the frequency of the generated fluid pressure waves. In fact, by varying the frequency of the fluid pressure waves, their wavelength in the fluid is also changed.
  • workpieces can be roughened and cleaned, in particular without abrasive additives.
  • the conduit system advantageously has a first conduit system section with a connection for a pressure pump and has a second conduit system section with a receptacle for the nozzle. It is advantageous if the first section and the second section are connected to a swivel joint.
  • the second conduit system portion in the pivot joint is coaxial with respect to the first conduit system portion about an axis of fluid passage formed in the second portion Axial oscillating and / or can be moved in rotation, it is possible to produce regular or irregular structures in the surface of a workpiece bore.
  • the device preferably contains a motor drive for moving the second line system section.
  • the line system has a first line system section with a connection for a pressure pump and has a second line system section, in which a plurality of nozzles are each arranged with a nozzle mouth, which are acted upon by separate line branches with fluid.
  • a length-adjustable line for pressurized fluid is arranged in the separate line branches to the nozzles in each case.
  • a vent valve is beneficial.
  • this vent valve is arranged so that even with a displacement of the device, these air bubbles can escape.
  • the vent valve may for example be accommodated in an upper ceiling portion of the chamber.
  • the chamber may have an opening separate from the exit opening for supplying high pressure fluid. This allows efficient delivery of fluid into the chamber. To ensure that the energy supplied to the pressure wave generating device with a good efficiency is converted into pressure waves, it is advantageous if the pressure wave generating device is located in a Totigan which the chamber.
  • the chamber has a cross-section which is funnel-shaped in the direction of the outlet opening. It is advantageous to provide in the chamber a sensor for detecting pressure waves, so that the pressure wave generation can be monitored there.
  • the sensor is conveniently designed as a pressure sensor and arranged in a portion of the chamber, which tapers in a funnel shape in the direction of the outlet opening.
  • the at least one nozzle may have a nozzle chamber whose cross-section is tapered towards the nozzle mouth. Extensive experiments have shown that with the nozzle fluid pulses can be generated with a very large kinetic energy when the nozzle chamber in front of the nozzle mouth has a conically tapered portion with an obtuse angle of aperture a, preferably an aperture angle a in the range 105 ° ⁇ a ⁇ 180 °.
  • the at least one nozzle has a cylindrical, preferably circular cylindrical nozzle chamber with an opening arranged on the front side in the nozzle mouth.
  • the fluid pulses that can be generated with such a nozzle are particularly suitable for removing material from aluminum materials. Due to cavitation, such a nozzle makes it possible to form fluid droplets which are particularly suitable for removing material and which are then contained in the pulsating fluid jet.
  • a measuring device for detecting material removed from a workpiece with a fluid jet it is possible to monitor the removal of material caused by the pulsating fluid jet.
  • these coatings require that the surface of these assemblies be prepared for coating, ie, usually roughened or activated.
  • the surface can Such workpieces are machined by cutting tools to prepare for the coating and machined.
  • An idea of the invention against this background is also that with a pulsating fluid jet in the surface of a workpiece structures can be produced which improve the adhesion of a coating on the surface and in particular allow the coating can be loaded with very large shear forces.
  • Coating materials also reduces the weight of engine components and allows compact designs, such as cylinder crankcases, in which the cylinder bores are at a reduced distance from each other compared to conventional housings.
  • one or more devices according to the invention for generating a fluid jet in a plant for applying workpieces with fluid which contains a controllable device for adjusting the pressure of the fluid supplied from the conduit system and the one with the device for the setting of the pressure and the pressure wave generating means connected computing unit with a Data storage has, in which a parameter map for the application-specific adjustment of the fluid pressure and / or the amplitude and / or the frequency of the pressure wave generating device can be generated with the fluid pressure waves is stored.
  • the parameter map can also be a favorable nozzle rotation speed depending on a material to be machined, in particular substrate and / or a given workpiece geometry and / or a workpiece surface finish, in particular a workpiece surface roughness, and / or a kind of workpiece contamination and / or a machining distance of a workpiece to be machined from the at least one nozzle mouth of the device to be stored.
  • an advantageous angle of a pulsating high-pressure fluid jet generated by a corresponding device to a workpiece surface can also be stored in the parameter map.
  • such a system includes a manipulator to move a fluid-to-be-pressurized workpiece relative to the device or apparatus relative to the workpiece.
  • the manipulator can perform completely free movements, in particular linear movements or free curve movements.
  • an articulated robot with six axes of movement is provided as a manipulator.
  • An idea of the invention is also to activate a surface of a workpiece for flame spraying or plasma spraying or arc wire spraying with a pulsating fluid jet, which can be produced eg with an inventive device, or to prepare it for gluing.
  • a pulsating fluid jet to process a workpiece surface produced by means of flame spraying or plasma spraying or electric arc wire spraying.
  • One finding of the invention is, in particular, that the preparation of the wall of a bore in a workpiece, in particular the adhesive properties of a workpiece surface produced by means of electric arc wire spraying, can be optimized if the nozzle is to produce at an angle ⁇ of 0 ° ⁇ ⁇ ⁇ 60 °, preferably ⁇ ⁇ 45 °, is applied to the local surface normal of the wall inclined direction with a pulsating high pressure fluid jet, and the nozzle is thereby rotates relative to the workpiece about the axis of the bore and translationally displaced in the direction of the axis of the bore.
  • the distance of the nozzle opening to the workpiece surface is favorably between 10 mm and 150 mm.
  • a section of a workpiece can be finished by applying a surface coating to the workpiece in a first step and then, in a second step, processing and / or partially removing the coating by means of a pulsating fluid jet.
  • This fluid jet can be generated in particular with a device according to the invention.
  • the inventors have also recognized that the surface of a workpiece can be activated by means of a pulsating fluid jet, in particular by means of a pulsating fluid jet generated by a device according to the invention, in order to achieve the adhesive properties for the coating on the surface and the mechanical or thermal resilience to increase the coating.
  • a pulsating fluid jet which can be produced for example with a device according to the invention, the surface of an existing at least partially made of aluminum or aluminum alloy or magnesium alloys workpiece on this by means of thermal spraying (Arc wire spraying, LDS, plasma spraying, etc.) to apply a surface coating of ferrous material and then with a pulsating fluid jet, eg from a to edit the device according to the invention.
  • a finding of the inventors is also that by means of a pulsating fluid jet, which can be produced, for example, with a device according to the invention, the surface of a at least partially made of steel or gray cast workpiece can be activated to apply thereto by means of laser wire welding a surface coating of nickel-containing material , Moreover, it is an idea of the inventors that a coating applied to a workpiece made of steel or cast iron, aluminum, an aluminum alloy or a magnesium alloy is processed in the form of laser-wire-welded ferrous or nickel-containing material with a pulsating fluid jet can, in particular with a pulsating fluid jet from a device according to the invention.
  • the plant 10 in Fig. 1 is designed to activate the surface 12 of a cylindrical recess 14 in a workpiece 15 by means of pulsating fluid jets 16, 18 of water.
  • the system 10 For generating the fluid jets 16, 18, the system 10 has a device 20 with a chamber 22 in which a device 24 for generating fluid pressure waves 32 is formed.
  • the device 24 is connected to a controllable frequency generator 31.
  • the device 24 contains a piezoelectric crystal 28, which acts as an electromechanical transducer and is connected to a sonotrode 30.
  • the sonotrode 30 in the water can generate pressure waves 32 at a frequency v which is preferably in the range of 10 kHz ⁇ v ⁇ 50 kHz.
  • the piezoelectric crystal 28 is subjected to a high-frequency alternating voltage from a frequency generator 31.
  • the frequency generator 31 is designed for generating ultrasonic frequencies, preferably ultrasonic frequencies in the range 10 kHz ⁇ v ⁇ 50 kHz.
  • the wavelength ⁇ of the pressure waves 32 in the line system 36 can be varied.
  • the chamber 22 is preferably tuned to a wavelength range of the fluid pressure waves 32 that can be generated with the sonotrode 30. For fluid pressure waves 32 in this wavelength range, the chamber 22 then acts as a resonance chamber.
  • the chamber 22 has an outlet opening 34 to a conduit system 36 which connects the chamber 22 with nozzles 38, 40.
  • the piping system 36 has a chamber-side section 42 and includes a nozzle-side section 44.
  • the chamber-side section 42 and the nozzle-side section 44 are connected by means of a pivot joint 46.
  • the nozzle-side section 44 can be moved by means of a motorized rotary drive 48 about an axis coaxial to the fluid channel 50 axis oscillating and / or rotationally by means of a drive motor 54 by motor.
  • the nozzles 38, 40 are located in the nozzle-side portion 44 of the conduit system 36 in line branches 56, 58, which are separated from each other.
  • the fluid channel 60 formed in the nozzle-side section 44 is branched into the line branches 56, 58.
  • the adjustable line 62, 64 includes a first line piece 66, 68 and at least partially in the first line piece 66, 68 received and the second conduit 70, 72 communicating therewith.
  • the second conduit 70, 72 can be displaced coaxially relative to the first conduit 66, 68 in the longitudinal direction 74, 76 corresponding to the double arrow 78, 80.
  • the effective path length 26 for pressure waves 32 between the outlet opening 34 and the workpiece side facing away from the nozzle mouth 82, 84 of the nozzles 38, 40 can be adjusted.
  • the movement play for the line piece 70, 72 is tuned to the wavelength of the pressure waves 32.
  • the movement play is favorably at least half a wavelength of the pressure waves 32. It is preferably in a range between 40 mm and 300 mm.
  • the conduit 43 can be displaced coaxially translationally relative to the conduit 45 by means of an adjusting device 47.
  • the adjusting device 47 makes it possible to set the effective path length 26 for the pressure waves 32 in the line system 36.
  • the adjusting device 47 can be adjusted by means of a (electric) motor drive (not shown).
  • a (electric) motor drive not shown.
  • the adjusting device 47 thus acts as an adjusting device for adjusting, ie setting the amplitude A P of the fluid pressure waves 22 in the line system 36 before the at least one nozzle mouth 125.
  • the adjustable lines 62, 64 also act as adjusting means for controlling the amplitude A P of fluid pressure waves 32 in front of the corresponding nozzle mouth of the nozzle 38, 40.
  • the chamber-side portion and the nozzle-side portion are made in one piece.
  • the nozzle-side portion is mounted translationally displaceable on the chamber-side portion, without which a rotary joint is provided with a rotary drive.
  • the translational movement of the nozzle-side section is realized manually and / or by means of spring force, by means of an electromagnet and / or by means of an electric linear motor.
  • the adjustable frequency generator 31 is also such an adjustment device. By varying the frequency v of the alternating voltage generated by means of the frequency generator 31, it is possible to set the wavelength ⁇ of the pressure waves 32 in the line system 36 and thus the amplitude A P of the fluid pressure waves 22 in the line system 36, for example in front of the nozzle mouth 125.
  • the effective line cross-section 86, 88 of the lines in the line system 36 to the nozzle mouth 82, 84 of the nozzles 38, 40 towards monotonically decreases. This causes the oscillation amplitude for the pressure of a pressure wave 32 in the direction of the fluid flow guided by the conduit system 36 in accordance with the arrow 90 to rise towards the nozzles 38, 40.
  • the device 20 can be formed in a further modified embodiment with only one nozzle or with a plurality of nozzles.
  • the device 20 can be implemented with a frequency generator 31 whose frequency v can be varied without the line system containing length-adjustable lines.
  • the system 10 includes a pressure pump 91 and includes a reservoir 92 having a funnel-shaped outlet 93 for collecting fluid that passes from the nozzles 38, 40 to the workpiece 15.
  • the pressure pump 91 With the pressure pump 91, the fluid for generating pulsating fluid jets in the system 10 is circulated in a circuit.
  • the pressure pump 91 is designed so that in chamber 22, a fluid pressure in the range between 40 bar and 150 bar and preferably a fluid pressure in the order of 100 bar can be generated and adjusted.
  • the frequency v and the amplitude A P of the pressure waves the size and spacing of liquid droplets in fluid jets 16, 18 exiting the nozzle 38, 40 can be varied.
  • the system 10 may instead of the pressure pump 91, a device with a high pressure pump for the Supplying high-pressure fluid contained in the conduit system 36 of the device, which ensures a fluid pressure which can be up to 3000 bar.
  • a high-pressure pump is suitable, which provides a fluid pressure between 300 bar and 600 bar.
  • the Fig. 2 shows the chamber 22 for generating the fluid pressure waves 32 in the device 10.
  • the chamber 22 has an opening 94 for supplying pressurized fluid from the high-pressure pump 91.
  • the opening 94 is separated from the outlet opening 34 in a lateral portion the chamber 22 is arranged.
  • the chamber 22 may be vented through an opening 96 with a controllable vent valve 98.
  • the sonotrode 30 is located in the chamber 22 in a dead water region 33 at a distance from the flow 35 of the fluid supplied through the opening 94 into the chamber 22 in the direction of the outlet opening 34.
  • the chamber 22 is formed in the section 99 with a funnel-shaped tapered cross-section.
  • the amplitude A P of the pressure waves 32 generated by the sonotrode 30 of the device 24 is amplified.
  • the graphic 100 in Fig. 2 shows with the curve 101, the amplitude of the pressure of a pressure wave 32 in the chamber 22 as a function of the distance z from the surface 26 of the sonotrode 28th
  • the flow rate and shape of the pulsating fluid jet generated by the nozzles 38, 40 can be adjusted.
  • a pressure sensor 102 In the chamber 22 is conveniently located a pressure sensor 102.
  • the pressure sensor 102 is disposed in the portion 99 of the chamber 22.
  • the pressure sensor 102 is connected to a measuring device 103, which is a display unit 105 has.
  • the pressure sensor 102 can be used to detect the pressure fluctuations which are caused by the pressure waves 32 generated in the chamber 22 in the section 99.
  • the display unit 105 thus allows an operator to monitor the operation of the device 20.
  • the system 10 for monitoring the operation of the device 20 may also include a control computer 134 connected to the measuring device 103, which controls the device 24 for generating fluid pressure waves 32 and the pressure pump 91 as a function of the pressure fluctuation signal detected by the pressure sensor 102 ,
  • the erosion measuring device 20 in the system 10 e.g. the pulsating fluid jet 16, 18 exiting the nozzles 38, 40 is fed to an erosion meter (not shown).
  • This erosion measuring device contains a test membrane to which the fluid jet is directed. In a proper operation of the device 20, a certain amount of material per unit time is removed from this test membrane. In order to detect the removal of material from this test membrane, the erosion measuring device contains a tactile sensor.
  • a measuring device at a bypass to the outlet 93, which detects separated particles (for example a magnetic or optical particle counter), so that the function of the device 20 can be monitored in this way.
  • control computer 134 includes a data memory 135 in which a parameter map 136 for the application-specific adjustment of the fluid pressure P and / or the amplitude A P and / or the frequency v of the fluid pressure waves generated by the pressure wave generating means 32 and / or a nozzle rotation speed due a workpiece-specific application of the device 20 entered via an input unit 137 of the computer unit 136 is stored.
  • the parameter map 136 sets, in particular, information about, for example, an empirically determined relationship between the abovementioned operating parameters and at least one of the following application parameters: Type of material or substrate to be machined, workpiece geometry, target / actual workpiece surface finish, in particular workpiece surface roughness, type of workpiece contamination (eg chemical composition or hardness), machining distance of a workpiece to be machined for a given nozzle diameter of the Nozzle mouth of the nozzles 38, 40.
  • control computer 134 is connected via a control line 138 to the pressure pump 91 and connected via lines 139, 140 to the measuring device 103 and the frequency generator 31.
  • master computer 134 e.g. the pressure that can be generated with the pressure pump can be regulated so that wear of the nozzles used in the device 20 is compensated by increasing the pump pressure.
  • the Fig. 3 shows section III of the Fig. 1 with the length-adjustable conduit 62 in the device 20 in an enlarged view.
  • the second line piece 70 is screwed into a thread 104 on the first line piece 66.
  • the thread 104 is a fine thread.
  • the second line piece 70 can be displaced coaxially relative to the first line piece 66 corresponding to the double arrow 106.
  • the second line piece 70 can be fixed to the first line piece 66 with a lock nut 110 arranged on the thread 108 of the second line piece 70 which is designed as a fine thread.
  • the second line piece 70 passes through one arranged in the first line piece 66 Sealing ring 112, which prevents the escape of fluid between the first line piece 66 and the second line piece 70.
  • the nozzle 36 is received.
  • the nozzle 36 has an outside flange 114, which is pressed by means of a union nut 116 against an arranged on the end face 118 of the second line piece 70 sealing ring 119.
  • the Fig. 4 shows a further nozzle 39 for use in the device.
  • the nozzle 39 has a nozzle body 120 with a nozzle chamber 122 and a nozzle mouth 125.
  • the nozzle mouth 125 has a length L M , which is preferably about 6 mm.
  • the nozzle mouth 125 is conveniently in the form of a hollow cylinder.
  • the hollow cylinder has a diameter D M , which is preferably in the range between 0.5 mm and 3 mm and advantageously 1 mm.
  • the nozzle chamber 122 is formed with a cross-section which tapers conically towards the nozzle mouth 125.
  • the opening angle ⁇ of the cone in the section 126 of conically tapered cross-section is obtuse.
  • the pulsating high-pressure fluid jet can be generated with fluid droplets which have a particularly favorable shape for the removal of material.
  • the nozzle 39 high-pressure fluid jet pulses with liquid droplets can then be generated even at a fluid pressure in a range between 300 bar and 600 bar, whose kinetic energy is so great that thus efficient removal of material is possible in particular on metallic materials.
  • the opening angle a is greater than 180 °, in particular selected to 240 °. In this case, cavitation increasingly occurs in the nozzle mouth, which in turn promotes droplet formation at the nozzle outlet.
  • the Fig. 5 shows a nozzle 150, which has a nozzle body 151 with a nozzle chamber 152 designed as a circular cylinder.
  • the nozzle chamber 152 has an axially disposed end opening 154 in the nozzle mouth 156.
  • the nozzle mouth 156 is designed as a bore.
  • the diameter D B of the bore of the nozzle mouth is about 1/3 of the diameter D Z of the nozzle chamber.
  • the nozzle mouth 156 has a length L M which is about 6 mm.
  • nozzles for use in the device 20 are basically also so-called flat jet nozzles, star nozzles, square nozzles, triangular nozzles or nozzles that produce a fluid jet in the form of an omnidirectional.
  • An advantage of the device described above is that little or no cavitation occurs when operating with high-pressure liquid in the nozzles, so that then the wear of nozzles in the device is comparatively low.
  • the Fig. 6 shows another nozzle 170 for use in the device.
  • the nozzle 170 has a nozzle body 171 with a nozzle chamber 172 and a nozzle mouth 173.
  • the nozzle mouth has a length L M which is about 6 mm and a diameter D H ⁇ 1 mm.
  • the nozzle chamber 172 is formed with a cross-section which tapers conically towards the nozzle mouth 173.
  • the opening angle ⁇ of the cone in the section 173 of conically tapered cross section is acute.
  • a favorable value for the opening angle a of the cone is: a ⁇ 58 °.
  • the nozzle 170 includes a jet director 175.
  • the jet director 175 inhibits turbulence in the pressurized fluid in the nozzle chamber 172.
  • the Fig. 7 shows a section of the nozzle 170 along the line VII - VII in Fig. 6 ,
  • the jet director 175 separates the nozzle chamber 172 in the section 176 into four separate flow channels 177.
  • a means 130 for processing the fluid supplied to the chamber 22 with the pressure pump 91 there is a means 130 for processing the fluid supplied to the chamber 22 with the pressure pump 91.
  • the fluid circulated in the system 10 is freed of dirt particles. Particles and coating parts detached from a workpiece 15 are rinsed out of the workpiece in the system 10 with rinsing devices (not shown) and collected together with the fluid in a dirt tank in the device 130.
  • the device 130 includes a filter system. With this filter system, the fluid supplied to the device 130 can remove the particles and contaminants detached from the workpiece, so as not to damage the device 20 for generating a pulsating fluid jet.
  • the Fig. 8 shows a system 210 for activating the surface 212 of cylinder head bores 214 in a cylinder crankcase 215 by means of pulsating high-pressure water jets 216.
  • the assemblies in the system 210, the assemblies in the basis of Fig. 1 to Fig. 5 described in Appendix 10 are in the Fig. 8 marked with number increased by 200 numerals.
  • the conduit system 236 is formed with a tool portion 202 having a tool head 204 in which a plurality of Nozzles 238, 240 are included.
  • the tool section 202 is arranged in the line system 236 by means of an automatically operable coupling device 206.
  • the coupling device 206 allows the automatic replacement of the tool section 202 with a quick-change device (not shown) having a revolving magazine in which different tool heads are provided, which can be used in a device 220.
  • the nozzles 238, 240 may, for example, a reference to the Fig. 4 . Fig. 5 . Fig. 6 and Fig. 7 have described geometry.
  • the tool section 258 with the tool head 204 can be rotated about the axis 229 by means of a drive not further shown.
  • the nozzles 238, 240 are supplied with water, which is supplied to the device 220 with a high-pressure pump 291.
  • the conduit system 236 of the device 220 includes an adjustment device 247.
  • the industrial robot 211 is a multi-axis manipulator for moving a workpiece in the form of a cylinder crankcase 215 relative to the device 220.
  • the industrial robot Device 220 for generating high-pressure pulsating fluid jets by means of a handling device, in particular an industrial robot, to move relative to the workpiece.
  • the cylinder crankcases 215 are raised and lowered to the device 220 corresponding to the double arrow 217.
  • the pulsating high-pressure water jets 216 from the nozzles arranged in the turret 227 the surface of the material in the wall of the cylinder head bores 214 for an arc plasma coating activated by an adhesive structure is introduced into this surface.
  • FIG. 12 shows a portion of a device 320 for generating a pulsating high pressure fluid jet 316 encased in a gas stream 317.
  • the assemblies in the device 320, the assemblies in the basis of Fig. 1 to Fig. 4 are described in the device 20 are in the Fig. 6 marked with number increased by 300 numerals reference number.
  • the wrapping of the pulsating high-pressure fluid jet 316 in the gas stream 317 allows workpieces to be machined with the high pressure fluid jet 316 submerged in a liquid bath.
  • the device 320 has a nozzle 336 formed on a line piece 370.
  • the line piece 370 is guided linearly movably in the line piece 366. It can be relocated according to the double arrow 378, so the effective path length of pressure waves between a chamber for generating pressure waves (not shown) and the side of the nozzle mouth 325 facing away from the workpiece can be adjusted.
  • the line piece 370 is arranged in a nozzle 369 with a nozzle chamber 371 having an opening 373 for supplying pressurized gaseous medium from a line 375 and having an outlet opening 377 from which the gas stream 317 exits.
  • the nozzle chamber 369 and the line piece 370 can be displaced relative to each other according to the double arrow 379. By displacing the nozzle 369 relative to the nozzle 336, it is possible to adjust the shape of the fluid droplets in a pulsating high-pressure fluid jet 316 generated by the apparatus 320.
  • the Fig. 10 13 shows a portion of another device 380 for generating a pulsating high-pressure pulsating fluid jet 390 with a nozzle 382.
  • the nozzle 382 has a nozzle chamber 384 with an axially disposed end opening 386 in the nozzle mouth 388.
  • the nozzle mouth 388 is a bore designed.
  • the diameter D B of the bore of the nozzle mouth is about 1mm.
  • the nozzle mouth 388 has a preferably rounded phase with the radius of curvature r ⁇ 0.1 mm.
  • the workpiece-facing portion 381 of the nozzle 382 is configured as a funnel which widens in the direction of a pulsating fluid jet 390 exiting the nozzle orifice 388 and which has the aperture angle ⁇ 60 °.
  • the shape of the workpiece-facing portion 381 of the nozzle 382 causes a gas flow passing along the outer wall 393 of the nozzle 382 to flow when the nozzle is in a liquid bath (not shown) removes liquid bath liquid from region 395 in front of the funnel-shaped section so that a pulsating high-pressure fluid jet can exit the nozzle orifice 388 unhindered and strike a workpiece located near die 382.
  • the Fig. 11 Figure 4 shows a device 420 for generating a pulsating high pressure fluid jet 416, 417, 418 and 419.
  • the device 420 has a chamber 422 with a device 424 for generating fluid pressure waves 432.
  • the device 420 has a conduit system 436 with a chamber side Section 442 and a nozzle-side portion 444. For adjusting the path length for the fluid-pressure waves 432 in the conduit system 436, the nozzle-side portion 444 relative to the chamber-side portion 442 with an adjusting device 447 corresponding to the double arrow 448 are displaced.
  • the Fig. 12 shows a section of the device 420 along line XII - XII in Fig. 11 ,
  • a rake line 438 with four nozzles, which are integrated into the line 438.
  • the nozzles integrated into the line 438 each have a nozzle body 450, 452, 454 and 456 which can be displaced in accordance with the double arrow 460 and has a nozzle mouth.
  • the devices and systems described above are suitable for machining the surface of workpieces, for activating the surface of workpieces for coating, for processing and removing coatings on workpieces, and for cleaning workpieces.
  • the devices and systems described are particularly suitable for activating a workpiece surface, so that it can be coated by means of flame spraying or plasma spraying or electric arc wire spraying.
  • the inventors have recognized that the microstructures with undercuts can be produced in the surface of workpieces by means of a corresponding pulsating high-pressure fluid jet. Thermal coatings which are applied to such a surface adhere particularly well here, because the molten particles can easily penetrate into these microstructures during coating due to the kinetic energy and due to capillary action, but then solidify there.
  • a coating applied to a workpiece surface activated by means of a device and installation according to the invention therefore has, in particular, a high adhesive tensile strength, which may well be 30 MPa or more.
  • the surface to be coated of the workpiece is dried after activation in a device or equipment according to the invention, for example by panning, by air drying or by vacuum drying.
  • the inventors have recognized that a particularly good adhesion for a layer applied to the surface of a workpiece by means of flame spraying or plasma spraying or arc wire spraying can be achieved in that the surface of the workpiece initially with a pulsating high-pressure fluid jet in an inventive Plant is roughened to roughen this surface, and then the roughened surface of the workpiece with a defined contact pressure to rollers.
  • the inventors have found that by rolling the mesoscopic projections of a roughened surface can be deformed and compressed so that this microstructures arise with undercuts, which have a high mechanical stability and in which the molten particles can easily penetrate during coating.
  • the devices and systems described are also suitable for the machining of workpiece coatings, such as for the removal of overspray on workpieces that have been subjected to a coating process.
  • angle of attack of the pulsating high-pressure fluid jet By the angle of attack of the pulsating high-pressure fluid jet, its exit velocity from a nozzle mouth and the frequency of the pressure waves, i. If the repetition rate for the high-pressure fluid jet is set, in particular the edges of coating sections can be processed in a defined manner on a workpiece. In particular, edges can thus be produced which form a 45 ° angle with the workpiece surface.
  • a finding of the inventors is also that with a pulsating high-pressure fluid jet in the coating of workpieces, such as a means of Lichtbogendrahtspritzen (LDS) generated coating on the cylinder head surfaces of internal combustion engines, a chamfer can be introduced without here as in the processing with cutting tools the There is a risk that this coating will detach from the workpiece during processing with the pulsating high-pressure fluid jets.
  • a pulsating high-pressure fluid jet in the coating of workpieces such as a means of Lichtbogendrahtspritzen (LDS) generated coating on the cylinder head surfaces of internal combustion engines
  • the devices and systems according to the invention are particularly suitable for processing a workpiece surface produced by means of flame spraying or plasma spraying or arc wire spraying and / or for Deburring of a workpiece and / or for the removal of dirt from a workpiece and / or for the removal of layers on a workpiece.
  • the devices and systems according to the invention are also suitable for roughening workpiece surfaces, in order to prepare them for a cohesive joining (gluing, welding, soldering).
  • the devices and installations according to the invention may e.g. be operated with fluid in the form of wash liquor and / or water and / or emulsion, in particular water-oil emulsion and / or oil.
  • fluid in the form of wash liquor and / or water and / or emulsion, in particular water-oil emulsion and / or oil.
  • portions of workpieces or workpieces are at least partially made of aluminum or magnesium, wherein the surface coating is applied by laser wire welding iron-containing material or the workpiece consists at least partially of steel or gray cast iron and the surface coating means Laser wire welding is applied nickel-containing material.
  • the surface of workpieces can also be compacted by applying a pulsating fluid jet to the workpiece.
  • a pulsating fluid jet to the workpiece.
  • the inventors have recognized in particular that by treating cylinder crankcases made of die-cast aluminum, the voids interfering with a coating in the region of the cylinder running surfaces can be closed off with water using a pulsating high-pressure fluid jet of water.
  • the invention relates to a device 20 for the Generating a pulsating fluid jet 16, 18 from pressurized fluid.
  • the apparatus 20 includes a conduit system 36 having at least one nozzle 38, 40 having a nozzle mouth 125 from which a pulsating fluid jet of pressurized fluid may exit.
  • the device 20 has a chamber 22 in which a pressure wave generating means 24 for generating fluid pressure waves 32 is formed.
  • the chamber 22 communicates with the conduit system 36 through an exit port 34 for the generated fluid pressure waves 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Nozzles (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Surgical Instruments (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Description

Die Erfindung betrifft eine Vorrichtung für das Erzeugen eines pulsierenden Fluidstrahls aus mit Druck beaufschlagtem Fluid mit einem Leitungssystem, das wenigstens eine Düse enthält, die einen Düsenmund hat, aus dem ein Fluidstrahl aus mit Druck beaufschlagtem Fluid austreten kann, und die eine Kammer hat, in der eine Druckwellenerzeugungseinrichtung für das Erzeugen von Fluid-Druckwellen ausgebildet ist, die mit dem Leitungssystem durch eine Austrittsöffnung für die erzeugten Fluid-Druckwellen kommuniziert.The invention relates to a device for generating a pulsating fluid jet of pressurized fluid with a conduit system containing at least one nozzle having a nozzle mouth from which a fluid jet of pressurized fluid can escape, and which has a chamber in a pressure wave generating device for generating fluid pressure waves is formed, which communicates with the line system through an outlet opening for the generated fluid pressure waves.

Eine derartige Vorrichtung ist aus der WO 2006/097887 A1 bekannt.Such a device is known from WO 2006/097887 A1 known.

Um Werkstücke effizient mit Fluidstrahlen zu bearbeiten, z.B. mit Wasserstrahlen, müssen herkömmlich sehr hohe Drücke erzeugt werden, die 3000 bar betragen können oder noch höher liegen. Das erfordert sehr viel Energie. Das Bearbeiten von Werkstücken mit Korund und Sand verursacht andererseits unerwünschte Rückstände. Im Vergleich zu den vorgenannten Bearbeitungsverfahren hat die spanabhebende, mechanische Bearbeitung mit Schneidwerkzeugen beispielsweise bei Werkstoffen mit hoher Härte insbesondere den Nachteil, dass Sie wegen des Verschleißes der Schneiden relativ teuer ist.To efficiently process workpieces with fluid jets, e.g. With water jets, conventionally very high pressures must be generated, which may be 3000 bar or even higher. That requires a lot of energy. Working with corundum and sand, on the other hand, causes undesirable residues. In comparison to the above-mentioned machining process, the machining, machining with cutting tools, for example, for materials with high hardness in particular the disadvantage that it is relatively expensive because of the wear of the cutting.

Aufgabe der Erfindung ist es vor diesem Hintergrund, eine Vorrichtung für das effiziente Bearbeiten der Oberfläche von Werkstücken mit Fluidstrahlen bereitzustellen, die mit vergleichsweise niedrigen Fluiddrücken arbeiten kann. Insbesondere ist es eine Aufgabe der Erfindung, eine Vorrichtung bereitzustellen, mit der die Oberfläche von Werkstücken für das Beschichten aktiviert werden kann und/oder die ein Bearbeiten von auf Werkstücke aufgetragenen Beschichtungen ermöglicht wie z.B. das Abtragen von Overspray und / oder das Abtragen von Schichten auf Werkstücken ermöglicht.Against this background, the object of the invention is to provide a device for the efficient machining of the surface of workpieces with fluid jets, which can operate with comparatively low fluid pressures. In particular, it is an object of the invention to provide a device with which the surface of workpieces for the coating can be activated and / or which allows an editing of coatings applied to workpieces such as the removal of overspray and / or the removal of layers on workpieces allows.

Diese Aufgabe wird durch eine Vorrichtung der eingangs genannten Art gelöst, die eine Einstelleinrichtung für das Justieren der Amplitude der Fluid-Druckwellen in dem Leitungssystem vor dem wenigstens einen Düsenmund enthält, mit der die aus dem Quotient der Weglänge L für die Fluid-Druckwellen zwischen der Austrittöffnung der Kammer und dem wenigstens einen Düsenmund der wenigstens einen Düse in dem Leitungssystem und der Wellenlänge λ der Fluid-Druckwellen in dem Leitungssystem gebildete Helmholtz-Zahl He:= L / λ eingestellt werden kann.This object is achieved by a device of the type mentioned above, which includes an adjustment for adjusting the amplitude of the fluid pressure waves in the line system before the at least one nozzle mouth, with which from the quotient of the path length L for the fluid pressure waves between the Outlet opening of the chamber and the at least one nozzle mouth of the at least one nozzle in the line system and the wavelength λ of the fluid pressure waves in the line system formed Helmholtz number He: = L / λ can be adjusted.

Die erfindungsgemäße Vorrichtung eignet sich insbesondere dazu, eine Werkstückoberfläche mit Fluid in Form von Waschlauge und/oder Wasser und/oder Emulsion, insbesondere Wasser-Öl-Emulsion und/oder Öl zu beaufschlagen.The device according to the invention is particularly suitable for applying a fluid to a workpiece surface in the form of wash liquor and / or water and / or emulsion, in particular water-oil emulsion and / or oil.

Der Erfindung liegt der Gedanke zugrunde, dass sich durch Einkoppeln von Schwingungsenergie in Form von Druckwellen in einen Fluidstrahl, insbesondere in einen Fluidstrahl, der mit einem erhöhten Druck beaufschlagt ist, der 20 bar, 30 bar oder auch mehr betragen kann, Fluidpulse erzeugen lassen, bei denen die Schwingungsenergie in Bewegungsenergie umgewandelt ist. Eine Idee der Erfindung ist dabei, dass die durch Erzeugen von Druckwellen auf das Fluid übertragbare Bewegungsenergie maximiert werden kann, indem sichergestellt wird, dass die Reflexionen von Druckwellen in einem Leitungssystem für das Zuführen von mit Druck beaufschlagtem Fluid zu einer Düse die erzeugten Druckwellen nicht auslöschen sondern aufgrund von Interferenz verstärken. Bei einer erfindungsgemäßen Vorrichtung kann deshalb das Verhältnis der wirksamen Weglänge, welche die Druckwellen in dem Leitungssystem von der Austrittöffnung der Kammer bis an den Düsenmund einer Düse zurücklegen und der Wellenlänge der Fluid-Druckwellen, d.h. eine die Fluid-Druckwellen in dem Leitungssystem charakterisierende Helmholtz-Zahl eingestellt werden.The invention is based on the idea that can be generated by coupling of vibration energy in the form of pressure waves in a fluid jet, in particular in a fluid jet, which is subjected to an increased pressure, which may be 20 bar, 30 bar or more, generate fluid pulses, in which the vibration energy is converted into kinetic energy. One idea of the invention is that the kinetic energy transferable to the fluid by generating pressure waves can be maximized by ensuring that the reflections of pressure waves in a conduit system for supplying pressurized fluid to a nozzle do not cancel the generated pressure waves but reinforce due to interference. In a device according to the invention, therefore, the ratio of the effective path length, which the pressure waves in the conduit system from the outlet opening of the chamber to the nozzle mouth of a nozzle cover and the wavelength of the fluid pressure waves, ie, a fluid pressure waves in the line system characterizing Helmholtz number are set.

Für das Einstellen dieser Helmholtz-Zahl kann das Leitungssystem ein erstes Leitungsstück enthalten und ein wenigstens teilweise in dem ersten Leitungsstück aufgenommenes und mit diesem kommunizierendes zweites Leitungsstück aufweisen, das relativ zu dem ersten Leitungsstück in dessen Längsrichtung verlagert werden kann. Von Vorteil ist es in diesem Fall, wenn das zweite Leitungsstück z.B. mit einem Gewinde an dem ersten Leitungsstück linearbeweglich geführt ist. Günstigerweise ist dabei eine Festlegeeinrichtung vorgesehen, mit der das zweite Leitungsstück an dem ersten Leitungsstück festgelegt werden kann.For setting this Helmholtz number, the line system may include a first line piece and a at least partially received in the first line piece and communicating with this second line piece, which can be displaced relative to the first line piece in the longitudinal direction. It is advantageous in this case, if the second line piece, e.g. is guided linearly movable with a thread on the first line piece. Conveniently, a fixing device is provided, with which the second line piece can be fixed to the first line piece.

Um die Helmholtz-Zahl einzustellen, kann die Vorrichtung alternativ oder zusätzlich auch Frequenzeinstellmittel enthalten, die das Einstellen der Frequenz der erzeugten Fluiddruckwellen ermöglicht. Durch das Variieren der Frequenz der Fluid-Druckwellen wird nämlich auch deren Wellenlänge in dem Fluid verändert.Alternatively, or in addition, to adjust the Helmholtz number, the device may include frequency adjustment means for adjusting the frequency of the generated fluid pressure waves. In fact, by varying the frequency of the fluid pressure waves, their wavelength in the fluid is also changed.

Mit einer erfindungsgemäßen Vorrichtung können Werkstücke insbesondere ohne Abrasivzusätze aufgeraut und gereinigt werden.With a device according to the invention, workpieces can be roughened and cleaned, in particular without abrasive additives.

Das Leitungssystem weist in vorteilhafter Weise einen ersten Leitungssystemabschnitt mit einem Anschluss für eine Druckpumpe auf und hat einen zweiten Leitungssystemabschnitt mit einer Aufnahme für die Düse. Es ist von Vorteil, wenn der erste Abschnitt und der zweite Abschnitt mit einem Drehgelenk verbunden sind. Indem der zweite Leitungssystemabschnitt in dem Drehgelenk relativ zu dem ersten Leitungssystemabschnitt um eine zu der Achse eines in dem zweiten Abschnitt ausgebildeten Fluidkanals koaxiale Achse oszillierend und/oder rotierend bewegt werden kann, ist es möglich, in der Oberfläche einer Werkstückbohrung regelmäßige oder unregelmäßige Strukturen zu erzeugen. Bevorzugt enthält die Vorrichtung für das Bewegen des zweiten Leitungssystemabschnitts einen motorischen Antrieb.The conduit system advantageously has a first conduit system section with a connection for a pressure pump and has a second conduit system section with a receptacle for the nozzle. It is advantageous if the first section and the second section are connected to a swivel joint. In that the second conduit system portion in the pivot joint is coaxial with respect to the first conduit system portion about an axis of fluid passage formed in the second portion Axial oscillating and / or can be moved in rotation, it is possible to produce regular or irregular structures in the surface of a workpiece bore. The device preferably contains a motor drive for moving the second line system section.

Günstigerweise hat das Leitungssystem einen ersten Leitungssystemabschnitt mit einem Anschluss für eine Druckpumpe und weist einen zweiten Leitungssystemabschnitt auf, in dem mehrere Düsen mit jeweils einem Düsenmund angeordnet sind, die durch voneinander getrennte Leitungszweige mit Fluid beaufschlagbar sind. In den voneinander getrennten Leitungszweigen zu den Düsen ist jeweils eine in der Länge verstellbare Leitung für mit Druck beaufschlagtes Fluid angeordnet. Durch Verstellen der Leitung kann die Weglänge von in der Kammer erzeugten Fluid-Druckwellen zwischen dem Düsenmund und der Austrittsöffnung für Fluid-Druckwellen der Kammer justiert werden.Conveniently, the line system has a first line system section with a connection for a pressure pump and has a second line system section, in which a plurality of nozzles are each arranged with a nozzle mouth, which are acted upon by separate line branches with fluid. In the separate line branches to the nozzles in each case a length-adjustable line for pressurized fluid is arranged. By adjusting the line, the path length of fluid pressure waves generated in the chamber between the nozzle mouth and the outlet port for fluid pressure waves of the chamber can be adjusted.

Indem der wirksame Querschnitt der Leitungen in dem Leitungssystem zwischen der Austrittsöffnung für Fluid-Druckwellen der Kammer und dem Düsenmund der Düse vorzugsweise monoton abnimmt, wird gewährleistet, dass die Amplitude der Druckwellen in der Strömungsrichtung des Fluids zu dem Düsenmund hin ansteigt. Damit etwaige Luftblasen in der Kammer entfernt werden können, ist ein Entlüftungsventil von Vorteil. Bevorzugt ist dieses Entlüftungsventil so angeordnet, dass auch bei einem Verlagern der Vorrichtung diese Luftblasen entweichen können. Hierzu kann das Entlüftungsventil beispielsweise in einem oberen Deckenabschnitt der Kammer aufgenommen sein.By preferably monotonically decreasing the effective cross-section of the conduits in the conduit system between the fluid pressure wave exit opening of the chamber and the nozzle mouth of the nozzle, it is ensured that the amplitude of the pressure waves in the flow direction of the fluid increases towards the nozzle mouth. In order for any air bubbles in the chamber can be removed, a vent valve is beneficial. Preferably, this vent valve is arranged so that even with a displacement of the device, these air bubbles can escape. For this purpose, the vent valve may for example be accommodated in an upper ceiling portion of the chamber.

Die Kammer kann eine von der Austrittsöffnung getrennte Öffnung für das Zuführen von Hochdruck-Fluid haben. Das ermöglicht ein effizientes Zuführen von Fluid in die Kammer. Um zu gewährleisten, dass die der Druckwellenerzeugungseinrichtung zugeführte Energie mit einem guten Wirkungsgrad in Druckwellen gewandelt wird, ist es von Vorteil, wenn sich die Druckwellenerzeugungseinrichtung in einem Totwassergebiet der Kammer befindet.The chamber may have an opening separate from the exit opening for supplying high pressure fluid. This allows efficient delivery of fluid into the chamber. To ensure that the energy supplied to the pressure wave generating device with a good efficiency is converted into pressure waves, it is advantageous if the pressure wave generating device is located in a Totwassergebiet the chamber.

Um die in das Fluid eingekoppelten Druckwellen zu verstärken, hat die Kammer einen Querschnitt, der in Richtung der Austrittöffnung trichterförmig verjüngt ist. Es ist von Vorteil, in der Kammer einen Sensor für das Erfassen von Druckwellen vorzusehen, damit die Druckwellenerzeugung dort überwacht werden kann. Der Sensor ist dabei günstigerweise als Drucksensor ausgebildet und in einem Abschnitt der Kammer angeordnet, der sich in der Richtung der Austrittsöffnung trichterförmig verjüngt.In order to reinforce the pressure waves coupled into the fluid, the chamber has a cross-section which is funnel-shaped in the direction of the outlet opening. It is advantageous to provide in the chamber a sensor for detecting pressure waves, so that the pressure wave generation can be monitored there. The sensor is conveniently designed as a pressure sensor and arranged in a portion of the chamber, which tapers in a funnel shape in the direction of the outlet opening.

Die wenigstens eine Düse kann eine Düsenkammer aufweisen, deren Querschnitt zu dem Düsenmund hin verjüngt ist. Umfangreiche Versuche haben ergeben, dass mit der Düse Fluidpulse mit einer sehr großen Bewegungsenergie erzeugt werden können, wenn die Düsenkammer vor dem Düsenmund einen konisch verjüngten Abschnitt mit einem stumpfen Öffnungswinkel a hat, vorzugsweise einem Öffnungswinkel a im Bereich 105° ≤ a ≤ 180°. Bevorzugt hat die wenigstens eine Düse eine zylinderförmige, vorzugsweise kreiszylinderförmige Düsenkammer mit einer stirnseitig angeordneten Öffnung in den Düsenmund. Die mit einer solchen Düse erzeugbaren Fluidpulse eignen sich besonders gut für den Materialabtrag bei Aluminiumwerkstoffen. Eine solche Düse ermöglicht aufgrund von Kavitation das Ausbilden von für das Abtragen von Material besonders gut geeigneten Fluid-Tropfen, die dann in dem pulsierenden Fluidstrahl enthalten sind.The at least one nozzle may have a nozzle chamber whose cross-section is tapered towards the nozzle mouth. Extensive experiments have shown that with the nozzle fluid pulses can be generated with a very large kinetic energy when the nozzle chamber in front of the nozzle mouth has a conically tapered portion with an obtuse angle of aperture a, preferably an aperture angle a in the range 105 ° ≤ a ≤ 180 °. Preferably, the at least one nozzle has a cylindrical, preferably circular cylindrical nozzle chamber with an opening arranged on the front side in the nozzle mouth. The fluid pulses that can be generated with such a nozzle are particularly suitable for removing material from aluminum materials. Due to cavitation, such a nozzle makes it possible to form fluid droplets which are particularly suitable for removing material and which are then contained in the pulsating fluid jet.

Indem eine Einrichtung für das Erzeugen eines den pulsierenden Fluidstahl wenigstens abschnittsweise umhüllenden Gasstroms vorgesehen ist, können mit dem pulsierenden Fluidstrahl in Flüssigkeit eingetauchte Werkstücke bearbeitet werden. Hier wird mit dem Gasstrom, der den Hochdruck-Fluidstrahl umgibt, gewährleistet, dass die Flüssigkeit, in die das Werkstück eingetaucht ist, den Fluidstrahl nicht abbremst. Die das Werkstück umgebende Flüssigkeit bewirkt dabei vorteilhaft das Abdämpfen von Geräuschen. Umfangreiche Versuche haben ergeben, dass wenn die wenigstens eine Düse einen zu dem Werkstück weisenden kelchförmigen Abschnitt hat, in dem der pulsierende Fluidstrahl aus dem Düsenmund austritt und dessen Öffnungsquerschnitt in der zu dem Werkstück weisenden Richtung sich aufweitet, eine besonders gute Reinigungswirkung für das Werkstück erzielt werden kann. Um eine möglichst große Werkstückoberfläche reinigen zu können, ist es günstig, wenn die wenigstens eine Düse in der Form eines Düsenrechens ausgebildet ist, der mehrere Düsenmünder aufweist.By providing a means for generating a gas stream at least partially enveloping the pulsating fluid steel, workpieces immersed in liquid with the pulsating fluid jet can be processed. Here, with the gas stream surrounding the high-pressure fluid jet, it ensures that the liquid into which the workpiece is submerged, does not slow down the fluid jet. The liquid surrounding the workpiece advantageously causes the attenuation of noise. Extensive tests have shown that when the at least one nozzle has a cup-shaped portion facing the workpiece, in which the pulsating fluid jet emerges from the nozzle mouth and whose opening cross-section widens in the direction pointing to the workpiece, a particularly good cleaning action is achieved for the workpiece can be. In order to be able to clean as large a workpiece surface as possible, it is expedient if the at least one nozzle is designed in the form of a nozzle nozzle which has a plurality of nozzle orifices.

Es ist von Vorteil, eine Anlage mit einer Vorrichtung für das Erzeugen eines Fluidstrahls mit einer Aufnahmeeinrichtung für Werkstücke auszubilden, in der die Werkstücke mit einem pulsierenden Fluidstrahl beaufschlagbar sind, und mit einer Fluid-Sammeleinrichtung, um von der Vorrichtung freigesetztes Fluid zu sammeln, die mit einer Druckpumpe verbunden ist, um das gesammelte Fluid in die Vorrichtung zurückzuführen. Indem die Anlage eine Messeinrichtung für das Erfassen von mit einem Fluidstrahl von einem Werkstück abgetragenen Material enthält, ist es möglich, den mit dem pulsierenden Fluidstrahl bewirkten Materialabtrag zu überwachen.It is advantageous to form a system with a device for generating a fluid jet with a workpiece receiving device in which the workpieces are acted upon by a pulsating fluid jet, and with a fluid collecting device to collect fluid released from the device connected to a pressure pump to return the collected fluid into the device. By including a measuring device for detecting material removed from a workpiece with a fluid jet, it is possible to monitor the removal of material caused by the pulsating fluid jet.

Um für bestimmte Anwendungen die physikalischen Eigenschaften von Bauteilen zu modifizieren, etwa um deren mechanische und thermische Belastbarkeit in Brennkraftmaschinen zu erhöhen, werden diese an bestimmten Stellen mit hochwertigen Beschichtungen veredelt.In order to modify the physical properties of components for certain applications, for example in order to increase their mechanical and thermal stability in internal combustion engines, these are finished with high quality coatings in certain places.

Diese Beschichtungen erfordern im Regelfall, dass die Oberfläche dieser Baugruppen für das Beschichten vorbereitet wird, d.h. üblicherweise aufgeraut bzw. aktiviert wird. Hierzu ist es bekannt, die Werkstücke mit Korundstrahlen oder Sandstrahlen zu bearbeiten. Darüber hinaus kann die Oberfläche solcher Werkstücke zur Vorbereitung für das Beschichten auch spanabhebend mittels Schneidwerkzeugen mechanisch bearbeitet werden.As a rule, these coatings require that the surface of these assemblies be prepared for coating, ie, usually roughened or activated. For this purpose, it is known to work the workpieces with corundum or sandblasting. In addition, the surface can Such workpieces are machined by cutting tools to prepare for the coating and machined.

Eine Idee der Erfindung vor diesem Hintergrund ist auch, dass mit einem pulsierenden Fluidstrahl in der Oberfläche eines Werkstücks Strukturen erzeugt werden können, die das Anhaften einer Beschichtung auf der Oberfläche verbessern und insbesondere ermöglichen, dass die Beschichtung mit sehr großen Scherkräften belastet werden kann.An idea of the invention against this background is also that with a pulsating fluid jet in the surface of a workpiece structures can be produced which improve the adhesion of a coating on the surface and in particular allow the coating can be loaded with very large shear forces.

Es hat sich nämlich z.B. gezeigt, dass insbesondere durch das Beschichten von Aluminiumwerkstoffen mittels thermischer Spritzverfahren, wie etwa Flammspritzen, Plasmaspritzen, atmosphärisches Plasmaspritzen oder Lichtbogendrahtspritzen, insbesondere die tribologischen Eigenschaften von Aluminiumbaugruppen signifikant verbessert werden können. Das Lichtbogendrahtspritzen ermöglicht z.B., Aluminiumbaugruppen mit einer Eisenbasislegierung zu beschichten, die einen Kohlenstoffgehalt zwischen 0,8 und 0,9 Gewichtsprozent hat und die dispergierende reibungsmindernde Füllstoffe in Form von Graphit, Molybdändisulfid oder Wolframdisulfid enthält.It has namely been e.g. It has been shown that in particular the coating of aluminum materials by means of thermal spraying methods, such as flame spraying, plasma spraying, atmospheric plasma spraying or electric arc wire spraying, in particular, can significantly improve the tribological properties of aluminum assemblies. Arc wire spraying, for example, makes it possible to coat aluminum assemblies with an iron-based alloy having a carbon content between 0.8 and 0.9 weight percent and containing dispersive friction reducing fillers in the form of graphite, molybdenum disulfide or tungsten disulfide.

Durch das Beschichten von Werkstoffen lässt sich auch das Gewicht von Motorkomponenten verringern, und es werden kompakte Bauformen ermöglicht, etwa Zylinderkurbelgehäuse, in denen die Zylinderbohrungen im Vergleich zu herkömmlichen Gehäusen einen verringerten Abstand voneinander haben.Coating materials also reduces the weight of engine components and allows compact designs, such as cylinder crankcases, in which the cylinder bores are at a reduced distance from each other compared to conventional housings.

Es ist von Vorteil, eine oder auch mehrere erfindungsgemäße Vorrichtungen für das Erzeugen eines Fluidstrahls in einer Anlage für das Beaufschlagen von Werkstücken mit Fluid einzusetzen, die eine steuerbare Einrichtung für das Einstellen des Drucks von dem Leitungssystem zugeführtem Fluid enthält und die eine mit der Einrichtung für das Einstellen des Drucks und der Druckwellenerzeugungseinrichtung verbundene Rechnereinheit mit einem Datenspeicher hat, in dem ein Parameterkennfeld für das anwendungsspezifische Einstellen des Fluiddrucks und/oder der Amplitude und/oder der Frequenz der mit der Druckwellenerzeugungseinrichtung erzeugbaren Fluid-Druckwellen abgespeichert ist. In dem Paramterkennfeld kann auch eine günstige Düsen-Rotationsgeschwindigkeit in Abhängigkeit eines zu bearbeitenden Materials, insbesondere Substrats und/oder eine gegebene Werkstück-Geometrie und/oder eine Werkstück-Oberflächenbeschaffenheit, insbesondere eine Werkstück-Oberflächenrauhigkeit, und/oder eine Art einer Werkstück-Verschmutzung und/oder ein Bearbeitungsabstand eines zu bearbeitenden Werkstücks von dem wenigstens einen Düsenmund der Vorrichtung abgespeichert sein. Darüber hinaus kann in dem Parameterkennfeld auch ein vorteilhafter Winkel eines mit einer entsprechenden Vorrichtung erzeugten pulsierenden Hochdruck-Fluidstrahls zu einer Werkstückoberfläche hinterlegt sein.It is advantageous to use one or more devices according to the invention for generating a fluid jet in a plant for applying workpieces with fluid, which contains a controllable device for adjusting the pressure of the fluid supplied from the conduit system and the one with the device for the setting of the pressure and the pressure wave generating means connected computing unit with a Data storage has, in which a parameter map for the application-specific adjustment of the fluid pressure and / or the amplitude and / or the frequency of the pressure wave generating device can be generated with the fluid pressure waves is stored. In the parameter map can also be a favorable nozzle rotation speed depending on a material to be machined, in particular substrate and / or a given workpiece geometry and / or a workpiece surface finish, in particular a workpiece surface roughness, and / or a kind of workpiece contamination and / or a machining distance of a workpiece to be machined from the at least one nozzle mouth of the device to be stored. In addition, an advantageous angle of a pulsating high-pressure fluid jet generated by a corresponding device to a workpiece surface can also be stored in the parameter map.

Bevorzugt enthält eine solche Anlage einen Manipulator, um ein mit Fluid zu beaufschlagendes Werkstück relativ zu der Vorrichtung oder die Vorrichtung relativ zu dem Werkstück zu bewegen. Der Manipulator kann völlig freie Bewegungen, insbesondere lineare Bewegungen oder freie Kurvenbewegungen vollführen. Insbesondere ist als Manipulator ein Knickarmroboter mit sechs Bewegungsachsen vorgesehen.Preferably, such a system includes a manipulator to move a fluid-to-be-pressurized workpiece relative to the device or apparatus relative to the workpiece. The manipulator can perform completely free movements, in particular linear movements or free curve movements. In particular, an articulated robot with six axes of movement is provided as a manipulator.

Eine Idee der Erfindung ist auch, mit einem pulsierenden Fluidstrahl, der z.B. mit einer erfinderischen Vorrichtung erzeugt werden kann, eine Oberfläche ei-nes Werkstücks für das Flammspritzen oder Plasmaspritzen oder Lichtbogendrahtspritzen zu aktivieren bzw. für ein Verkleben vorzubereiten. Außerdem ist es eine Idee der Erfindung, mit einem solchen pulsierenden Fluidstrahl eine mittels Flammspritzen oder Plasmaspritzen oder Lichtbogendrahtspritzen erzeugte Werkstückoberfläche zu bearbeiten.An idea of the invention is also to activate a surface of a workpiece for flame spraying or plasma spraying or arc wire spraying with a pulsating fluid jet, which can be produced eg with an inventive device, or to prepare it for gluing. In addition, it is an idea of the invention to use such a pulsating fluid jet to process a workpiece surface produced by means of flame spraying or plasma spraying or electric arc wire spraying.

Eine Erkenntnis der Erfindung ist insbesondere, dass das Vorbereiten der Wandung einer Bohrung in einem Werkstück, insbesondere die Hafteigenschaften einer mittels Lichtbogendrahtspritzen erzeugten Werkstückoberfläche optimiert werden kann, wenn die Düse unter Erzeugen eines unter einem Winkel β mit 0° ≤ β ≤ 60°, vorzugsweise β ≈ 45°, zu der örtlichen Flächennormalen der Wandung geneigten Richtung mit einem pulsierenden Hochdruck-Fluidstrahl beaufschlagt wird, und die Düse dabei relativ zu dem Werkstück um die Achse der Bohrung rotatorisch bewegt und in der Richtung der Achse der Bohrung translatorisch verlagert wird. Der Abstand der Düsenöffnung zur Werkstückoberfläche beträgt dabei günstiger Weise zwischen 10 mm und 150 mm.One finding of the invention is, in particular, that the preparation of the wall of a bore in a workpiece, in particular the adhesive properties of a workpiece surface produced by means of electric arc wire spraying, can be optimized if the nozzle is to produce at an angle β of 0 ° ≦ β ≦ 60 °, preferably β ≈ 45 °, is applied to the local surface normal of the wall inclined direction with a pulsating high pressure fluid jet, and the nozzle is thereby rotates relative to the workpiece about the axis of the bore and translationally displaced in the direction of the axis of the bore. The distance of the nozzle opening to the workpiece surface is favorably between 10 mm and 150 mm.

Die Erfinder haben insbesondere erkannt, dass sich ein Abschnitt eines Werkstücks veredeln lässt, indem auf das Werkstück in einem ersten Schritt eine Oberflächenbeschichtung aufgebracht wird und bei dem in einem zweiten Schritt die Beschichtung dann mittels eines pulsierenden Fluidstrahls bearbeitet und/oder partiell wieder abgetragen wird. Dieser Fluidstrahl kann insbesondere mit einer erfindungsgemäßen Vorrichtung erzeugt werden. Die Erfinder haben auch erkannt, dass die Oberfläche eines Werkstücks mittels eines pulsierenden Fluidstrahls aktiviert werden kann, insbesondere mittels eines pulsierenden Fluidstrahls, der mit einer erfindungsgemäßen Vorrichtung erzeugt wird, um damit die Hafteigenschaften für die Beschichtung auf der Oberfläche und die mechanische bzw. thermische Belastbarkeit der Beschichtung zu steigern. Insbesondere ist es eine Erkenntnis der Erfinder, dass sich mittels eines pulsierenden Fluidstrahls, der z.B. mit einer erfindungsgemäßen Vorrichtung erzeugt werden kann, die Oberfläche eines wenigstens teilweise aus Aluminium oder aus einer Aluminiumlegierung oder einer Magnesiumlegieren bestehenden Werkstücks aktivieren lässt, um auf dieser mittels thermischer Spritzverfahren (Lichtbogendrahtspritzen, LDS, Plasmaspritzen usw.) eine Oberflächenbeschichtung aus eisenhaltigem Material aufzutragen und dann mit einem pulsierenden Fluidstrahl, z.B. aus einer erfindungsgemäßen Vorrichtung zu bearbeiten. Eine Erkenntnis der Erfinder ist auch, dass sich mittels eines pulsierenden Fluidstrahls, der z.B. mit einer erfindungsgemäßen Vorrichtung erzeugt werden kann, auch die Oberfläche eines wenigstens teilweise aus Stahl oder Grauguss bestehenden Werkstücks aktivieren lässt, um auf dieser mittels Laserdrahtschweißen eine Oberflächenbeschichtung aus nickelhaltigem Material aufzutragen. Darüber hinaus ist es eine Idee der Erfinder, dass eine auf einem aus Stahl oder Grauguss, aus Aluminium, aus einer Aluminiumlegierung oder aus einer Magnesium-Legierung bestehendem Werkstück angebrachte Beschichtung in Form von mittels Laserdrahtschweißen aufgetragenem eisenhaltigen oder nickelhaltigen Material mit einem pulsierenden Fluidstrahl bearbeitet werden kann, insbesondere mit einem pulsierenden Fluidstrahl aus einer erfindungsgemäßen Vorrichtung.The inventors have recognized, in particular, that a section of a workpiece can be finished by applying a surface coating to the workpiece in a first step and then, in a second step, processing and / or partially removing the coating by means of a pulsating fluid jet. This fluid jet can be generated in particular with a device according to the invention. The inventors have also recognized that the surface of a workpiece can be activated by means of a pulsating fluid jet, in particular by means of a pulsating fluid jet generated by a device according to the invention, in order to achieve the adhesive properties for the coating on the surface and the mechanical or thermal resilience to increase the coating. In particular, it is a finding of the inventors that can be activated by means of a pulsating fluid jet, which can be produced for example with a device according to the invention, the surface of an existing at least partially made of aluminum or aluminum alloy or magnesium alloys workpiece on this by means of thermal spraying (Arc wire spraying, LDS, plasma spraying, etc.) to apply a surface coating of ferrous material and then with a pulsating fluid jet, eg from a to edit the device according to the invention. A finding of the inventors is also that by means of a pulsating fluid jet, which can be produced, for example, with a device according to the invention, the surface of a at least partially made of steel or gray cast workpiece can be activated to apply thereto by means of laser wire welding a surface coating of nickel-containing material , Moreover, it is an idea of the inventors that a coating applied to a workpiece made of steel or cast iron, aluminum, an aluminum alloy or a magnesium alloy is processed in the form of laser-wire-welded ferrous or nickel-containing material with a pulsating fluid jet can, in particular with a pulsating fluid jet from a device according to the invention.

Im Rahmen der Erfindung kann insbesondere vorgesehen sein, eine Oberflächenbeschichtung zuerst großflächig aufzutragen und dann nachfolgend in Randbereichen kleinflächig wieder zu entfernen.In the context of the invention, it may be provided in particular to first apply a large surface area over a surface coating and then subsequently to remove it again in the area of small areas.

Im Folgenden wird die Erfindung anhand der in der Zeichnung in schematischer Weise dargestellten Ausführungsbeispiele näher erläutert.In the following the invention will be explained in more detail with reference to the embodiments schematically illustrated in the drawing.

Es zeigen:

Fig. 1
eine Anlage mit einer Vorrichtung für das Erzeugen eines pulsierenden Fluidstrahls mit einem Werkstück;
Fig. 2
eine Kammer für das Erzeugen von Fluid-Druckwellen in der Vorrichtung;
Fig. 3
eine in der Länge verstellbare Leitung der Vorrichtung für mit Druck beaufschlagtes Fluid;
Fig. 4
eine in der Vorrichtung einsetzbare Düse;
Fig. 5
eine weitere in der Vorrichtung einsetzbare Düse;
Fig. 6
eine in der Vorrichtung einsetzbare Düse mit einem Strahlrichter;
Fig. 7
einen Schnitt der in Fig. 6 gezeigten Düse entlang der Linie VII-VII;
Fig. 8
eine Vorrichtung für das Erzeugen eines pulsierenden Hochdruck-Fluidstrahls mit in einem Revolver angeordneten Düsen;
Fig. 9
einen Abschnitt einer Vorrichtung für das Erzeugen eines in einen Gasstrom eingehüllten pulsierenden Hochdruck-Fluidstrahls;
Fig. 10
einen Abschnitt einer weiteren Vorrichtung für das Erzeugen eines in einen Gasstrom eingehüllten pulsierenden Hochdruck-Fluidstrahls mit einer Düse;
Fig. 11
eine Vorrichtung für das erzeugen eines pulsierenden Hochdruck-Fluidstrahls mit einem Düsenrechen; und
Fig. 12
einen Schnitt der in der Fig. 11 gezeigten Vorrichtung entlang der Linie XII - XII.
Show it:
Fig. 1
a system with a device for generating a pulsating fluid jet with a workpiece;
Fig. 2
a chamber for generating fluid pressure waves in the device;
Fig. 3
a length-adjustable conduit of the pressurized fluid device;
Fig. 4
a usable in the device nozzle;
Fig. 5
another usable in the device nozzle;
Fig. 6
a usable in the device nozzle with a jet straightener;
Fig. 7
a section of in Fig. 6 shown nozzle along the line VII-VII;
Fig. 8
an apparatus for generating a pulsating high-pressure fluid jet with nozzles arranged in a turret;
Fig. 9
a portion of an apparatus for generating a pulsating high-pressure fluid jet enveloped in a gas stream;
Fig. 10
a portion of another apparatus for generating a high pressure pulsating high pressure fluid jet in a gas stream with a nozzle;
Fig. 11
an apparatus for generating a pulsating high pressure fluid jet with a nozzle screen; and
Fig. 12
a cut in the Fig. 11 shown device along the line XII - XII.

Die Anlage 10 in Fig. 1 ist für das Aktivieren der Oberfläche 12 einer zylinderförmigen Ausnehmung 14 in einem Werkstück 15 mittels pulsierender Fluidstrahlen 16, 18 aus Wasser ausgelegt.The plant 10 in Fig. 1 is designed to activate the surface 12 of a cylindrical recess 14 in a workpiece 15 by means of pulsating fluid jets 16, 18 of water.

Für das Erzeugen der Fluidstrahlen 16, 18 hat die Anlage 10 eine Vorrichtung 20 mit einer Kammer 22, in der eine Einrichtung 24 für das Erzeugen von Fluid-Druckwellen 32 ausgebildet ist. Die Einrichtung 24 ist an einen steuerbaren Frequenzgenerator 31 angeschlossen. Die Einrichtung 24 enthält einen Piezokristall 28, der als elektromechanischer Wandler wirkt und mit einer Sonotrode 30 verbunden ist. Wenn die Kammer 22 mit Wasser gefüllt ist, können mit der Sonotrode 30 in dem Wasser Druckwellen 32 mit einer Frequenz v erzeugt werden, die bevorzugt in dem Bereich 10 kHz ≤ v ≤ 50 kHz liegt.For generating the fluid jets 16, 18, the system 10 has a device 20 with a chamber 22 in which a device 24 for generating fluid pressure waves 32 is formed. The device 24 is connected to a controllable frequency generator 31. The device 24 contains a piezoelectric crystal 28, which acts as an electromechanical transducer and is connected to a sonotrode 30. When the chamber 22 is filled with water, the sonotrode 30 in the water can generate pressure waves 32 at a frequency v which is preferably in the range of 10 kHz ≦ v ≦ 50 kHz.

Für das Erzeugen von Druckwellen wird der Piezokristall 28 mit einer hochfrequenten Wechselspannung aus einem Frequenzgenerator 31 beaufschlagt. Der Frequenzgenerator 31 ist für das Erzeugen von Ultraschallfrequenzen ausgelegt, bevorzugt Ultraschallfrequenzen in dem Bereich 10 kHz ≤ v ≤ 50 kHz. Durch Einstellen der Frequenz v und der Amplitude AP der mit dem Frequenzgenerator 31 erzeugten Wechselspannung kann die Wellenlänge λ der Druckwellen 32 in dem Leitungssystem 36 variiert werden.For generating pressure waves, the piezoelectric crystal 28 is subjected to a high-frequency alternating voltage from a frequency generator 31. The frequency generator 31 is designed for generating ultrasonic frequencies, preferably ultrasonic frequencies in the range 10 kHz ≦ v ≦ 50 kHz. By adjusting the frequency v and the amplitude A P of the alternating voltage generated by the frequency generator 31, the wavelength λ of the pressure waves 32 in the line system 36 can be varied.

Die Kammer 22 ist bevorzugt auf einen Wellenlängenbereich der mit der Sonotrode 30 erzeugbaren Fluid-Druckwellen 32 abgestimmt. Für Fluid-Druckwellen 32 in diesem Wellenlängenbereich wirkt die Kammer 22 dann als Resonanzkammer.The chamber 22 is preferably tuned to a wavelength range of the fluid pressure waves 32 that can be generated with the sonotrode 30. For fluid pressure waves 32 in this wavelength range, the chamber 22 then acts as a resonance chamber.

Die Kammer 22 hat eine Austrittsöffnung 34 zu einem Leitungssystem 36, das die Kammer 22 mit Düsen 38, 40 verbindet. Das Leitungssystem 36 hat einen kammerseitigen Abschnitt 42 und umfasst einen düsenseitigen Abschnitt 44. Der kammerseitige Abschnitt 42 und der düsenseitige Abschnitt 44 sind mittels eines Drehgelenks 46 verbunden. In dem Drehgelenk 46 kann der düsenseitige Abschnitt 44 mittels eines motorischen Drehantriebs 48 um eine zu dem Fluidkanal 50 koaxiale Achse 52 oszillierend und/oder rotierend mittels eines Antriebsmotors 54 motorisch bewegt werden.The chamber 22 has an outlet opening 34 to a conduit system 36 which connects the chamber 22 with nozzles 38, 40. The piping system 36 has a chamber-side section 42 and includes a nozzle-side section 44. The chamber-side section 42 and the nozzle-side section 44 are connected by means of a pivot joint 46. In the rotary joint 46, the nozzle-side section 44 can be moved by means of a motorized rotary drive 48 about an axis coaxial to the fluid channel 50 axis oscillating and / or rotationally by means of a drive motor 54 by motor.

Die Düsen 38, 40 befinden sich in dem düsenseitigen Abschnitt 44 des Leitungssystems 36 in Leitungszweigen 56, 58, die voneinander getrennt sind. Der in dem düsenseitigen Abschnitt 44 ausgebildete Fluidkanal 60 ist in die Leitungszweige 56, 58 verzweigt.The nozzles 38, 40 are located in the nozzle-side portion 44 of the conduit system 36 in line branches 56, 58, which are separated from each other. The fluid channel 60 formed in the nozzle-side section 44 is branched into the line branches 56, 58.

In dem Leitungszweig 56 und dem Leitungszweig 58 gibt es jeweils einen Leitungsabschnitt mit einer in der Länge verstellbaren Leitung 62, 64. Die verstellbare Leitung 62, 64 enthält ein erstes Leitungsstück 66, 68 und hat ein wenigstens teilweise in dem ersten Leitungsstück 66, 68 aufgenommenes und mit diesem kommunizierendes zweites Leitungsstück 70, 72. Das zweite Leitungsstück 70, 72 kann relativ zu dem ersten Leitungsstück 66, 68 in der Längsrichtung 74, 76 entsprechend dem Doppelpfeil 78, 80 koaxial verlagert werden.In the line branch 56 and the line branch 58, there is a respective line section with a length-adjustable line 62, 64. The adjustable line 62, 64 includes a first line piece 66, 68 and at least partially in the first line piece 66, 68 received and the second conduit 70, 72 communicating therewith. The second conduit 70, 72 can be displaced coaxially relative to the first conduit 66, 68 in the longitudinal direction 74, 76 corresponding to the double arrow 78, 80.

In dem zweiten Leitungsstück 70, 72 ist jeweils eine der Düsen 38, 40 aufgenommen. Durch Verlagern des zweiten Leitungsstücks 70, 72 relativ zu dem ersten Leitungsstück 66, 68 kann die wirksame Weglänge 26 für Druckwellen 32 zwischen der Austrittsöffnung 34 und der dem Werkstück abgewandten Seite des Düsenmunds 82, 84 der Düsen 38, 40 justiert werden. Das Bewegungsspiel für das Leitungsstück 70, 72 ist dabei auf die Wellenlänge der Druckwellen 32 abgestimmt. Das Bewegungsspiel beträgt günstigerweise mindestens eine halbe Wellenlänge der Druckwellen 32. Es liegt bevorzugt in einem Bereich zwischen 40 mm und 300 mm. Auch in dem Abschnitt 42 des Leitungssystems 36 kann die Leitung 43 mittels einer Verstelleinrichtung 47 relativ zu der Leitung 45 koaxial translatorisch verlagert werden. Die Verstelleinrichtung 47 ermöglicht ein Einstellen der wirksamen Weglänge 26 für die Druckwellen 32 in dem Leitungssystem 36. Die Verstelleinrichtung 47 kann mittels eines (elektro)motorischen Antriebs (nicht dargestellt) eingestellt werden. Durch Verstellen der wirksamen Weglänge 26 der Druckwellen 32 in dem Leitungssystem 36 lässt sich erreichen, dass die Druckwellen 32 unmittelbar vor der dem Werkstück abgewandten Öffnung des Düsenmunds der Düsen 38, 40 einen Schwingungsbauch haben.In each case one of the nozzles 38, 40 is received in the second line piece 70, 72. By displacing the second line piece 70, 72 relative to the first line piece 66, 68, the effective path length 26 for pressure waves 32 between the outlet opening 34 and the workpiece side facing away from the nozzle mouth 82, 84 of the nozzles 38, 40 can be adjusted. The movement play for the line piece 70, 72 is tuned to the wavelength of the pressure waves 32. The movement play is favorably at least half a wavelength of the pressure waves 32. It is preferably in a range between 40 mm and 300 mm. Also in the section 42 of the conduit system 36, the conduit 43 can be displaced coaxially translationally relative to the conduit 45 by means of an adjusting device 47. The adjusting device 47 makes it possible to set the effective path length 26 for the pressure waves 32 in the line system 36. The adjusting device 47 can be adjusted by means of a (electric) motor drive (not shown). By adjusting the effective path length 26 of the pressure waves 32 in the conduit system 36 can be achieved that the Pressure waves 32 immediately before the workpiece facing away from the opening of the nozzle mouth of the nozzles 38, 40 have a vibration belly.

Die Verstelleinrichtung 47 wirkt damit als Einstelleinrichtung für das Justieren, d.h. Einstellen der Amplitude AP der Fluid-Druckwellen 22 in dem Leitungssystem 36 vor dem wenigstens einen Düsenmund 125. Mit der Verstelleinrichtung 47 kann eine aus dem Quotienten der Weglänge L für die Fluid-Druckwellen 32 zwischen der Austrittöffnung 34 der Kammer 22 und dem wenigstens einen Düsenmund 125 der wenigstens einen Düse 38, 40 in dem Leitungssystem 36 und der Wellenlänge λ der Fluid-Druckwellen 22 in dem Leitungssystem 36 gebildete Helmholtz-Zahl He:= L / λ eingestellt werden. Auch die verstellbaren Leitungen 62, 64 wirken jeweils als Einstelleinrichtung für das Steuern der Amplitude AP von Fluid-Druckwellen 32 vor dem entsprechenden Düsenmund der Düse 38, 40.The adjusting device 47 thus acts as an adjusting device for adjusting, ie setting the amplitude A P of the fluid pressure waves 22 in the line system 36 before the at least one nozzle mouth 125. With the adjusting device 47, one of the quotient of the path length L for the fluid pressure waves 32 Helmholtz number He: = L / λ formed between the outlet opening 34 of the chamber 22 and the at least one nozzle mouth 125 of the at least one nozzle 38, 40 in the conduit system 36 and the wavelength λ of the fluid pressure waves 22 in the conduit system , The adjustable lines 62, 64 also act as adjusting means for controlling the amplitude A P of fluid pressure waves 32 in front of the corresponding nozzle mouth of the nozzle 38, 40.

In einem modifizierten Ausführungsbeispiel sind der kammerseitige Abschnitt und der düsenseitige Abschnitt einstückig ausgeführt. In einem weiteren modifizierten Ausführungsbeispiel ist der düsenseitige Abschnitt translatorisch verschiebbar an dem kammerseitigen Abschnitt gelagert, ohne das ein Drehgelenkt mit einem Drehantrieb vorgesehen ist. Die Translationsbewegung des düsenseitigen Abschnitts wird dabei manuell und/oder mittels Federkraft, mittels eines Elektromagneten und/oder mittels eines elektrischen Linearmotors realisiert.In a modified embodiment, the chamber-side portion and the nozzle-side portion are made in one piece. In a further modified embodiment, the nozzle-side portion is mounted translationally displaceable on the chamber-side portion, without which a rotary joint is provided with a rotary drive. The translational movement of the nozzle-side section is realized manually and / or by means of spring force, by means of an electromagnet and / or by means of an electric linear motor.

Der einstellbare Frequenzgenerator 31 ist ebenfalls eine solche Einstelleinrichtung. Durch Variieren der Frequenz v der mittels des Frequenzgenerators 31 erzeugten Wechselspannung ist es möglich, die Wellenlänge λ der Druckwellen 32 in dem Leitungssystem 36 und damit die Amplitude AP der Fluid-Druckwellen 22 in dem Leitungssystem 36 z.B. vor dem Düsenmund 125 einzustellen.The adjustable frequency generator 31 is also such an adjustment device. By varying the frequency v of the alternating voltage generated by means of the frequency generator 31, it is possible to set the wavelength λ of the pressure waves 32 in the line system 36 and thus the amplitude A P of the fluid pressure waves 22 in the line system 36, for example in front of the nozzle mouth 125.

Ausgehend von der Austrittsöffnung 34 der Kammer 22 nimmt der wirksame Leitungsquerschnitt 86, 88 der Leitungen in dem Leitungssystem 36 zu dem Düsenmund 82, 84 der Düsen 38, 40 hin monoton ab. Dies bewirkt, dass die Schwingungsamplitude für den Druck einer Druckwelle 32 in der Richtung des entsprechend dem Pfeil 90 durch das Leitungssystem 36 geführten Fluidstroms zu den Düsen 38, 40 hin ansteigt.Starting from the outlet opening 34 of the chamber 22, the effective line cross-section 86, 88 of the lines in the line system 36 to the nozzle mouth 82, 84 of the nozzles 38, 40 towards monotonically decreases. This causes the oscillation amplitude for the pressure of a pressure wave 32 in the direction of the fluid flow guided by the conduit system 36 in accordance with the arrow 90 to rise towards the nozzles 38, 40.

Es sei bemerkt, dass die Vorrichtung 20 in einer weiteren modifizierten Ausführungsform mit nur einer Düse oder auch mit einer Vielzahl von Düsen ausgebildet werden kann.It should be noted that the device 20 can be formed in a further modified embodiment with only one nozzle or with a plurality of nozzles.

In einer weiteren modifizierten Ausführungsform kann die Vorrichtung 20 mit einem Frequenzgenerator 31 ausgeführt werden, dessen Frequenz v variierbar ist, ohne dass das Leitungssystem in der Länge verstellbare Leitungen enthält.In a further modified embodiment, the device 20 can be implemented with a frequency generator 31 whose frequency v can be varied without the line system containing length-adjustable lines.

Die Anlage 10 enthält eine Druckpumpe 91 und umfasst einen Behälter 92 mit einem trichterförmigen Auslass 93 für das Sammeln von Fluid, das aus den Düsen 38, 40 auf das Werkstück 15 gelangt. Mit der Druckpumpe 91 wird das Fluid für das Erzeugen von pulsierenden Fluidstrahlen in der Anlage 10 in einem Kreislauf umgewälzt. Die Druckpumpe 91 ist so ausgelegt, dass damit in Kammer 22 ein Fluiddruck in dem Bereich zwischen 40 bar und 150 bar und vorzugsweise ein Fluiddruck in der Größenordnung von 100 bar erzeugt und eingestellt werden kann. Durch Einstellen des Fluiddrucks in der Kammer 22, der Frequenz v und der Amplitude AP der Druckwellen kann die Größe und der gegenseitige Abstand von Flüssigkeitströpfchen in aus der Düse 38, 40 austretenden Fluidstrahlen 16, 18 variiert werden.The system 10 includes a pressure pump 91 and includes a reservoir 92 having a funnel-shaped outlet 93 for collecting fluid that passes from the nozzles 38, 40 to the workpiece 15. With the pressure pump 91, the fluid for generating pulsating fluid jets in the system 10 is circulated in a circuit. The pressure pump 91 is designed so that in chamber 22, a fluid pressure in the range between 40 bar and 150 bar and preferably a fluid pressure in the order of 100 bar can be generated and adjusted. By adjusting the fluid pressure in the chamber 22, the frequency v and the amplitude A P of the pressure waves, the size and spacing of liquid droplets in fluid jets 16, 18 exiting the nozzle 38, 40 can be varied.

In einer modifizierten Ausführungsform kann die Anlage 10 anstelle der Druckpumpe 91 auch eine Einrichtung mit einer Hochdruckpumpe für das Zuführen von mit Hochdruck beaufschlagtem Fluid in das Leitungssystem 36 der Vorrichtung enthalten, die einen Fluiddruck gewährleistet, der bis zu 3000 bar betragen kann. Um das Fluid in der Anlage mit hohem Druck zu beaufschlagen, ist insbesondere eine Hochdruckpumpe geeignet, die einen Fluiddruck zwischen 300 bar und 600 bar zur Verfügung stellt.In a modified embodiment, the system 10 may instead of the pressure pump 91, a device with a high pressure pump for the Supplying high-pressure fluid contained in the conduit system 36 of the device, which ensures a fluid pressure which can be up to 3000 bar. In order to pressurize the fluid in the system with high pressure, in particular a high-pressure pump is suitable, which provides a fluid pressure between 300 bar and 600 bar.

Die Fig. 2 zeigt die Kammer 22 für das Erzeugen der Fluid-Druckwellen 32 in der Vorrichtung 10. Die Kammer 22 hat eine Öffnung 94 für das Zuführen von mit Druck beaufschlagtem Fluid aus der Hochdruckpumpe 91. Die Öffnung 94 ist von der Austrittsöffnung 34 getrennt in einem seitlichen Abschnitt der Kammer 22 angeordnet. Die Kammer 22 kann durch eine Öffnung 96 mit einem steuerbaren Entlüftungsventil 98 entlüftet werden.The Fig. 2 shows the chamber 22 for generating the fluid pressure waves 32 in the device 10. The chamber 22 has an opening 94 for supplying pressurized fluid from the high-pressure pump 91. The opening 94 is separated from the outlet opening 34 in a lateral portion the chamber 22 is arranged. The chamber 22 may be vented through an opening 96 with a controllable vent valve 98.

Die Sonotrode 30 befindet sich in der Kammer 22 in einem Totwassergebiet 33 in Abstand von der Strömung 35 des durch die Öffnung 94 in die Kammer 22 zugeführten Fluids in die Richtung der Austrittöffnung 34.The sonotrode 30 is located in the chamber 22 in a dead water region 33 at a distance from the flow 35 of the fluid supplied through the opening 94 into the chamber 22 in the direction of the outlet opening 34.

Zu der Austrittöffnung 34 ist die Kammer 22 in dem Abschnitt 99 mit einem trichterförmig verjüngten Querschnitt ausgebildet. In dem Abschnitt 99 wird die Amplitude AP der mit der Sonotrode 30 der Einrichtung 24 erzeugten Druckwellen 32 verstärkt. Die Grafik 100 in Fig. 2 zeigt mit der Kurve 101 die Amplitude des Drucks einer Druckwelle 32 in der Kammer 22 in Abhängigkeit des Abstands z von der Fläche 26 der Sonotrode 28.To the outlet opening 34, the chamber 22 is formed in the section 99 with a funnel-shaped tapered cross-section. In section 99, the amplitude A P of the pressure waves 32 generated by the sonotrode 30 of the device 24 is amplified. The graphic 100 in Fig. 2 shows with the curve 101, the amplitude of the pressure of a pressure wave 32 in the chamber 22 as a function of the distance z from the surface 26 of the sonotrode 28th

Durch das Einstellen des Drucks P und der Amplitude AP der Druckwellen in der Kammer 22 kann die Strömungsgeschwindigkeit und die Gestalt des mit den Düsen 38, 40 erzeugten pulsierenden Fluidstrahls eingestellt werden.By adjusting the pressure P and the amplitude A P of the pressure waves in the chamber 22, the flow rate and shape of the pulsating fluid jet generated by the nozzles 38, 40 can be adjusted.

In der Kammer 22 befindet sich günstiger Weise ein Drucksensor 102. Der Drucksensor 102 ist in dem Abschnitt 99 der Kammer 22 angeordnet. Der Drucksensor 102 ist mit einer Messeinrichtung 103 verbunden, die eine Anzeigeeinheit 105 hat. Mit dem Drucksensor 102 können die Druckschwankungen erfasst werden, die von den in der Kammer 22 erzeugten Druckwellen 32 in dem Abschnitt 99 hervorgerufen werden. Die Anzeigeeinheit 105 ermöglicht damit einer Bedienperson, die Funktion der Vorrichtung 20 zu überwachen. Alternativ oder zusätzlich kann die Anlage 10 für die Funktionsüberwachung der Vorrichtung 20 auch einen mit der Messeinrichtung 103 verbundenen Leitrechner 134 enthalten, der die Einrichtung 24 für das Erzeugen von Fluid-Druckwellen 32 und die Druckpumpe 91 in Abhängigkeit des mit dem Drucksensor 102 erfassten Druckschwankungssignals steuert.In the chamber 22 is conveniently located a pressure sensor 102. The pressure sensor 102 is disposed in the portion 99 of the chamber 22. The pressure sensor 102 is connected to a measuring device 103, which is a display unit 105 has. The pressure sensor 102 can be used to detect the pressure fluctuations which are caused by the pressure waves 32 generated in the chamber 22 in the section 99. The display unit 105 thus allows an operator to monitor the operation of the device 20. Alternatively or additionally, the system 10 for monitoring the operation of the device 20 may also include a control computer 134 connected to the measuring device 103, which controls the device 24 for generating fluid pressure waves 32 and the pressure pump 91 as a function of the pressure fluctuation signal detected by the pressure sensor 102 ,

Alternativ oder zusätzlich ist es auch möglich, die Funktion der Vorrichtung 20 in der Anlage 10 zu überwachen, indem z.B. der pulsierende Fluidstrahl 16, 18, der aus den Düsen 38, 40 austritt, einer Erosionsmesseinrichtung zugeführt wird (nicht gezeigt). Diese Erosionsmesseinrichtung enthält eine Testmembran, auf die der Fluidstrahl gerichtet wird. Bei einer einwandfreien Funktion der Vorrichtung 20 wird von dieser Testmembran eine bestimmte Materialmenge pro Zeiteinheit abgetragen. Um den Materialabtrag von dieser Testmembran zu erfassen, enthält die Erosionsmesseinrichtung einen Tastsensor.Alternatively or additionally, it is also possible to monitor the function of the device 20 in the system 10, e.g. the pulsating fluid jet 16, 18 exiting the nozzles 38, 40 is fed to an erosion meter (not shown). This erosion measuring device contains a test membrane to which the fluid jet is directed. In a proper operation of the device 20, a certain amount of material per unit time is removed from this test membrane. In order to detect the removal of material from this test membrane, the erosion measuring device contains a tactile sensor.

Weiter alternativ oder zusätzlich ist vorgesehen, an einem Bypass zum Ablauf 93 eine Messeinrichtung zu installieren, die abgeschiedene bzw. abgetragene Partikel detektiert (z.B. ein magnetischer oder optischer Partikelzähler), so dass auf diese Weise die Funktion der Vorrichtung 20 überwacht werden kann.It is further alternatively or additionally provided to install a measuring device at a bypass to the outlet 93, which detects separated particles (for example a magnetic or optical particle counter), so that the function of the device 20 can be monitored in this way.

Es ist außerdem von Vorteil, wenn der Leitrechner 134 einen Datenspeicher 135 enthält, in dem ein Parameterkennfeld 136 für das anwendungsspezifische Einstellen des Fluiddrucks P und/oder der Amplitude AP und/oder der Frequenz v der mit der Druckwellenerzeugungseinrichtung erzeugbaren Fluid-Druckwellen 32 und/oder einer Düsen-Rotationsgeschwindigkeit aufgrund einer über eine Eingabeeinheit 137 der Rechnereinheit 136 eingegebene werkstückspezifische Anwendung der Vorrichtung 20 abgelegt ist. Das Parameterkennfeld 136 stellt insbesondere Informationen über einen z.B. empirisch ermittelten Zusammenhang zwischen den vorgenannten Betriebskennzahlen und wenigstens einem der folgenden Anwendungsparameter ein:
Art des zu bearbeitenden Materials oder Substrats, Werkstück-Geometrie, Soll-/lst-Werkstück-Oberflächenbeschaffenheit, insbesondere Werkstück-Oberflächenrauhigkeit, Art einer Werkstück-Verschmutzung (z.B. chemische Zusammensetzung oder Härte), Bearbeitungsabstand eines zu bearbeitenden Werkstücks für einen bestimmten Düsendurchmesser von dem Düsenmund der Düsen 38, 40.
It is also advantageous if the control computer 134 includes a data memory 135 in which a parameter map 136 for the application-specific adjustment of the fluid pressure P and / or the amplitude A P and / or the frequency v of the fluid pressure waves generated by the pressure wave generating means 32 and / or a nozzle rotation speed due a workpiece-specific application of the device 20 entered via an input unit 137 of the computer unit 136 is stored. The parameter map 136 sets, in particular, information about, for example, an empirically determined relationship between the abovementioned operating parameters and at least one of the following application parameters:
Type of material or substrate to be machined, workpiece geometry, target / actual workpiece surface finish, in particular workpiece surface roughness, type of workpiece contamination (eg chemical composition or hardness), machining distance of a workpiece to be machined for a given nozzle diameter of the Nozzle mouth of the nozzles 38, 40.

Um die Anlage 10 zu steuern, ist der Leitrechner 134 über eine Steuerleitung 138 mit der Druckpumpe 91 verbunden und über Leitungen 139, 140 an die Messeinrichtung 103 und den Frequenzgenerator 31 angeschlossen. Mit dem Leitrechner 134 kann z.B. der mit der Druckpumpe erzeugbare Druck so geregelt werden, dass ein Verschleiß der in der Vorrichtung 20 eingesetzten Düsen durch Erhöhen des Pumpendrucks ausgeglichen wird.To control the system 10, the control computer 134 is connected via a control line 138 to the pressure pump 91 and connected via lines 139, 140 to the measuring device 103 and the frequency generator 31. With master computer 134, e.g. the pressure that can be generated with the pressure pump can be regulated so that wear of the nozzles used in the device 20 is compensated by increasing the pump pressure.

Die Fig. 3 zeigt den Abschnitt III der Fig. 1 mit der in der Länge verstellbaren Leitung 62 in der Vorrichtung 20 in einer vergrößerten Ansicht. Das zweite Leitungsstück 70 ist in ein Gewinde 104 an dem ersten Leitungsstück 66 eingeschraubt. Das Gewinde 104 ist ein Feingewinde. In dem Gewinde 104 kann das zweite Leitungsstück 70 relativ zu dem ersten Leitungsstück 66 entsprechend dem Doppelpfeil 106 koaxial verlagert werden. Das zweite Leitungsstück 70 kann mit einer auf dem als Feingewinde ausgeführten Gewinde 108 des zweiten Leitungsstücks 70 angeordneten Kontermutter 110 an dem ersten Leitungsstück 66 festgelegt werden. Das zweite Leitungsstück 70 durchgreift einen in dem ersten Leitungsstück 66 angeordneten Dichtring 112, der das Austreten von Fluid zwischen dem ersten Leitungsstück 66 und dem zweiten Leitungsstück 70 verhindert.The Fig. 3 shows section III of the Fig. 1 with the length-adjustable conduit 62 in the device 20 in an enlarged view. The second line piece 70 is screwed into a thread 104 on the first line piece 66. The thread 104 is a fine thread. In the thread 104, the second line piece 70 can be displaced coaxially relative to the first line piece 66 corresponding to the double arrow 106. The second line piece 70 can be fixed to the first line piece 66 with a lock nut 110 arranged on the thread 108 of the second line piece 70 which is designed as a fine thread. The second line piece 70 passes through one arranged in the first line piece 66 Sealing ring 112, which prevents the escape of fluid between the first line piece 66 and the second line piece 70.

An dem zweiten Leitungsstück 70 ist die Düse 36 aufgenommen. Die Düse 36 hat einen außenseitigen Flansch 114, der mittels einer Überwurfmutter 116 gegen einen an der Stirnseite 118 des zweiten Leitungsstücks 70 angeordneten Dichtungsring 119 gedrückt wird.At the second line piece 70, the nozzle 36 is received. The nozzle 36 has an outside flange 114, which is pressed by means of a union nut 116 against an arranged on the end face 118 of the second line piece 70 sealing ring 119.

Die Fig. 4 zeigt eine weitere Düse 39 für den Einsatz in der Vorrichtung. Die Düse 39 hat einen Düsenkörper 120 mit einer Düsenkammer 122 und einem Düsenmund 125. Der Düsenmund125 hat eine Länge LM, die bevorzugt etwa 6 mm beträgt. Der Düsenmund 125 hat günstigerweise die Form eines Hohlzylinders. Der Hohlzylinder hat einen Durchmesser DM, der bevorzugt in dem Bereich zwischen 0,5 mm und 3 mm liegt und vorteilhafterweise 1 mm beträgt. In dem zu dem Düsenmund 125 weisenden Abschnitt 126 ist die Düsenkammer 122 mit einem zu dem Düsenmund 125 konisch verjüngten Querschnitt ausgebildet. Der Öffnungswinkel a des Konus in dem Abschnitt 126 mit konisch verjüngtem Querschnitt ist stumpf. Vorzugsweise gilt für den Öffnungswinkel a: 105° ≤ a ≤ 180°. Mit einem nahe bei 180° liegenden Öffnungswinkel des Konus in dem Abschnitt 126 kann der pulsierende Hochdruck-Fluidstrahl mit Fluidtröpfchen erzeugt werden, die eine für das Abtragen von Material besonders günstige Form haben. Mit der Düse 39 können dann schon bei einem Fluiddruck in einem Bereich zwischen 300 bar und 600 bar Hochdruck-Fluidstrahl-Pulse mit Flüssigkeitstropfen erzeugt werden, deren Bewegungsenergie so groß ist, dass damit insbesondere an metallischen Werkstoffen ein effizienter Materialabtrag möglich ist.The Fig. 4 shows a further nozzle 39 for use in the device. The nozzle 39 has a nozzle body 120 with a nozzle chamber 122 and a nozzle mouth 125. The nozzle mouth 125 has a length L M , which is preferably about 6 mm. The nozzle mouth 125 is conveniently in the form of a hollow cylinder. The hollow cylinder has a diameter D M , which is preferably in the range between 0.5 mm and 3 mm and advantageously 1 mm. In the section 126 facing the nozzle mouth 125, the nozzle chamber 122 is formed with a cross-section which tapers conically towards the nozzle mouth 125. The opening angle α of the cone in the section 126 of conically tapered cross-section is obtuse. Preferably, for the opening angle a: 105 ° ≤ a ≤ 180 °. With an opening angle of the cone in the section 126 close to 180 °, the pulsating high-pressure fluid jet can be generated with fluid droplets which have a particularly favorable shape for the removal of material. With the nozzle 39 high-pressure fluid jet pulses with liquid droplets can then be generated even at a fluid pressure in a range between 300 bar and 600 bar, whose kinetic energy is so great that thus efficient removal of material is possible in particular on metallic materials.

In einem weiteren modifizierten Ausführungsbeispiel ist der Öffnungswinkel a größer als 180°, insbesondere bis 240° gewählt. In diesem Fall entsteht im Düsenmund verstärkt Kavitation, was wiederum eine Tropfenbildung am Düsenaustritt besonders begünstigt.In a further modified embodiment, the opening angle a is greater than 180 °, in particular selected to 240 °. In this case, cavitation increasingly occurs in the nozzle mouth, which in turn promotes droplet formation at the nozzle outlet.

Die Fig. 5 zeigt eine Düse 150, die einen Düsenkörper 151 mit einer als Kreiszylinder ausgebildete Düsenkammer 152 aufweist. Die Düsenkammer 152 hat eine axial angeordnete stirnseitige Öffnung 154 in den Düsenmund 156. Der Düsenmund 156 ist als Bohrung gestaltet. Der Durchmesser DB der Bohrung des Düsenmunds beträgt etwa 1/3 des Durchmessers DZ der Düsenkammer. Der Düsenmund 156 hat eine Länge LM, die etwa 6 mm beträgt. Der Einsatz einer solchen Düse in der vorstehend beschriebenen Vorrichtung 20 ermöglicht schon bei einem Fluiddruck in der Größenordnung von 60 bar das Erzeugen von pulsierenden Fluidstrahlen aus Wasser, mit denen metallische Werkstoffe bei einem schnellem Materialabtrag bearbeitet werden können.The Fig. 5 shows a nozzle 150, which has a nozzle body 151 with a nozzle chamber 152 designed as a circular cylinder. The nozzle chamber 152 has an axially disposed end opening 154 in the nozzle mouth 156. The nozzle mouth 156 is designed as a bore. The diameter D B of the bore of the nozzle mouth is about 1/3 of the diameter D Z of the nozzle chamber. The nozzle mouth 156 has a length L M which is about 6 mm. The use of such a nozzle in the device 20 described above allows even at a fluid pressure in the order of 60 bar the generation of pulsating fluid jets of water, with which metallic materials can be processed at a rapid material removal.

Als Düsen für den Einsatz in der Vorrichtung 20 eignen sich grundsätzlich auch sogenannte Flachstrahldüsen, Sterndüsen, Quadratdüsen, Dreiecksdüsen oder auch Düsen, die einen Fluidstrahl in Form eines Rundstrahls erzeugen.As nozzles for use in the device 20 are basically also so-called flat jet nozzles, star nozzles, square nozzles, triangular nozzles or nozzles that produce a fluid jet in the form of an omnidirectional.

Ein Vorteil der vorstehend beschriebenen Vorrichtung ist, dass bei einem Betrieb mit Hochdruck-Flüssigkeit in den Düsen keine oder nur geringe Kavitation auftritt, so dass dann der Verschleiß von Düsen in der Vorrichtung vergleichsweise gering ist.An advantage of the device described above is that little or no cavitation occurs when operating with high-pressure liquid in the nozzles, so that then the wear of nozzles in the device is comparatively low.

Die Fig. 6 zeigt eine weitere Düse 170 für den Einsatz in der Vorrichtung. Die Düse 170 hat einen Düsenkörper 171 mit einer Düsenkammer 172 und einem Düsenmund 173. Der Düsenmund hat eine Länge LM, die etwa 6 mm beträgt und einen Durchmesser DH ≈ 1mm. In dem zu dem Düsenmund 173 weisenden Abschnitt 174 ist die Düsenkammer 172 mit einem zu dem Düsenmund 173 konisch verjüngten Querschnitt ausgebildet. Der Öffnungswinkel a des Konus in dem Abschnitt 173 mit konisch verjüngtem Querschnitt ist spitz. Ein günstiger Wert für den Öffnungswinkel a des Konus ist: a ≈ 58°.The Fig. 6 shows another nozzle 170 for use in the device. The nozzle 170 has a nozzle body 171 with a nozzle chamber 172 and a nozzle mouth 173. The nozzle mouth has a length L M which is about 6 mm and a diameter D H ≈ 1 mm. In the section 174 facing the nozzle mouth 173, the nozzle chamber 172 is formed with a cross-section which tapers conically towards the nozzle mouth 173. The opening angle α of the cone in the section 173 of conically tapered cross section is acute. A favorable value for the opening angle a of the cone is: a ≈ 58 °.

Die Düse 170 enthält einen Strahlrichter 175. Der Strahlrichter 175 unterbindet Verwirbelungen in dem mit Druck beaufschlagtem Fluid in der Düsenkammer 172.The nozzle 170 includes a jet director 175. The jet director 175 inhibits turbulence in the pressurized fluid in the nozzle chamber 172.

Die Fig. 7 zeigt einen Schnitt der Düse 170 entlang der Linie VII - VII in Fig. 6. Der Strahlrichter 175 trennt die Düsenkammer 172 in dem Abschnitt 176 in vier voneinander getrennte Strömungskanäle 177.The Fig. 7 shows a section of the nozzle 170 along the line VII - VII in Fig. 6 , The jet director 175 separates the nozzle chamber 172 in the section 176 into four separate flow channels 177.

In der in Fig. 1 gezeigten Anlage 10 gibt es eine Einrichtung 130 für ein Aufbereiten des in die Kammer 22 mit der Druckpumpe 91 zugeführten Fluids. In der Einrichtung 130 wird das in der Anlage 10 umgewälzte Fluid von Schmutzpartikeln befreit. Von einem Werkstück 15 abgelöste Partikel und Beschichtungsteile werden in der Anlage 10 mit Spüleinrichtungen (nicht dargestellt) aus dem Werkstück ausgespült und zusammen mit dem Fluid in einem Schmutztank in der Einrichtung 130 aufgefangen. Die Einrichtung 130 enthält ein Filtersystem. Mit diesem Filtersystem können aus dem der Einrichtung 130 zugeführten Fluid die von dem Werkstück abgelösten Partikel und Schmutzstoffe entfernt werden, damit die Vorrichtung 20 für das Erzeugen eines pulsierenden Fluidstrahls nicht beschädigt wird.In the in Fig. 1 As shown in Appendix 10, there is a means 130 for processing the fluid supplied to the chamber 22 with the pressure pump 91. In the device 130, the fluid circulated in the system 10 is freed of dirt particles. Particles and coating parts detached from a workpiece 15 are rinsed out of the workpiece in the system 10 with rinsing devices (not shown) and collected together with the fluid in a dirt tank in the device 130. The device 130 includes a filter system. With this filter system, the fluid supplied to the device 130 can remove the particles and contaminants detached from the workpiece, so as not to damage the device 20 for generating a pulsating fluid jet.

Die Fig. 8 zeigt eine Anlage 210 für das Aktivieren der Oberfläche 212 von Zylinderkopfbohrungen 214 in einem Zylinderkurbelgehäuse 215 mittels pulsierender Hochdruck-Wasserstrahlen 216. Die Baugruppen in der Anlage 210, die Baugruppen in der anhand der Fig. 1 bis Fig. 5 beschriebenen Anlage 10 entsprechen, sind in der Fig. 8 mit um die Zahl 200 erhöhten Zahlen-Bezugszeichen kenntlich gemacht. In der Anlage 210 gibt es mehrere zueinander benachbart angeordnete Vorrichtungen 220 für das Erzeugen eines pulsierenden Hochdruck-Fluidstrahls.The Fig. 8 shows a system 210 for activating the surface 212 of cylinder head bores 214 in a cylinder crankcase 215 by means of pulsating high-pressure water jets 216. The assemblies in the system 210, the assemblies in the basis of Fig. 1 to Fig. 5 described in Appendix 10 are in the Fig. 8 marked with number increased by 200 numerals. In plant 210, there are a plurality of devices 220 disposed adjacent to each other for generating a pulsating high-pressure fluid jet.

In jeder der Vorrichtungen 220 ist das Leitungssystem 236 mit einem Werkzeugabschnitt 202 mit einem Werkzeugkopf 204 ausgebildet, in dem mehrere Düsen 238, 240 aufgenommen sind. Der Werkzeugabschnitt 202 ist mittels einer automatisch betätigbaren Kupplungseinrichtung 206 in dem Leitungssystem 236 angeordnet. Die Kupplungseinrichtung 206 ermöglicht das automatische Auswechseln des Werkzeugabschnitts 202 mit einer Schnellwechseleinrichtung (nicht gezeigt), die ein Revolvermagazin hat, in dem unterschiedliche Werkzeugköpfe bereitgestellt werden, die in einer Vorrichtung 220 eingesetzt werden können.In each of the devices 220, the conduit system 236 is formed with a tool portion 202 having a tool head 204 in which a plurality of Nozzles 238, 240 are included. The tool section 202 is arranged in the line system 236 by means of an automatically operable coupling device 206. The coupling device 206 allows the automatic replacement of the tool section 202 with a quick-change device (not shown) having a revolving magazine in which different tool heads are provided, which can be used in a device 220.

Die Düsen 238, 240 können z.B. eine anhand der Fig. 4, Fig. 5, Fig. 6 und Fig. 7 beschriebene Geometrie haben. Der Werkzeugabschnitt 258 mit dem Werkzeugkopf 204 kann mittels eines nicht weiter gezeigten Antriebs um die Achse 229 rotiert werden. Die Düsen 238, 240 werden mit Wasser beaufschlagt, das der Vorrichtung 220 mit einer Hochdruckpumpe 291 zugeführt wird. Für das Einstellen der wirksamen Weglänge für in der Kammer 222 erzeugte Druckwellen enthält das Leitungssystem 236 der Vorrichtung 220 eine Verstelleinrichtung 247.The nozzles 238, 240 may, for example, a reference to the Fig. 4 . Fig. 5 . Fig. 6 and Fig. 7 have described geometry. The tool section 258 with the tool head 204 can be rotated about the axis 229 by means of a drive not further shown. The nozzles 238, 240 are supplied with water, which is supplied to the device 220 with a high-pressure pump 291. For adjusting the effective path length for pressure waves generated in the chamber 222, the conduit system 236 of the device 220 includes an adjustment device 247.

In der Anlage 210 gibt es einen Industrieroboter 211. Der Industrieroboter 211 ist ein Mehrachssystem-Manipulator für das Bewegen eines Werkstücks in Form eines Zylinderkurbelgehäuses 215 relativ zu der Vorrichtung 220. In einer alternativen Ausführungsform der Anlage 210 kann vorgesehen sein, mit einem solchen Industrieroboter die Vorrichtung 220 für das Erzeugen von pulsierenden Hochdruck-Fluidstrahlen mittels einer Handhabungseinrichtung, insbesondere einem Industrieroboter, relativ zu dem Werkstück zu bewegen.In the plant 210 there is an industrial robot 211. The industrial robot 211 is a multi-axis manipulator for moving a workpiece in the form of a cylinder crankcase 215 relative to the device 220. In an alternative embodiment of the plant 210 may be provided with such an industrial robot Device 220 for generating high-pressure pulsating fluid jets by means of a handling device, in particular an industrial robot, to move relative to the workpiece.

Mit dem Industrieroboter 211 werden die Zylinderkurbelgehäuse 215 zu der Vorrichtung 220 entsprechend dem Doppelpfeil 217 auf- und abgesenkt. Mit den pulsierenden Hochdruck-Wasserstrahlen 216 aus den in dem Revolver 227 angeordneten Düsen wird die Oberfläche des Materials in der Wandung der Zylinderkopfbohrungen 214 für eine Lichtbogen-Plasmabeschichtung aktiviert, indem in diese Oberfläche eine Haftstruktur eingebracht wird. Es hat sich gezeigt, dass wenn der Hochdruck-Wasserstrahl mit einem unter dem Winkel β mit 0° ≤ β ≤ 60°, vorzugsweise β ≈ 45° zu der örtlichen Flächennormalen der Wandung geneigten Richtung mit einem pulsierenden Hochdruck-Fluidstrahl beaufschlagt wird und dabei der Werkzeugkopf 204 in der Zylinderkopfbohrung 214 entsprechend dem Pfeil 221 rotatorisch bewegt und gleichzeitig in der Richtung der Achse der Bohrung entsprechend dem Doppelpfeil 223 translatorisch verlagert wird, Strukturen, etwa helixförmige Gewindestrukturen erzeugt werden können, auf denen eine mittels Flammspritzen, Plasmaspritzen oder Lichtbogendrahtspritzen in einer Zylinderkopfbohrung erzeugte Schicht besonders gut haftet. Mit der erfindungsgemäßen Vorrichtung können auf besonders einfache Weise unterschiedliche Rauheitsgrade an unterschiedlichen bzw. benachbarten Stellen eines Werkstücks erzeugt werden. Insbesondere können auch mehr oder weniger gleitende Übergänge zwischen Bereichen unterschiedlicher Rauhigkeit erzeugt werden.With the industrial robot 211, the cylinder crankcases 215 are raised and lowered to the device 220 corresponding to the double arrow 217. With the pulsating high-pressure water jets 216 from the nozzles arranged in the turret 227, the surface of the material in the wall of the cylinder head bores 214 for an arc plasma coating activated by an adhesive structure is introduced into this surface. It has been found that, when the high-pressure water jet is acted upon by a pulsating high-pressure fluid jet with a direction inclined at the angle β of 0 ° ≦ β ≦ 60 °, preferably β≈45 ° to the local surface normal of the wall Tool head 204 in the cylinder head bore 214 according to the arrow 221 rotatably moved and simultaneously translates in the direction of the axis of the bore corresponding to the double arrow 223, structures, such as helical threaded structures can be generated, on which one by means of flame spraying, plasma spraying or wire arc spraying in a cylinder head bore produced layer adheres particularly well. With the device according to the invention, different degrees of roughness at different or adjacent locations of a workpiece can be generated in a particularly simple manner. In particular, more or less sliding transitions between areas of different roughness can be generated.

Die Fig. 9 zeigt einen Abschnitt einer Vorrichtung 320 für das Erzeugen eines pulsierenden Hochdruck-Fluidstrahls 316, der in einen Gasstrom 317 eingehüllt ist. Die Baugruppen in der Vorrichtung 320, die Baugruppen in der anhand der Fig. 1 bis Fig. 4 beschriebenen Vorrichtung 20 entsprechen, sind in der Fig. 6 mit um die Zahl 300 erhöhten Zahlen-Bezugszeichen kenntlich gemacht.The Fig. 9 FIG. 12 shows a portion of a device 320 for generating a pulsating high pressure fluid jet 316 encased in a gas stream 317. The assemblies in the device 320, the assemblies in the basis of Fig. 1 to Fig. 4 are described in the device 20 are in the Fig. 6 marked with number increased by 300 numerals reference number.

Das Einhüllen des pulsierenden Hochdruck-Fluidstrahls 316 in dem Gasstrom 317 ermöglicht das Bearbeiten von Werkstücken mit dem Hochdruck-Fluidstrahl 316, die in ein Flüssigkeitsbad eingetaucht sind.The wrapping of the pulsating high-pressure fluid jet 316 in the gas stream 317 allows workpieces to be machined with the high pressure fluid jet 316 submerged in a liquid bath.

Die Vorrichtung 320 hat eine an einem Leitungsstück 370 ausgebildete Düse 336. Das Leitungsstück 370 ist in dem Leitungsstück 366 linearbeweglich geführt. Es kann entsprechend dem Doppelpfeil 378 verlagert werden, damit die wirksame Weglänge von Druckwellen zwischen einer Kammer für das Erzeugen von Druckwellen (nicht gezeigt) und der dem Werkstück abgewandten Seite des Düsenmunds 325 eingestellt werden kann.The device 320 has a nozzle 336 formed on a line piece 370. The line piece 370 is guided linearly movably in the line piece 366. It can be relocated according to the double arrow 378, so the effective path length of pressure waves between a chamber for generating pressure waves (not shown) and the side of the nozzle mouth 325 facing away from the workpiece can be adjusted.

Das Leitungsstück 370 ist in einer Düse 369 mit einer Düsenkammer 371 angeordnet, die eine Öffnung 373 für das Zuführen von mit Druck beaufschlagtem gasförmigen Medium aus einer Leitung 375 hat und die eine Austrittöffnung 377 aufweist, aus welcher der Gasstrom 317 austritt. Die Düsenkammer 369 und das Leitungsstück 370 können entsprechend dem Doppelpfeil 379 zueinander verlagert werden. Durch das Verlagern der Düse 369 relativ zu der Düse 336 ist es möglich, die Form der Fluidtröpfchen in einem mit der Vorrichtung 320 erzeugten pulsierenden Hochdruck-Fluidstrahl 316 einzustellen.The line piece 370 is arranged in a nozzle 369 with a nozzle chamber 371 having an opening 373 for supplying pressurized gaseous medium from a line 375 and having an outlet opening 377 from which the gas stream 317 exits. The nozzle chamber 369 and the line piece 370 can be displaced relative to each other according to the double arrow 379. By displacing the nozzle 369 relative to the nozzle 336, it is possible to adjust the shape of the fluid droplets in a pulsating high-pressure fluid jet 316 generated by the apparatus 320.

Die Fig. 10 zeigt einen Abschnitt einer weiteren Vorrichtung 380 für das Erzeugen eines in einen Gasstrom eingehüllten pulsierenden Hochdruck-Fluidstrahls 390 mit einer Düse 382. Die Düse 382 hat eine Düsenkammer 384 mit einer axial angeordneten stirnseitigen Öffnung 386 in den Düsenmund 388. Der Düsenmund 388 ist als Bohrung gestaltet. Der Durchmesser DB der Bohrung des Düsenmunds beträgt etwa 1mm. An der stirnseitigen Öffnung 386 in der Düsenkammer 384 hat der Düsenmund 388 eine vorzugsweise gerundete Phase mit dem Krümmungsradius r < 0,1 mm.The Fig. 10 13 shows a portion of another device 380 for generating a pulsating high-pressure pulsating fluid jet 390 with a nozzle 382. The nozzle 382 has a nozzle chamber 384 with an axially disposed end opening 386 in the nozzle mouth 388. The nozzle mouth 388 is a bore designed. The diameter D B of the bore of the nozzle mouth is about 1mm. At the front-side opening 386 in the nozzle chamber 384, the nozzle mouth 388 has a preferably rounded phase with the radius of curvature r <0.1 mm.

Der zu dem Werkstück weisende Abschnitt 381 der Düse 382 ist als Kelch bzw. Trichter gestaltet, der sich in der Richtung eines aus dem Düsenmund 388 austretenden pulsierenden Fluidstrahls 390 erweitert und der den Öffnungswinkel β ≈ 60° hat.The workpiece-facing portion 381 of the nozzle 382 is configured as a funnel which widens in the direction of a pulsating fluid jet 390 exiting the nozzle orifice 388 and which has the aperture angle β≈60 °.

Die Form des zu dem Werkstück weisenden Abschnitts 381 der Düse 382 bewirkt, dass ein an der äußeren Wandung 393 der Düse 382 entlangstreichender Gasstrom bei einem Einsatz der Düse in einem Flüssigkeitsbad (nicht dargestellt) die Flüssigkeit des Flüssigkeitsbades aus dem Bereich 395 vor dem trichterförmigen Abschnitt entfernt, so dass ein pulsierender hochdruck-Fluidstrahl aus dem Düsenmund 388 ungehindert austreten und auf ein in der Nähe der Düse 382 angeordnetes Werkstück treffen kann.The shape of the workpiece-facing portion 381 of the nozzle 382 causes a gas flow passing along the outer wall 393 of the nozzle 382 to flow when the nozzle is in a liquid bath (not shown) removes liquid bath liquid from region 395 in front of the funnel-shaped section so that a pulsating high-pressure fluid jet can exit the nozzle orifice 388 unhindered and strike a workpiece located near die 382.

Die Fig. 11 zeigt eine Vorrichtung 420 für das Erzeugen eines pulsierenden Hochdruck-Fluidstrahls 416, 417, 418 und 419. Die Vorrichtung 420 hat eine Kammer 422 mit einer Einrichtung 424 für das Erzeugen von Fluid-Druckwellen 432. Die Vorrichtung 420 hat ein Leitungssystem 436 mit einem kammerseitigen Abschnitt 442 und einem düsenseitigen Abschnitt 444. Für das Einstellen der Weglänge für die Fluid-Druckwellen 432 in dem Leitungssystem 436 kann der düsenseitige Abschnitt 444 relativ zu dem kammerseitigen Abschnitt 442 mit einer Verstelleinrichtung 447 entsprechend dem Doppelpfeil 448 verlagert werden.The Fig. 11 Figure 4 shows a device 420 for generating a pulsating high pressure fluid jet 416, 417, 418 and 419. The device 420 has a chamber 422 with a device 424 for generating fluid pressure waves 432. The device 420 has a conduit system 436 with a chamber side Section 442 and a nozzle-side portion 444. For adjusting the path length for the fluid-pressure waves 432 in the conduit system 436, the nozzle-side portion 444 relative to the chamber-side portion 442 with an adjusting device 447 corresponding to the double arrow 448 are displaced.

Die Fig. 12 zeigt einen Schnitt der Vorrichtung 420 entlang Linie XII - XII in Fig. 11. In dem düsenseitigen Abschnitt 444 des Leitungssystems 436 gibt es eine in der Form eines Rechens verzweigte Leitung 438 mit vier Düsen, die in die Leitung 438 integriert sind. Die in die Leitung 438 integrierten Düsen haben jeweils einen entsprechend dem Doppelpfeil 460 verlagerbaren Düsenkörper 450, 452, 454 und 456 mit einem Düsenmund. Durch Verlagern der Düsenkörper 450, 452, 454 und 456 ist es möglich, die aus dem Quotienten der Weglänge L450, L452, L454 und L456 für die Fluid-Druckwellen zwischen der Austrittöffnung der Kammer 422 und dem betreffenden Düsenmund der Düse in dem Leitungssystem 436 und der Wellenlänge λ der Fluid-Druckwellen 422 in dem Leitungssystem 436 gebildeten Helmholtz-Zahlen Hen:= Ln / λ so einzustellen, dass die Amplitude AP einer in der Kammer 422 erzeugten Fluid-Druckwelle vor dem betreffenden Düsenmund in den Düsenkörpern 450, 452, 454 und 456 maximal ist.The Fig. 12 shows a section of the device 420 along line XII - XII in Fig. 11 , In the nozzle-side portion 444 of the conduit system 436, there is a branched in the form of a rake line 438 with four nozzles, which are integrated into the line 438. The nozzles integrated into the line 438 each have a nozzle body 450, 452, 454 and 456 which can be displaced in accordance with the double arrow 460 and has a nozzle mouth. By displacing the nozzle bodies 450, 452, 454 and 456, it is possible to obtain from the quotient of the path length L 450 , L 452 , L 454 and L 456 for the fluid pressure waves between the outlet opening of the chamber 422 and the respective nozzle mouth of the nozzle Helmholtz numbers He n : = L n / λ set in line system 436 and wavelength λ of fluid pressure waves 422 in line system 436 such that the amplitude A P of a fluid pressure wave generated in chamber 422 in front of the nozzle orifice in question the nozzle bodies 450, 452, 454 and 456 is maximum.

Die vorstehend beschriebenen Vorrichtungen und Anlagen eignen sich für das Bearbeiten der Oberfläche von Werkstücken, für das Aktivieren der Oberfläche von Werkstücken für das Beschichten, für das Bearbeiten und Entfernen von Beschichtungen auf Werkstücken und für das Reinigen von Werkstücken.The devices and systems described above are suitable for machining the surface of workpieces, for activating the surface of workpieces for coating, for processing and removing coatings on workpieces, and for cleaning workpieces.

Die beschriebenen Vorrichtungen und Anlagen eignen sich insbesondere für das Aktivieren einer Werkstückoberfläche, damit diese mittels Flammspritzen oder Plasmaspritzen oder Lichtbogendrahtspritzen beschichtet werden kann. Die Erfinder haben nämlich erkannt, dass die mittels eines entsprechenden pulsierenden Hochdruck-Fluidstrahles in der Oberfläche von Werkstücken Mikrostrukturen mit Hinterschneidungen erzeugt werden können. Thermische Beschichtungen, die auf eine solche Oberfläche aufgetragen werden, haften hier besonders gut, weil die schmelzflüssigen Partikel beim Beschichten aufgrund der kinetischen Energie und aufgrund der Kapillarwirkung in diese Mikrostrukturen gut eindringen können, dann aber dort erstarren. Eine mit einer erfindungsgemäßen Vorrichtung und Anlage aktivierte Werkstückoberfläche aufgetragene Beschichtung hat deshalb insbesondere eine hohe Haftzugfestigkeit, die durchaus 30 MPa oder mehr betragen kann.The devices and systems described are particularly suitable for activating a workpiece surface, so that it can be coated by means of flame spraying or plasma spraying or electric arc wire spraying. The inventors have recognized that the microstructures with undercuts can be produced in the surface of workpieces by means of a corresponding pulsating high-pressure fluid jet. Thermal coatings which are applied to such a surface adhere particularly well here, because the molten particles can easily penetrate into these microstructures during coating due to the kinetic energy and due to capillary action, but then solidify there. A coating applied to a workpiece surface activated by means of a device and installation according to the invention therefore has, in particular, a high adhesive tensile strength, which may well be 30 MPa or more.

Um zu gewährleisten, dass die auf ein Werkstück aufgetragene Beschichtung gut haftet, ist es von Vorteil, wenn die zu beschichtende Oberfläche des Werkstücks nach dem Aktivieren in einer erfindungsgemäßen Vorrichtung oder Anlage getrocknet wird, etwa durch Auskübeln, durch Lufttrocknung oder durch Vakuumtrocknung.In order to ensure that the coating applied to a workpiece adheres well, it is advantageous if the surface to be coated of the workpiece is dried after activation in a device or equipment according to the invention, for example by panning, by air drying or by vacuum drying.

Die Erfinder haben insbesondere erkannt, dass eine besonders gute Haftung für eine mittels Flammspritzen oder Plasmaspritzen oder Lichtbogendrahtspritzen auf die Oberfläche eines Werkstücks aufgetragene Schicht dadurch erreicht werden kann, dass die Oberfläche des Werkstücks zunächst mit einem pulsierenden Hochdruck-Fluidstrahl in einer erfindungsgemäßen Anlage beaufschlagt wird, um diese Oberfläche aufzurauen, und im Anschluss die aufgeraute Oberfläche des Werkstücks mit einem definierten Anpressdruck zu Walzen. Die Erfinder haben nämlich festgestellt, dass durch das Walzen die mesoskopischen Erhebungen einer aufgerauten Oberfläche so deformiert und gestaucht werden können, dass hierbei Mikrostrukturen mit Hinterschneidungen entstehen, die eine hohe mechanische Stabilität haben und in welche die schmelzflüssigen Partikel beim Beschichten gut eindringen können.In particular, the inventors have recognized that a particularly good adhesion for a layer applied to the surface of a workpiece by means of flame spraying or plasma spraying or arc wire spraying can be achieved in that the surface of the workpiece initially with a pulsating high-pressure fluid jet in an inventive Plant is roughened to roughen this surface, and then the roughened surface of the workpiece with a defined contact pressure to rollers. The inventors have found that by rolling the mesoscopic projections of a roughened surface can be deformed and compressed so that this microstructures arise with undercuts, which have a high mechanical stability and in which the molten particles can easily penetrate during coating.

Die beschriebenen Vorrichtungen und Anlagen eignen sich auch für das Bearbeiten von Werkstück-Beschichtungen, etwa für das Entfernen von Overspray auf Werkstücken, die einem Beschichtungsprozess unterzogen wurden. Indem der Anstellwinkel des pulsierenden Hochdruck-Fluidstrahls, dessen Austrittsgeschwindigkeit aus einem Düsenmund und die Frequenz der Druckwellen, d.h. die Repititionsrate für den Hochdruck-Fluidstrahl eingestellt wird, können insbesondere die Kanten von Beschichtungsabschnitten auf einem Werkstück definiert bearbeitet werden. Insbesondere können so Kanten erzeugt werden, die mit der Werkstückoberfläche einen 45°-Winkel bilden.The devices and systems described are also suitable for the machining of workpiece coatings, such as for the removal of overspray on workpieces that have been subjected to a coating process. By the angle of attack of the pulsating high-pressure fluid jet, its exit velocity from a nozzle mouth and the frequency of the pressure waves, i. If the repetition rate for the high-pressure fluid jet is set, in particular the edges of coating sections can be processed in a defined manner on a workpiece. In particular, edges can thus be produced which form a 45 ° angle with the workpiece surface.

Eine Erkenntnis der Erfinder ist auch, dass mit einem pulsierenden Hochdruck-Fluidstrahl in die Beschichtung von Werkstücken, etwa einer mittels lichtbogendrahtspritzen (LDS) erzeugten Beschichtung an den Zylinderkopfflächen von Brennkraftmaschinen eine Fase eingebracht werden kann, ohne dass hier wie bei der Bearbeitung mit Schneidwerkzeugen die Gefahr besteht, dass sich diese Beschichtung bei der Bearbeitung mit den pulsierenden Hochdruck-Fluidstrahlen von dem Werkstück ablöst.A finding of the inventors is also that with a pulsating high-pressure fluid jet in the coating of workpieces, such as a means of Lichtbogendrahtspritzen (LDS) generated coating on the cylinder head surfaces of internal combustion engines, a chamfer can be introduced without here as in the processing with cutting tools the There is a risk that this coating will detach from the workpiece during processing with the pulsating high-pressure fluid jets.

Die erfindungsgemäßen Vorrichtungen und Anlagen eignen sich insbesondere für das Bearbeiten einer mittels Flammspritzen oder Plasmaspritzen oder Lichtbogendrahtspritzen erzeugten Werkstückoberfläche und/oder für das Entgraten eines Werkstücks und/oder für das Entfernen von Schmutz von einem Werkstück und/oder für das Abtragen von Schichten an einem Werkstück. Die erfindungsgemäßen Vorrichtungen und Anlagen eignen sich auch für das Aufrauen von Werkstückoberflächen, um diese für ein stoffschlüssiges Fügen (Verkleben, Schweißen, Löten) vorzubereiten.The devices and systems according to the invention are particularly suitable for processing a workpiece surface produced by means of flame spraying or plasma spraying or arc wire spraying and / or for Deburring of a workpiece and / or for the removal of dirt from a workpiece and / or for the removal of layers on a workpiece. The devices and systems according to the invention are also suitable for roughening workpiece surfaces, in order to prepare them for a cohesive joining (gluing, welding, soldering).

Die erfindungsgemäßen Vorrichtungen und Anlagen können z.B. mit Fluid in Form von Waschlauge und/oder Wasser und/oder Emulsion, insbesondere Wasser-Öl-Emulsion und/oder Öl betrieben werden. Um die Korrosion der erfindungsgemäßen Vorrichtungen und Anlagen zu vermeiden, ist es von Vorteil, dem für das Bearbeiten von Werkstücken eingesetzten Fluid Korrosionsschutzmittel beizumischen.The devices and installations according to the invention may e.g. be operated with fluid in the form of wash liquor and / or water and / or emulsion, in particular water-oil emulsion and / or oil. In order to avoid the corrosion of the devices and systems according to the invention, it is advantageous to mix anti-corrosion agents with the fluid used for machining workpieces.

Erfindungsgemäß können mit den vorstehend beschriebenen Vorrichtungen und Anlagen Abschnitte von Werkstücken oder Werkstücke veredelt werden, die wenigstens teilweise aus Aluminium oder Magnesium bestehen, wobei die Oberflächenbeschichtung mittels Laserdrahtschweißen aufgetragenes eisenhaltiges Material ist oder das Werkstück wenigstens teilweise aus Stahl oder aus Grauguss besteht und die Oberflächenbeschichtung mittels Laserdrahtschweißen aufgetragenes nickelhaltiges Material ist.According to the invention with the devices and systems described above, portions of workpieces or workpieces are at least partially made of aluminum or magnesium, wherein the surface coating is applied by laser wire welding iron-containing material or the workpiece consists at least partially of steel or gray cast iron and the surface coating means Laser wire welding is applied nickel-containing material.

Erfindungsgemäß kann mit den vorstehend beschriebenen Vorrichtungen und Anlagen die Oberfläche von Werkstücken durch das Beaufschlagen des Werkstücks mit einem pulsierenden Fluidstrahl auch verdichtet werden. Die Erfinder haben insbesondere erkannt, dass durch das Behandeln von Zylinderkurbelgehäusen aus Aluminiumdruckguss die eine Beschichtung im Bereich der Zylinderlaufflächen störenden Lunker mit einem pulsierenden hochdruck-Fluidstrahl aus Wasser verschlossen werden können.According to the invention, with the devices and installations described above, the surface of workpieces can also be compacted by applying a pulsating fluid jet to the workpiece. The inventors have recognized in particular that by treating cylinder crankcases made of die-cast aluminum, the voids interfering with a coating in the region of the cylinder running surfaces can be closed off with water using a pulsating high-pressure fluid jet of water.

Zusammenfassend sind insbesondere folgende bevorzugte Merkmale der Erfindung festzuhalten: Die Erfindung betrifft eine Vorrichtung 20 für das Erzeugen eines pulsierenden Fluidstrahls 16, 18 aus mit Druck beaufschlagtem Fluid. Die Vorrichtung 20 enthält ein Leitungssystem 36, das wenigstens eine Düse 38, 40 aufweist, die einen Düsenmund 125 hat, aus dem ein pulsierender Fluidstrahl aus mit Druck beaufschlagtem Fluid austreten kann. Die Vorrichtung 20 hat eine Kammer 22, in der eine Druckwellenerzeugungseinrichtung 24 für das Erzeugen von Fluid-Druckwellen 32 ausgebildet ist. Die Kammer 22 kommuniziert mit dem Leitungssystem 36 durch eine Austrittsöffnung 34 für die erzeugten Fluid-Druckwellen 32. Die Vorrichtung 20 enthält eine Einstelleinrichtung 31, 47, 62, 64 für das Steuern der Amplitude AP der Fluid-Druckwellen 22 in dem Leitungssystem 36 vor dem wenigstens einen Düsenmund 125. Mit Einstelleinrichtung 31, 47, 62, 64 kann eine aus dem Quotient der Weglänge L für die Fluid-Druckwellen 22 zwischen der Austrittöffnung 34 der Kammer 22 und dem wenigstens einen Düsenmund 125 der wenigstens einen Düse 38, 40 in dem Leitungssystem 36 und der Wellenlänge λ der Fluid-Druckwellen 22 in dem Leitungssystem (36) gebildete Helmholtz-Zahl He:= L / λ eingestellt werden.In summary, in particular the following preferred features of the invention are to be noted: The invention relates to a device 20 for the Generating a pulsating fluid jet 16, 18 from pressurized fluid. The apparatus 20 includes a conduit system 36 having at least one nozzle 38, 40 having a nozzle mouth 125 from which a pulsating fluid jet of pressurized fluid may exit. The device 20 has a chamber 22 in which a pressure wave generating means 24 for generating fluid pressure waves 32 is formed. The chamber 22 communicates with the conduit system 36 through an exit port 34 for the generated fluid pressure waves 32. The device 20 includes an adjuster 31, 47, 62, 64 for controlling the amplitude A P of the fluid pressure waves 22 in the conduit system 36 With the adjustment means 31, 47, 62, 64, a from the quotient of the path length L for the fluid pressure waves 22 between the outlet opening 34 of the chamber 22 and the at least one nozzle mouth 125 of the at least one nozzle 38, 40 in Helmholtz number He: = L / λ set in line system 36 and wavelength λ of fluid pressure waves 22 in the line system (36).

Claims (17)

  1. An apparatus (20) for generating a pulsating fluid jet (16, 18) of pressurized fluid,
    comprising a line system (36), which comprises at least one nozzle (38, 40) having a nozzle orifice (125) from which a pulsating fluid jet (16, 18) of pressurized fluid can emerge, and
    comprising a chamber (22), in which a pressure wave generating device (24) for generating fluid pressure waves (32) is formed and which communicates with the line system (36) through an outlet opening (34) for the generated fluid pressure waves (32),
    characterized by
    a setting device (31, 47, 62, 64) for controlling the amplitude AP of the fluid pressure waves (22) in the line system (36) upstream of the at least one nozzle orifice (125), which setting device can be used to set a Helmholtz number He: = L / λ formed from the quotient of the path length L for the fluid pressure waves (22) in the line system (36) between the outlet opening (34) in the chamber (22) and the at least one nozzle orifice (125) of the at least one nozzle (38, 40) and the wavelength λ of the fluid pressure waves (22) in the line system (36).
  2. The apparatus as claimed in claim 1, characterized in that the setting device comprises at least one line (62, 64) of adjustable length, arranged in the line system (36), for pressurized fluid (41), which can be used to adjust the path length (26) of fluid pressure waves (32) generated in the chamber (22) between the at least one nozzle orifice (125) of the at least one nozzle (38, 40) and the outlet opening (34) for fluid pressure waves (32) in the chamber (22).
  3. The apparatus as claimed in claim 2, characterized in that the adjustable line (62, 64) comprises a first line section (66, 68) and has a second line section (70, 72) which is at least partially accommodated in the first line section (66, 68), which communicates therewith and which can be displaced relative to the first line section (66, 68) in the longitudinal direction thereof.
  4. The apparatus as claimed in one of claims 1 to 3, characterized in that the setting device comprises means (31) for setting the frequency of the fluid pressure waves (32) generated by the pressure wave generating device (24).
  5. The apparatus as claimed in one of claims 1 to 4, characterized in that the line system (36) has a first line system portion (42) with an opening for supplying fluid from a high-pressure pump (91) and has a second line system portion (44) with the at least one nozzle (38), wherein the first portion (42) and the second portion (44) are connected by a rotary joint (16).
  6. The apparatus as claimed in claim 5, characterized in that the second line system portion (42) can be moved in the rotary joint (16) relative to the first line system portion (42) in a manner oscillating and/or rotating about an axis coaxial to the axis (52) of a fluid duct (60) formed in the second portion (42).
  7. The apparatus as claimed in one of claims 1 to 6, characterized in that the line system has a first line system portion (42) with an opening (34) for supplying liquid to a high-pressure pump (91) and has a second line system portion (44) with a plurality of nozzles (38, 40), which can be supplied with fluid (41) through separate line branches (56, 58).
  8. The apparatus as claimed in claim 7, characterized in that a line of adjustable length (62, 64) for pressurized fluid is arranged in each case in the separate line branches (56, 58) to the nozzles (38, 40), and can be used to adjust the path length (26) of fluid pressure waves (32) generated in the chamber (22) between a nozzle orifice (125) of the nozzle (38, 40) which can be supplied with fluid (41) via the line branch (56, 58) and the outlet opening (34) for fluid pressure waves (32) in the chamber (22).
  9. The apparatus as claimed in one of claims 1 to 8, characterized in that the effective cross section of the lines in the line system (36) decreases between the outlet opening (34) for fluid pressure waves (32) in the chamber (22) and the nozzle orifice (125) of the nozzle (38, 40), and/or that the chamber (22) has an opening (94), spaced apart from the outlet opening (34), for supplying high-pressure fluid (41), and the fluid (41) supplied to the nozzle (38, 40) is guided through the chamber (22) and/or that the pressure wave generating device (24) is positioned in a dead water region (33) of the chamber (22) and/or that the chamber (22) has a portion (99) with a cross section which tapers like a funnel toward the outlet opening (34).
  10. The apparatus as claimed in one of claims 1 to 9, characterized in that the at least one nozzle (38, 40, 170) has a nozzle chamber (122, 172) having a portion (126, 174) with a cross section which tapers toward the nozzle orifice (125, 173).
  11. The apparatus as claimed in claim 10, characterized in that the portion (126) of the nozzle chamber (122) is conically tapered at an obtuse opening angle a, preferably at an opening angle α where 105° ≤ α ≤ 180°, or the portion (174) of the nozzle chamber (172) is conically tapered at an acute opening angle a, where it is preferable that α ≈ 58°, wherein a jet director (75) for avoiding or reducing turbulence is arranged in the nozzle chamber (172).
  12. The apparatus as claimed in one of claims 1 to 11, characterized in that the at least one nozzle (150) has a cylindrical, preferably circular-cylindrical, nozzle chamber (152) with an opening (154) arranged at the end into the nozzle orifice (156) and/or that provision is made of a device (369, 370) for generating a gas stream (317) which envelops the pulsating fluid jet (316) at least in certain portions.
  13. A plant (10) having an apparatus (20) formed as claimed in one of claims 1 to 12 for generating a fluid jet (16, 18) of pressurized fluid, characterized by a receiving device (92) for workpieces (15), in which the workpieces (15) can be subjected to a pulsating fluid jet (16, 18), and a fluid collecting device (93), in order to collect fluid (41) released by the apparatus (20), which is connected to a pressure pump (91) in order to return the collected fluid (41) into the apparatus (20) and/or characterized by a controllable device for setting the pressure of fluid supplied to the line system (36), and a computer unit (134), which is connected to the device (91) for setting the pressure P and to the pressure wave generating device (24) and has a data storage device (135), which stores a parameter map (136) for the application-specific setting of the fluid pressure P and/or the amplitude AP and/or the frequency v of the fluid pressure waves (32) which can be generated by the pressure wave generating device (24) and/or a nozzle rotational speed depending on a material to be machined, in particular a substrate, and/or depending on a workpiece geometry and/or a workpiece surface quality, in particular a workpiece surface roughness, and/or a type of workpiece contamination and/or a machining distance between a workpiece to be machined and the at least one nozzle orifice (120).
  14. The use of an apparatus as claimed in one of claims 1 to 12 or of a plant as claimed in claim 13 for activating a workpiece surface (212), so that the latter can be coated by means of flame spraying or plasma spraying or arc wire spraying, and/or
    for machining a workpiece surface produced by means of flame spraying or plasma spraying or arc wire spraying, and/or
    for deburring a workpiece and/or for removing dirt from a workpiece, and/or
    for removing layers on a workpiece and/or for subjecting a workpiece surface to fluid in the form of washing liquor and/or water and/or emulsion, in particular water-oil emulsion and/or oil, and/or
    for compacting a workpiece surface by subjecting the workpiece surface to fluid, in particular to water.
  15. A process for machining the wall (212) of a bore (214) in a workpiece (215) using an apparatus formed as claimed in one of claims 1 to 12, in which process the wall (212) of the bore is subjected to a pulsating high-pressure fluid jet from a nozzle which is inclined at an angle β in the range of 0° ≤ β ≤ 60°, preferably an angle β ≈ 45°, with respect to the local surface normal of the wall, wherein the nozzle is moved in a rotatory manner about the axis (229) of the bore (214) and displaced in a translatory manner in the direction of the axis (229) of the bore relative to the workpiece.
  16. A process for finishing a portion of a workpiece, in which a surface coating is applied to the portion of the workpiece and in which, in a second step, the coating is machined by means of a pulsating high-pressure fluid jet, which is preferably generated by an apparatus formed as claimed in one of claims 1 to 12.
  17. The process as claimed in claim 16, characterized in that the portion of the workpiece is activated, before the surface coating is applied, by means of a pulsating high-pressure fluid jet, which is preferably generated by an apparatus formed as claimed in one of claims 1 to 12.
EP12725005.8A 2011-08-11 2012-05-31 Device for generating a pulsating fluid jet subjected to pressure Active EP2741862B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201110080852 DE102011080852A1 (en) 2011-08-11 2011-08-11 Apparatus for generating a pulsating pressurized fluid jet
PCT/EP2012/060208 WO2013020732A1 (en) 2011-08-11 2012-05-31 Device for generating a pulsating fluid jet subjected to pressure

Publications (2)

Publication Number Publication Date
EP2741862A1 EP2741862A1 (en) 2014-06-18
EP2741862B1 true EP2741862B1 (en) 2018-09-05

Family

ID=46201643

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12725005.8A Active EP2741862B1 (en) 2011-08-11 2012-05-31 Device for generating a pulsating fluid jet subjected to pressure

Country Status (8)

Country Link
US (1) US9914238B2 (en)
EP (1) EP2741862B1 (en)
CN (1) CN103857475B (en)
BR (1) BR112014003105A8 (en)
DE (1) DE102011080852A1 (en)
MX (1) MX344279B (en)
RU (1) RU2608488C2 (en)
WO (1) WO2013020732A1 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10486260B2 (en) 2012-04-04 2019-11-26 Hypertherm, Inc. Systems, methods, and devices for transmitting information to thermal processing systems
DE102011080852A1 (en) 2011-08-11 2013-02-14 Dürr Ecoclean GmbH Apparatus for generating a pulsating pressurized fluid jet
US20150332071A1 (en) 2012-04-04 2015-11-19 Hypertherm, Inc. Configuring Signal Devices in Thermal Processing Systems
US11783138B2 (en) 2012-04-04 2023-10-10 Hypertherm, Inc. Configuring signal devices in thermal processing systems
US9272437B2 (en) 2012-10-31 2016-03-01 Flow International Corporation Fluid distribution components of high-pressure fluid jet systems
DE102013006331A1 (en) * 2013-04-12 2014-10-16 Technotrans Ag Workpiece lubricator and method for lubricating workpieces
DE102013211324A1 (en) 2013-06-17 2014-12-18 Dürr Ecoclean GmbH Method and installation for preparing and coating a workpiece surface
WO2015061306A1 (en) * 2013-10-25 2015-04-30 United Technologies Corporation Plasma spraying system with adjustable coating medium nozzle
US9884406B2 (en) * 2014-01-15 2018-02-06 Flow International Corporation High-pressure waterjet cutting head systems, components and related methods
US10786924B2 (en) 2014-03-07 2020-09-29 Hypertherm, Inc. Waterjet cutting head temperature sensor
US20150269603A1 (en) 2014-03-19 2015-09-24 Hypertherm, Inc. Methods for Developing Customer Loyalty Programs and Related Systems and Devices
CN204064699U (en) * 2014-04-15 2014-12-31 福州海霖机电有限公司 High-pressure wash machine detecting device
DE102015106343A1 (en) * 2015-04-24 2016-10-27 Weber Ultrasonics Gmbh Device and method for deburring components by means of ultrasound
CN104827408A (en) * 2015-05-13 2015-08-12 邵勇 Working device with centripetally rotary nozzle and used for sand blasting and shot blasting
CN104816042A (en) * 2015-05-15 2015-08-05 大连现代辅机开发制造有限公司 Robot high-pressure balance burr removing device and method
US10596717B2 (en) 2015-07-13 2020-03-24 Flow International Corporation Methods of cutting fiber reinforced polymer composite workpieces with a pure waterjet
CN106737223A (en) * 2015-11-20 2017-05-31 衡阳市嘉励运动器材有限公司 A kind of sand-blasting machine for processing golf clubs
JP6420778B2 (en) * 2016-01-15 2018-11-07 株式会社スギノマシン Excess thermal spray coating removal device, shield plate, and shield unit
CN106826578B (en) * 2017-01-06 2020-06-16 中国第一汽车股份有限公司 Grinding and flow guiding device and grinding method suitable for grinding needle valve body of high-injection-pressure oil nozzle
CN106863148B (en) * 2017-04-05 2023-03-24 安徽理工大学 Device for driving solid-liquid two-phase flow to form abrasive material jet flow based on electromagnetic mechanism
DE202017102179U1 (en) * 2017-04-11 2018-04-13 Piller Entgrattechnik Gmbh Device for roughening cylinder surfaces
DE102017119610A1 (en) 2017-08-26 2019-03-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for generating a sequence of beam sections of a discontinuous, modified liquid jet
CN108031566B (en) * 2017-10-17 2023-10-27 北京科技大学 High-pressure water jet self-vibration nozzle device with adjustable structure
GB2583227B (en) 2017-11-30 2022-10-05 Axalta Coating Systems Gmbh Systems for applying coating compositions utilizing a high transfer efficiency applicator and corresponding methods
CN109333373B (en) * 2018-11-19 2023-11-10 浙江嘉蓝海洋电子有限公司 Constant force self-adaptive operation head device
CN110095226B (en) * 2019-05-30 2020-11-10 合肥工业大学 Gas impact jet flow pressure measuring device based on intermittent type spiral motion mechanism
DE102019117851A1 (en) * 2019-07-02 2021-01-07 Nemak, S.A.B. De C.V. Method for connecting a component to another component
PL4041929T3 (en) * 2019-10-09 2024-09-16 Oerlikon Surface Solutions Ag, Pfäffikon Method to produce cast iron brake discs with high corrosion and wear resistance
US20210146385A1 (en) * 2019-11-19 2021-05-20 Spraying Systems Co. Rotation detection in a hydraulic drive rotating tank cleaning spray nozzle
FR3103405B1 (en) * 2019-11-22 2022-08-19 Hydroprocess MOBILE POINT DEVICE FOR CAPTURING A HIGH PRESSURE WATER JET COMING FROM A NOZZLE OF A CUTTING MACHINE
CN111270059B (en) * 2020-03-06 2021-07-06 武汉大学 Multi-cluster pulse water jet peening device for strengthening surface of large-size plate
DE102020206441A1 (en) 2020-05-25 2021-11-25 Mahle International Gmbh Process for the production of a multi-part cooling plate
US12122932B2 (en) 2020-05-29 2024-10-22 Axalta Coating Systems Ip Co., Llc Coating compositions for application utilizing a high transfer efficiency applicator and methods and systems thereof
CN112934492B (en) * 2021-01-29 2022-07-05 武汉大学 Energy storage type pulse jet generating device
CN113510028B (en) * 2021-05-25 2022-07-29 哈尔滨工业大学 Pipeline spraying robot and spraying method for inner wall of special-shaped variable-cross-section bent pipeline
EP4434644A1 (en) * 2023-03-22 2024-09-25 B/E Aerospace, Inc. Rinsing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0062111A2 (en) * 1980-12-12 1982-10-13 Hydronautics, Incorporated Enhancing liquid jet erosion
US5154347A (en) * 1991-02-05 1992-10-13 National Research Council Canada Ultrasonically generated cavitating or interrupted jet
US20050210983A1 (en) * 2004-03-23 2005-09-29 Lasson Technologies, Inc. Method and device for ultrasonic vibration detection during high-performance machining
US20060191562A1 (en) * 2003-02-25 2006-08-31 Mahito Nunomura Ultrasonic washing device
EP2145689A1 (en) * 2008-07-16 2010-01-20 VLN Advanced Technologies Inc. Method and apparatus for prepping surfaces with a high-frequency forced pulsed waterjet

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2508874A (en) * 1946-02-09 1950-05-23 American Wheelabrator & Equipm Casting screw threads on blast nozzles and the like
US5778713A (en) * 1997-05-13 1998-07-14 Waterjet Technology, Inc. Method and apparatus for ultra high pressure water jet peening
US6280302B1 (en) * 1999-03-24 2001-08-28 Flow International Corporation Method and apparatus for fluid jet formation
RU2177824C1 (en) * 2001-04-02 2002-01-10 Наборщиков Иван Петрович Method of treatment of nonuniform fluid medium and device for its embodiment
US20040089450A1 (en) * 2002-11-13 2004-05-13 Slade William J. Propellant-powered fluid jet cutting apparatus and methods of use
US20080225115A1 (en) * 2005-03-07 2008-09-18 Nippon Sheet Glass Company, Limited Perspective Distortion inspecting Equipment and Method of Translucent Panel
CZ299412B6 (en) 2005-03-15 2008-07-16 Ústav geoniky AV CR, v.v.i. Method of generating pressure pulses and apparatus for making the same
GB2472998A (en) 2009-08-26 2011-03-02 Univ Southampton Cleaning using acoustic energy and gas bubbles
CA2774895A1 (en) * 2009-10-06 2011-04-14 Sulzer Metco (Us) Inc. Method for preparation of cylinder bore surfaces for thermal spray coating with pulsed waterjet
RU99086U1 (en) * 2010-06-15 2010-11-10 Вячеслав Павлович Терехин ACOUSTIC ACTIVATION GENERATOR
CN201799358U (en) * 2010-09-03 2011-04-20 任保林 Eddy impulse resonant jet flow sprayer device
DE102011080852A1 (en) 2011-08-11 2013-02-14 Dürr Ecoclean GmbH Apparatus for generating a pulsating pressurized fluid jet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0062111A2 (en) * 1980-12-12 1982-10-13 Hydronautics, Incorporated Enhancing liquid jet erosion
US5154347A (en) * 1991-02-05 1992-10-13 National Research Council Canada Ultrasonically generated cavitating or interrupted jet
US20060191562A1 (en) * 2003-02-25 2006-08-31 Mahito Nunomura Ultrasonic washing device
US20050210983A1 (en) * 2004-03-23 2005-09-29 Lasson Technologies, Inc. Method and device for ultrasonic vibration detection during high-performance machining
EP2145689A1 (en) * 2008-07-16 2010-01-20 VLN Advanced Technologies Inc. Method and apparatus for prepping surfaces with a high-frequency forced pulsed waterjet

Also Published As

Publication number Publication date
DE102011080852A1 (en) 2013-02-14
BR112014003105A2 (en) 2017-02-21
MX344279B (en) 2016-12-08
CN103857475A (en) 2014-06-11
US20140165807A1 (en) 2014-06-19
BR112014003105A8 (en) 2018-08-14
RU2014108917A (en) 2015-09-20
CN103857475B (en) 2016-08-24
EP2741862A1 (en) 2014-06-18
US9914238B2 (en) 2018-03-13
MX2014001620A (en) 2014-05-28
RU2608488C2 (en) 2017-01-18
WO2013020732A1 (en) 2013-02-14

Similar Documents

Publication Publication Date Title
EP2741862B1 (en) Device for generating a pulsating fluid jet subjected to pressure
EP2723508B1 (en) Device for treating workpieces
DE10102924C1 (en) Blasting treatment process for hard surfaces involves applying at least one auxiliary energy pulse to blasting medium
DE69712613T2 (en) DEVICE AND METHOD FOR SHARPENING AN EXTENSIVE ROTATING TOOL
WO2014202491A1 (en) Method and system for preparing and coating a workpiece surface
DE69311626T2 (en) Device and method for pressure jet cleaning of metallic surfaces
EP1520059A2 (en) Method and device for coating the interior of hollow areas by thermal injection
DE4341869A1 (en) Removal of hard coatings by ultra high pressure jets - involves nozzle set at certain distance from surface and producing flat pressurised jet
EP0946305A1 (en) Device for aerosol production
EP2308646B1 (en) Method for working on workpieces by means of a water jet that contains abrasive and emerges under high pressure from a nozzle, water jet installation for executing the method, and application of the method
WO2004028739A1 (en) Method and device for creating internal compression stresses within the surface of workpieces
DE202011104249U1 (en) Apparatus for generating a pulsating pressurized fluid jet
EP3233292B1 (en) Method for removing surface layers by a liquid jet
DE102009025621B4 (en) Method for producing a metallic component with a hardened surface layer and component produced therefrom
DE102018116666A1 (en) SELECTIVE SURFACE STRUCTURE FOR TERMINALS
DE19915265A1 (en) Minimal quantity cooling-lubrication for machining processes involves atomising lubricant independently of and separately from delivery of compressed air, e.g. with injection pump
DE69008695T2 (en) Method of removing a layer on pieces by projecting a high pressure water jet.
EP3609650B1 (en) Device and method for roughening cylinder running surfaces
DE10311552B4 (en) Method and device for cleaning workpieces of adhering contaminants
DE10148401A1 (en) Surface cleaning installation, using ultrasound with one or more sonotrodes
WO2012059373A1 (en) Method, abrasive and device for treating a component
DE102005051148A1 (en) Method for micro structuring of metallic surfaces, involves passing of liquid jet with pressure of more than one hundred bar flush over metallic surface whereby high pressure water jet with pressure of more than one thousand bar is selected
WO2024022756A1 (en) Honing method, cleaning unit, cleaning device and honing machine
EP2246128A2 (en) Device and method for removing production remnants from conduits in workpieces
DE102004058275A1 (en) Cleaning device has lance equipped with at least one nozzle operated by cleaning medium, and motor rotationally drives lance independently of cleaning medium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ECOCLEAN GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180621

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1037222

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012013382

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180905

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181206

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190105

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012013382

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

26N No opposition filed

Effective date: 20190606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120531

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240521

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240522

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240528

Year of fee payment: 13