Nothing Special   »   [go: up one dir, main page]

EP2629910A1 - Starting material and process for producing a sintered connection - Google Patents

Starting material and process for producing a sintered connection

Info

Publication number
EP2629910A1
EP2629910A1 EP11713483.3A EP11713483A EP2629910A1 EP 2629910 A1 EP2629910 A1 EP 2629910A1 EP 11713483 A EP11713483 A EP 11713483A EP 2629910 A1 EP2629910 A1 EP 2629910A1
Authority
EP
European Patent Office
Prior art keywords
particles
starting material
silver
sintered
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11713483.3A
Other languages
German (de)
French (fr)
Inventor
Daniel Wolde-Giorgis
Andrea Feiock
Robert Kolb
Thomas Kalich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102010042702A external-priority patent/DE102010042702A1/en
Priority claimed from DE102010042721A external-priority patent/DE102010042721A1/en
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2629910A1 publication Critical patent/EP2629910A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/046Surface mounting
    • H05K13/0465Surface mounting by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29301Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29311Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29439Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29463Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29464Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29463Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29469Platinum [Pt] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/29486Coating material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01021Scandium [Sc]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01037Rubidium [Rb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01055Cesium [Cs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/47Molded joint
    • Y10T403/477Fusion bond, e.g., weld, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12069Plural nonparticulate metal components

Definitions

  • the invention relates to a sintered compound, a starting material thereof and a process for their preparation, further comprising an electronic circuit containing the sintered compound according to the preamble of the independent claims.
  • Power electronics are used in many areas of technology. Especially in electrical or electronic devices in which large currents flow, the use of power electronics is unavoidable. The currents required in the power electronics lead to a thermal load on the electrical or electronic components contained. Another thermal stress is given by the use of such electrical or electronic devices at operating locations with respect to the room temperature significantly increased and possibly even constantly changing temperature. As examples, control devices in the automotive sector may be mentioned for this purpose, which are arranged directly in the engine compartment.
  • connections between power semiconductors or integrated circuits (IC) with each other and with carrier substrates are already subject to permanent temperature loads of up to 175 degrees Celsius.
  • solder joints are known.
  • soft solders are used which are based on tin-silver or tin-silver-copper alloys.
  • bonding layers show dwindling electrical and mechanical properties that can lead to failure of the assembly.
  • Lead-containing solder joints can be used at higher temperatures than soft solder joints.
  • lead-containing solder joints are severely limited by legal regulations for reasons of environmental protection in terms of their permissible technical applications.
  • lead-free brazing alloys are available for use at elevated or high temperatures, in particular above 200 degrees Celsius.
  • Lead-free brazing alloys generally have a higher melting point than 200 ° C.
  • brazing material to form a bonding layer, however, only a few electrical or electronic components come into consideration as joining partners, which can withstand the high temperatures during the melting of the brazing alloys.
  • NTV low-temperature connection technology
  • a paste which contains chemically stabilized silver particles and / or silver compounds.
  • the stabilizing constituents are burned out and / or the silver compounds broken, so that the silver particles or released silver atoms come into direct contact with each other and with the material of the joining partners.
  • a high-temperature-stable connection can be formed at already significantly lower temperatures than the melting temperature. Under thermal cycling, however, thermo-mechanical stresses and even cracking in semiconductor devices or even in the carrier substrate occur.
  • Document DE 102009000192 A1 describes a sintered material for producing a sintered compound, which can be formed as a sintered paste and comprises metallic structural particles provided with an organic coating and non-organically coated metallic and / or ceramic auxiliary particles which do not degas during the sintering process.
  • the present invention is a starting material of a sintered compound comprising metal-containing first particles and second particles, in particular wherein the second particles at least partially contain a particle core material whose thermal expansion coefficient ⁇ at 20 ° C less than the thermal expansion coefficient ⁇ at 20 ° C of the metal or the metals of the first particles in metallic form and / or its thermal expansion coefficient ⁇ at 20 ° C ⁇ 15-10 "6 K " 1 and wherein the D 50 value of the second particle is greater than or equal to half the D 50 - value of first particle and less than or equal to twice the D 50 value of the first particle.
  • the D 50 value is understood to mean the median value of a particle size distribution, in particular of primary particles, in particular according to DIN 53 206, which indicates the particle diameter, in particular primary particle diameter, above and below which the diameter of the half of the particles is in each case and which corresponds to the diameter in which the cumulative distribution reaches the value 0.5.
  • the D 50 value of particles and in particular of mixtures of several different particles, such as first, second, third and / or fourth particles, can be determined in particular by means of electron microscopy, optionally in combination with energy-dispersive X-ray spectroscopy (EDX).
  • the thermal expansion coefficient ⁇ (CTE, English: Coefficient of Thermal Expansion) of the starting material or the sintered compounds formed therefrom are significantly reduced.
  • CTE Coefficient of Thermal Expansion
  • Sintered compounds with such a low thermal expansion coefficient can not be achieved by the conventionally used silver pastes, which usually have a coefficient of thermal expansion ⁇ at 20 ° C by 19.5-10 "6 K " 1 , and are of particular interest for the semiconductor technology, since this often joining partner are joined together by means of sintered connections, on the one hand, such as chips, a very low linear expansion coefficient, for example of about 3-10 "6 K" 1, and on the other hand, for example, metallic circuit substrate, a very high linear expansion coefficient, for example of about 16 , 5-10 "6 K " 1 , which is one of the main causes of thermal stress cracking.
  • the coefficient of thermal expansion can advantageously be set such that this coefficient lies between the coefficients of thermal expansion of the joining partners to be connected via the sintered layer, for example between 16.5-10 "6 K “ 1 (circuit carrier) and 3-10 “6 K “. 1 (chip) is located.
  • thermo-mechanical stresses between the joining partners and the sintered connection which can lead to crack formation in the joining partners during thermal cycling, can advantageously be significantly reduced.
  • the cost of materials can be reduced by the use of inexpensive second particles.
  • the particle size or particle size distribution of the first and second particles should not deviate too much from each other, since too high a fine fraction of second particles adversely affects the sintering of the first particles and This can affect the stability of the sintered compound, wherein an excessive coarse fraction of second particles can lead to inhomogeneities and, accordingly, to macroscopic fluctuations in the material properties within the sintered compound.
  • a starting material of a sintered compound can be understood to mean a starting material which is used for producing a sintered compound, in particular for the mechanical and electrical connection of electrical and / or electronic components.
  • the starting material according to the invention can be, for example, a paste, a powder mixture or a sintered material preform body.
  • the metal in particular all elements of the alkali metal group, in particular Li, Na, K, Rb, Cs, and alkaline earth metal group, in particular Be, Mg, Ca, Sr, Ba, the transition metal elements, in particular Sc, Y, La, Ti , Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg , the lanthanides and the elements aluminum, gallium, indium, tin, thallium, lead and bismuth are understood.
  • the transition metal elements in particular Sc, Y, La, Ti , Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg , the lanthanides and the elements aluminum, gallium
  • noble metals are understood as meaning the elements silver, gold, platinum, palladium, ruthenium, rhodium, osmium and iridium.
  • Silicon is understood in the context of the present invention as a semi-metal and not as metal.
  • adjectives with the ending -containing such as metal-containing, noble metal, silver and copper-containing, mean that at least one element of the end-containing element group, for example one or more metals or one or more noble metals, or with the suffix -containing element, for example silver or copper, is included.
  • the elements or the element for example, elemental, ie metallic silver, so are also compounds of Ele- or element, for example silver carbonate, silver oxide and / or silver carboxylates.
  • metallic in particular be understood to mean a form in which metallic bonds are present between the atoms of one or more elements, in particular where the atoms form a lattice with freely movable (delocalized) electrons.
  • the particulate core material is a chemically inert and physically stable material.
  • a chemically inert material is understood to mean a material which undergoes no chemical reaction with the other materials of the starting material under the sintering conditions.
  • a physically stable material is understood to be a material which under the sintering conditions has no phase transition, for example from solid to liquid (melting).
  • the D 50 value of the second particles is greater than or equal to half the D 50 value of the first particles and less than or equal to 1.5 times the D 50 value of the first particles.
  • the D 50 value of the second particles may be greater than or equal to 0.75 times the D 50 value of the first particles and less than or equal to the 1.25 times D 50 value of the first particles.
  • the D 50 value of the first particles and / or second particles as well as the third particles explained below may be in the range of, for example,
  • Particles having such a particle size distribution advantageously have a large specific surface area and thus an increased reactivity.
  • the necessary processing temperature and the process time for forming a sintered connection can be kept low.
  • the second particles preferably have a D 50 value in a range of> 1.5 ⁇ m to ⁇ 6 ⁇ m (half to double the D 50 value of the first one) Particles), for example, from> 1, 5 ⁇ to ⁇ 4.5 microns (half to 1, 5 times D 50 value of the first particles), in particular from> 2.25 microns to ⁇ 3.75 microns (0.75 - to 1, 25 times D 50 - value of the first particles).
  • the thermal coefficient of linear expansion can be reduced more strongly and / or with a smaller amount of second particles.
  • the particle core material has a thermal conductivity ⁇ 20/5 ⁇ at 20 ° C and 50% air humidity of> 15 Wm "1 K “ 1 or> 25 Wm “1 K “ 1 , preferably of> 50 Wm "1 K. “1 , in particular of> 100 Wm " 1 K “1 , on. This is particularly advantageous for increasing the power density of semiconductor chips.
  • the particle core material is selected from the group consisting of elemental silicon (Si), silicon oxide (SiO 2 ), silicon carbide (SiC), aluminum nitride (AIN), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), metallic tungsten (W), metallic molybdenum (Mo), metallic chromium (Cr), metallic platinum (Pt), metallic palladium (Pd), boron carbide (BC), beryllium oxide (BeO), boron nitride (BN), preferably elemental silicon and / or silica, silicon carbide, aluminum nitride, silicon nitride, alumina, and combinations thereof.
  • these materials advantageously have a low thermal coefficient of linear expansion, which, as already explained, is advantageous in order to avoid cracking of the joining partners.
  • these materials generally behave chemically inert in an advantageous manner and, in the case of a formed sintered compound, exist in unchanged form within the metal matrix formed.
  • the second particles or at least their particle cores may be formed from such a material. Particular preference is given to elemental silicon and / or silicon dioxide.
  • the second particles may at least partially contain elemental silicon and / or silica.
  • the second particles may have a particle core of elemental silicon and / or silicon dioxide, in particular elemental silicon.
  • Elemental silicon and silicon dioxide have an extremely low coefficient of thermal expansion .alpha. (CTE, English: Coefficient of Thermal Expansion) and have therefore proved to be particularly advantageous, inter alia, for reducing the thermal expansion coefficient of the sintered connection.
  • CTE Code of Thermal Expansion
  • elemental silicon and silicon dioxide advantageously have low Young's moduli, which may have an advantageous effect on the elasticity of the sintered compound.
  • thermomechanical stress between the sintered connection and the semiconductor component connected thereto and thus the tendency for the semiconductor component to crack can be significantly reduced.
  • a sintered compound of such a starting material have a lower coefficient of linear expansion at the same or even lower Young's modulus than a similar unfilled sintered compound, in particular which instead of a proportion of second particles a correspondingly larger Share of first particles.
  • both amorphous and crystalline, in particular polycrystalline, elemental silicon and / or silicon dioxide can be used.
  • the elemental silicon and / or silicon dioxide can in principle be used in all available degrees of purity.
  • crude silicon for example, with a purity of> 95%, can be used.
  • the particulate core material is amorphous elemental silicon and / or amorphous silica.
  • Amorphous elemental silicon and amorphous silica advantageously have a particularly low coefficient of thermal expansion and a low Young's modulus, in particular the elongation coefficient and Young's modulus of amorphous elemental silicon is less than that of crystalline elemental silicon and amorphous silica, respectively, than that of crystalline silica ,
  • the particle core material is elemental silicon.
  • Elemental silicon is preferred in the context of the present invention, since both its amorphous form compared to amorphous silica and its crystalline form compared with crystalline silica by a smaller coefficient of linear expansion and a higher electrical conductivity and thermal conductivity is characterized.
  • elemental silicon Through the use of elemental silicon, the coefficient of thermal expansion of the sintered connection can therefore be reduced significantly, in particular while maintaining good elastic properties.
  • the second particles may in particular each have a particle core with a coating applied thereto.
  • the particle core is preferably formed from the particle core material, for example from elemental silicon, silicon dioxide, silicon carbide, aluminum nitride, silicon nitride and / or aluminum oxide.
  • the coating can be formed from a particle coating material that is different from the particle core material. Insofar as the particles are coated, the D 50 value refers to the particle size including the coating.
  • the second particles are spherical, in particular substantially round, for example substantially spherical, particles.
  • the term "essentially” can be understood to mean that slight deviations from the ideal shape, in particular spherical form, for example by up to 15%, are to be avoided by avoiding corners and edges, advantageously overvoltages of stress and thus cracking spots in the composite material can be avoided .
  • the first particles have a particle core with a first coating applied thereto and / or the second particles have a particle core with a second coating applied thereto.
  • the first and / or second coating or the later explained third and / or further coating advantageously encloses in each case the particle cores essentially completely, but at least almost completely.
  • the coatings act on the one hand like a protective jacket, by means of which it can be ensured that the particles and the proportion of the material contained in the respective coating remain chemically stable, which has an advantageous effect on the storage capacity.
  • such an agglomeration of the particles can be reduced or even avoided.
  • an in particular metal-containing, in particular metallic, coating for example on the second, optionally third and optionally fourth particles, the sintering of the coated particles, for example on the first or other particles can be improved.
  • the coatings preferably assume a significantly lower proportion of the particle volume than the particle cores. This has an advantageous effect on the sintering process and the thermal and electrical properties of the starting material and the sintered compound.
  • the first particles are noble metal and / or copper-containing.
  • precious metal silver, gold, platinum and / or palladium are particularly preferred.
  • the first particles are silver-containing.
  • the first particles contain in particular at least one metal, in particular at least one noble metal and / or copper, preferably silver, in metallic form and / or at least one organic or inorganic metal compound, in particular noble metal and / or copper compound, preferably silver compound, in particular, which can be converted by a temperature treatment into the metallic form of the at least one underlying metal.
  • the organic or inorganic metal compound may, for example, be selected from the group consisting of silver carbonate, silver oxide, silver lactate, silver stearate and combinations thereof. These compounds may advantageously convert at high temperatures into the underlying metal in metallic form.
  • the first particles may have a metal-containing, in particular noble metal and / or copper-containing, for example, silver-containing, particle core.
  • At least a portion of the first particles has a particle core which contains at least one metal, in particular at least one noble metal and / or copper, preferably silver, in metallic form.
  • at least a portion of the first particles of at least one metal, in particular noble metal and / or copper, preferably silver may be formed in metallic form.
  • At least a portion of the first particles on a particle core containing at least one organic or inorganic metal compound, in particular noble metal and / or copper compound, preferably silver compound, in particular which by a thermal treatment in the metallic form of at least an underlying metal is convertible.
  • At least a first part of the first particle has a particle core which contains at least one metal, in particular at least one precious metal and / or copper, preferably silver, in metallic form, at least a second part of the first particle having a particle core containing at least one organic or inorganic metal compound, in particular noble metal and / or copper compound, preferably silver compound, which is convertible by a thermal treatment in the metallic form of the at least one metal of the first part of the first particles.
  • the first coating for example of the first part of the first particles, at least one organic or inorganic metal compound, in particular precious metal and / or copper compound, preferably silver compound, contain, in particular which by a Tempe- in which at least one underlying metal in metallic form is convertible.
  • the organic or inorganic metal compound may in this case also be selected, for example, from the group consisting of silver carbonate, silver oxide, silver lactate, silver stearate and combinations thereof. These compounds may advantageously convert at high temperatures into the underlying metal in metallic form.
  • the first coating of the first particles or a further coating applied to the first coating of the first particle may contain a reducing agent by means of which the reduction of one or the organic or inorganic metal compound, in particular noble metal and / or copper compound, preferably silver compound, to the metallic form, for example at a temperature in the range of or optionally below the sintering temperature of the metallic form of the at least one underlying metal, is feasible.
  • a reducing agent by means of which the reduction of one or the organic or inorganic metal compound, in particular noble metal and / or copper compound, preferably silver compound, to the metallic form, for example at a temperature in the range of or optionally below the sintering temperature of the metallic form of the at least one underlying metal, is feasible.
  • the second and / or third particles can also have a coating containing such a reducing agent.
  • the reducing agent content of the starting material is preferably selected such that it is present in a stoichiometric ratio to the proportion of the metal compound, in particular noble metal and / or copper compound, preferably silver compound, in particular to be reduced, contained in the starting material.
  • a very high conversion rate of up to 99% or more can be achieved.
  • At least one alcohol from the group of primary or secondary alcohols and / or at least one amine and / or formic acid and / or at least one fatty acid in particular isostearic acid, stearic acid, oleic acid, lauric acid or a mixture of different fatty acids can be used.
  • reducing agent-containing first coatings can be applied in a simple manner to the first particles.
  • the abovementioned reducing agents show in the context of a temperature treatment of the To obtain a sintered compound a particularly good reduction behavior compared to the organic or inorganic metal compounds or noble metal oxides contained in the second coating of the second particles.
  • the reducing agent can advantageously be distributed very uniformly and finely in total in the starting material. This allows the sintering process within the starting material to be made more uniform and faster. This results in the advantage that a sintered connection produced from the starting material according to the invention can have a very homogeneous sintered structure, in particular with a high thermal and / or electrical conductivity.
  • coatings which contain organic or inorganic metal compounds corresponding to the first particles, in particular noble metal and / or copper compounds, preferably silver compounds, and for example are in direct contact with the coatings containing the reducing agent.
  • the temperature at which the organic or inorganic metal compound converts to the underlying metallic form can be lowered.
  • joining partners advantageously connected via the formed sintered connection for example electrical and / or electronic components of an electronic circuit, to not be exposed to high temperatures during the formation of the sintered connection.
  • temperature-sensitive electrical and / or electronic components can be electrically and / or thermally contacted in electronic circuits, which could not be used due to the usual too high process temperatures in the connection production.
  • the second coating may be metal-containing, in particular noble metal and / or copper-containing, preferably silver-containing.
  • the second coating contains at least one metal, in particular noble metal and / or copper, preferably silver, in metallic form.
  • the second coating contains at least one metal as an organic or inorganic metal compound, in particular noble metal and / or copper compound, preferably silver compound, in particular which by a thermal treatment in the metallic form, in particular of the at least one underlying metal, in particular first par is convertible.
  • the organic or inorganic metal compound may in this case also be selected, for example, from the group consisting of silver carbonate, silver oxide, silver lactate, silver stearate and combinations thereof. These compounds may advantageously convert at high temperatures into the underlying metal in metallic form.
  • the second coating or a further coating applied to the second coating may contain a reducing agent, by means of which the reduction of one or the organic or inorganic metal compound, in particular noble metal and / or copper compound, preferably silver compound, in particular of the metal / metals the first particle, the metallic form, for example at a temperature in the range of or optionally below the sintering temperature of the metallic form of the at least one underlying metal, in particular the first particles, is feasible.
  • a reducing agent by means of which the reduction of one or the organic or inorganic metal compound, in particular noble metal and / or copper compound, preferably silver compound, in particular of the metal / metals the first particle, the metallic form, for example at a temperature in the range of or optionally below the sintering temperature of the metallic form of the at least one underlying metal, in particular the first particles, is feasible.
  • the second coating contains at least one metal which is selected from the group consisting of silver, platinum, palladium, gold, tin and combinations thereof.
  • the second coating contains at least one of the metals of the first particles.
  • the second coating may contain the same metals as the first particles, for example silver.
  • the adhesion of the second particles in the starting material can be improved. Since the layer thickness of the coating is preferably smaller than the radius of the particle cores, their thermal expansion coefficient influences the sintering compound less than the coefficient of linear expansion of the particle core material. In order to further minimize the coefficient of linear expansion of the sintered material, however, it may be advantageous to use platinum and / or palladium in the coating material.
  • the starting material may comprise third particles.
  • the third particles may also have a particle core and optionally a third coating applied to the particle core.
  • the third coating may be metal-containing, in particular precious metal and / or copper-containing, preferably silver-containing.
  • the third coating contains at least one metal, in particular noble metal and / or copper, preferably silver, in metallic form.
  • the third coating contains at least one metal as an organic or inorganic metal compound, in particular noble metal and / or copper compound, preferably silver compound, in particular which by a temperature treatment in the metallic form, in particular of the at least one underlying metal, in particular first particle, is convertible.
  • the organic or inorganic metal compound may also hereby be selected, for example, from the group consisting of silver carbonate, silver oxide, silver lactate, silver stearate and combinations thereof. These compounds may advantageously convert at high temperatures into the underlying metal in metallic form.
  • the third coating or a further coating applied to the third coating may contain a reducing agent, by means of which the reduction of one or the organic or inorganic metal compound, in particular noble metal and / or copper compound, preferably silver compound, in particular of the metal / metals the first particle, the metallic form, for example at a temperature in the range of or optionally below the sintering temperature of the metallic form of the at least one underlying metal, in particular the first particles, is feasible.
  • a reducing agent by means of which the reduction of one or the organic or inorganic metal compound, in particular noble metal and / or copper compound, preferably silver compound, in particular of the metal / metals the first particle, the metallic form, for example at a temperature in the range of or optionally below the sintering temperature of the metallic form of the at least one underlying metal, in particular the first particles, is feasible.
  • the third coating includes at least one metal selected from the group consisting of silver, platinum, palladium, gold, and combinations thereof.
  • the third coating contains at least one of the metals of the first particles.
  • the third coating may contain the same metals as the first particles, for example silver.
  • the adhesion of the third particles in the starting material can be improved. Since the layer thickness of the coating is preferably smaller than the radius of the particle cores, their thermal expansion coefficient influences the sintering compound less than the coefficient of linear expansion of the particle core material. In order to further minimize the coefficient of linear expansion of the sintered material, however, it may be advantageous to use platinum and / or palladium in the coating material.
  • the third particles contain at least proportionally at least one metal, for example tin, in particular in metallic form, which by means of a temperature treatment, in particular in the range of or optionally below the sintering temperature of the metallic form of the metal / metals of the first particles, an alloy with the or the metals of the first particles is formed, in particular which has a lower melting point than the one or more metals of the first particles in metallic form.
  • the particle cores of the third particle may be formed therefrom.
  • the processing temperature for forming the sintered connection can be further reduced.
  • the alloys may be present as ductile phases within the formed sintered structure, whereby the formed sintered compounds are less susceptible to thermal and / or mechanical stresses, in particular changing loads.
  • tin for example, has a low melting point, so that when a temperature treatment of the starting material, the particles of tin melt prematurely and cause a cohesive contact of all particles contained in the starting material. This advantageously favors the diffusion processes occurring during the sintering process.
  • the starting material based on the total weight of the constituents, comprises> 5% by weight, in particular> 10% by weight, for example> 20% by weight or> 25% by weight, of second particles, in particular wherein the sum of the constituents of the starting material gives 100% by weight.
  • second particles a significant reduction of the thermal expansion coefficient of the sintered compound, in particular based on a corresponding sintered compound, which comprises a further part of first particles instead of the second particles, can be achieved.
  • the starting material comprises, based on the total weight of the constituents, ⁇ 60% by weight, in particular ⁇ 50% by weight, of second particles, in particular wherein the sum of the constituents of the starting material gives 100% by weight. With such an amount of second particles in the starting material, it is advantageously possible to produce a well-bonded or adherent sintered layer.
  • the starting material comprises, based on the total weight of the constituents, in total second and third particles ⁇ 60% by weight, in particular ⁇ 50% by weight, in particular wherein the sum of the constituents of the starting material 100 wt .-% results.
  • the starting material comprises, based on the total weight of the constituents,> 5% by weight or> 10% by weight to ⁇ 60% by weight, in particular> 10% by weight or> 20% by weight. % or> 25% by weight to ⁇ 50% by weight, of second particles or second and third particles in total, in particular wherein the sum of the constituents of the starting material gives 100% by weight.
  • the starting material comprises, based on the total weight of the constituents, from> 25 wt .-% to ⁇ 80 wt .-% of the first particles, in particular wherein the sum of the constituents of the starting material 100 wt .-% results.
  • the starting material may comprise at least one solvent.
  • the starting material based on the total weight of the ingredients,> 5 wt .-% or> 10 wt .-% to ⁇ 25 wt .-%, in particular> 10 wt .-% to ⁇ 20 wt .-%, of Solvents, in particular wherein the sum of the constituents of the starting material 100 wt .-% results.
  • the starting material may comprise at least one or more additives, for example reducing and / or oxidizing agents.
  • the starting material may comprise> 25 wt.% To ⁇ 80 wt.% Of first particles and> 5 wt.% To ⁇ 60 wt.% Of second particles or of second and third particles in total, in particular the sum of the constituents of the starting material gives 100% by weight.
  • the starting material may comprise> 5% by weight to ⁇ 25% by weight of solvents and / or> 0.1% by weight to ⁇ 10% by weight of additives, in particular where the sum of the constituents of the starting material is 100% % By weight.
  • the starting material is preferably provided as a paste. The viscosity of the paste is significantly adjustable by the admixed solvent.
  • the starting material in the form of a tablet or as a shaped body, in particular as a flat shaped body.
  • the paste-like starting material is placed in a mold or applied to a film.
  • the solvent is expelled by means of a temperature treatment from the starting material.
  • a solvent can be provided which can be expelled without residue even at a temperature in the range of or below the sintering temperature of the starting material.
  • the starting material formed in this way can also be manufactured as a major benefit, which is then cut into small application-specific shaped bodies.
  • first, the second, the third and the further coatings of the first, second and / or third particles contained in the starting material can be carried out by means of known coating methods. These can be taken from known technical literature. By way of example, mention may be made of chemical and physical coating methods, such as, for example, chemical or physical vapor deposition.
  • Another object of the present invention is the use of elemental silicon, silicon oxide, silicon carbide, aluminum nitride, silicon nitride, aluminum oxide, metallic tungsten, metallic molybdenum, metallic chromium, metallic platinum, metallic palladium, boron carbide, beryllium oxide, boron nitride and combinations to reduce the thermal expansion coefficient ⁇ of a starting material of a sintered compound or a sintered compound, in particular in a sintering paste, a sintering powder or a Sintermaterialvorform stresses.
  • Another object of the present invention is a sintered compound of a starting material according to the invention.
  • a sintered bond formed from such a starting material advantageously has a thermal expansion coefficient ⁇ at 20 ° C in a range of> 3-10 "6 K “ 1 to ⁇ 15-10 "6 K “ 1 , for example> 3-10 "6 K “ 1 to ⁇ 10-10 “6 K “ 1 , in particular of> 3-10 "6 K “ 1 to ⁇ 7-10 “6 K “ 1 .
  • Sintered compounds with such a low thermal expansion coefficient can not be achieved by the conventionally used silver pastes, which usually have a coefficient of thermal expansion ⁇ at 20 ° C by 19.5-10 "6 K " 1 , and are of particular interest for the semiconductor technology, since this often joining partner are joined together by means of sintered connections, on the one hand, such as chips, a very low linear expansion coefficient, for example of about 3-10 "6 K" 1, and on the other hand, for example, metallic circuit substrate, a very high linear expansion coefficient, for example of about 16 , 5-10 "6 K " 1 , which is one of the main causes of thermal stress cracking.
  • the coefficient of thermal expansion can advantageously be set such that this coefficient lies between the coefficients of thermal expansion of the joining partners to be connected via the sintered layer, for example between 16.5-10 "6 K “ 1 (circuit carrier) and 3-10 "6 K “. 1 (chip) is located.
  • thermo-mechanical stresses between the joining partners and the sintered connection which can lead to crack formation in the joining partners during thermal cycling, can advantageously be significantly reduced.
  • the sintered compound formed from the starting material according to the invention can also advantageously a relatively high thermal conductivity, measured at 20 ° C and 50% humidity, of
  • the cracking can be well countered, since elemental silicon has a particularly advantageous effect on the elasticity of the sintered compound due to its low Young's modulus.
  • the sintered compounds according to the invention can advantageously achieve an electrical conductivity which is only slightly lower than that of pure silver.
  • the proportion of second particles is adjusted such that the coefficient of thermal expansion a s of the sintered compound layer at 20 ° C is less than or equal to the thermal expansion coefficient a F i of a first (connected by the sintered connection) joining partner at 20 ° C and greater than or equal to the thermal Linear expansion coefficient a F2 of a second (connected by means of the sintered connection) joining partner at 20 ° C.
  • the proportion of second particles in the starting material is adjusted such that the thermal expansion coefficient a s of the sintered connection respectively of the central portion of the sintered compound ranges: a F2 + 0.2 (a F ra F2) ⁇ a s ⁇ a F2 + 0.8 (a F ra F2), in particular a F2 + 0.25 (a F ra F2) ⁇ a ⁇ a s 0.75 + F2 (a F ra F2) is located, wherein a F i is the coefficient of linear expansion of a first joining partner and a F 2 is the coefficient of linear expansion of a second joining partner and a F i> a F2 .
  • a F i is the coefficient of linear expansion of a first joining partner
  • a F 2 is the coefficient of linear expansion of a second joining partner and a F i> a F2 .
  • the proportion of second particles in the sintered compound increases stepwise or continuously from one boundary layer to a first joining partner having a greater coefficient of linear expansion in the direction of a boundary layer with a second joining partner having a smaller thermal coefficient of linear expansion, or vice versa Particles in the sintered compound gradually or continuously from a boundary layer with a first joining partner with a smaller coefficient of linear expansion in the direction of a boundary layer with a joining partner with a larger thermal expansion coefficient.
  • a gradient can be produced, for example, by applying a plurality of sintered paste layers with a sinking or increasing proportion of second particles, for example by a printing process.
  • Another object of the present invention is an electronic circuit with a sintered connection according to the invention.
  • the invention further relates to a method for forming a thermally and / or electrically conductive sintered compound.
  • the starting point here is a starting material according to the invention.
  • the starting material can be brought between two joining partners.
  • Preferred joining partners are electrical and / or electronic components with contact points, which are brought into direct physical contact with the starting material.
  • the proportion of second particles is set such that the thermal expansion coefficient a s of the sintered compound layer at 20 ° C is less than or equal to the coefficient of thermal expansion a F i of a first joining partner at 20 ° C and greater than or equal to the thermal expansion coefficient a F 2 of a second Joining partner at 20 ° C is.
  • the proportion of second particles is adjusted such that the coefficient of thermal expansion a s of the sintered compound or of the middle region of the sintered compound is in a range: a F 2 + 0.2- (a F i-a F 2) ⁇ a s ⁇ a F2 + 0.8- (a F ra F2 ), in particular a F2 + 0.25- (a F ra F2 ) ⁇ a s ⁇ a F2 + 0.75- (a F ra F2 ), where a F i is the coefficient of linear expansion of a first joining partner and a F 2 is the coefficient of linear expansion of a second joining partner and a F i> a F2 .
  • a F i is the coefficient of linear expansion of a first joining partner
  • a F 2 is the coefficient of linear expansion of a second joining partner and a F i> a F2 .
  • the proportion of second particles in the sintered compound increases stepwise or continuously from one boundary layer to a first joining partner having a greater coefficient of linear expansion in the direction of a boundary layer with a second joining partner having a smaller thermal coefficient of linear expansion, or vice versa Particles in the sintered compound gradually or continuously from a boundary layer with a first joining partner with a smaller coefficient of linear expansion in the direction of a boundary layer with a joining partner with a larger thermal expansion coefficient.
  • Such a gradient can be produced, for example, by applying a plurality of sintered paste layers with decreasing or increasing proportion of second and / or third particles, for example by a printing process.
  • the starting material can be applied in the form of a printing paste, for example by means of screen or stencil printing on the contact points.
  • the order is possible through injection or dispensing.
  • Another possibility remains to arrange the starting material as a shaped body between the joining partners.
  • the sintered compound is formed by a temperature treatment of the starting material.
  • a processing temperature of ⁇ 400 ° C preferably from
  • ⁇ 300 ° C, in particular of ⁇ 250 ° C, are provided.
  • this is done under pressure to improve the sintering process.
  • a pressure ⁇ 10 MPa is provided, preferably ⁇ 4 MPa or even
  • the sintered compound is formed in vacuo and / or under a nitrogen atmosphere. Since in this case excess reducing agent can not be burned, a starting material is to be provided in which the proportion of the starting material, in particular to be reduced, organic or inorganic metal compound in the second coating to the proportion of the reducing agent in the starting tool in a stoichiometric ratio. During the temperature treatment, the reducing agent is therefore completely used up. In addition, the organic or inorganic metal compound is completely converted to the metallic form.
  • joining partners with a non-noble-metal-containing contact point which is made of copper, for example, may also be provided in this process alternative. Thus, cost-effective electrical and / or electronic components can be used.
  • Fig. 1 is a schematic plan view of particles of an inventive
  • Fig. 2 is a schematic plan view of particles of an inventive
  • Fig. 6a, b are schematic cross-sections through embodiments of third particles
  • FIG. 7 shows a schematic cross section through a first embodiment of the invention electronic circuit
  • FIG. 8 shows a schematic cross section through a second embodiment of the invention electronic circuit.
  • FIG. 9 shows a schematic cross section through a sintering furnace in the production of a sintered connection or electronic circuit according to the invention.
  • FIG. 1 schematically shows first particles 10 and second particles 20, which in a first embodiment are provided in a starting material according to the invention of a sintered connection.
  • FIG. 1 illustrates that the first 10 and second 20 particles are substantially the same size.
  • the first 10 and second 20 particles have a particle size distribution which is as similar as possible.
  • the D 50 value of the second particle 20 is greater than or equal to half the D 50 value of the first particles 10 and
  • Such a relation of the particle size distribution of the first 10 and second 20 particles has proved to be particularly advantageous since a higher fines content of second particles have an adverse effect on the sintering of the first particles can, wherein a higher coarse fraction of second particles can lead to large inhomogeneities and, accordingly, to macroscopic variations in the material properties within the sintered compound.
  • FIG. 2 schematically shows first 10, second 20 and third 30 particles which, in a second embodiment, are provided in a starting material according to the invention of a sintered connection. In the embodiment shown, these are also substantially the same size and have a similar particle size distribution.
  • the starting material may comprise metal-containing, first particles 10 of one or more configurations shown in FIGS. 3 a to 3 f.
  • the first particles 10 may be noble-metal and / or copper-containing, in particular silver-containing, particles.
  • the figures are explained below on the basis of silver-containing first particles 10.
  • FIG. 3 a shows a first particle 10, which is formed from silver in metallic form.
  • FIG. 3b shows a first particle 10 which is formed from an organic or inorganic silver compound, for example silver carbonate (Ag 2 C0 3 ) and / or silver oxide (Ag 2 O, AgO), which can be converted into metallic silver by a temperature treatment.
  • an organic or inorganic silver compound for example silver carbonate (Ag 2 C0 3 ) and / or silver oxide (Ag 2 O, AgO), which can be converted into metallic silver by a temperature treatment.
  • FIG. 3c shows a first particle 10, which has a particle core 1 1 of silver in metallic form and a first coating 12 made of an organic or inorganic silver compound, for example silver carbonate and / or silver oxide, applied thereon, which can be converted into metallic silver by a temperature treatment is.
  • FIG. 3d shows a first particle 10, which has a particle core 1 1 of silver in metallic form and a first coating 12 made of an organic or inorganic silver compound, for example silver carbonate and / or silver oxide, applied thereon Silver is convertible.
  • the particle 10 shown in FIG. 3d has a further coating 13 applied to the first coating 12, which contains a reducing agent, for example a fatty acid, by means of which the reduction of the organic or inorganic silver compound to metallic silver can be carried out.
  • a reducing agent for example a fatty acid
  • FIG. 3 e shows a first particle 10 which has a particle core 1 1 made of silver in metallic form and a first coating 12 containing a reducing agent, for example fatty acid, wherein the reducing agent is used to reduce an organic or inorganic silver compound, for example silver carbonate and / or silver oxide, to metallic silver is feasible.
  • the organic or inorganic silver compound may be part of another first 10, second 20 or third 30 particles.
  • FIG. 3f shows a first particle 10 which has a particle core 1 1 made of an organic or inorganic silver compound, for example silver carbonate and / or silver oxide, which can be converted into metallic silver by a temperature treatment. Moreover, the first particle 10 has a first coating 12 applied to the particle core 11, which contains a reducing agent, for example fatty acid, by means of which the reduction of the organic or inorganic silver compound to metallic silver of metallic silver can be carried out.
  • a reducing agent for example fatty acid
  • FIG. 4 a shows a second particle 20 whose particle core is formed from a material which has a low thermal coefficient of linear expansion ⁇ at 20 ° C. of ⁇ 10 10 -6 K -1 , in particular of 10 10 -6 K -1 .
  • a material which has a low thermal coefficient of linear expansion ⁇ at 20 ° C. ⁇ 10 10 -6 K -1 , in particular of 10 10 -6 K -1 .
  • These may be, for example, elemental silicon, silicon oxide, silicon carbide, aluminum nitride, silicon nitride, aluminum oxide, metallic tungsten, metallic molybdenum, metallic chromium, metallic platinum, metallic palladium, boron carbide, beryllium oxide and / or boron nitride.
  • these materials advantageously also have a good thermal conductivity A 2 o / so at 20 ° C and 50% humidity of> 50 Wm "1 K " ⁇ , in particular of> 100 Wm " 1 K “ 1 , which is particularly advantageous for increasing the power density of semiconductor chips.
  • Figure 4b shows a second particle 20, which comprises a particle core 21 of a material having a low coefficient of thermal expansion ⁇ at 20 ° C of ⁇ 10 10 "6 K" 1, in particular ⁇ 10 10 "6 K '1.
  • a second coating 22 of silver, platinum or palladium in metallic form is applied to the particle core 21.
  • FIG. 4c shows a second particle 20 which has a particle core 21 made of a material with a low thermal coefficient of linear expansion ⁇ at 20 ° C. of ⁇ 10 10 -6 K -1 , in particular of ⁇ 10 10 -6 K -1 .
  • the particle 20 has a second coating 22 of an organic or inorganic silver compound, for example silver carbonate and / or silver oxide, applied to the particle core, which is convertible into metallic silver by a temperature treatment.
  • an organic or inorganic silver compound for example silver carbonate and / or silver oxide
  • FIG. 4 d shows a second particle 20, which has a particle core 21 made of a material with a low thermal expansion coefficient ⁇ and a second coating 22 applied thereto, which contains a reducing agent, for example fatty acid, by means of which the reduction of an organic or inorganic silver compound, for example, silver carbonate and / or silver oxide, which is part of another first 10, second 20 or third 30 particle, to metallic silver is feasible.
  • a reducing agent for example fatty acid
  • FIG. 4 e shows a second particle 20, which has a particle core 21 made of a material with a low thermal expansion coefficient and a second coating 22 made of an organic or inorganic silver compound, for example silver carbonate and / or silver oxide, applied thereto Silver is convertible.
  • the particle 20 shown in FIG. 4e has a further coating 23 applied to the second coating 22, which contains a reducing agent, for example a fatty acid, by means of which the reduction of the organic or inorganic silver compound to metallic silver can be carried out.
  • FIG. 5a shows a third particle 30 which contains a metal, for example tin, which forms an alloy with silver by means of a temperature treatment and / or has a lower melting point than metallic silver.
  • FIG. 5b shows a third particle 30, which has a particle core 31 made of a metal, for example tin, which forms an alloy with silver by means of a temperature treatment and / or has a lower melting point than metallic silver.
  • the third particle shown in FIG. 5b has a third coating 32, applied to the particle core 31, of an organic or inorganic silver compound, for example silver carbonate and / or silver oxide, which can be converted into metallic silver by a temperature treatment.
  • an organic or inorganic silver compound for example silver carbonate and / or silver oxide
  • FIG. 6 shows a first embodiment of an electronic circuit 70, which has a substrate 65 with at least one contact point 66.
  • the contact point 66 of the substrate 65 is connected to a contact point 61 of a chip 60.
  • FIG. 7 shows a second embodiment of an electronic circuit 70, which has a first substrate 65 with at least one contact point 66.
  • a first sintered connection 100 which is produced from a starting material 100 according to the invention
  • the first contact point 66 of the first substrate 65 is connected to a first contact point 61 of a chip 60.
  • a second contact point 61 'of the chip 60 is in turn connected to a contact point 66' of a second substrate 65 'by a second sintered connection 100, which is also produced from the starting material 100 according to the invention.
  • FIG. 8 shows a sintering furnace 80 and an electronic circuit 70 arranged in a process chamber 90 of the sintering furnace 80.
  • the electronic circuit 70 has a substrate 65 with at least one first contact point 66 made of copper.
  • a chip 60 is arranged with at least one second contact point 61 made of a silver alloy.
  • an inventive starting material 100 as a paste applied.
  • the starting material 100 contains proportionally a mixture of first 10 and second 20 particles according to the figures 1 to 4e.
  • the electronic circuit 70 is subjected to a temperature treatment with the starting material 100 contained.
  • the sintering furnace 80 contains a heating device within the process space 90.
  • the process space 90 for example, there is a vacuum or a protective gas atmosphere during the temperature treatment of the starting material 100.
  • the starting material 100 is applied, for example, as a paste in which the first 10 and second 20 particles and optionally the third particles 30 are present in dispersed form.
  • reducing agent for example a fatty acid
  • organic or inorganic silver compound for example silver carbonate and / or silver oxide
  • the metal-containing first particles 10 sinter into an electrically conductive sintered structure.
  • the second particles or their particle cores behave inertly.
  • the coatings 12, 13, 22, 23, 31, 32 explained in connection with FIGS. 3 c to 5 b can assist sintering within the sintered structure.
  • the elementary material of the second particles 20 is after the formation of the sintered compound 100 'finely distributed within the metallic silver matrix of the sintered structure 100' before.
  • third particles 30 can also be sintered in the silver matrix according to FIGS. 5a and 5b.
  • the third particles 30 may form alloys with the constituents of the first 10 particles and optionally particle coatings 12, 13, 22, 32. These alloys are then present as ductile phases within the silver matrix formed in the sintered structure.
  • contacting of the first and second contact points 61, 66 of the substrate or the chip 65 takes place by means of the formed sintered connection 100 '.
  • Contacting of the first contact point 66 made of copper during the temperature treatment without corrosion phenomena is possible because the contacting takes place under vacuum or in a protective gas atmosphere he follows.
  • a non-noble material, such as copper, for example remains free of oxidation products even during the temperature treatment for forming the sintered connection 100 '.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

The present invention relates to a starting material for producing a sintered connection. In order to avoid the formation of cracks in the joining partners in the case of fluctuating thermal loading, the starting material comprises second particles 20 in addition to metallic first particles 10, wherein the second particles 20 at least proportionately contain a particle core material which has a coefficient of thermal linear expansion α at 20°C which is less than the coefficient of thermal linear expansion α at 20°C of the metal or of the metals of the first particles in metallic form, and wherein the D50 value of the second particles 20 is greater than or equal to half the D50 value of the first particles 10 and less than or equal to two times the D50 value of the first particles 10. In addition, the present invention relates to a corresponding sintered connection 100', to an electronic circuit 70 and also to a process for forming a thermally and/or electrically conductive sintered connection.

Description

Beschreibung  description
Titel title
Ausgangswerkstoff und Verfahren zur Herstellung einer Sinterverbindung Starting material and method for producing a sintered compound
Die Erfindung betrifft eine Sinterverbindung, einen Ausgangswerkstoff derselben und ein Verfahren zu deren Herstellung, weiterhin eine die Sinterverbindung enthaltende elektronische Schaltung gemäß dem Oberbegriff der unabhängigen Ansprüche. The invention relates to a sintered compound, a starting material thereof and a process for their preparation, further comprising an electronic circuit containing the sintered compound according to the preamble of the independent claims.
Stand der Technik State of the art
Leistungselektronik wird in vielen Bereichen der Technik eingesetzt. Gerade in elektrischen oder elektronischen Geräten, in welchen große Ströme fließen, ist der Einsatz von Leistungselektronik unumgänglich. Die in der Leistungselektronik notwendigen Stromstärken führen zu einer thermischen Belastung der enthaltenen elektrischen oder elektronischen Komponenten. Eine weitere thermische Belastung ist gegeben durch den Einsatz derartiger elektrischer oder elektronischer Geräte an Betriebsorten mit gegenüber der Raumtemperatur deutlich erhöhter und gegebenenfalls sogar ständig wechselnder Temperatur. Als Beispiele können hierfür Steuergeräte im Automobilbereich genannt werden, welche unmittelbar im Motorraum angeordnet sind. Power electronics are used in many areas of technology. Especially in electrical or electronic devices in which large currents flow, the use of power electronics is unavoidable. The currents required in the power electronics lead to a thermal load on the electrical or electronic components contained. Another thermal stress is given by the use of such electrical or electronic devices at operating locations with respect to the room temperature significantly increased and possibly even constantly changing temperature. As examples, control devices in the automotive sector may be mentioned for this purpose, which are arranged directly in the engine compartment.
Insbesondere viele Anbindungen zwischen Leistungshalbleitern beziehungsweise Integrierten Schaltungen (IC, englisch: integrated circuit) untereinander sowie an Trägersubstraten, unterliegen schon heute dauerhaften Temperaturbelastungen bis 175 Grad Celsius. Üblicherweise erfolgt eine Anbindung von elektrischen oder elektronischen Komponenten - beispielsweise auf ein Trägersubstrat - durch eine Verbindungsschicht. Als eine derartige Verbindungsschicht sind Lotverbindungen bekannt. In particular, many connections between power semiconductors or integrated circuits (IC) with each other and with carrier substrates are already subject to permanent temperature loads of up to 175 degrees Celsius. Usually, a connection of electrical or electronic components - for example, to a carrier substrate - by a connecting layer. As such a bonding layer, solder joints are known.
Zumeist werden Weichlote eingesetzt, welche Zinn-Silber- oder Zinn-Silber- Kupfer-Legierungen basieren. Besonders bei Anwendungstemperaturen nahe der Schmelztemperatur zeigen derartige Verbindungsschichten jedoch schwindende elektrische und mechanische Eigenschaften, die zu einem Ausfall der Baugruppe führen können. In most cases, soft solders are used which are based on tin-silver or tin-silver-copper alloys. However, especially at application temperatures close to the melting temperature, such bonding layers show dwindling electrical and mechanical properties that can lead to failure of the assembly.
Bleihaltige Lotverbindungen sind bei höheren Einsatztemperaturen einsetzbar als Weichlotverbindungen. Bleihaltige Lotverbindungen sind jedoch durch gesetzliche Bestimmungen aus Gründen des Umweltschutzes hinsichtlich ihrer zulässigen technischen Anwendungen stark beschränkt. Lead-containing solder joints can be used at higher temperatures than soft solder joints. However, lead-containing solder joints are severely limited by legal regulations for reasons of environmental protection in terms of their permissible technical applications.
Alternativ bieten sich für den Einsatz bei erhöhten beziehungsweise hohen Temperaturen, insbesondere über 200 Grad Celsius, bleifreie Hartlote an. Bleifreie Hartlote weisen in der Regel einen höheren Schmelzpunkt als 200°C auf. Bei der Verwendung von Hartlot zur Ausbildung einer Verbindungsschicht kommen jedoch nur wenige elektrische oder elektronische Komponenten als Fügepartner in Frage, die den hohen Temperaturen beim Schmelzen der Hartlote standhalten können. Alternatively, lead-free brazing alloys are available for use at elevated or high temperatures, in particular above 200 degrees Celsius. Lead-free brazing alloys generally have a higher melting point than 200 ° C. When using brazing material to form a bonding layer, however, only a few electrical or electronic components come into consideration as joining partners, which can withstand the high temperatures during the melting of the brazing alloys.
Einen Ausweg zeigt die Niedertemperaturverbindungstechnologie (NTV) auf, bei der silberhaltige Sinterverbindungen bei bereits wesentlich geringeren Temperaturen als der Schmelztemperatur erzeugt werden können. Anstelle eines Lots wird hierbei eine Paste eingesetzt, die chemisch stabilisierte Silberpartikel und/oder Silberverbindungen enthält. Unter den Sinterbedingungen, insbesondere unter Temperatur- und Druckbeaufschlagung, werden dabei die stabilisierenden Bestandteile ausgebrannt und/oder die Silberverbindungen aufgebrochen, so dass die Silberpartikel beziehungsweise freigesetzten Silberatome untereinander und mit dem Material der Fügepartner in direkten Kontakt kommen. Durch Inter- diffusion und/oder Diffusion kann dabei bei bereits deutlich geringeren Temperaturen als der Schmelztemperatur eine hochtemperaturstabile Verbindung ausgebildet werden. Unter Temperaturwechselbeanspruchung können jedoch bei der- artigen Sinterverbindungen thermomechanische Spannungen und sogar eine Rissbildung in Halbleiterbauelementen oder sogar im Trägersubstrat auftreten. One solution is the low-temperature connection technology (NTV), in which silver-containing sintered compounds can be produced at temperatures substantially lower than the melting temperature. Instead of a solder, a paste is used which contains chemically stabilized silver particles and / or silver compounds. Under the sintering conditions, in particular under temperature and pressure, while the stabilizing constituents are burned out and / or the silver compounds broken, so that the silver particles or released silver atoms come into direct contact with each other and with the material of the joining partners. By interdiffusion and / or diffusion, a high-temperature-stable connection can be formed at already significantly lower temperatures than the melting temperature. Under thermal cycling, however, thermo-mechanical stresses and even cracking in semiconductor devices or even in the carrier substrate occur.
Die Druckschrift DE 102009000192 A1 beschreibt eine Sinterwerkstoff zur Herstellung einer Sinterverbindung, welcher als Sinterpaste ausgebildet sein kann und metallische, mit einer organischen Beschichtung versehene Strukturpartikel sowie nicht organisch beschichtete metallische und/oder keramische beim Sin- terprozess nicht ausgasende Hilfspartikel umfasst. Document DE 102009000192 A1 describes a sintered material for producing a sintered compound, which can be formed as a sintered paste and comprises metallic structural particles provided with an organic coating and non-organically coated metallic and / or ceramic auxiliary particles which do not degas during the sintering process.
Offenbarung der Erfindung Disclosure of the invention
Gegenstand der vorliegenden Erfindung ist ein Ausgangswerkstoff einer Sinterverbindung, welcher metallhaltige erste Partikel und zweite Partikel umfasst, insbesondere wobei die zweiten Partikel zumindest anteilig ein Partikelkernmaterial enthalten, dessen thermischer Längenausdehnungskoeffizient α bei 20 °C geringer als der thermische Längenausdehnungskoeffizient α bei 20 °C des Metalls beziehungsweise der Metalle der ersten Partikel in metallischer Form und/oder dessen thermischer Längenausdehnungskoeffizient α bei 20 °C < 15-10"6K"1 ist und wobei der D50-Wert der zweiten Partikel größer oder gleich dem halben D50- Wert der ersten Partikel und kleiner oder gleich dem doppelten D50-Wert der ersten Partikel ist. The present invention is a starting material of a sintered compound comprising metal-containing first particles and second particles, in particular wherein the second particles at least partially contain a particle core material whose thermal expansion coefficient α at 20 ° C less than the thermal expansion coefficient α at 20 ° C of the metal or the metals of the first particles in metallic form and / or its thermal expansion coefficient α at 20 ° C <15-10 "6 K " 1 and wherein the D 50 value of the second particle is greater than or equal to half the D 50 - value of first particle and less than or equal to twice the D 50 value of the first particle.
Unter dem D50-Wert wird der Medianwert einer Teilchengrößeverteilung, insbesondere von Primärteilchen, insbesondere gemäß DIN 53 206, verstanden, welcher den Teilchendurchmesser, insbesondere Primärteilchendurchmesser, angibt, oberhalb und unterhalb dessen jeweils der Durchmesser der Hälfte der Teilchen liegt und welcher dem Durchmesser entspricht, bei dem die Summenverteilung den Wert 0,5 erreicht. Der D50-Wert von Partikeln und insbesondere von Mischungen aus mehreren unterschiedlichen Partikeln, wie ersten, zweiten, dritten und/oder vierten Partikeln, kann insbesondere mittels Elektronenmikroskopie, gegebenenfalls in Kombination mit Energiedispersiver Röntgenspektroskopie (EDX), ermittelt werden. The D 50 value is understood to mean the median value of a particle size distribution, in particular of primary particles, in particular according to DIN 53 206, which indicates the particle diameter, in particular primary particle diameter, above and below which the diameter of the half of the particles is in each case and which corresponds to the diameter in which the cumulative distribution reaches the value 0.5. The D 50 value of particles and in particular of mixtures of several different particles, such as first, second, third and / or fourth particles, can be determined in particular by means of electron microscopy, optionally in combination with energy-dispersive X-ray spectroscopy (EDX).
Durch den Zusatz von zweiten Partikeln, welche ein Partikelkernmaterial mit einem geringen thermischen Längenausdehnungskoeffizienten aufweisen, kann vorteilhafterweise der thermische Längenausdehnungskoeffizient α (CTE, Englisch: Coefficient of Thermal Expansion) des Ausgangswerkstoffs beziehungsweise der daraus ausgebildeten Sinterverbindungen deutlich verringert werden. Bisherige Versuche zeigen, dass auf diese Weise Sinterverbindungen ausgebildet werden können, welcher vorteilhafterweise einen thermischen Längenausdehnungskoeffizienten α bei 20 °C in einem Bereich von > 3-10"6 K"1 bis < 15-10" 6 K"1, beispielsweise > 3-10"6 K"1 bis < 10-10"6 K"1, insbesondere von > 3-10"6 K"1 bis < 7-10"6 K"1 aufweisen können. Sinterverbindungen mit einem derartig niedrigen thermischen Längenausdehnungskoeffizienten können durch die herkömmlicherweise eingesetzten Silbersinterpasten, welche üblicherweise einen thermischen Längenausdehnungskoeffizienten α bei 20 °C um 19,5-10"6K"1 aufweisen, nicht erreicht werden und sind insbesondere für die Halbleitertechnik von besonderem Interesse, da hierbei häufig Fügepartner mittels Sinterverbindungen zusammengefügt werden, welche einerseits, wie Chips, einen sehr niedrigen Längenausdehnungskoeffizienten, zum Beispiel von etwa 3-10"6 K"1, und andererseits, beispielsweise metallische Schaltungsträger, einen sehr hohen Längenausdehnungskoeffizienten, zum Beispiel von etwa 16,5-10"6 K"1, aufweisen, was eine der Hauptursachen für die Rissbildung bei Temperaturwechselbeanspruchung ist. Durch die zweiten Partikel kann der thermische Längenausdehnungskoeffizient vorteilhafterweise derart eingestellt werden, dass dieser zwischen den thermischen Längenausdehnungskoeffizienten der über die Sinterschicht zu verbindenden Fügepartnern, beispielsweise zwischen 16,5-10"6 K"1 (Schaltungsträger) und 3-10"6 K"1 (Chip) liegt. So können thermomechanische Spannungen zwischen den Fügepartner und der Sinterverbindung, welche bei Temperaturwechselbeanspruchung zur Rissbildung in den Fügepartnern führen kann, vorteilhafterweise deutlich reduziert werden. Vorteilhafterweise können durch den Einsatz von kostengünstigen zweiten Partikeln die Materialkosten verringert werden. By the addition of second particles, which have a particle core material with a low thermal expansion coefficient, can Advantageously, the thermal expansion coefficient α (CTE, English: Coefficient of Thermal Expansion) of the starting material or the sintered compounds formed therefrom are significantly reduced. Previous experiments show that in this way sintered compounds can be formed, which advantageously has a coefficient of thermal expansion α at 20 ° C in a range of> 3-10 "6 K " 1 to <15-10 " 6 K " 1 , for example> 3 -10 "6 K " 1 to <10-10 "6 K " 1 , in particular of> 3-10 "6 K " 1 to <7-10 "6 K " 1 . Sintered compounds with such a low thermal expansion coefficient can not be achieved by the conventionally used silver pastes, which usually have a coefficient of thermal expansion α at 20 ° C by 19.5-10 "6 K " 1 , and are of particular interest for the semiconductor technology, since this often joining partner are joined together by means of sintered connections, on the one hand, such as chips, a very low linear expansion coefficient, for example of about 3-10 "6 K" 1, and on the other hand, for example, metallic circuit substrate, a very high linear expansion coefficient, for example of about 16 , 5-10 "6 K " 1 , which is one of the main causes of thermal stress cracking. By means of the second particles, the coefficient of thermal expansion can advantageously be set such that this coefficient lies between the coefficients of thermal expansion of the joining partners to be connected via the sintered layer, for example between 16.5-10 "6 K " 1 (circuit carrier) and 3-10 "6 K ". 1 (chip) is located. Thus, thermo-mechanical stresses between the joining partners and the sintered connection, which can lead to crack formation in the joining partners during thermal cycling, can advantageously be significantly reduced. Advantageously, the cost of materials can be reduced by the use of inexpensive second particles.
Im Rahmen der vorliegenden Erfindung hat es sich herausgestellt, dass zur Erzielung optimaler Ergebnisse dabei die Teilchengröße beziehungsweise Teilchengrößeverteilung der ersten und zweiten Partikel nicht zu stark von einander abweichen sollte, da sich ein zu hoher Feinanteil an zweiten Partikel ungünstig auf die Versinterung der ersten Partikel und damit auf die Stabilität des Sinterge- füges auswirken kann, wobei ein zu hoher Grobanteil an zweiten Partikeln zu Inhomogenitäten und dementsprechend zu makroskopischen Schwankungen der Materialeigenschaften, innerhalb der Sinterverbindung führen kann. Insgesamt können so vorteilhafterweise aus dem erfindungsgemäßen Ausgangswerkstoff Sinterverbindungen mit einer deutlich verbesserten thermome- chanischen Stabilität unter Temperaturwechselbeanspruchung ausgebildet werden. In the context of the present invention, it has been found that, in order to achieve optimum results, the particle size or particle size distribution of the first and second particles should not deviate too much from each other, since too high a fine fraction of second particles adversely affects the sintering of the first particles and This can affect the stability of the sintered compound, wherein an excessive coarse fraction of second particles can lead to inhomogeneities and, accordingly, to macroscopic fluctuations in the material properties within the sintered compound. Overall, it is thus advantageously possible to form sintered connections with a significantly improved thermomechanical stability under thermal cycling from the starting material according to the invention.
Unter einem Ausgangswerkstoff einer Sinterverbindung kann im Rahmen der vorliegenden Erfindung ein Ausgangswerkstoff verstanden werden, welcher zur Herstellung einer Sinterverbindung, insbesondere zur mechanischen und elektrischen Verbindung von elektrischen und/oder elektronischen Komponenten, eingesetzt wird. Der erfindungsgemäße Ausgangswerkstoff kann beispielsweise eine Paste, eine Pulvermischung oder eine Sintermaterialvorformkörper sein. In the context of the present invention, a starting material of a sintered compound can be understood to mean a starting material which is used for producing a sintered compound, in particular for the mechanical and electrical connection of electrical and / or electronic components. The starting material according to the invention can be, for example, a paste, a powder mixture or a sintered material preform body.
Im Rahmen der vorliegenden Erfindung können als Metall insbesondere alle Elemente der Alkalimetallgruppe, insbesondere Li, Na, K, Rb, Cs, und Erdalkalimetallgruppe, insbesondere Be, Mg, Ca, Sr, Ba, die Übergangsmetallelemente, insbesondere Sc, Y, La, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, die Lanthanoiden sowie die Elemente Aluminium, Gallium, Indium, Zinn, Thallium, Blei und Bismut verstanden werden. In the context of the present invention can be used as the metal, in particular all elements of the alkali metal group, in particular Li, Na, K, Rb, Cs, and alkaline earth metal group, in particular Be, Mg, Ca, Sr, Ba, the transition metal elements, in particular Sc, Y, La, Ti , Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg , the lanthanides and the elements aluminum, gallium, indium, tin, thallium, lead and bismuth are understood.
Unter Edelmetallen werden im Sinn der vorliegenden Erfindung die Elemente Silber, Gold, Platin, Palladium, Ruthenium, Rhodium, Osmium und Iridium verstanden. For the purposes of the present invention, noble metals are understood as meaning the elements silver, gold, platinum, palladium, ruthenium, rhodium, osmium and iridium.
Silicium wird im Rahmen der vorliegenden Erfindung als Halbmetall und nicht als Metall verstanden. Silicon is understood in the context of the present invention as a semi-metal and not as metal.
Adjektive mit der Endung -haltig, wie metallhaltig, edelmetallhaltig, silberhaltig und kupferhaltig, bedeuten im Rahmen der vorliegenden Erfindung, dass mindestens ein Element der mit der Endung -haltig versehenen Elementgruppe, beispielsweise ein oder mehrere Metalle oder ein oder mehrere Edelmetalle, beziehungsweise das mit der Endung -haltig versehene Element, beispielsweise Silber oder Kupfer, enthalten ist. Neben der elementaren Form, insbesondere der metallischen Form, der Elemente beziehungsweise des Elementes, zum Beispiel elementares, also metallisches Silber, sind damit auch Verbindungen der Ele- mente beziehungsweise des Elementes, zum Beispiel Silbercarbonat, Silberoxid und/oder Silbercarboxylate, umfasst. In the context of the present invention, adjectives with the ending -containing, such as metal-containing, noble metal, silver and copper-containing, mean that at least one element of the end-containing element group, for example one or more metals or one or more noble metals, or with the suffix -containing element, for example silver or copper, is included. In addition to the elemental shape, in particular the metallic shape, the elements or the element, for example, elemental, ie metallic silver, so are also compounds of Ele- or element, for example silver carbonate, silver oxide and / or silver carboxylates.
Als metallisch kann im Rahmen der vorliegenden Erfindung insbesondere eine Form verstanden werden, in der zwischen den Atomen eines oder mehrerer Elemente metallische Bindungen vorliegen, insbesondere wobei die Atome ein Gitter mit frei beweglichen (delokalisierten) Elektronen bilden. In the context of the present invention, metallic can in particular be understood to mean a form in which metallic bonds are present between the atoms of one or more elements, in particular where the atoms form a lattice with freely movable (delocalized) electrons.
Im Rahmen einer Ausführungsform ist das Partikelkernmaterial ein chemisch inertes und physikalisch stabiles Material. In one embodiment, the particulate core material is a chemically inert and physically stable material.
Unter einem chemisch inerten Material wird dabei ein Material verstanden, welches unter den Sinterbedingungen keine chemische Reaktion mit den übrigen Materialien des Ausgangswerkstoffs eingeht. Under a chemically inert material is understood to mean a material which undergoes no chemical reaction with the other materials of the starting material under the sintering conditions.
Unter einem physikalisch stabilen Material wird dabei ein Material verstanden, welches unter den Sinterbedingungen keinen Phasenübergang, beispielsweise von fest nach flüssig (Schmelzen), aufweist. A physically stable material is understood to be a material which under the sintering conditions has no phase transition, for example from solid to liquid (melting).
Im Rahmen einer Ausführungsform ist der D50-Wert der zweiten Partikel größer oder gleich dem halben D50-Wert der ersten Partikel und kleiner oder gleich dem 1 ,5-fachen D50-Wert der ersten Partikel. Insbesondere kann der D50-Wert der zweiten Partikel größer oder gleich dem 0,75-fachen D50-Wert der ersten Partikel und kleiner oder gleich dem 1 ,25-fach D50-Wert der ersten Partikel sein. So kann vorteilhafterweise die thermomechanischen Stabilität der Sinterverbindung unter Temperaturwechselbeanspruchung weiter verbessert werden. In one embodiment, the D 50 value of the second particles is greater than or equal to half the D 50 value of the first particles and less than or equal to 1.5 times the D 50 value of the first particles. In particular, the D 50 value of the second particles may be greater than or equal to 0.75 times the D 50 value of the first particles and less than or equal to the 1.25 times D 50 value of the first particles. Thus, advantageously, the thermomechanical stability of the sintered compound under thermal cycling can be further improved.
Der D50-Wert der ersten Partikel und/oder zweiten Partikel sowie der nachstehend erläuterten dritten Partikel kann zum Beispiel in einem Bereich von The D 50 value of the first particles and / or second particles as well as the third particles explained below may be in the range of, for example,
> 0,01 μηη bis < 50 μηι, insbesondere > 0,1 μηη bis < 10 μηι, beispielsweise von > 0.01 μηη to <50 μηι, in particular> 0.1 μηη to <10 μηι, for example of
> 1 μηη bis < 7 μηη, liegen. Partikel mit einer derartigen Korngrößeverteilung weise vorteilhafterweise eine großen spezifische Oberfläche und damit eine erhöhte Reaktionsfähigkeit auf. So kann vorteilhafterweise die notwendige Verarbeitungstemperatur und die Prozesszeit zur Ausbildung einer Sinterverbindung gering gehalten werden. Werden zum Beispiel erste Partikel mit ein D50-Wert von 3 μηι eingesetzt, so weisen die zweiten Partikel vorzugsweise einen D50-Wert in einem Bereich von > 1 ,5 μηι bis < 6 μηι (halber bis doppelter D50-Wert der ersten Partikel), beispielsweise von > 1 ,5 μηι bis < 4,5 μm (halber bis 1 ,5-facher D50-Wert der ersten Partikel), insbesondere von > 2,25 μm bis < 3,75 μm (0,75- bis 1 ,25-facher D50- Wert der ersten Partikel) auf. > 1 μηη to <7 μηη, lie. Particles having such a particle size distribution advantageously have a large specific surface area and thus an increased reactivity. Thus, advantageously, the necessary processing temperature and the process time for forming a sintered connection can be kept low. If, for example, first particles with a D 50 value of 3 μm are used, the second particles preferably have a D 50 value in a range of> 1.5 μm to <6 μm (half to double the D 50 value of the first one) Particles), for example, from> 1, 5 μηι to <4.5 microns (half to 1, 5 times D 50 value of the first particles), in particular from> 2.25 microns to <3.75 microns (0.75 - to 1, 25 times D 50 - value of the first particles).
Im Rahmen einer weiteren Ausführungsform beträgt der thermische Längenausdehnungskoeffizient α des Partikelkernmaterials bei 20 °C < 10 10"6K"1, insbesondere < 7,5-10"6K"1, vorzugsweise < 5-10"6K"1. So kann vorteilhafterweise der thermische Längenausdehnungskoeffizient stärker und/oder mit einer geringeren Mengen von zweiten Partikeln reduziert werden. In a further embodiment, the thermal expansion coefficient α of the particle core material at 20 ° C <10 10 "6 K " 1 , in particular <7.5-10 "6 K " 1 , preferably <5-10 "6 K " 1 . Thus, advantageously, the thermal coefficient of linear expansion can be reduced more strongly and / or with a smaller amount of second particles.
Im Rahmen einer weiteren Ausführungsform weist das Partikelkernmaterial eine Wärmeleitfähigkeit λ20/5ο bei 20 °C und 50 % Luftfeuchte von > 15 Wm"1K"1 oder > 25 Wm"1K"1, vorzugsweise von > 50 Wm"1K"1, insbesondere von > 100 Wm"1K"1, auf. Dies ist insbesondere zur Steigerung der Leistungsdichte von Halbleiterchips vorteilhaft. In a further embodiment, the particle core material has a thermal conductivity λ 20/5 ο at 20 ° C and 50% air humidity of> 15 Wm "1 K " 1 or> 25 Wm "1 K " 1 , preferably of> 50 Wm "1 K. "1 , in particular of> 100 Wm " 1 K "1 , on. This is particularly advantageous for increasing the power density of semiconductor chips.
Im Rahmen einer weiteren Ausführungsform ist das Partikelkernmaterial ausgewählt aus der Gruppe bestehen aus elementarem Silicium (Si), Siliciumoxid (Si02), Siliciumcarbid (SiC), Aluminiumnitrid (AIN), Siliciumnitrid (Si3N4), Aluminiumoxid (Al203), metallischem Wolfram (W), metallischem Molybdän (Mo), metallischem Chrom (Cr), metallischem Platin (Pt), metallischem Palladium (Pd), Bor- carbid (BC), Berylliumoxid (BeO), Bornitrid (BN), vorzugsweise elementarem Silicium und/oder Siliciumdioxid, Siliciumcarbid, Aluminiumnitrid, Siliciumnitrid, Aluminiumoxid und Kombinationen davon. Diese Materialien weisen vorteilhafterweise einen geringen thermischen Längenausdehnungskoeffizienten auf, was wie bereits erläutert vorteilhaft ist um Rissbildungen der Fügepartner zu vermeiden. Zudem verhalten sich diese Materialien während einer Temperaturbehandlung des Ausgangswerkstoffes zur Ausbildung einer Sinterverbindung grundsätzlich in vorteilhafter Weise chemisch inert und liegen bei einer gebildeten Sinterverbindung in unveränderter Form innerhalb der gebildeten Metallmatrix vor. Im Rahmen einer Ausgestaltung können die zweiten Partikel beziehungsweise zumindest deren Partikelkerne aus einem derartigen Material ausgebildet sein. Besonders bevorzugt sind dabei elementares Silicium und/oder Siliciumdioxid. In another embodiment, the particle core material is selected from the group consisting of elemental silicon (Si), silicon oxide (SiO 2 ), silicon carbide (SiC), aluminum nitride (AIN), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), metallic tungsten (W), metallic molybdenum (Mo), metallic chromium (Cr), metallic platinum (Pt), metallic palladium (Pd), boron carbide (BC), beryllium oxide (BeO), boron nitride (BN), preferably elemental silicon and / or silica, silicon carbide, aluminum nitride, silicon nitride, alumina, and combinations thereof. These materials advantageously have a low thermal coefficient of linear expansion, which, as already explained, is advantageous in order to avoid cracking of the joining partners. In addition, during a temperature treatment of the starting material for forming a sintered connection, these materials generally behave chemically inert in an advantageous manner and, in the case of a formed sintered compound, exist in unchanged form within the metal matrix formed. Within the scope of an embodiment, the second particles or at least their particle cores may be formed from such a material. Particular preference is given to elemental silicon and / or silicon dioxide.
Zum Beispiel können die zweiten Partikel zumindest anteilig elementares Silicium und/oder Siliciumdioxid enthalten. Insbesondere können die zweiten Partikel einen Partikelkern aus elementarem Silicium und/oder Siliciumdioxid, insbesondere elementarem Silicium, aufweisen. Elementares Silicium und Siliciumdioxid weisen einen äußerst niedrigen thermischen Längenausdehnungskoeffizienten α (CTE, Englisch: Coefficient of Thermal Expansion) auf und haben sich unter anderem daher zur Verringerung des thermischen Längenausdehnungskoeffizienten der Sinterverbindung als besonders vorteilhaft erwiesen. Bereits durch die Zugabe einer geringen Menge kann daher vorteilhafterweise eine stärkere Verringerung des thermischen Längenausdehnungskoeffizienten der Sinterverbindung erzielt werden als durch andere Zusatzstoffe. Zudem weisen elementares Silicium und Siliciumdioxid vorteilhafterweise niedrige Young-Module auf, was sich vorteilhaft auf die Elastizität der Sinterverbindung auswirken kann. Durch eine Verringerung des thermischen Längenausdehnungskoeffizienten der Sinterverbindung sowie die guten elastischen Eigenschaften kann wiederum die ther- momechanische Spannung zwischen der Sinterverbindung und dem damit verbundenen Halbleiterbauteil und damit die Tendenz zur Rissbildung des Halbleiterbauteils deutlich reduziert werden. Aufgrund der günstigen Längenausdehnungskoeffizienten und Young-Module von elementarem Silicium beziehungsweise Siliciumdioxid kann vorteilhafterweise eine Sinterverbindung aus einem derartigen Ausgangswerkstoff einen geringeren Längenausdehnungskoeffizienten bei gleichem oder sogar geringeren Young-Modul aufweisen als eine gleichartige ungefüllte Sinterverbindung, insbesondere welche anstelle eines Anteils an zweiten Partikeln einen entsprechend größeren Anteil an ersten Partikeln aufweist. For example, the second particles may at least partially contain elemental silicon and / or silica. In particular, the second particles may have a particle core of elemental silicon and / or silicon dioxide, in particular elemental silicon. Elemental silicon and silicon dioxide have an extremely low coefficient of thermal expansion .alpha. (CTE, English: Coefficient of Thermal Expansion) and have therefore proved to be particularly advantageous, inter alia, for reducing the thermal expansion coefficient of the sintered connection. Already by the addition of a small amount, therefore, a greater reduction of the coefficient of thermal expansion of the sintered connection can advantageously be achieved than by other additives. In addition, elemental silicon and silicon dioxide advantageously have low Young's moduli, which may have an advantageous effect on the elasticity of the sintered compound. By reducing the coefficient of thermal expansion of the sintered connection and the good elastic properties, in turn, the thermomechanical stress between the sintered connection and the semiconductor component connected thereto and thus the tendency for the semiconductor component to crack can be significantly reduced. Due to the favorable coefficients of linear expansion and Young's modules of elemental silicon or silicon dioxide advantageously a sintered compound of such a starting material have a lower coefficient of linear expansion at the same or even lower Young's modulus than a similar unfilled sintered compound, in particular which instead of a proportion of second particles a correspondingly larger Share of first particles.
Grundsätzlich können sowohl amorphes als auch kristallines, insbesondere polykristallines, elementares Silicium und/oder Siliciumdioxid eingesetzt werden. Das elementare Silicium und/oder Siliciumdioxid kann grundsätzlich in allen erhältlichen Reinheitsgraden eingesetzt werden. Um die Materialkosten zu minimieren, kann beispielsweise Rohsilicium, zum Beispiel mit einem Reinheitsgrad von > 95 %, eingesetzt werden. Im Rahmen einer weiteren Ausführungsform ist das Partikelkernmaterial amorphes elementares Silicium und/oder amorphes Siliciumdioxid. Amorphes elementares Silicium und amorphes Siliciumdioxid weisen vorteilhafterweise einen besonders niedrigen thermischen Längenausdehnungskoeffizienten und ein niedriges Young-Modul auf, wobei insbesondere der Längenausdehnungskoeffizient und das Young-Modul von amorphem elementaren Silicium geringer als von kristallinem elementarem Silicium beziehungsweise von amorphem Siliciumdioxid geringer als von kristallinem Siliciumdioxid ist. In principle, both amorphous and crystalline, in particular polycrystalline, elemental silicon and / or silicon dioxide can be used. The elemental silicon and / or silicon dioxide can in principle be used in all available degrees of purity. To minimize the material costs, for example, crude silicon, for example, with a purity of> 95%, can be used. In another embodiment, the particulate core material is amorphous elemental silicon and / or amorphous silica. Amorphous elemental silicon and amorphous silica advantageously have a particularly low coefficient of thermal expansion and a low Young's modulus, in particular the elongation coefficient and Young's modulus of amorphous elemental silicon is less than that of crystalline elemental silicon and amorphous silica, respectively, than that of crystalline silica ,
Im Rahmen einer bevorzugten Ausführungsform ist das Partikelkernmaterial elementares Silicium. Elementares Silicium wird im Rahmen der vorliegenden Erfindung bevorzugt eingesetzt, da sich sowohl dessen amorphe Form verglichen mit amorphem Siliciumdioxid als auch dessen kristalline Form verglichen mit kristallinem Siliciumdioxid durch einen geringeren Längenausdehnungskoeffizienten sowie eine höhere elektrische Leitfähigkeit und Wärmeleitfähigkeit auszeichnet. Durch den Einsatz von elementarem Silicium kann der thermische Längenausdehnungskoeffizient der Sinterverbindung daher vorteilhafterweise, insbesondere unter Aufrechterhaltung guter elastischer Eigenschaften, deutlich verringert werden. In a preferred embodiment, the particle core material is elemental silicon. Elemental silicon is preferred in the context of the present invention, since both its amorphous form compared to amorphous silica and its crystalline form compared with crystalline silica by a smaller coefficient of linear expansion and a higher electrical conductivity and thermal conductivity is characterized. Through the use of elemental silicon, the coefficient of thermal expansion of the sintered connection can therefore be reduced significantly, in particular while maintaining good elastic properties.
Die zweiten Partikel können insbesondere jeweils einen Partikelkern mit einer darauf aufgetragenen Beschichtung aufweisen. Dabei ist vorzugweise der Partikelkern aus dem Partikelkernmaterial, zum Beispiel aus elementarem Silicium, Siliciumdioxid, Siliciumcarbid, Aluminiumnitrid, Siliciumnitrid und/oder Aluminiumoxid ausgebildet. Die Beschichtung kann dabei aus einem von dem Partikelkernmaterial unterschiedlichen Partikelbeschichtungsmaterial ausgebildet sein. Insofern die Partikel beschichtet sind bezieht sich der D50-Wert auf die Teilchengröße inklusive der Beschichtung. The second particles may in particular each have a particle core with a coating applied thereto. In this case, the particle core is preferably formed from the particle core material, for example from elemental silicon, silicon dioxide, silicon carbide, aluminum nitride, silicon nitride and / or aluminum oxide. In this case, the coating can be formed from a particle coating material that is different from the particle core material. Insofar as the particles are coated, the D 50 value refers to the particle size including the coating.
Im Rahmen einer weiteren Ausführungsform sind die zweiten Partikel sphärische, insbesondere im Wesentlichen runde, beispielsweise im Wesentlichen kugelförmige, Partikel. Dabei kann der Begriff „im Wesentlichen" derart verstanden werden, dass leichte Abweichungen von der Idealform, insbesondere Kugelform, beispielsweise um bis zu 15 %, umfasst sein sollen. Durch eine Vermeidung von Ecken und Kanten können vorteilhafterweise Spannungsüberhöhungen und somit Risskeimstellen im Verbundmaterial vermieden werden. Im Rahmen einer weiteren Ausführungsform weisen die ersten Partikel einen Partikelkern mit einer darauf aufgetragenen ersten Beschichtung und/oder die zweiten Partikel einen Partikelkern mit einer darauf aufgetragenen zweiten Beschichtung auf. In a further embodiment, the second particles are spherical, in particular substantially round, for example substantially spherical, particles. The term "essentially" can be understood to mean that slight deviations from the ideal shape, in particular spherical form, for example by up to 15%, are to be avoided by avoiding corners and edges, advantageously overvoltages of stress and thus cracking spots in the composite material can be avoided , Within the scope of a further embodiment, the first particles have a particle core with a first coating applied thereto and / or the second particles have a particle core with a second coating applied thereto.
Die erste und/oder zweite Beschichtung beziehungsweise die später erläuterte dritte und/oder weitere Beschichtung umschließt dabei vorteilhafterweise jeweils die Partikelkerne im Wesentlich vollständig, zumindest jedoch nahezu vollständig. Dadurch wirken die Beschichtungen einerseits wie ein Schutzmantel, mittels welchem sichergestellt werden kann, dass die Partikel sowie der Anteil des in der jeweiligen Beschichtung enthaltenen Materials chemisch stabil bleibt, was sich vorteilhaft auf die Lagerungsfähigkeit auswirkt. Zudem kann so eine Agglomeration der Partikel verringert oder sogar vermieden werden. Weiterhin kann durch eine insbesondere metallhaltige, insbesondere metallische, Beschichtung, beispielsweise auf den zweiten, gegebenenfalls dritten und gegebenenfalls vierten Partikeln, das Ansintern der beschichteten Partikeln, beispielsweise an den ersten oder anderen Partikeln verbessert werden. The first and / or second coating or the later explained third and / or further coating advantageously encloses in each case the particle cores essentially completely, but at least almost completely. As a result, the coatings act on the one hand like a protective jacket, by means of which it can be ensured that the particles and the proportion of the material contained in the respective coating remain chemically stable, which has an advantageous effect on the storage capacity. In addition, such an agglomeration of the particles can be reduced or even avoided. Furthermore, by an in particular metal-containing, in particular metallic, coating, for example on the second, optionally third and optionally fourth particles, the sintering of the coated particles, for example on the first or other particles can be improved.
Vorzugsweise nehmen die Beschichtungen einen deutlich geringeren Anteil am Partikelvolumen als die Partikelkerne an. Dies wirkt sich vorteilhaft auf den Sin- terprozess sowie die thermischen und elektrischen Eigenschaften des Ausgangswerkstoffs und der Sinterverbindung aus. The coatings preferably assume a significantly lower proportion of the particle volume than the particle cores. This has an advantageous effect on the sintering process and the thermal and electrical properties of the starting material and the sintered compound.
Im Rahmen einer weiteren Ausführungsform sind die ersten Partikel edelmetall- und/oder kupf erhaltige. Als Edelmetall sind Silber, Gold, Platin und/oder Palladium besonders bevorzugt. Vorzugsweise sind die ersten Partikel silberhaltig. In a further embodiment, the first particles are noble metal and / or copper-containing. As precious metal, silver, gold, platinum and / or palladium are particularly preferred. Preferably, the first particles are silver-containing.
Im Rahmen einer weiteren Ausführungsform enthalten die ersten Partikel insbesondere mindestens ein Metall, insbesondere mindestens ein Edelmetall und/oder Kupfer, vorzugsweise Silber, in metallischer Form und/oder mindestens eine organische oder anorganische Metallverbindung, insbesondere Edelmetall- und/oder Kupferverbindung, vorzugsweise Silberverbindung, insbesondere welche durch eine Temperaturbehandlung in die metallische Form des mindestens einen zugrunde liegenden Metalls umwandelbar ist. Die organische oder anorganische Metallverbindung kann beispielsweise ausgewählt sein aus der Gruppe bestehend aus Silbercarbonat, Silberoxid, Silberlactat, Silberstearat und Kombinationen davon. Diese Verbindungen können sich vorteilhafterweise bei hohen Temperaturen in das zugrunde liegende Metall in metallischer Form umwandeln. In a further embodiment, the first particles contain in particular at least one metal, in particular at least one noble metal and / or copper, preferably silver, in metallic form and / or at least one organic or inorganic metal compound, in particular noble metal and / or copper compound, preferably silver compound, in particular, which can be converted by a temperature treatment into the metallic form of the at least one underlying metal. The organic or inorganic metal compound may, for example, be selected from the group consisting of silver carbonate, silver oxide, silver lactate, silver stearate and combinations thereof. These compounds may advantageously convert at high temperatures into the underlying metal in metallic form.
Insbesondere können die ersten Partikel einen metallhaltigen, insbesondere edelmetall- und/oder kupferhaltigen, beispielsweise silberhaltigen, Partikelkern aufweisen. In particular, the first particles may have a metal-containing, in particular noble metal and / or copper-containing, for example, silver-containing, particle core.
Im Rahmen einer Ausgestaltung weist zumindest ein Teil der ersten Partikel einen Partikelkern auf, welcher mindestens ein Metall, insbesondere mindestens ein Edelmetall und/oder Kupfer, vorzugsweise Silber, in metallischer Form enthält. Beispielsweise kann zumindest ein Teil der ersten Partikel aus mindestens einem Metall, insbesondere Edelmetall und/oder Kupfer, vorzugsweise Silber, in metallischer Form ausgebildet sein. Within the scope of an embodiment, at least a portion of the first particles has a particle core which contains at least one metal, in particular at least one noble metal and / or copper, preferably silver, in metallic form. For example, at least a portion of the first particles of at least one metal, in particular noble metal and / or copper, preferably silver, may be formed in metallic form.
Im Rahmen einer alternativen oder zusätzlichen Ausgestaltung weist zumindest ein Teil der ersten Partikel einen Partikelkern auf, welcher mindestens eine organische oder anorganische Metallverbindung, insbesondere Edelmetall- und/oder Kupferverbindung, vorzugsweise Silberverbindung, enthält, insbesondere welche durch eine Temperaturbehandlung in die metallische Form des mindestens einen zugrunde liegenden Metalls umwandelbar ist. As part of an alternative or additional embodiment, at least a portion of the first particles on a particle core containing at least one organic or inorganic metal compound, in particular noble metal and / or copper compound, preferably silver compound, in particular which by a thermal treatment in the metallic form of at least an underlying metal is convertible.
Im Rahmen einer speziellen Ausgestaltung weist zumindest ein erster Teil der ersten Partikel einen Partikelkern auf, welcher mindestens ein Metall, insbesondere mindestens ein Edelmetall und/oder Kupfer, vorzugsweise Silber, in metallischer Form enthält, wobei zumindest ein zweiter Teil der ersten Partikel einen Partikelkern aufweist, welcher mindestens eine organische oder anorganische Metallverbindung, insbesondere Edelmetall- und/oder Kupferverbindung, vorzugsweise Silberverbindung, enthält, welche durch eine Temperaturbehandlung in die metallische Form des mindestens einen Metalls des ersten Teils der ersten Partikel umwandelbar ist. Within the scope of a specific embodiment, at least a first part of the first particle has a particle core which contains at least one metal, in particular at least one precious metal and / or copper, preferably silver, in metallic form, at least a second part of the first particle having a particle core containing at least one organic or inorganic metal compound, in particular noble metal and / or copper compound, preferably silver compound, which is convertible by a thermal treatment in the metallic form of the at least one metal of the first part of the first particles.
Alternativ oder zusätzlich dazu kann die erste Beschichtung, beispielsweise des ersten Teils der ersten Partikel, mindestens eine organische oder anorganische Metallverbindung, insbesondere Edelmetall- und/oder Kupferverbindung, vorzugsweise Silberverbindung, enthalten, insbesondere welche durch eine Tempe- raturbehandlung in das mindestens eine zugrunde liegende Metall in metallischer Form umwandelbar ist. Die organische oder anorganische Metallverbindung kann auch hierbei beispielsweise ausgewählt sein aus der Gruppe bestehend aus Sil- bercarbonat, Silberoxid, Silberlactat, Silberstearat und Kombinationen davon. Diese Verbindungen können sich vorteilhafterweise bei hohen Temperaturen in das zugrunde liegende Metall in metallischer Form umwandeln. Alternatively or additionally, the first coating, for example of the first part of the first particles, at least one organic or inorganic metal compound, in particular precious metal and / or copper compound, preferably silver compound, contain, in particular which by a Tempe- in which at least one underlying metal in metallic form is convertible. The organic or inorganic metal compound may in this case also be selected, for example, from the group consisting of silver carbonate, silver oxide, silver lactate, silver stearate and combinations thereof. These compounds may advantageously convert at high temperatures into the underlying metal in metallic form.
Alternativ oder zusätzlich kann die erste Beschichtung der ersten Partikel oder eine weitere, auf der ersten Beschichtung der ersten Partikel aufgebrachte Beschichtung ein Reduktionsmittel enthalten, mittels welchem die Reduktion einer beziehungsweise der organischen oder anorganischen Metallverbindung, insbesondere Edelmetall- und/oder Kupferverbindung, vorzugsweise Silberverbindung, zur metallischen Form, beispielsweise bei einer Temperatur im Bereich der oder gegebenenfalls unterhalb der Sintertemperatur der metallischen Form des mindestens einen zugrunde liegenden Metals, durchführbar ist. Alternatively or additionally, the first coating of the first particles or a further coating applied to the first coating of the first particle may contain a reducing agent by means of which the reduction of one or the organic or inorganic metal compound, in particular noble metal and / or copper compound, preferably silver compound, to the metallic form, for example at a temperature in the range of or optionally below the sintering temperature of the metallic form of the at least one underlying metal, is feasible.
Alternativ oder zusätzlich dazu können auch die zweiten und/oder dritten Partikel eine derartige Reduktionsmittel enthaltende Beschichtung aufweisen. Alternatively or additionally, the second and / or third particles can also have a coating containing such a reducing agent.
Der Reduktionsmittelanteil des Ausgangswerkstoffs wird vorzugsweise derart gewählt, dass dieser in einem stöchiometrischen Verhältnis zu dem Anteil der in dem Ausgangswerkstoff enthaltenen, insbesondere zu reduzierenden, organischen oder anorganischen Metallverbindung, insbesondere Edelmetall- und/oder Kupferverbindung, vorzugsweise Silberverbindung, vorliegt. So kann vorteilhafterweise eine sehr hohe Umwandlungsquote von bis zu 99 % oder mehr erzielt werden. The reducing agent content of the starting material is preferably selected such that it is present in a stoichiometric ratio to the proportion of the metal compound, in particular noble metal and / or copper compound, preferably silver compound, in particular to be reduced, contained in the starting material. Thus, advantageously, a very high conversion rate of up to 99% or more can be achieved.
Als Reduktionsmittel kann beispielsweise mindestens ein Alkohol aus der Gruppe der primären oder sekundären Alkohole und/oder mindestens ein Amin und/oder Ameisensäure und/oder mindestens eine Fettsäure, insbesondere Isostearinsäure, Stearinsäure, Ölsäure, Laurinsäure oder eine Mischung verschiedener Fettsäuren, eingesetzt werden. As the reducing agent, for example, at least one alcohol from the group of primary or secondary alcohols and / or at least one amine and / or formic acid and / or at least one fatty acid, in particular isostearic acid, stearic acid, oleic acid, lauric acid or a mixture of different fatty acids can be used.
Insgesamt lassen sich derartige reduktionsmittelhaltige erste Beschichtungen in einfacher Weise auf die ersten Partikeln aufbringen. Zusätzlich zeigen die genannten Reduktionsmittel im Rahmen einer Temperaturbehandlung des Aus- gangswerkstoffes zur Ausbildung einer Sinterverbindung ein besonders gutes Reduktionsverhalten gegenüber der in der zweiten Beschichtung der zweiten Partikel enthaltenen organischen oder anorganischen Metallverbindungen bzw. Edelmetalloxide. Durch Reduktionsmittel enthaltende Beschichtungen kann das Reduktionsmittel vorteilhafterweise insgesamt im Ausgangswerkstoff sehr gleichmäßig und fein verteilt werden. Dadurch kann der Sinterprozess innerhalb des Ausgangswerkstoffes einheitlicher und schneller erfolgen. Daraus resultiert der Vorteil, dass eine aus dem erfindungsgemäßen Ausgangswerkstoff hergestellte Sinterverbindung ein sehr homogenes Sintergefüge, insbesondere mit einer hohen thermischen und/oder elektrischen Leitfähigkeit, aufweisen kann. Dieser Effekt kann durch den Einsatz von Beschichtungen, welche zu den ersten Partikeln korrespondierende organischen oder anorganischen Metallverbindungen, insbesondere Edelmetall- und/oder Kupferverbindungen, vorzugsweise Silberverbindungen, enthalten und beispielsweise in direktem Kontakt mit den Reduktionsmittel enthaltenden Beschichtungen stehen, noch verstärkt werden. Vorteilhafterweise kann dabei die Temperatur, bei der sich die organische oder anorganische Metallverbindung in die zugrunde liegende metallische Form umwandelt, gesenkt werden. Dadurch ist es möglich, dass in vorteilhafter Weise über die ausgebildete Sinterverbindung verbundene Fügepartner, beispielsweise elektrische und/oder elektronische Komponenten einer elektronischen Schaltung, keinen hohen Temperaturen während der Ausbildung der Sinterverbindung ausgesetzt werden. Somit können temperaturempfindliche elektrische und/oder elektronische Komponenten in elektronischen Schaltungen elektrisch und/oder thermisch kontaktiert werden, die auf Grund der sonst üblichen zu hohen Prozesstemperaturen bei der Verbindungsherstellung nicht eingesetzt werden konnten. Overall, such reducing agent-containing first coatings can be applied in a simple manner to the first particles. In addition, the abovementioned reducing agents show in the context of a temperature treatment of the To obtain a sintered compound a particularly good reduction behavior compared to the organic or inorganic metal compounds or noble metal oxides contained in the second coating of the second particles. By reducing agent-containing coatings, the reducing agent can advantageously be distributed very uniformly and finely in total in the starting material. This allows the sintering process within the starting material to be made more uniform and faster. This results in the advantage that a sintered connection produced from the starting material according to the invention can have a very homogeneous sintered structure, in particular with a high thermal and / or electrical conductivity. This effect can be further enhanced by the use of coatings which contain organic or inorganic metal compounds corresponding to the first particles, in particular noble metal and / or copper compounds, preferably silver compounds, and for example are in direct contact with the coatings containing the reducing agent. Advantageously, the temperature at which the organic or inorganic metal compound converts to the underlying metallic form can be lowered. This makes it possible for joining partners advantageously connected via the formed sintered connection, for example electrical and / or electronic components of an electronic circuit, to not be exposed to high temperatures during the formation of the sintered connection. Thus, temperature-sensitive electrical and / or electronic components can be electrically and / or thermally contacted in electronic circuits, which could not be used due to the usual too high process temperatures in the connection production.
Die zweite Beschichtung kann metallhaltig, insbesondere edelmetall- und/oder kupferhaltig, vorzugsweise silberhaltig, sein. Im Rahmen einer Ausgestaltung enthält die zweite Beschichtung mindestens ein Metall, insbesondere Edelmetall- und/oder Kupfer, vorzugsweise Silber, in metallischer Form. Im Rahmen einer anderen Ausgestaltung enthält die zweite Beschichtung mindestens ein Metall als eine organische oder anorganische Metallverbindung, insbesondere Edelmetall- und/oder Kupferverbindung, vorzugsweise Silberverbindung, insbesondere welche durch eine Temperaturbehandlung in die metallische Form, insbesondere des mindestens einen zugrunde liegenden Metals, insbesondere der ersten Par- tikel, umwandelbar ist. Die organische oder anorganische Metallverbindung kann auch hierbei beispielsweise ausgewählt sein aus der Gruppe bestehend aus Sil- bercarbonat, Silberoxid, Silberlactat, Silberstearat und Kombinationen davon. Diese Verbindungen können sich vorteilhafterweise bei hohen Temperaturen in das zugrunde liegende Metall in metallischer Form umwandeln. The second coating may be metal-containing, in particular noble metal and / or copper-containing, preferably silver-containing. In the context of one embodiment, the second coating contains at least one metal, in particular noble metal and / or copper, preferably silver, in metallic form. In another embodiment, the second coating contains at least one metal as an organic or inorganic metal compound, in particular noble metal and / or copper compound, preferably silver compound, in particular which by a thermal treatment in the metallic form, in particular of the at least one underlying metal, in particular first par is convertible. The organic or inorganic metal compound may in this case also be selected, for example, from the group consisting of silver carbonate, silver oxide, silver lactate, silver stearate and combinations thereof. These compounds may advantageously convert at high temperatures into the underlying metal in metallic form.
Alternativ oder zusätzlich kann die zweite Beschichtung oder eine weitere, auf der zweiten Beschichtung aufgebrachte Beschichtung ein Reduktionsmittel enthalten, mittels welchem die Reduktion einer beziehungsweise der organischen oder anorganischen Metallverbindung insbesondere Edelmetall- und/oder Kupferverbindung, vorzugsweise Silberverbindung, insbesondere des/der Metalls/Metalle der ersten Partikel, zur metallischen Form, beispielsweise bei einer Temperatur im Bereich der oder gegebenenfalls unterhalb der Sintertemperatur der metallischen Form des mindestens einen zugrunde liegenden Metalls, insbesondere der ersten Partikel, durchführbar ist. Alternatively or additionally, the second coating or a further coating applied to the second coating may contain a reducing agent, by means of which the reduction of one or the organic or inorganic metal compound, in particular noble metal and / or copper compound, preferably silver compound, in particular of the metal / metals the first particle, the metallic form, for example at a temperature in the range of or optionally below the sintering temperature of the metallic form of the at least one underlying metal, in particular the first particles, is feasible.
Im Rahmen einer weiteren Ausführungsform enthält die zweite Beschichtung mindestens ein Metall, welches ausgewählt ist aus der Gruppe bestehend aus Silber, Platin, Palladium, Gold, Zinn und Kombinationen davon. Vorzugsweise enthält die zweite Beschichtung zumindest eines der Metalle der ersten Partikel. Insbesondere kann die zweite Beschichtung die gleichen Metalle wie die ersten Partikel, zum Beispiel Silber, enthalten. So kann vorteilhafterweise die Haftung der zweiten Partikel in dem Ausgangswerkstoff verbessert werden. Da die Schichtdicke der Beschichtung vorzugsweise kleiner als der Radius der Partikelkerne ist, beeinflusst deren thermischer Längenausdehnungskoeffizient den der Sinterverbindung weniger als der Längenausdehnungskoeffizient des Partikelkernmaterials. Um den Längenausdehnungskoeffizienten des Sintermaterials weiter zu minimieren kann es jedoch vorteilhaft sein, Platin und/oder Palladium im Beschichtungsmaterial einzusetzen. In a further embodiment, the second coating contains at least one metal which is selected from the group consisting of silver, platinum, palladium, gold, tin and combinations thereof. Preferably, the second coating contains at least one of the metals of the first particles. In particular, the second coating may contain the same metals as the first particles, for example silver. Thus, advantageously, the adhesion of the second particles in the starting material can be improved. Since the layer thickness of the coating is preferably smaller than the radius of the particle cores, their thermal expansion coefficient influences the sintering compound less than the coefficient of linear expansion of the particle core material. In order to further minimize the coefficient of linear expansion of the sintered material, however, it may be advantageous to use platinum and / or palladium in the coating material.
Weiterhin kann der Ausgangswerkstoff dritte Partikel umfassen. Auch die dritten Partikel können einen Partikelkern und gegebenenfalls eine auf den Partikelkern aufgetragene dritte Beschichtung aufweisen. Die dritte Beschichtung kann metallhaltig, insbesondere edelmetall- und/oder kupferhaltig, vorzugsweise silberhaltig, sein. Im Rahmen einer Ausgestaltung enthält die dritte Beschichtung mindestens ein Metall, insbesondere Edelmetall- und/oder Kupfer, vorzugsweise Silber, in metallischer Form. Im Rahmen einer anderen Ausgestaltung enthält die dritte Beschichtung mindestens ein Metall als eine organische oder anorganische Metallverbindung, insbesondere Edelmetall- und/oder Kupferverbindung, vorzugsweise Silberverbindung, insbesondere welche durch eine Temperaturbehandlung in die metallische Form, insbesondere des mindestens einen zugrunde liegenden Metalls, insbesondere der ersten Partikel, umwandelbar ist. Die organische oder anorganische Metallverbindung kann auch hierbei beispielsweise ausgewählt sein aus der Gruppe bestehend aus Silbercarbonat, Silberoxid, Silberlactat, Sil- berstearat und Kombinationen davon. Diese Verbindungen können sich vorteilhafterweise bei hohen Temperaturen in das zugrunde liegende Metall in metallischer Form umwandeln. Furthermore, the starting material may comprise third particles. The third particles may also have a particle core and optionally a third coating applied to the particle core. The third coating may be metal-containing, in particular precious metal and / or copper-containing, preferably silver-containing. In the context of one embodiment, the third coating contains at least one metal, in particular noble metal and / or copper, preferably silver, in metallic form. In another embodiment, the third coating contains at least one metal as an organic or inorganic metal compound, in particular noble metal and / or copper compound, preferably silver compound, in particular which by a temperature treatment in the metallic form, in particular of the at least one underlying metal, in particular first particle, is convertible. The organic or inorganic metal compound may also hereby be selected, for example, from the group consisting of silver carbonate, silver oxide, silver lactate, silver stearate and combinations thereof. These compounds may advantageously convert at high temperatures into the underlying metal in metallic form.
Alternativ oder zusätzlich kann die dritte Beschichtung oder eine weitere, auf der dritten Beschichtung aufgebrachte Beschichtung ein Reduktionsmittel enthalten, mittels welchem die Reduktion einer beziehungsweise der organischen oder anorganischen Metallverbindung insbesondere Edelmetall- und/oder Kupferverbindung, vorzugsweise Silberverbindung, insbesondere des/der Metalls/Metalle der ersten Partikel, zur metallischen Form, beispielsweise bei einer Temperatur im Bereich der oder gegebenenfalls unterhalb der Sintertemperatur der metallischen Form des mindestens einen zugrunde liegenden Metalls, insbesondere der ersten Partikel, durchführbar ist. Alternatively or additionally, the third coating or a further coating applied to the third coating may contain a reducing agent, by means of which the reduction of one or the organic or inorganic metal compound, in particular noble metal and / or copper compound, preferably silver compound, in particular of the metal / metals the first particle, the metallic form, for example at a temperature in the range of or optionally below the sintering temperature of the metallic form of the at least one underlying metal, in particular the first particles, is feasible.
Im Rahmen einer weiteren Ausführungsform enthält die dritte Beschichtung mindestens ein Metall, welches ausgewählt ist aus der Gruppe bestehend aus Silber, Platin, Palladium, Gold und Kombinationen davon. Vorzugsweise enthält die dritte Beschichtung zumindest eines der Metalle der ersten Partikel. Insbesondere kann die dritte Beschichtung die gleichen Metalle wie die ersten Partikel, zum Beispiel Silber, enthalten. So kann vorteilhafterweise die Haftung der dritten Partikel in dem Ausgangswerkstoff verbessert werden. Da die Schichtdicke der Beschichtung vorzugsweise kleiner als der Radius der Partikelkerne ist, beeinflusst deren thermischer Längenausdehnungskoeffizient den der Sinterverbindung weniger als der Längenausdehnungskoeffizient des Partikelkernmaterials. Um den Längenausdehnungskoeffizienten des Sintermaterials weiter zu minimieren kann es jedoch vorteilhaft sein, Platin und/oder Palladium im Beschichtungsmaterial einzusetzen. Vorzugsweise enthalten die dritten Partikel zumindest anteilig mindestens ein Metall, beispielsweise Zinn, insbesondere in metallischer Form, welches durch eine Temperaturbehandlung, insbesondere im Bereich der oder gegebenenfalls unterhalb der Sintertemperatur der metallischen Form des/der Metalls/Metalle der ersten Partikel, eine Legierung mit dem oder den Metallen der ersten Partikel ausbildet, insbesondere welche einen niedrigeren Schmelzpunkt aufweist als das oder die Metalle der ersten Partikel in metallischer Form. Insbesondere können die Partikelkerne der dritten Partikel hieraus ausgebildet sein. So kann vorteilhafterweise die Verarbeitungstemperatur zur Ausbildung der Sinterverbindung weiter gesenkt werden kann. Ferner können die Legierungen als duktile Phasen innerhalb des gebildeten Sintergefüges vorliegen, wodurch die gebildeten Sinterverbindungen weniger anfällig gegenüber thermischen und/oder mechanischen Belastungen, insbesondere wechselnden Belastungen sind. Ferner weist beispielsweise Zinn einen niedrigen Schmelzpunkt auf, sodass bei einer Temperaturbehandlung des Ausgangswerkstoffes die Partikel aus Zinn frühzeitig aufschmelzen und einen stoffschlüssigen Kontakt aller im Ausgangswerkstoff enthaltenen Partikel bewirken. Dies begünstigt in vorteilhafter Weise die während des Sinterprozesses ablaufenden Diffusionsvorgänge. In another embodiment, the third coating includes at least one metal selected from the group consisting of silver, platinum, palladium, gold, and combinations thereof. Preferably, the third coating contains at least one of the metals of the first particles. In particular, the third coating may contain the same metals as the first particles, for example silver. Thus, advantageously, the adhesion of the third particles in the starting material can be improved. Since the layer thickness of the coating is preferably smaller than the radius of the particle cores, their thermal expansion coefficient influences the sintering compound less than the coefficient of linear expansion of the particle core material. In order to further minimize the coefficient of linear expansion of the sintered material, however, it may be advantageous to use platinum and / or palladium in the coating material. Preferably, the third particles contain at least proportionally at least one metal, for example tin, in particular in metallic form, which by means of a temperature treatment, in particular in the range of or optionally below the sintering temperature of the metallic form of the metal / metals of the first particles, an alloy with the or the metals of the first particles is formed, in particular which has a lower melting point than the one or more metals of the first particles in metallic form. In particular, the particle cores of the third particle may be formed therefrom. Thus, advantageously, the processing temperature for forming the sintered connection can be further reduced. Furthermore, the alloys may be present as ductile phases within the formed sintered structure, whereby the formed sintered compounds are less susceptible to thermal and / or mechanical stresses, in particular changing loads. Furthermore, tin, for example, has a low melting point, so that when a temperature treatment of the starting material, the particles of tin melt prematurely and cause a cohesive contact of all particles contained in the starting material. This advantageously favors the diffusion processes occurring during the sintering process.
Im Rahmen einer weiteren Ausführungsform umfasst der Ausgangswerkstoff, bezogen auf das Gesamtgewicht der Bestandteile, > 5 Gew.-%, insbesondere > 10 Gew.-%, beispielsweise > 20 Gew.-% oder > 25 Gew.-%, an zweiten Partikeln, insbesondere wobei die Summe der Bestandteile des Ausgangswerkstoffs 100 Gew.-% ergibt. Mit einer derartigen Menge an zweiten Partikeln kann eine deutliche Verringerung des thermischen Längenausdehnungskoeffizienten der Sinterverbindung, insbesondere bezogen auf eine entsprechende Sinterverbindung, welche anstelle der zweiten Partikel einen weiteren Teil erste Partikel umfasst, erzielt werden. In a further embodiment, the starting material, based on the total weight of the constituents, comprises> 5% by weight, in particular> 10% by weight, for example> 20% by weight or> 25% by weight, of second particles, in particular wherein the sum of the constituents of the starting material gives 100% by weight. With such an amount of second particles, a significant reduction of the thermal expansion coefficient of the sintered compound, in particular based on a corresponding sintered compound, which comprises a further part of first particles instead of the second particles, can be achieved.
Im Rahmen einer weiteren Ausführungsform umfasst der Ausgangswerkstoff, bezogen auf das Gesamtgewicht der Bestandteile, < 60 Gew.-%, insbesondere < 50 Gew.-%, an zweiten Partikeln, insbesondere wobei die Summe der Bestandteile des Ausgangswerkstoffs 100 Gew.-% ergibt. Mit einer derartigen Menge an zweiten Partikeln im Ausgangswerkstoff kann vorteilhafterweise noch eine gut anbindende beziehungsweise haftende Sinterschicht erzeugt werden. Insofern der Ausgangswerkstoff weiterhin noch dritte Partikel aufweist, umfasst der Ausgangswerkstoff, bezogen auf das Gesamtgewicht der Bestandteile, an zweiten und dritten Partikeln in Summe < 60 Gew.-%, insbesondere < 50 Gew.- %, insbesondere wobei die Summe der Bestandteile des Ausgangswerkstoffs 100 Gew.-% ergibt. In a further embodiment, the starting material comprises, based on the total weight of the constituents, <60% by weight, in particular <50% by weight, of second particles, in particular wherein the sum of the constituents of the starting material gives 100% by weight. With such an amount of second particles in the starting material, it is advantageously possible to produce a well-bonded or adherent sintered layer. Insofar as the starting material still has third particles, the starting material comprises, based on the total weight of the constituents, in total second and third particles <60% by weight, in particular <50% by weight, in particular wherein the sum of the constituents of the starting material 100 wt .-% results.
Im Rahmen einer weiteren Ausführungsform umfasst der Ausgangswerkstoff, bezogen auf das Gesamtgewicht der Bestandteile, > 5 Gew.-% oder > 10 Gew.-% bis < 60 Gew.-%, insbesondere > 10 Gew.-% oder > 20 Gew.-% oder > 25 Gew.- % bis < 50 Gew.-%, an zweiten Partikeln beziehungsweise an zweiten und dritten Partikeln in Summe, insbesondere wobei die Summe der Bestandteile des Ausgangswerkstoffs 100 Gew.-% ergibt. Within the scope of a further embodiment, the starting material comprises, based on the total weight of the constituents,> 5% by weight or> 10% by weight to <60% by weight, in particular> 10% by weight or> 20% by weight. % or> 25% by weight to <50% by weight, of second particles or second and third particles in total, in particular wherein the sum of the constituents of the starting material gives 100% by weight.
Im Rahmen einer weiteren Ausführungsform umfasst der Ausgangswerkstoff, bezogen auf das Gesamtgewicht der Bestandteile, > 25 Gew.-% bis < 80 Gew.-% an ersten Partikeln, insbesondere wobei die Summe der Bestandteile des Ausgangswerkstoffs 100 Gew.-% ergibt. In a further embodiment, the starting material comprises, based on the total weight of the constituents, from> 25 wt .-% to <80 wt .-% of the first particles, in particular wherein the sum of the constituents of the starting material 100 wt .-% results.
Weiterhin kann der Ausgangswerkstoff mindestens ein Lösungsmittel umfassen. Zum Beispiel kann der Ausgangswerkstoff, bezogen auf das Gesamtgewicht der Bestandteile, > 5 Gew.-% oder > 10 Gew.-% bis < 25 Gew.-%, insbesondere > 10 Gew.-% bis < 20 Gew.-%, an Lösungsmitteln umfassen, insbesondere wobei die Summe der Bestandteile des Ausgangswerkstoffs 100 Gew.-% ergibt. Furthermore, the starting material may comprise at least one solvent. For example, the starting material, based on the total weight of the ingredients,> 5 wt .-% or> 10 wt .-% to <25 wt .-%, in particular> 10 wt .-% to <20 wt .-%, of Solvents, in particular wherein the sum of the constituents of the starting material 100 wt .-% results.
Weiterhin kann der Ausgangswerkstoff mindestens einen oder mehrere Zusatzstoffe, beispielsweise Reduktions- und/oder Oxidationsmittel, umfassen. Furthermore, the starting material may comprise at least one or more additives, for example reducing and / or oxidizing agents.
Zum Beispiel kann der Ausgangswerkstoff > 25 Gew.-% bis < 80 Gew.-% an ersten Partikeln und > 5 Gew.-% bis < 60 Gew.-% an zweiten Partikeln beziehungsweise an zweiten und dritten Partikeln in Summe umfassen, insbesondere wobei die Summe der Bestandteile des Ausgangswerkstoffs 100 Gew.-% ergibt. Weiterhin kann der Ausgangswerkstoff > 5 Gew.-% bis < 25 Gew.-% an Lösungsmitteln und/oder > 0,1 Gew.-% bis < 10 Gew.-% an Zusatzstoffen umfassen, insbesondere wobei die Summe der Bestandteile des Ausgangswerkstoffs 100 Gew.- % ergibt. Der Ausgangswerkstoff wird vorzugsweise als Paste bereitgestellt. Die Viskosität der Paste ist dabei maßgeblich durch das beigemischte Lösungsmittel einstellbar. Ebenso ist es von Vorteil, den Ausgangswerkstoff in Form einer Tablette oder als Formkörper, insbesondere als flachen Formkörper, bereitzustellen. In diesem Fall wird der pastenförmige Ausgangswerkstoff in eine Form gegeben oder auf eine Folie aufgetragen. Anschließend wird das Lösungsmittel mittels einer Temperaturbehandlung aus dem Ausgangswerkstoff ausgetrieben. Hier kann insbesondere ein Lösungsmittel vorgesehen werden, welches bereits bei einer Temperatur im Bereich der oder unterhalb der Sintertemperatur des Ausgangswerkstoffs rückstandsfrei ausgetrieben werden kann. Der auf diese Weise gebildete Ausgangswerkstoff kann auch als Großnutzen gefertigt werden, welcher dann zu kleinen anwendungsspezifischen Formkörpern geschnitten wird. For example, the starting material may comprise> 25 wt.% To <80 wt.% Of first particles and> 5 wt.% To <60 wt.% Of second particles or of second and third particles in total, in particular the sum of the constituents of the starting material gives 100% by weight. Furthermore, the starting material may comprise> 5% by weight to <25% by weight of solvents and / or> 0.1% by weight to <10% by weight of additives, in particular where the sum of the constituents of the starting material is 100% % By weight. The starting material is preferably provided as a paste. The viscosity of the paste is significantly adjustable by the admixed solvent. Likewise, it is advantageous to provide the starting material in the form of a tablet or as a shaped body, in particular as a flat shaped body. In this case, the paste-like starting material is placed in a mold or applied to a film. Subsequently, the solvent is expelled by means of a temperature treatment from the starting material. Here, in particular, a solvent can be provided which can be expelled without residue even at a temperature in the range of or below the sintering temperature of the starting material. The starting material formed in this way can also be manufactured as a major benefit, which is then cut into small application-specific shaped bodies.
Grundsätzlich können die erste, die zweite, die dritte und die weiteren Beschich- tungen der im Ausgangswerkstoff enthaltenen ersten, zweiten, und/oder dritten Partikeln mit Hilfe bekannter Beschichtungsverfahren ausgeführt werden. Diese können aus bekannter technischer Literatur entnommen werden. Beispielhaft sind hierbei chemische und physikalische Beschichtungsverfahren zu nennen, wie zum Beispiel eine chemische bzw. physikalische Gasphasenabscheidung. In principle, the first, the second, the third and the further coatings of the first, second and / or third particles contained in the starting material can be carried out by means of known coating methods. These can be taken from known technical literature. By way of example, mention may be made of chemical and physical coating methods, such as, for example, chemical or physical vapor deposition.
Hinsichtlich weiterer Merkmale und Vorteile des erfindungsgemäßen Ausgangswerkstoffs wird hiermit explizit auf die Erläuterungen im Zusammenhang mit der erfindungsgemäßen Verwendung, der erfindungsgemäßen Sinterverbindung, der erfindungsgemäßen elektronischen Schaltung, dem erfindungsgemäßen Verfahren sowie den Figuren verwiesen. With regard to further features and advantages of the starting material according to the invention, reference is hereby explicitly made to the explanations in connection with the use according to the invention, the sintered compound according to the invention, the electronic circuit according to the invention, the method according to the invention and the figures.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von elementarem Silicium, Siliciumoxid, Siliciumcarbid, Aluminiumnitrid, Siliciumnitrid, Aluminiumoxid, metallischem Wolfram, metallischem Molybdän, metallischem Chrom, metallischem Platin, metallischem Palladium, Borcarbid, Berylliumoxid, Bornitrid und Kombinationen zur Verringerung des thermischen Längenausdehnungskoeffizienten α eines Ausgangswerkstoffs einer Sinterverbindung beziehungsweise einer Sinterverbindung, insbesondere in einer Sinterpaste, einem Sinterpulver oder einem Sintermaterialvorformkörper. Hinsichtlich weiterer Merkmale und Vorteile der erfindungsgemäßen Verwendung wird hiermit explizit auf die Erläuterungen im Zusammenhang mit dem erfindungsgemäßen Ausgangswerkstoff, der erfindungsgemäßen Sinterverbindung, der erfindungsgemäßen elektronischen Schaltung, dem erfindungsgemäßen Verfahren sowie den Figuren verwiesen. Another object of the present invention is the use of elemental silicon, silicon oxide, silicon carbide, aluminum nitride, silicon nitride, aluminum oxide, metallic tungsten, metallic molybdenum, metallic chromium, metallic platinum, metallic palladium, boron carbide, beryllium oxide, boron nitride and combinations to reduce the thermal expansion coefficient α of a starting material of a sintered compound or a sintered compound, in particular in a sintering paste, a sintering powder or a Sintermaterialvorformkörper. With regard to further features and advantages of the use according to the invention, reference is hereby explicitly made to the explanations in connection with the starting material according to the invention, the sintered compound according to the invention, the electronic circuit according to the invention, the method according to the invention and the figures.
Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Sinterverbindung aus einem erfindungsgemäßen Ausgangswerkstoff. Another object of the present invention is a sintered compound of a starting material according to the invention.
Bisherige Versuche zeigen, dass eine aus einem derartigen Ausgangswerkstoff gebildete Sinterverbindung vorteilhafterweise einen thermischen Längenausdehnungskoeffizienten α bei 20 °C in einem Bereich von > 3-10"6 K"1 bis < 15-10"6 K"1, beispielsweise > 3-10"6 K"1 bis < 10-10"6 K"1, insbesondere von > 3-10"6 K"1 bis < 7-10"6 K"1 aufweisen kann. Sinterverbindungen mit einem derartig niedrigen thermischen Längenausdehnungskoeffizienten können durch die herkömmlicherweise eingesetzten Silbersinterpasten, welche üblicherweise einen thermischen Längenausdehnungskoeffizienten α bei 20 °C um 19,5-10"6K"1 aufweisen, nicht erreicht werden und sind insbesondere für die Halbleitertechnik von besonderem Interesse, da hierbei häufig Fügepartner mittels Sinterverbindungen zusammengefügt werden, welche einerseits, wie Chips, einen sehr niedrigen Längenausdehnungskoeffizienten, zum Beispiel von etwa 3-10"6 K"1, und andererseits, beispielsweise metallische Schaltungsträger, einen sehr hohen Längenausdehnungskoeffizienten, zum Beispiel von etwa 16,5-10"6 K"1, aufweisen, was eine der Hauptursachen für die Rissbildung bei Temperaturwechselbeanspruchung ist. Durch die zweiten Partikel kann der thermische Längenausdehnungskoeffizient vorteilhafterweise derart eingestellt werden, dass dieser zwischen den thermischen Längenausdehnungskoeffizienten der über die Sinterschicht zu verbindenden Fügepartnern, beispielsweise zwischen 16,5-10"6 K"1 (Schaltungsträger) und 3-10"6 K"1 (Chip) liegt. So können thermomechanische Spannungen zwischen den Fügepartner und der Sinterverbindung, welche bei Temperaturwechselbeanspruchung zur Rissbildung in den Fügepartnern führen kann, vorteilhafterweise deutlich reduziert werden. Die aus dem erfindungsgemäßen Ausgangswerkstoff gebildete Sinterverbindung kann zudem vorteilhafterweise eine verhältnismäßig hohe Wärmeleitfähigkeit, gemessen bei 20 °C und 50 % Luftfeuchte, von Previous experiments show that a sintered bond formed from such a starting material advantageously has a thermal expansion coefficient α at 20 ° C in a range of> 3-10 "6 K " 1 to <15-10 "6 K " 1 , for example> 3-10 "6 K " 1 to <10-10 "6 K " 1 , in particular of> 3-10 "6 K " 1 to <7-10 "6 K " 1 . Sintered compounds with such a low thermal expansion coefficient can not be achieved by the conventionally used silver pastes, which usually have a coefficient of thermal expansion α at 20 ° C by 19.5-10 "6 K " 1 , and are of particular interest for the semiconductor technology, since this often joining partner are joined together by means of sintered connections, on the one hand, such as chips, a very low linear expansion coefficient, for example of about 3-10 "6 K" 1, and on the other hand, for example, metallic circuit substrate, a very high linear expansion coefficient, for example of about 16 , 5-10 "6 K " 1 , which is one of the main causes of thermal stress cracking. By means of the second particles, the coefficient of thermal expansion can advantageously be set such that this coefficient lies between the coefficients of thermal expansion of the joining partners to be connected via the sintered layer, for example between 16.5-10 "6 K " 1 (circuit carrier) and 3-10 "6 K ". 1 (chip) is located. Thus, thermo-mechanical stresses between the joining partners and the sintered connection, which can lead to crack formation in the joining partners during thermal cycling, can advantageously be significantly reduced. The sintered compound formed from the starting material according to the invention can also advantageously a relatively high thermal conductivity, measured at 20 ° C and 50% humidity, of
> 100 Wm"1K"1 aufweisen. Dies ist insbesondere zur Steigerung der Leistungs- dichte von Halbleiterchips vorteilhaft. Insbesondere durch den Zusatz von elementarem Silizium kann der Rissbildung gut entgegen getreten werden, da sich elementares Silicium aufgrund seines niedrigen Young-Moduls besonders vorteilhaft auf die Elastizität der Sinterverbindung auswirkt. Zudem können die erfindungsgemäßen Sinterverbindungen vorteilhafterweise eine elektrische Leitfähigkeit erreichen, welche nur gering unter der von reinem Silber liegt. > 100 Wm "1 K " 1 . This is in particular to increase the performance density of semiconductor chips advantageous. In particular, the addition of elemental silicon, the cracking can be well countered, since elemental silicon has a particularly advantageous effect on the elasticity of the sintered compound due to its low Young's modulus. In addition, the sintered compounds according to the invention can advantageously achieve an electrical conductivity which is only slightly lower than that of pure silver.
Vorzugsweise wird der Anteil an zweiten Partikeln derart eingestellt, dass der thermische Längenausdehnungskoeffizient as der Sinterverbindungsschicht bei 20 °C kleiner oder gleich dem thermischen Längenausdehnungskoeffizienten aFi eines ersten (mittels der Sinterverbindung verbundenen) Fügepartners bei 20 °C und größer oder gleich dem thermischen Längenausdehnungskoeffizienten aF2 eines zweiten (mittels der Sinterverbindung verbundenen) Fügepartners bei 20 °C ist. Preferably, the proportion of second particles is adjusted such that the coefficient of thermal expansion a s of the sintered compound layer at 20 ° C is less than or equal to the thermal expansion coefficient a F i of a first (connected by the sintered connection) joining partner at 20 ° C and greater than or equal to the thermal Linear expansion coefficient a F2 of a second (connected by means of the sintered connection) joining partner at 20 ° C.
Im Rahmen einer Ausgestaltung wird der Anteil an zweiten Partikeln in dem Ausgangswerkstoff derart eingestellt, dass der thermische Längenausdehnungskoeffizient as der Sinterverbindung beziehungsweise des mittleren Bereichs der Sinterverbindung in einem Bereich: aF2+0,2-(aFr aF2) ^ as ^ aF2+0,8-(aFr aF2), insbesondere aF2+0,25-(aFr aF2) ^ as ^ aF2+0,75-(aFr aF2), liegt, wobei aFi der Längenausdehnungskoeffizient eines ersten Fügepartners und aF2 der Längenausdehnungskoeffizient eines zweiten Fügepartners und aFi > aF2 ist. So kann vorteilhafterweise die Rissbildung unter Temperaturwechselbeanspruchung deutlich gesenkt werden. In the context of one embodiment, the proportion of second particles in the starting material is adjusted such that the thermal expansion coefficient a s of the sintered connection respectively of the central portion of the sintered compound ranges: a F2 + 0.2 (a F ra F2) ^ a s ^ a F2 + 0.8 (a F ra F2), in particular a F2 + 0.25 (a F ra F2) ^ a ^ a s 0.75 + F2 (a F ra F2) is located, wherein a F i is the coefficient of linear expansion of a first joining partner and a F 2 is the coefficient of linear expansion of a second joining partner and a F i> a F2 . Thus, advantageously, cracking under thermal cycling can be significantly reduced.
Im Rahmen einer bevorzugten Ausgestaltung steigt der Anteil an zweiten Partikeln in der Sinterverbindung schrittweise oder kontinuierlich von einer Grenzschicht mit einem ersten Fügepartner mit einem größeren Längenausdehnungskoeffizienten in Richtung auf eine Grenzschicht mit einem zweiten Fügepartner mit einem kleineren thermischen Längenausdehnungskoeffizienten, oder umgekehrt sinkt der Anteil an zweiten Partikeln in der Sinterverbindung schrittweise oder kontinuierlich von einer Grenzschicht mit einem ersten Fügepartner mit einem kleineren Längenausdehnungskoeffizienten in Richtung auf eine Grenzschicht mit einem Fügepartner mit einem größeren thermischen Längenausdehnungskoeffizienten. So können vorteilhafterweise die Unterschiede zwischen den thermischen Längenausdehnungskoeffizienten zwischen einander kontaktieren- den Grenzschichten und damit die Rissbildung unter Temperaturwechselbeanspruchung besonders vorteilhaft minimiert werden. Ein derartiger Gradient kann beispielsweise durch das Aufbringen mehrerer Sinterpastenschichten mit sinkendem beziehungsweise steigendem Anteil an zweiten Partikeln, beispielsweise durch ein Druckverfahren, hergestellt werden. Within the scope of a preferred embodiment, the proportion of second particles in the sintered compound increases stepwise or continuously from one boundary layer to a first joining partner having a greater coefficient of linear expansion in the direction of a boundary layer with a second joining partner having a smaller thermal coefficient of linear expansion, or vice versa Particles in the sintered compound gradually or continuously from a boundary layer with a first joining partner with a smaller coefficient of linear expansion in the direction of a boundary layer with a joining partner with a larger thermal expansion coefficient. Thus, advantageously, the differences between the thermal expansion coefficients between each other contact the boundary layers and thus the cracking under thermal cycling are particularly advantageous minimized. Such a gradient can be produced, for example, by applying a plurality of sintered paste layers with a sinking or increasing proportion of second particles, for example by a printing process.
Hinsichtlich weiterer Merkmale und Vorteile der erfindungsgemäßen elektronischen Schaltung wird hiermit explizit auf die Erläuterungen im Zusammenhang mit dem erfindungsgemäßen Ausgangswerkstoff, der erfindungsgemäßen Sinterverbindung, der erfindungsgemäßen Verwendung, dem erfindungsgemäßen Verfahren sowie den Figuren verwiesen. With regard to further features and advantages of the electronic circuit according to the invention, reference is hereby explicitly made to the explanations in connection with the starting material according to the invention, the sintered compound according to the invention, the use according to the invention, the method according to the invention and the figures.
Ein weiterer Gegenstand der vorliegenden Erfindung ist eine elektronische Schaltung mit einer erfindungsgemäßen Sinterverbindung. Another object of the present invention is an electronic circuit with a sintered connection according to the invention.
Hinsichtlich weiterer Merkmale und Vorteile der erfindungsgemäßen elektronischen Schaltung wird hiermit explizit auf die Erläuterungen im Zusammenhang mit dem erfindungsgemäßen Ausgangswerkstoff, der erfindungsgemäßen Sinterverbindung, dem erfindungsgemäßen Verfahren sowie den Figuren verwiesen. With regard to further features and advantages of the electronic circuit according to the invention, reference is hereby explicitly made to the explanations in connection with the starting material according to the invention, the sintered compound according to the invention, the method according to the invention and the figures.
Die Erfindung betrifft weiterhin auch ein Verfahren zur Ausbildung einer thermisch und/oder elektrisch leitenden Sinterverbindung. Ausgegangen wird hierbei von einem erfindungsgemäßen Ausgangswerkstoff. The invention further relates to a method for forming a thermally and / or electrically conductive sintered compound. The starting point here is a starting material according to the invention.
Der Ausgangswerkstoff kann hierbei zwischen zwei Fügepartner gebracht werden. Bevorzugte Fügepartner sind elektrische und/oder elektronische Komponenten mit Kontaktstellen, die in unmittelbaren physischen Kontakt mit dem Ausgangswerkstoff gebracht werden. The starting material can be brought between two joining partners. Preferred joining partners are electrical and / or electronic components with contact points, which are brought into direct physical contact with the starting material.
Vorzugsweise wird der Anteil an zweiten Partikeln derart eingestellt, dass der thermische Längenausdehnungskoeffizient as der Sinterverbindungsschicht bei 20 °C kleiner oder gleich dem thermischen Längenausdehnungskoeffizienten aFi eines ersten Fügepartners bei 20 °C und größer oder gleich dem thermischen Längenausdehnungskoeffizienten aF2 eines zweiten Fügepartners bei 20 °C ist. Im Rahmen einer Ausgestaltung wird der Anteil an zweiten Partikeln derart eingestellt, dass der thermische Längenausdehnungskoeffizient as der Sinterverbindung beziehungsweise des mittleren Bereichs der Sinterverbindung in einem Bereich: aF2+0,2-(aFi- aF2) ^ as ^ aF2+0,8-(aFr aF2), insbesondere aF2+0,25-(aFr aF2) ^ as ^ aF2+0,75-(aFr aF2), liegt, wobei aFi der Längenausdehnungskoeffizient eines ersten Fügepartners und aF2 der Längenausdehnungskoeffizient eines zweiten Fügepartners und aFi > aF2 ist. So kann vorteilhafterweise die Rissbildung unter Temperaturwechselbeanspruchung deutlich gesenkt werden. Preferably, the proportion of second particles is set such that the thermal expansion coefficient a s of the sintered compound layer at 20 ° C is less than or equal to the coefficient of thermal expansion a F i of a first joining partner at 20 ° C and greater than or equal to the thermal expansion coefficient a F 2 of a second Joining partner at 20 ° C is. In one embodiment, the proportion of second particles is adjusted such that the coefficient of thermal expansion a s of the sintered compound or of the middle region of the sintered compound is in a range: a F 2 + 0.2- (a F i-a F 2) ^ a s ^ a F2 + 0.8- (a F ra F2 ), in particular a F2 + 0.25- (a F ra F2 ) ^ a s ^ a F2 + 0.75- (a F ra F2 ), where a F i is the coefficient of linear expansion of a first joining partner and a F 2 is the coefficient of linear expansion of a second joining partner and a F i> a F2 . Thus, advantageously, cracking under thermal cycling can be significantly reduced.
Im Rahmen einer bevorzugten Ausgestaltung steigt der Anteil an zweiten Partikeln in der Sinterverbindung schrittweise oder kontinuierlich von einer Grenzschicht mit einem ersten Fügepartner mit einem größeren Längenausdehnungskoeffizienten in Richtung auf eine Grenzschicht mit einem zweiten Fügepartner mit einem kleineren thermischen Längenausdehnungskoeffizienten, oder umgekehrt sinkt der Anteil an zweiten Partikeln in der Sinterverbindung schrittweise oder kontinuierlich von einer Grenzschicht mit einem ersten Fügepartner mit einem kleineren Längenausdehnungskoeffizienten in Richtung auf eine Grenzschicht mit einem Fügepartner mit einem größeren thermischen Längenausdehnungskoeffizienten. So können vorteilhafterweise die Unterschiede zwischen den thermischen Längenausdehnungskoeffizienten zwischen einander kontaktierenden Grenzschichten und damit die Rissbildung unter Temperaturwechselbeanspruchung besonders vorteilhaft minimiert werden. Within the scope of a preferred embodiment, the proportion of second particles in the sintered compound increases stepwise or continuously from one boundary layer to a first joining partner having a greater coefficient of linear expansion in the direction of a boundary layer with a second joining partner having a smaller thermal coefficient of linear expansion, or vice versa Particles in the sintered compound gradually or continuously from a boundary layer with a first joining partner with a smaller coefficient of linear expansion in the direction of a boundary layer with a joining partner with a larger thermal expansion coefficient. Thus, advantageously, the differences between the thermal expansion coefficients between contacting boundary layers and thus the cracking under thermal cycling can be minimized particularly advantageous.
Ein derartiger Gradient kann beispielsweise durch das Aufbringen mehrerer Sinterpastenschichten mit sinkendem beziehungsweise steigendem Anteil an zweiten und/oder dritten Partikeln, beispielsweise durch ein Druckverfahren, hergestellt werden. Hierbei kann der Ausgangswerkstoff in Form einer Druckpaste beispielsweise mittels Sieb- oder Schablonendruck auf die Kontaktstellen aufgetragen werden. Ebenso ist der Auftrag durch Injekt- oder Dispensverfahren möglich. Such a gradient can be produced, for example, by applying a plurality of sintered paste layers with decreasing or increasing proportion of second and / or third particles, for example by a printing process. Here, the starting material can be applied in the form of a printing paste, for example by means of screen or stencil printing on the contact points. Likewise, the order is possible through injection or dispensing.
Eine weitere Möglichkeit besteht weiterhin, den Ausgangswerkstoff als Formkörper zwischen den Fügepartner anzuordnen. Another possibility remains to arrange the starting material as a shaped body between the joining partners.
Anschließend wird die Sinterverbindung durch eine Temperaturbehandlung des Ausgangswerkstoffes ausgebildet. Beispielsweise kann eine Verarbeitungstemperatur von < 400 °C, bevorzugt vonSubsequently, the sintered compound is formed by a temperature treatment of the starting material. For example, a processing temperature of <400 ° C, preferably from
< 300 °C, insbesondere von < 250 °C, vorgesehen werden. Gegebenenfalls wird zur Verbesserung des Sintervorgangs dieser unter Druck ausgeführt. Als Prozessdruck wird ein Druck < 10 MPa vorgesehen, bevorzugt < 4 MPa oder sogar<300 ° C, in particular of <250 ° C, are provided. Optionally, this is done under pressure to improve the sintering process. As process pressure, a pressure <10 MPa is provided, preferably <4 MPa or even
< 1 ,6 MPa, besonders bevorzugt < 0,8 MPa. Insofern das Reduktionsmittel nicht stochiometrisch, sondern im Überschuss eingesetzt wurde, kann überschüssiges Reduktionsmittel unter der Voraussetzung einer ausreichenden Sauerstoffzufuhr, beispielsweise unter Luftatmosphäre, vollkommen ausgebrannt werden. Bevorzugt sind Fügepartner mit Kontaktstellen aus einem Edelmetall vorgesehen, beispielsweise aus Gold, Silber oder einer Legierung aus Gold oder Silber. <1, 6 MPa, more preferably <0.8 MPa. Insofar as the reducing agent was not used stoichiometrically, but in excess, excess reducing agent can be completely burned out under the condition of sufficient oxygen supply, for example under an air atmosphere. Bonding partners with contact points made of a noble metal, for example gold, silver or an alloy of gold or silver, are preferably provided.
Bei einer alternativen Möglichkeit des erfindungsgemäßen Verfahrens wird die Sinterverbindung im Vakuum und/oder unter einer Stickstoffatmosphäre ausgebildet. Da in diesem Fall überschüssiges Reduktionsmittel nicht verbrannt werden kann, ist ein Ausgangswerkstoff vorzusehen, bei welchem der Anteil der in dem Ausgangswerkstoff enthaltenen, insbesondere zu reduzierenden, organischen oder anorganischen Metallverbindung in der zweiten Beschichtung zum Anteil des Reduktionsmittels im Ausgangswerkzeug in einem stöchiometrischen Verhältnis vorliegt. Während der Temperaturbehandlung wird das Reduktionsmittel demzufolge vollkommen aufgebraucht. Zusätzlich wird die organische oder anorganische Metallverbindung vollständig in die metallische Form umgewandelt. In vorteilhafter Weise können bei dieser Verfahrensalternative auch Fügepartner mit einer nicht edelmetallhaltigen Kontaktstelle vorgesehen werden, die beispielsweise aus Kupfer ausgebildet ist. Somit können auch kostengünstige elektrische und oder elektronische Komponenten herangezogen werden. In an alternative possibility of the method according to the invention, the sintered compound is formed in vacuo and / or under a nitrogen atmosphere. Since in this case excess reducing agent can not be burned, a starting material is to be provided in which the proportion of the starting material, in particular to be reduced, organic or inorganic metal compound in the second coating to the proportion of the reducing agent in the starting tool in a stoichiometric ratio. During the temperature treatment, the reducing agent is therefore completely used up. In addition, the organic or inorganic metal compound is completely converted to the metallic form. Advantageously, joining partners with a non-noble-metal-containing contact point, which is made of copper, for example, may also be provided in this process alternative. Thus, cost-effective electrical and / or electronic components can be used.
Hinsichtlich weiterer Merkmale und Vorteile des erfindungsgemäßen Verfahrens wird hiermit explizit auf die Erläuterungen im Zusammenhang mit dem erfindungsgemäßen Ausgangswerkstoff, der erfindungsgemäßen Verwendung, der erfindungsgemäßen Sinterverbindung, der erfindungsgemäßen elektronischen Schaltung sowie den Figuren verwiesen. With regard to further features and advantages of the method according to the invention, reference is hereby explicitly made to the explanations in connection with the starting material according to the invention, the use according to the invention, the sintered connection according to the invention, the electronic circuit according to the invention and the figures.
Zeichnungen und Beispiele Weitere Vorteile und vorteilhafte Ausgestaltungen der erfindungsgemäßen Gegenstände werden durch die Zeichnungen veranschaulicht und in der nachfolgenden Beschreibung erläutert. Dabei ist zu beachten, dass die Zeichnungen nur beschreibenden Charakter haben und nicht dazu gedacht sind, die Erfindung in irgendeiner Form einzuschränken. Es zeigen Drawings and examples Further advantages and advantageous embodiments of the subject invention are illustrated by the drawings and explained in the following description. It should be noted that the drawings have only descriptive character and are not intended to limit the invention in any way. Show it
Fig. 1 eine schematische Draufsicht auf Partikel eines erfindungsgemäßen Fig. 1 is a schematic plan view of particles of an inventive
Ausgangswerkstoffs einer Sinterverbindung gemäß einer ersten Ausführungsform, welche erste und zweite Partikel umfasst;  Starting material of a sintered compound according to a first embodiment, which comprises first and second particles;
Fig. 2 eine schematische Draufsicht auf Partikel eines erfindungsgemäßen  Fig. 2 is a schematic plan view of particles of an inventive
Ausgangswerkstoffs einer Sinterverbindung gemäß einer zweiten Ausführungsform, welche erste, zweite und dritte Partikel umfasst; Starting material of a sintered compound according to a second embodiment, which comprises first, second and third particles;
Fig. 4a-f schematische Querschnitte durch Ausgestaltungen von ersten Partikeln; 4a-f schematic cross sections through embodiments of first particles;
Fig. 5a-e schematische Querschnitte durch Ausgestaltungen von zweiten Partikeln;  5a-e schematic cross-sections through embodiments of second particles;
Fig. 6a,b schematische Querschnitte durch Ausgestaltungen von dritten Partikeln;  Fig. 6a, b are schematic cross-sections through embodiments of third particles;
Fig. 7 einen schematischen Querschnitt durch eine erste Ausgestaltung erfindungsgemäßen elektronischen Schaltung;  7 shows a schematic cross section through a first embodiment of the invention electronic circuit;
Fig. 8 einen schematischen Querschnitt durch eine zweite Ausgestaltung erfindungsgemäßen elektronischen Schaltung; und  8 shows a schematic cross section through a second embodiment of the invention electronic circuit. and
Fig. 9 einen schematischen Querschnitt durch einen Sinterofen bei der Herstellung einer erfindungsgemäßen Sinterverbindung beziehungsweise elektronischen Schaltung.  9 shows a schematic cross section through a sintering furnace in the production of a sintered connection or electronic circuit according to the invention.
In den Figuren sind gleiche Bauteile und Bauteile mit der gleichen Funktion mit den gleichen Bezugszeichen gekennzeichnet. In the figures, the same components and components with the same function with the same reference numerals.
In Figur 1 sind schematisch erste Partikel 10 und zweite Partikel 20 gezeigt, die in einer ersten Ausführungsform in einem erfindungsgemäßen Ausgangswerkstoffs einer Sinterverbindung vorgesehen sind. Figur 1 veranschaulicht, dass die ersten 10 und zweiten 20 Partikel im Wesentlichen gleich groß sind. Vorzugsweise weisen die ersten 10 und zweiten 20 Partikel eine möglichst ähnliche Korngrößenverteilung aufweisen. Insbesondere ist dabei der D50-Wert der zweiten Partikel 20 größer oder gleich dem halben D50-Wertes der ersten Partikel 10 und kleiner oder gleich dem doppelten D50-Wert.es der ersten Partikel 10. Eine derartige Relation der Korngrößeverteilung der ersten 10 und zweiten 20 Partikel hat sich insbesondere als vorteilhaft erwiesen, da ein höherer Feinanteil an zweiten Partikel sich nachteilhaft auf die Versinterung der ersten Partikel auswirken kann, wobei ein höherer Grobanteil an zweiten Partikeln zu großen Inhomogenitäten und dementsprechend zu makroskopischen Schwankungen der Materialeigenschaften innerhalb der Sinterverbindung führen kann. FIG. 1 schematically shows first particles 10 and second particles 20, which in a first embodiment are provided in a starting material according to the invention of a sintered connection. FIG. 1 illustrates that the first 10 and second 20 particles are substantially the same size. Preferably, the first 10 and second 20 particles have a particle size distribution which is as similar as possible. In particular, the D 50 value of the second particle 20 is greater than or equal to half the D 50 value of the first particles 10 and Such a relation of the particle size distribution of the first 10 and second 20 particles has proved to be particularly advantageous since a higher fines content of second particles have an adverse effect on the sintering of the first particles can, wherein a higher coarse fraction of second particles can lead to large inhomogeneities and, accordingly, to macroscopic variations in the material properties within the sintered compound.
In Figur 2 sind schematisch erste 10, zweite 20 und dritte 30 Partikel gezeigt, die in einer zweiten Ausführungsform in einem erfindungsgemäßen Ausgangswerkstoffs einer Sinterverbindung vorgesehen sind. Im Rahmen der gezeigten Ausführungsform sind auch diese im Wesentlichen gleich groß und weisen eine ähnliche Korngrößenverteilung auf. FIG. 2 schematically shows first 10, second 20 and third 30 particles which, in a second embodiment, are provided in a starting material according to the invention of a sintered connection. In the embodiment shown, these are also substantially the same size and have a similar particle size distribution.
Der Ausgangswerkstoff kann im Rahmen der in den Figuren 1 und 2 veranschaulichten Ausführungsformen metallhaltige, erste Partikel 10 einer oder mehrerer in den Figuren 3a bis 3f gezeigten Ausbildungen aufweisen. Beispielsweise kann es sich bei den ersten Partikeln 10 um edelmetall- und/oder kupferhaltige, insbesondere silberhaltige, Partikel handeln. Zum einfacheren Verständnis werden die Figuren im Folgenden anhand von silberhaltigen ersten Partikeln 10 erläutert. In the context of the embodiments illustrated in FIGS. 1 and 2, the starting material may comprise metal-containing, first particles 10 of one or more configurations shown in FIGS. 3 a to 3 f. By way of example, the first particles 10 may be noble-metal and / or copper-containing, in particular silver-containing, particles. For easier understanding, the figures are explained below on the basis of silver-containing first particles 10.
Figur 3a zeigt ein erstes Partikel 10, welches aus Silber in metallischer Form ausgebildet ist. FIG. 3 a shows a first particle 10, which is formed from silver in metallic form.
Figur 3b zeigt ein erstes Partikel 10, welches aus einer organischen oder anorganischen Silberverbindung, zum Beispiel Silbercarbonat (Ag2C03) und/oder Silberoxid (Ag20, AgO), ausgebildet ist, welche durch eine Temperaturbehandlung in metallisches Silber umwandelbar ist. FIG. 3b shows a first particle 10 which is formed from an organic or inorganic silver compound, for example silver carbonate (Ag 2 C0 3 ) and / or silver oxide (Ag 2 O, AgO), which can be converted into metallic silver by a temperature treatment.
Figur 3c zeigt ein erstes Partikel 10, welches einen Partikelkern 1 1 aus Silber in metallischer Form sowie eine darauf aufgebrachte erste Beschichtung 12 aus einer organischen oder anorganischen Silberverbindung, zum Beispiel Silbercarbonat und/oder Silberoxid, aufweist, welche durch eine Temperaturbehandlung in metallisches Silber umwandelbar ist. Figur 3d zeigt ein erstes Partikel 10, welches einen Partikelkern 1 1 aus Silber in metallischer Form sowie eine darauf aufgebrachte erste Beschichtung 12 aus einer organischen oder anorganischen Silberverbindung, zum Beispiel Silbercar- bonat und/oder Silberoxid, aufweist, welche durch eine Temperaturbehandlung in metallisches Silber umwandelbar ist. Darüber hinaus weist das in Figur 3d gezeigte Partikel 10 eine weitere auf der ersten Beschichtung 12 aufgebrachte Beschichtung 13 auf, welche ein Reduktionsmittel, zum Beispiel eine Fettsäure, enthält, mittels welchem die Reduktion der organischen oder anorganischen Silberverbindung, zu metallischem Silber durchführbar ist. FIG. 3c shows a first particle 10, which has a particle core 1 1 of silver in metallic form and a first coating 12 made of an organic or inorganic silver compound, for example silver carbonate and / or silver oxide, applied thereon, which can be converted into metallic silver by a temperature treatment is. FIG. 3d shows a first particle 10, which has a particle core 1 1 of silver in metallic form and a first coating 12 made of an organic or inorganic silver compound, for example silver carbonate and / or silver oxide, applied thereon Silver is convertible. In addition, the particle 10 shown in FIG. 3d has a further coating 13 applied to the first coating 12, which contains a reducing agent, for example a fatty acid, by means of which the reduction of the organic or inorganic silver compound to metallic silver can be carried out.
Figur 3e zeigt ein erstes Partikel 10, welches einen Partikelkern 1 1 aus Silber in metallischer Form sowie eine darauf aufgebrachte Reduktionsmittel, zum Beispiel Fettsäure, enthaltende erste Beschichtung 12 aufweist, wobei mittels des Reduktionsmittel die Reduktion einer organischen oder anorganischen Silberverbindung, zum Beispiel von Silbercarbonat und/oder Silberoxid, zu metallischem Silber durchführbar ist. Die organische oder anorganische Silberverbindung kann dabei Bestandteil eines anderen ersten 10, zweiten 20 oder dritten 30 Partikels sein. FIG. 3 e shows a first particle 10 which has a particle core 1 1 made of silver in metallic form and a first coating 12 containing a reducing agent, for example fatty acid, wherein the reducing agent is used to reduce an organic or inorganic silver compound, for example silver carbonate and / or silver oxide, to metallic silver is feasible. The organic or inorganic silver compound may be part of another first 10, second 20 or third 30 particles.
Figur 3f zeigt ein erstes Partikel 10, welches einen Partikelkern 1 1 aus einer organischen oder anorganischen Silberverbindung, zum Beispiel Silbercarbonat und/oder Silberoxid aufweist, welche durch eine Temperaturbehandlung in metallisches Silber umwandelbar ist. Darüber hinaus weist das erste Partikel 10 eine auf den Partikelkern 1 1 aufgebrachte erste Beschichtung 12 auf weiche ein Reduktionsmittel, zum Beispiel Fettsäure, enthält, mittels welchem die Reduktion der organischen oder anorganischen Silberverbindung, zu metallischem Silber von metallischem Silber durchführbar ist. FIG. 3f shows a first particle 10 which has a particle core 1 1 made of an organic or inorganic silver compound, for example silver carbonate and / or silver oxide, which can be converted into metallic silver by a temperature treatment. Moreover, the first particle 10 has a first coating 12 applied to the particle core 11, which contains a reducing agent, for example fatty acid, by means of which the reduction of the organic or inorganic silver compound to metallic silver of metallic silver can be carried out.
Figur 4a zeigt ein zweites Partikel 20, dessen Partikelkern aus einem Material ausgebildet ist, welches einen geringen thermischen Längenausdehnungskoeffizienten α bei 20 °C von < 10 10"6K"1, insbesondere von < 10 10"6K"1, aufweist. Hierbei kann es sich beispielsweise um elementares Silicium, Siliciumoxid, Silici- umcarbid, Aluminiumnitrid, Siliciumnitrid, Aluminiumoxid, metallisches Wolfram, metallisches Molybdän, metallisches Chrom, metallisches Platin, metallisches Palladium, Borcarbid, Berylliumoxid und/oder Bornitrid handeln. Diese Materialien weisen zudem vorteilhafterweise zudem eine gute Wärmeleitfähigkeit A2o/so bei 20 °C und 50 % Luftfeuchte von > 50 Wm"1K"\ insbesondere von > 100 Wm" 1K"1, auf, was insbesondere zur Steigerung der Leistungsdichte von Halbleiterchips vorteilhaft ist. FIG. 4 a shows a second particle 20 whose particle core is formed from a material which has a low thermal coefficient of linear expansion α at 20 ° C. of <10 10 -6 K -1 , in particular of 10 10 -6 K -1 . These may be, for example, elemental silicon, silicon oxide, silicon carbide, aluminum nitride, silicon nitride, aluminum oxide, metallic tungsten, metallic molybdenum, metallic chromium, metallic platinum, metallic palladium, boron carbide, beryllium oxide and / or boron nitride. In addition, these materials advantageously also have a good thermal conductivity A 2 o / so at 20 ° C and 50% humidity of> 50 Wm "1 K " \, in particular of> 100 Wm " 1 K " 1 , which is particularly advantageous for increasing the power density of semiconductor chips.
Figur 4b zeigt ein zweites Partikel 20, welches einen Partikelkern 21 aus einem Material mit einen geringen thermischen Längenausdehnungskoeffizienten α bei 20 °C von < 10 10"6K"1, insbesondere von < 10 10"6K"1, aufweist. Auf den Partikelkern 21 ist dabei eine zweite Beschichtung 22 aus Silber, Platin oder Palladium in metallischer Form aufgebracht. Figure 4b shows a second particle 20, which comprises a particle core 21 of a material having a low coefficient of thermal expansion α at 20 ° C of <10 10 "6 K" 1, in particular <10 10 "6 K '1. In this case, a second coating 22 of silver, platinum or palladium in metallic form is applied to the particle core 21.
Figur 4c zeigt ein zweites Partikel 20, welches einen Partikelkern 21 aus einem Material mit einen geringen thermischen Längenausdehnungskoeffizienten α bei 20 °C von < 10 10"6K"1, insbesondere von < 10 10"6K"1, aufweist. Darüber hinaus weißt der Partikel 20 eine auf den Partikelkern aufgebrachte zweite Beschichtung 22 aus einer organischen oder anorganischen Silberverbindung, zum Beispiel Silbercarbonat und/oder Silberoxid, auf, welche durch eine Temperaturbehandlung in metallisches Silber umwandelbar ist. FIG. 4c shows a second particle 20 which has a particle core 21 made of a material with a low thermal coefficient of linear expansion α at 20 ° C. of <10 10 -6 K -1 , in particular of <10 10 -6 K -1 . In addition, the particle 20 has a second coating 22 of an organic or inorganic silver compound, for example silver carbonate and / or silver oxide, applied to the particle core, which is convertible into metallic silver by a temperature treatment.
Figur 4d zeigt ein zweites Partikel 20, welches einen Partikelkern 21 aus einem Material mit einen geringen thermischen Längenausdehnungskoeffizienten α sowie eine darauf aufgebrachte zweite Beschichtung 22 aufweist, welche ein Reduktionsmittel, zum Beispiel Fettsäure, enthält, mittels welchem die Reduktion einer organischen oder anorganischen Silberverbindung, zum Beispiel von Silbercarbonat und/oder Silberoxid, welche Bestandteil eines anderen ersten 10, zweiten 20 oder dritten 30 Partikels ist, zu metallischem Silber durchführbar ist. FIG. 4 d shows a second particle 20, which has a particle core 21 made of a material with a low thermal expansion coefficient α and a second coating 22 applied thereto, which contains a reducing agent, for example fatty acid, by means of which the reduction of an organic or inorganic silver compound, for example, silver carbonate and / or silver oxide, which is part of another first 10, second 20 or third 30 particle, to metallic silver is feasible.
Figur 4e zeigt ein zweites Partikel 20, welches einen Partikelkern 21 aus einem Material mit einen geringen thermischen Längenausdehnungskoeffizienten sowie eine darauf aufgebrachte zweite Beschichtung 22 aus einer organischen oder anorganischen Silberverbindung, zum Beispiel Silbercarbonat und/oder Silberoxid, aufweist, welche durch eine Temperaturbehandlung in metallisches Silber umwandelbar ist. Darüber hinaus weist das in Figur 4e gezeigte Partikel 20 eine weitere auf der zweite Beschichtung 22 aufgebrachte Beschichtung 23 auf, welche ein Reduktionsmittel, zum Beispiel eine Fettsäure, enthält, mittels welchem die Reduktion der organischen oder anorganischen Silberverbindung, zu metallischem Silber durchführbar ist. Figur 5a zeigt ein drittes Partikel 30, welches ein Metall, zum Beispiel Zinn, enthält, welches durch eine Temperaturbehandlung eine Legierung mit Silber ausbildet und/oder einen niedrigeren Schmelzpunkt als metallisches Silber aufweist. FIG. 4 e shows a second particle 20, which has a particle core 21 made of a material with a low thermal expansion coefficient and a second coating 22 made of an organic or inorganic silver compound, for example silver carbonate and / or silver oxide, applied thereto Silver is convertible. Moreover, the particle 20 shown in FIG. 4e has a further coating 23 applied to the second coating 22, which contains a reducing agent, for example a fatty acid, by means of which the reduction of the organic or inorganic silver compound to metallic silver can be carried out. FIG. 5a shows a third particle 30 which contains a metal, for example tin, which forms an alloy with silver by means of a temperature treatment and / or has a lower melting point than metallic silver.
Figur 5b zeigt ein drittes Partikel 30, welches einen Partikelkern 31 aus einem Metall, zum Beispiel Zinn, aufweist, welches durch eine Temperaturbehandlung eine Legierung mit Silber ausbildet und/oder einen niedrigeren Schmelzpunkt als metallisches Silber aufweist. Darüber hinaus weist das in Figur 5b gezeigte dritte Partikel eine auf den Partikelkern 31 aufgebrachte dritte Beschichtung 32 aus einer organischen oder anorganischen Silberverbindung, zum Beispiel Silbercar- bonat und/oder Silberoxid, auf, welche durch eine Temperaturbehandlung in metallisches Silber umwandelbar ist. FIG. 5b shows a third particle 30, which has a particle core 31 made of a metal, for example tin, which forms an alloy with silver by means of a temperature treatment and / or has a lower melting point than metallic silver. In addition, the third particle shown in FIG. 5b has a third coating 32, applied to the particle core 31, of an organic or inorganic silver compound, for example silver carbonate and / or silver oxide, which can be converted into metallic silver by a temperature treatment.
Figur 6 zeigt eine erste Ausführungsform einer elektronischen Schaltung 70, welche ein Substrat 65 mit mindestens einer Kontaktstelle 66 aufweist. Durch eine aus einem erfindungsgemäßen Ausgangswerkstoff 100 hergestellte Sinterverbindung 100' ist die Kontaktstelle 66 des Substrats 65 mit einer Kontaktstelle 61 eines Chips 60 verbunden. FIG. 6 shows a first embodiment of an electronic circuit 70, which has a substrate 65 with at least one contact point 66. By means of a sintered connection 100 'produced from a starting material 100 according to the invention, the contact point 66 of the substrate 65 is connected to a contact point 61 of a chip 60.
Figur 7 zeigt eine zweite Ausführungsform einer elektronischen Schaltung 70, welche ein erstes Substrat 65 mit mindestens einer Kontaktstelle 66 aufweist. Durch eine erste Sinterverbindung 100, welche aus einem erfindungsgemäßen Ausgangswerkstoff 100 hergestellt ist, ist die erste Kontaktstelle 66 des ersten Substrats 65 mit einer ersten Kontaktstelle 61 eines Chips 60 verbunden. Durch eine zweite Sinterverbindung 100, welche ebenfalls aus dem erfindungsgemäßen Ausgangswerkstoff 100 hergestellt ist, ist wiederum eine zweite Kontaktstelle 61 ' des Chips 60 mit einer Kontaktstelle 66' eines zweiten Substrats 65' verbunden. FIG. 7 shows a second embodiment of an electronic circuit 70, which has a first substrate 65 with at least one contact point 66. By a first sintered connection 100, which is produced from a starting material 100 according to the invention, the first contact point 66 of the first substrate 65 is connected to a first contact point 61 of a chip 60. A second contact point 61 'of the chip 60 is in turn connected to a contact point 66' of a second substrate 65 'by a second sintered connection 100, which is also produced from the starting material 100 according to the invention.
In Figur 8 ist ein Sinterofen 80 gezeigt, sowie eine in einem Prozessraum 90 des Sinterofens 80 angeordnete elektronische Schaltung 70. Die elektronische Schaltung 70 weist ein Substrat 65 mit mindestens einer ersten Kontaktstelle 66 aus Kupfer auf. Auf dem Substrat 65 ist ein Chip 60 mit zumindest einer zweiten Kontaktstelle 61 aus einer Silberlegierung angeordnet. Zwischen der mindestens ersten Kontaktstelle 66 aus Kupfer und der zumindest zweiten Kontaktstelle 61 aus der Silberlegierung ist ein erfindungsgemäßer Ausgangswerkstoff 100 als Paste aufgetragen. Der Ausgangswerkstoff 100 enthält dabei anteilig eine Mischung von ersten 10 und zweiten 20 Partikeln entsprechend den Figuren 1 bis 4e. FIG. 8 shows a sintering furnace 80 and an electronic circuit 70 arranged in a process chamber 90 of the sintering furnace 80. The electronic circuit 70 has a substrate 65 with at least one first contact point 66 made of copper. On the substrate 65, a chip 60 is arranged with at least one second contact point 61 made of a silver alloy. Between the at least first contact point 66 made of copper and the at least second contact point 61 made of the silver alloy is an inventive starting material 100 as a paste applied. The starting material 100 contains proportionally a mixture of first 10 and second 20 particles according to the figures 1 to 4e.
Zur Ausbildung einer Sinterverbindung 100' zwischen der mindestens ersten Kontaktstelle 66 des Substrates 65 und der zumindest zweiten Kontaktstelle 61 des Chips 60, wird die elektronische Schaltung 70 mit dem enthaltenen Ausgangswerkstoff 100 einer Temperaturbehandlung unterzogen. Zur Durchführung der Temperaturbehandlung enthält der Sinterofen 80 innerhalb des Prozessraumes 90 eine Heizvorrichtung. Im Prozessraum 90 liegt während der Temperaturbehandlung des Ausgangswerkstoffes 100 beispielsweise ein Vakuum oder eine Schutzgasatmosphäre vor. In order to form a sintered connection 100 'between the at least first contact point 66 of the substrate 65 and the at least second contact point 61 of the chip 60, the electronic circuit 70 is subjected to a temperature treatment with the starting material 100 contained. To carry out the temperature treatment, the sintering furnace 80 contains a heating device within the process space 90. In the process space 90, for example, there is a vacuum or a protective gas atmosphere during the temperature treatment of the starting material 100.
Der Ausgangswerkstoff 100 wird beispielsweise als Paste appliziert, in welcher die ersten 10 und zweiten 20 Partikel und gegebenenfalls die dritten Partikel 30 in dispergierter Form vorliegen. The starting material 100 is applied, for example, as a paste in which the first 10 and second 20 particles and optionally the third particles 30 are present in dispersed form.
Infolge der Temperaturbehandlung der elektronischen Schaltung 70 werden im Ausgangswerkstoff 100 physikalische und/oder chemische Reaktionsprozesse ausgelöst. Dabei kann gegebenenfalls enthaltenes Reduktionsmittel, beispielsweise eine Fettsäure, mit einer gegebenenfalls enthaltenen organische oder anorganische Silberverbindung, beispielsweise Silbercarbonat und/oder Silberoxid, bereits bei einer Temperatur im Bereich der oder gegebenenfalls unterhalb der Sintertemperatur von Silber zu metallischem Silber reagieren. Durch die vorstehend beschriebenen Ausgestaltungen der Silberverbindungen enthaltenden Partikel, kann dabei eine weitestgehend vollständige Umwandlung in Silber erzielt werden. As a result of the temperature treatment of the electronic circuit 70, 100 physical and / or chemical reaction processes are triggered in the starting material. In this case, optionally contained reducing agent, for example a fatty acid, with an organic or inorganic silver compound, for example silver carbonate and / or silver oxide, already react at a temperature in the range or optionally below the sintering temperature of silver to metallic silver. By the above-described embodiments of the silver compounds containing particles, thereby a largely complete conversion into silver can be achieved.
Die metallhaltigen ersten Partikel 10 versintern zu einem elektrisch leitenden Sin- tergefüge. Dabei verhalten sich die zweiten Partikel bzw. deren Partikelkerne inert. Die im Zusammenhang mit den Figuren 3c bis 5b erläuterten Beschichtun- gen 12,13,22,23,31 ,32 können dabei die Versinterung innerhalb des Sintergefü- ges unterstützen. Das elementare Material der zweiten Partikel 20 liegt nach Ausbildung der Sinterverbindung 100' fein verteilt innerhalb der metallischen Silbermatrix des Sintergefüges 100' vor. Zusätzlich können in der Silbermatrix auch dritte Partikel 30 entsprechend den Figur 5a und 5b mitversintert werden. Die in dem Ausgangswerkstoff 100 gegebenenfalls als Mischung mit den ersten und zweiten Partikeln 10 bzw. 20 enthaltenen dritte Partikel 30, beispielsweise aus Zinn, schmelzen während der Temperaturbehandlung frühzeitig auf und unterstützen einen stofflichen Kontakt aller im Ausgangswerkstoff 100 enthaltenen Partikel 10, 20, 30. Zusätzlich können die dritten Partikel 30 Legierungen mit den Bestandteilen der ersten 10 Partikel und gegebenenfalls Partikelbeschichtungen 12,13,22,32 bilden. Diese Legierungen liegen dann als duktile Phasen innerhalb der im Sintergefüge ausgebildeten Silbermatrix vor. The metal-containing first particles 10 sinter into an electrically conductive sintered structure. The second particles or their particle cores behave inertly. The coatings 12, 13, 22, 23, 31, 32 explained in connection with FIGS. 3 c to 5 b can assist sintering within the sintered structure. The elementary material of the second particles 20 is after the formation of the sintered compound 100 'finely distributed within the metallic silver matrix of the sintered structure 100' before. In addition, third particles 30 can also be sintered in the silver matrix according to FIGS. 5a and 5b. The third particles 30, for example tin, optionally contained in the starting material 100 as a mixture with the first and second particles 10 and 20, melt prematurely during the temperature treatment and support a material contact of all the particles 10, 20, 30 contained in the starting material 100. In addition, the third particles 30 may form alloys with the constituents of the first 10 particles and optionally particle coatings 12, 13, 22, 32. These alloys are then present as ductile phases within the silver matrix formed in the sintered structure.
Ebenso erfolgt mittels der gebildeten Sinterverbindung 100' eine Kontaktierung der ersten und zweiten Kontaktstelle 61 , 66 des Substrates bzw. des Chips 65. Eine Kontaktierung der ersten Kontaktstelle 66 aus Kupfer während der Temperaturbehandlung ohne Korrosionserscheinungen ist möglich, da die Kontaktierung unter Vakuum oder einer Schutzgasatmosphäre erfolgt. Dadurch bleibt ein unedles Material, wie beispielsweise aus Kupfer, auch während der Temperaturbehandlung zur Ausbildung der Sinterverbindung 100' frei von Oxidationsproduk- ten. Likewise, contacting of the first and second contact points 61, 66 of the substrate or the chip 65 takes place by means of the formed sintered connection 100 '. Contacting of the first contact point 66 made of copper during the temperature treatment without corrosion phenomena is possible because the contacting takes place under vacuum or in a protective gas atmosphere he follows. As a result, a non-noble material, such as copper, for example, remains free of oxidation products even during the temperature treatment for forming the sintered connection 100 '.

Claims

Ansprüche claims
1 . Ausgangswerkstoff (100) einer Sinterverbindung (100'), umfassend 1 . Starting material (100) of a sintered compound (100 '), comprising
- metallhaltige erste Partikel (10) und  - Metal-containing first particles (10) and
- zweite Partikel (20),  second particles (20),
dadurch gekennzeichnet, dass  characterized in that
die zweiten Partikel (20) zumindest anteilig ein Partikelkernmaterial (21 ) enthalten, dessen thermischer Längenausdehnungskoeffizient α bei 20 °C geringer als der thermische Längenausdehnungskoeffizient α bei 20 °C des Metalls beziehungsweise der Metalle der ersten Partikel (10) in metallischer Form ist,  the second particles (20) at least partially contain a particle core material (21) whose thermal expansion coefficient α at 20 ° C is less than the thermal expansion coefficient α at 20 ° C of the metal or the metals of the first particles (10) in metallic form,
und  and
wobei der D50-Wert der zweiten Partikel (20) größer oder gleich dem halben D50-Wert.es der ersten Partikel (10) und kleiner oder gleich dem doppelten D50-Wert.es der ersten Partikel (10) ist. wherein the D 50 value of the second particles (20) is greater than or equal to half the D 50 value of the first particles (10) and less than or equal to twice the D 50 value of the first particles (10).
2. Ausgangswerkstoff nach Anspruch 1 , wobei der thermische Längenausdehnungskoeffizient α des Partikelkernmaterials (21 ) bei 20 °C < 10 10"6K"1, insbesondere < 7,5-10"6K"1, vorzugsweise < 5-10"6K"1, beträgt. 2. Starting material according to claim 1, wherein the thermal expansion coefficient α of the particle core material (21) at 20 ° C <10 10 "6 K " 1 , in particular <7.5-10 "6 K " 1 , preferably <5-10 ". 6 K "1 , is.
3. Ausgangswerkstoff nach Anspruch 1 oder 2, wobei der D50-Wert der zweiten Partikel (20) größer oder gleich dem halben D50-Wert der ersten Partikel und kleiner oder gleich dem 1 ,5-fachen D50-Wert der ersten Partikel (10) ist. 3. Starting material according to claim 1 or 2, wherein the D 50 value of the second particle (20) is greater than or equal to half the D 50 value of the first particle and less than or equal to 1, 5 times the D 50 value of the first particle (10).
4. Ausgangswerkstoff nach einem der Ansprüche 1 bis 3, wobei das Partikelkernmaterial (21 ) eine Wärmeleitfähigkeit A2o/so bei 20 °C und 50 % Luftfeuchte von > 15 Wm"1K"1 oder > 25 Wm"1K"1, vorzugsweise von > 50 Wm"1K" 1, insbesondere von > 100 Wm"1K"1, aufweist. 4. Starting material according to one of claims 1 to 3, wherein the particle core material (21) has a thermal conductivity A 2 o / so at 20 ° C and 50% air humidity of> 15 Wm "1 K " 1 or> 25 Wm "1 K " , preferably of> 50 Wm "1 K " 1 , in particular of> 100 Wm "1 K " 1 .
5. Ausgangswerkstoff nach einem der Ansprüche 1 bis 4, wobei das Partikelkernmaterial (21 ) ein chemisch inertes und physikalisch stabiles Material ist. 5. Starting material according to one of claims 1 to 4, wherein the particle core material (21) is a chemically inert and physically stable material.
6. Ausgangswerkstoff nach einem der Ansprüche 1 bis 5, wobei das Partikelkernmaterial (21 ) ausgewählt ist aus der Gruppe bestehen aus elementarem Silicium, Siliciumoxid, Siliciumcarbid, Aluminiumnitrid, Siliciumnitrid, Aluminiumoxid, metallischem Wolfram, metallischem Molybdän, metallischem Chrom, metallischem Platin, metallischem Palladium, Borcarbid, Berylliumoxid, Bornitrid und Kombinationen, insbesondere elementarem Silicium, Sili- ciumdioxid, Siliciumcarbid, Aluminiumnitrid, Siliciumnitrid, Aluminiumoxid, metallischem Molybdän, metallischem Chrom, metallischem Platin, metallischem Palladium und Kombinationen davon. 6. Starting material according to one of claims 1 to 5, wherein the particle core material (21) is selected from the group consisting of elemental silicon, silicon oxide, silicon carbide, aluminum nitride, silicon nitride, aluminum oxide, metallic tungsten, metallic molybdenum, metallic chromium, metallic platinum, metallic Palladium, boron carbide, beryllium oxide, boron nitride and combinations, in particular elemental silicon, silicon dioxide, silicon carbide, aluminum nitride, silicon nitride, aluminum oxide, metallic molybdenum, metallic chromium, metallic platinum, metallic palladium and combinations thereof.
7. Ausgangswerkstoff nach einem der Ansprüche 1 bis 6, wobei das Partikelkernmaterial (21 ) elementares Silicium und/oder Siliciumdioxid, insbesondere amorphes elementares Silicium und/oder amorphes Siliciumdioxid, ist. 7. Starting material according to one of claims 1 to 6, wherein the particle core material (21) is elemental silicon and / or silicon dioxide, in particular amorphous elemental silicon and / or amorphous silicon dioxide.
8. Ausgangswerkstoff nach einem der Ansprüche 1 bis 7, wobei die zweiten Partikel (20) einen Partikelkern (21 ) mit einer darauf aufgetragenen zweiten Beschichtung (22) aufweisen, wobei die zweite Beschichtung (22) mindestens ein Metall umfasst, welches ausgewählt ist aus der Gruppe bestehend aus Silber, Platin, Palladium, Gold, Zinn und Kombinationen davon. 8. Starting material according to one of claims 1 to 7, wherein the second particles (20) have a particle core (21) with a second coating applied thereto (22), wherein the second coating (22) comprises at least one metal which is selected from the group consisting of silver, platinum, palladium, gold, tin and combinations thereof.
9. Ausgangswerkstoff nach einem der Ansprüche 1 bis 8, wobei die zweiten Partikel (20) sphärische, insbesondere im Wesentlichen runde, beispielsweise im Wesentlichen kugelförmige, Partikel sind. 9. Starting material according to one of claims 1 to 8, wherein the second particles (20) are spherical, in particular substantially round, for example, substantially spherical, particles.
10. Ausgangswerkstoff nach einem der Ansprüche 1 bis 9, wobei die ersten Partikel (10) edelmetall- und/oder kupferhaltige, insbesondere silberhaltig, sind, insbesondere wobei die ersten Partikel (10) mindestens ein Metall, insbesondere mindestens ein Edelmetall und/oder Kupfer, insbesondere Silber, in metallischer Form und/oder mindestens eine organische oder anorganische Metallverbindung, insbesondere Edelmetall- und/oder Kupferverbindung, insbesondere Silberverbindung, enthalten, insbesondere wobei die organische oder anorganische Metallverbindung durch eine Temperaturbehandlung in das mindestens eine zugrunde liegende Metall in metallischer Form umwandelbar ist. 10. Starting material according to one of claims 1 to 9, wherein the first particles (10) precious metal and / or copper-containing, in particular silver, are, in particular wherein the first particles (10) at least one metal, in particular at least one noble metal and / or copper , in particular silver, in metallic form and / or at least one organic or inorganic metal compound, in particular precious metal and / or copper compound, in particular silver compound, in particular wherein the organic or inorganic metal compound by thermal treatment in the at least one underlying metal in metallic form is convertible.
1 1 . Ausgangswerkstoff nach einem der Ansprüche 1 bis 10, wobei die ersten Partikel (10) einen Partikelkern (1 1 ) mit einer darauf aufgetragenen ersten Beschichtung (12) aufweisen. 1 1. Starting material according to one of claims 1 to 10, wherein the first particles (10) have a particle core (1 1) with a first coating applied thereto (12).
12. Ausgangswerkstoff nach einem der Ansprüche 1 bis 1 1 , wobei der Ausgangswerkstoff (100), bezogen auf das Gesamtgewicht der Bestandteile,12. Starting material according to one of claims 1 to 1 1, wherein the starting material (100), based on the total weight of the constituents,
> 5 Gew.-%, insbesondere > 10 Gew.-%, beispielsweise > 20 Gew.-% oder> 5 wt .-%, in particular> 10 wt .-%, for example> 20 wt .-% or
> 25 Gew.-%, und/oder < 60 Gew.-%, insbesondere < 50 Gew.-%, an zweiten Partikel (20) und > 25 Gew.-% bis < 80 Gew.-% an ersten Partikeln (10) umfasst. > 25 wt .-%, and / or <60 wt .-%, in particular <50 wt .-%, of second particles (20) and> 25 wt .-% to <80 wt .-% of first particles (10 ).
13. Sinterverbindung (100') aus einem Ausgangswerkstoff nach einem der Ansprüche 1 bis 12. 13. sintered connection (100 ') of a starting material according to one of claims 1 to 12.
14. Sinterverbindung (100') nach Anspruch 13, wobei der Anteil an zweiten Partikeln (20) derart eingestellt ist, dass der thermische Längenausdehnungskoeffizient as der Sinterverbindung (100') beziehungsweise des mittleren Bereichs der Sinterverbindung (100') in einem Bereich: aF2+0,2-(aFi- aF2) ^ as ^ aF2+0,8-(aFi- aF2) liegt, wobei aFi der Längenausdehnungskoeffizient des ersten Fügepartners (65) und aF2 der Längenausdehnungskoeffizient des zweiten Fügepartners und aFi > aF2 ist, 14. sintered connection (100 ') according to claim 13, wherein the proportion of second particles (20) is set such that the coefficient of thermal expansion a s of the sintered compound (100') or the central region of the sintered compound (100 ') in a range: a F2 + 0.2- (a F i-a F 2) ^ a F 2 + 0.8- (a F i-a F2 ), where a F i is the linear expansion coefficient of the first joining partner (65) and a F2 is the coefficient of linear expansion of the second joining partner and a F i> a F2 ,
insbesondere wobei der Anteil an zweiten Partikeln (20) in der Sinterverbindung (100') schrittweise oder kontinuierlich von einer Grenzschicht (66) mit dem ersten Fügepartner (65) mit dem größeren Längenausdehnungskoeffizienten aFi in Richtung auf eine Grenzschicht (61 ) mit dem zweiten Fügepartner (60) mit dem kleineren thermischen Längenausdehnungskoeffizienten an steigt. in particular wherein the proportion of second particles (20) in the sintered compound (100 ') stepwise or continuously from a boundary layer (66) with the first joining partner (65) with the larger coefficient of linear expansion a F i towards a boundary layer (61) with the second joining partner (60) increases with the smaller thermal expansion coefficient.
15. Elektronische Schaltung (70) mit einer Sinterverbindung (100') gemäß Anspruch 13 oder 14. 15. An electronic circuit (70) with a sintered connection (100 ') according to claim 13 or 14.
16. Verfahren zur Ausbildung einer thermisch und/oder elektrisch leitenden Sinterverbindung (100'), wobei ein Ausgangswerkstoff (100) der Sinterverbindung (100') nach einem der Ansprüche 1 bis 12 vorgesehen wird, umfassend folgende Schritte: 16. A method for forming a thermally and / or electrically conductive sintered connection (100 '), wherein a starting material (100) of the sintered connection (100') is provided according to one of claims 1 to 12, comprising the following steps:
- Bereitstellen des Ausgangsstoffes (100) - Ausbilden der Sinterverbindung (100') durch eine Temperaturbehandlung des Ausgangswerkstoffes (100). - Providing the starting material (100) - Forming the sintered connection (100 ') by a temperature treatment of the starting material (100).
EP11713483.3A 2010-10-20 2011-03-29 Starting material and process for producing a sintered connection Withdrawn EP2629910A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010042702A DE102010042702A1 (en) 2010-10-20 2010-10-20 Starting material of a sintered compound and method for producing the sintered compound
DE102010042721A DE102010042721A1 (en) 2010-10-20 2010-10-20 Starting material of a sintered compound and method for producing the sintered compound
PCT/EP2011/054835 WO2012052191A1 (en) 2010-10-20 2011-03-29 Starting material and process for producing a sintered connection

Publications (1)

Publication Number Publication Date
EP2629910A1 true EP2629910A1 (en) 2013-08-28

Family

ID=43920268

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11713483.3A Withdrawn EP2629910A1 (en) 2010-10-20 2011-03-29 Starting material and process for producing a sintered connection
EP11713484.1A Active EP2630267B1 (en) 2010-10-20 2011-03-29 Starting material for a sintered join

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11713484.1A Active EP2630267B1 (en) 2010-10-20 2011-03-29 Starting material for a sintered join

Country Status (3)

Country Link
US (2) US20130216848A1 (en)
EP (2) EP2629910A1 (en)
WO (2) WO2012052192A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012222416A1 (en) * 2012-12-06 2014-06-12 Robert Bosch Gmbh Method for joining at least two components using a sintering process
DE102013103028A1 (en) * 2013-03-25 2014-09-25 Endress + Hauser Gmbh + Co. Kg Sintered body with multiple materials and pressure gauge with such a sintered body
EP2792642B1 (en) 2013-04-15 2018-02-21 Heraeus Deutschland GmbH & Co. KG Sinter paste with coated silver oxide on noble and non-noble surfaces that are difficult to sinter
DE102013208387A1 (en) * 2013-05-07 2014-11-13 Robert Bosch Gmbh Silver composite sintered pastes for low temperature sintered joints
JP5683640B2 (en) * 2013-05-20 2015-03-11 日本航空電子工業株式会社 Cutlery tool
BR112016029118A2 (en) * 2014-06-12 2017-08-22 Alpha Metals sintering materials and fixing methods using the same
SG10201406685YA (en) * 2014-10-16 2016-05-30 Heraeus Materials Singapore Pte Ltd Metal sintering preparation and the use thereof for the connecting of components
DE102014115319A1 (en) * 2014-10-21 2016-04-21 Osram Opto Semiconductors Gmbh Electronic device and method for manufacturing an electronic device
US10470463B2 (en) * 2015-12-23 2019-11-12 Silver Future Co., Ltd. Antibacterial product and method of manufacturing the same
US10940664B2 (en) * 2015-12-23 2021-03-09 Silver Future Co., Ltd. Antibacterial product and method of manufacturing the same
US9984951B2 (en) 2016-07-29 2018-05-29 Nxp Usa, Inc. Sintered multilayer heat sinks for microelectronic packages and methods for the production thereof
US9922894B1 (en) 2016-09-19 2018-03-20 Nxp Usa, Inc. Air cavity packages and methods for the production thereof
US10104759B2 (en) 2016-11-29 2018-10-16 Nxp Usa, Inc. Microelectronic modules with sinter-bonded heat dissipation structures and methods for the fabrication thereof
US10485091B2 (en) 2016-11-29 2019-11-19 Nxp Usa, Inc. Microelectronic modules with sinter-bonded heat dissipation structures and methods for the fabrication thereof
DE102017126689A1 (en) * 2017-11-14 2019-05-16 Infineon Technologies Ag A semiconductor substrate arrangement, a compound layer for semiconductor substrates, and a method for producing a compound layer
US11508641B2 (en) * 2019-02-01 2022-11-22 Toyota Motor Engineering & Manufacturing North America, Inc. Thermally conductive and electrically insulative material
EP4310905A1 (en) * 2022-07-18 2024-01-24 Siemens Aktiengesellschaft Sintering preform with a massive core and sintering layers on both sides of the core, method of manufacturing a pressure-sintered connection of two joining partners therewith and corresponding assembly with a pressure-sintered connection of two joining partners

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1749600A1 (en) * 2004-04-14 2007-02-07 Mitsui Mining & Smelting Co., Ltd. Silver powder coated with silver compound and manufacturing method thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775414A (en) * 1986-06-26 1988-10-04 Showa Denko Kabushiki Kaisha Inorganic adhesive
US5561321A (en) * 1992-07-03 1996-10-01 Noritake Co., Ltd. Ceramic-metal composite structure and process of producing same
JPH11117001A (en) * 1997-10-09 1999-04-27 Denki Kagaku Kogyo Kk Composite powder with heat resistance and electric conductivity, and its use
US6338893B1 (en) * 1998-10-28 2002-01-15 Ngk Spark Plug Co., Ltd. Conductive paste and ceramic printed circuit substrate using the same
WO2000076699A1 (en) * 1999-06-15 2000-12-21 Kimoto, Masaaki Ultrafine composite metal powder and method for producing the same
CN100578778C (en) * 2000-12-21 2010-01-06 株式会社日立制作所 Electronic device
JP4005772B2 (en) * 2001-01-19 2007-11-14 住友大阪セメント株式会社 Conductive paste
WO2002087809A1 (en) * 2001-04-27 2002-11-07 Dowa Mining Co., Ltd. Copper powder for electroconductive paste excellent in resistance to oxidation and method for preparation thereof
US6951666B2 (en) * 2001-10-05 2005-10-04 Cabot Corporation Precursor compositions for the deposition of electrically conductive features
KR20040008094A (en) * 2002-07-17 2004-01-28 엔지케이 스파크 플러그 캄파니 리미티드 Copper paste, wiring board using the same, and production method of wiring board
US20080176103A1 (en) * 2005-03-28 2008-07-24 Ngk Insulators, Ltd. Conductive Paste and Electronic Parts
JP2006277968A (en) * 2005-03-28 2006-10-12 Ngk Insulators Ltd Conductive paste and electronic part
US7494607B2 (en) * 2005-04-14 2009-02-24 E.I. Du Pont De Nemours And Company Electroconductive thick film composition(s), electrode(s), and semiconductor device(s) formed therefrom
JP2008004514A (en) * 2006-05-24 2008-01-10 Murata Mfg Co Ltd Conductive paste, and manufacturing method of ceramic multilayer board using it
JP4933998B2 (en) * 2007-09-28 2012-05-16 株式会社ノリタケカンパニーリミテド Conductor paste and thick film circuit board
TW201017688A (en) * 2007-10-18 2010-05-01 Du Pont Conductive compositions and processes for use in the manufacture of semiconductor devices
DE102009000192A1 (en) 2009-01-14 2010-07-15 Robert Bosch Gmbh Sintered material, sintered compound and method for producing a sintered compound
TW201044414A (en) * 2009-03-30 2010-12-16 Du Pont Metal pastes and use thereof in the production of silicon solar cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1749600A1 (en) * 2004-04-14 2007-02-07 Mitsui Mining & Smelting Co., Ltd. Silver powder coated with silver compound and manufacturing method thereof

Also Published As

Publication number Publication date
EP2630267A1 (en) 2013-08-28
WO2012052191A1 (en) 2012-04-26
US20130216848A1 (en) 2013-08-22
US20130251447A1 (en) 2013-09-26
EP2630267B1 (en) 2020-07-22
WO2012052192A1 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
EP2630267B1 (en) Starting material for a sintered join
EP2396140B1 (en) Metal paste with oxidation agents
EP2428293B1 (en) contacting medium and process for contacting electrical parts
EP2425920B1 (en) Use of aliphatic hydrocarbons and paraffins as solvent in silver sintering pastes
DE3855613T2 (en) Metallized substrate for circuits made of nitride-type ceramics
DE68912932T2 (en) Glass-ceramic article and process for its manufacture.
DE68917753T2 (en) Thermally conductive, sintered aluminum nitride body and its manufacturing process.
EP2158997A2 (en) Control of the porosity of metal pastes for pressure-free low temperature sinter-process
DE69736144T2 (en) Part for aluminum nitride substrate material semiconductors and its manufacturing method
EP2760613B1 (en) Laminated composite made up of an electronic substrate and an arrangement of layers comprising a reaction solder
DE112017000184T5 (en) solder
DE19531158A1 (en) Diffusion soldering method esp. for semiconductor components
EP2799164B1 (en) Improved sinter paste with partially oxidised metal particles
JP6617049B2 (en) Conductive paste and semiconductor device
EP2629911B1 (en) Starter material for a sintering compound and method for producing said sintering compound
DE19532250A1 (en) Diffusion soldering of a multi-layered structure
DE102011102555A1 (en) Solder material, use of the solder material in a solder paste and method for producing a solder joint by means of the solder material
DE19532251A1 (en) Apparatus for diffusion soldering
EP3695921B1 (en) Sintered compound starting material and method for producing the sintered compound
EP2998048A1 (en) Sintered metal preparation and its use for joining components
JP2019070174A (en) Bonding paste and semiconductor device using same
DE102013208387A1 (en) Silver composite sintered pastes for low temperature sintered joints
DE102010025311B4 (en) Method for applying a metallic layer to a ceramic substrate, use of the method and composite material
DE112014002069T5 (en) Ceramic-metal bond structure and method for its production
WO2023094120A1 (en) Metal-ceramic substrate, method for the production thereof, and module

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130521

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20161114

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180731