EP2614249B1 - Method and device for controlling an internal combustion engine - Google Patents
Method and device for controlling an internal combustion engine Download PDFInfo
- Publication number
- EP2614249B1 EP2614249B1 EP11736369.7A EP11736369A EP2614249B1 EP 2614249 B1 EP2614249 B1 EP 2614249B1 EP 11736369 A EP11736369 A EP 11736369A EP 2614249 B1 EP2614249 B1 EP 2614249B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- internal combustion
- combustion engine
- air
- threshold value
- zyl2
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 123
- 238000000034 method Methods 0.000 title claims description 37
- 239000000446 fuel Substances 0.000 claims description 22
- 230000006835 compression Effects 0.000 claims description 19
- 238000007906 compression Methods 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 10
- 230000010355 oscillation Effects 0.000 claims description 7
- 238000004590 computer program Methods 0.000 claims 2
- 239000007858 starting material Substances 0.000 description 19
- 238000002347 injection Methods 0.000 description 17
- 239000007924 injection Substances 0.000 description 17
- 230000006978 adaptation Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 239000010705 motor oil Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N11/00—Starting of engines by means of electric motors
- F02N11/08—Circuits or control means specially adapted for starting of engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/042—Introducing corrections for particular operating conditions for stopping the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D41/1402—Adaptive control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N11/00—Starting of engines by means of electric motors
- F02N11/08—Circuits or control means specially adapted for starting of engines
- F02N11/0814—Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N99/00—Subject matter not provided for in other groups of this subclass
- F02N99/002—Starting combustion engines by ignition means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N99/00—Subject matter not provided for in other groups of this subclass
- F02N99/002—Starting combustion engines by ignition means
- F02N99/006—Providing a combustible mixture inside the cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N19/00—Starting aids for combustion engines, not otherwise provided for
- F02N19/005—Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
- F02N2019/008—Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation the engine being stopped in a particular position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N2200/00—Parameters used for control of starting apparatus
- F02N2200/02—Parameters used for control of starting apparatus said parameters being related to the engine
- F02N2200/022—Engine speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N2200/00—Parameters used for control of starting apparatus
- F02N2200/08—Parameters used for control of starting apparatus said parameters being related to the vehicle or its components
- F02N2200/0801—Vehicle speed
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the JP-2008298031 A describes a method in which the throttle of the internal combustion engine is closed in the outlet to suppress vibrations. By this measure, the air charge in the cylinders in the internal combustion engine is reduced, thus reducing the roughness of the spout, since compression and decompression are minimized.
- EP 1 582 738 A2 are devices that change the stroke course in particular of the intake valves of the internal combustion engine, and thus provide the air filling of the cylinder.
- the stroke profile of the intake valves can be varied as desired by electrohydraulic actuators.
- Internal combustion engines with such an electro-hydraulic valve adjustment do not require a throttle valve.
- the stroke course in particular of the intake valves by an adjustment the camshaft can be varied.
- Such devices as well as the throttle valve, with which the air filling of the cylinder can be changed are referred to below as Heildosier sensibleen.
- An intake cylinder that is in an intake stroke immediately after or during the increase in the amount of air supplied is then supplied with an increased amount of air, and then has an increased air charge. If this intake cylinder now goes into a compression stroke, the increased air charge as a gas spring, which exerts a strong restoring torque via the intake cylinder ZYL2 crankshaft. Conversely, the respective air charge in the cylinders, which are going down, exerts a torque on the crankshaft that acts in the direction of forward rotation of the crankshaft. Since these cylinders, which are moving in a downward movement, have a low air charge, a restoring torque acts on the crankshaft as a whole.
- the speed threshold value is selected appropriately, it can be ensured that the intake cylinder no longer goes into a power stroke after the increased air quantity has been increased. This has the advantage that compression of the increased air charge is avoided, which prevents unwanted vibrations.
- the rotational speed threshold value is selected such that the inlet cylinder no longer goes into the power stroke after the increased amount of air has been increased. If the speed threshold is selected and if the engine speed is greater than the engine speed threshold, when a re-start request is determined, a method of restarting the engine particularly quickly can be realized.
- the speed threshold value is reduced, if the inlet cylinder still passes a top dead center after the increase in the metered amount of air and before the engine is stopped, it is ensured in a particularly simple manner that vibrations in the further operation of the internal combustion engine due to the inadmissible passing through a top dead center at high Air filling are prevented.
- the speed threshold value is increased when the intake cylinder no longer enters a compression stroke after the increased air quantity has been increased, it is ensured in a particularly simple manner that the intake cylinder shows a pendulum behavior during the further operation of the internal combustion engine.
- the speed threshold value is changed as a function of a return pendulum angle, it can be ensured in a particularly simple manner that the inlet cylinder exhibits a defined pendulum behavior in the future operation of the internal combustion engine.
- the speed threshold value is increased when the return pendulum angle is smaller than a predefinable minimum return pendulum angle, it is achieved that the intake cylinder is particularly robust, the top dead center just not reached.
- the adaptation method according to the invention has defined entry points, and thus it is particularly robust.
- the speed threshold value ns is always adapted coming from too large values, which makes the adaptation process particularly simple.
- the monitoring of the speed of the internal combustion engine is easiest at the dead centers. If it is determined at a dead center that the speed has fallen below the speed threshold, then the intake cylinder is just in the intake stroke.
- the amount of air metered by the air metering device is increased while the exhaust valve of the intake cylinder is opened, an increased amount of air is pumped from a suction pipe into an exhaust pipe. This leads to disadvantageous noise development.
- the amount of air metered in by the air metering device is increased too late during the intake stroke of the intake cylinder, a high pressure gradient results between the intake pipe and the cylinder. The inflow of air in this case leads to significant unwanted noise.
- it is advantageous if the air quantity metered by the air metering device is increased immediately after the end of the valve overlap of the intake cylinder, ie immediately after the closing of the exhaust valve.
- the fuel is injected before or immediately after the intake cylinder goes into the intake stroke, this is particularly favorable for mixture formation.
- the metered amount of fuel can be metered very finely, in direct injection, the early injection of fuel is advantageous for the turbulence of air and fuel.
- FIG. 1 shows a cylinder 10 of an internal combustion engine with a combustion chamber 20, a piston 30 which is connected to a connecting rod 40 with a crankshaft 50 is.
- the piston 30 performs in a known manner by an upward and downward movement. The reversal points of the movement are called dead centers. The transition from upward movement to downward movement is referred to as top dead center, and the transition from downward movement to upward movement is referred to as bottom dead center.
- An angular position of the crankshaft 50 is defined in a conventional manner relative to top dead center.
- a crankshaft sensor 220 detects the angular position of the crankshaft 50.
- a suction pipe 80 air to be burned is sucked into the combustion chamber 20 in a known manner during a downward movement of the piston 30. This is referred to as intake stroke or intake stroke.
- intake stroke or intake stroke the burned air is forced out of the combustion chamber 20 during an upward movement of the piston 30. This is commonly referred to as outlet stroke.
- the amount of air sucked in via the intake pipe 80 is adjusted via an air metering device, in the exemplary embodiment a throttle valve 100 whose position is determined by a control unit 70.
- a suction pipe injection valve 150 which is arranged in the intake pipe 80, fuel is injected into the air sucked from the intake pipe 80 and a fuel-air mixture in the combustion chamber 20 is generated.
- the amount of fuel injected through the port injection valve 150 is determined by the controller 70, typically over the duration and / or magnitude of a drive signal.
- a spark plug 120 ignites the fuel-air mixture.
- An intake valve 160 at the inlet of the intake pipe 80 to the combustion chamber 20 is driven by cams 180 from a camshaft 190.
- an exhaust valve 170 at the inlet of the exhaust pipe 90 to the combustion chamber 20 via cams 182 may be driven by the camshaft 190.
- the camshaft 190 is coupled to the crankshaft 50. Typically, the camshaft 190 makes one revolution per two revolutions of the crankshaft 50.
- the camshaft 190 is configured such that the exhaust valve 170 opens in the exhaust stroke and closes near the top dead center.
- the intake valve 160 opens near top dead center and closes in the intake stroke.
- a phase in which exhaust valve 170 and inlet valve of a technique open simultaneously are referred to as valve overlap.
- Such a valve is used for example for internal exhaust gas recirculation.
- the camshaft 190 can be designed so as to be controllable by the control unit 70, so that depending on the operating parameters of the internal combustion engine, different stroke profiles of the inlet valve 160 and the outlet valve 170 can be set.
- the intake valve 160 and the exhaust valve 170 are not moved up and down via the camshaft 190 but via electrohydraulic valve actuators.
- the camshaft 190 and the cams 180 and 182 may be omitted.
- the throttle valve 100 is not necessary.
- a starter 200 is mechanically connectable via a mechanical coupling 210 with the crankshaft 50. Establishing the mechanical connection between starter 200 and crankshaft 50 is also referred to as Einspuren. The release of the mechanical connection between starter 200 and crankshaft 50 is also referred to as dropping. The meshing is only possible if the speed of the internal combustion engine is below a dependent of the engine and the starter speed threshold.
- FIG. 2 shows the behavior of the internal combustion engine when stopping the internal combustion engine.
- the first dead center T1, the third dead center T3 and the fifth dead center T5 are bottom dead centers, the second dead center T2 and the fourth dead center T4 are top dead centers.
- the first dead center T1, the third dead center T3 and the fifth dead center T5 are top dead centers, the second dead center T2 and the fourth dead center T4 are bottom dead centers.
- FIG. 2b shows parallel to the in FIG. 2a shown cycles the course of a speed n of the internal combustion engine over time t.
- the speed n is defined, for example, as the time derivative of the crankshaft angle KW.
- the first dead center T1 corresponds to a first time t1
- the second dead center T2 corresponds to a second time t2
- the third dead center T3 corresponds to a third time t3
- the fourth dead center T4 corresponds to a fourth time t4.
- the speed initially increases briefly, in order then to drop monotonically.
- the short speed increase is due to the compression of the air charge in the cylinders.
- a cylinder which passes through a top dead center, compresses its maximum air charge, so that it is stored in compression energy. This compression energy is partially converted into rotational energy during further rotation of the internal combustion engine.
- FIG. 2c shows parallel to Figure 2a and 2b the timing of a drive signal DK of the throttle valve 100.
- the throttle valve 100 is initially closed when stopping the engine, which corresponds to a first drive signal DK1.
- the throttle valve 100 is opened according to the invention at an opening time tiller, which corresponds to a second drive signal DK2.
- the opening time tauf is chosen so that it occurs shortly after the third dead center T3, which is the next dead center, after the engine speed n has fallen below the speed threshold value ns.
- the second cylinder ZYL2 goes to the third dead center T3 in the intake stroke.
- the opening time tiller coincides with the end of the valve overlap of the intake cylinder, that is, with the timing of closing the exhaust valve 170 of the intake cylinder ZYL2.
- the opening timing tiller corresponds to an opening crankshaft angle KWiller.
- the time interval between the third time t3 and the fourth time t4 is greater than the time interval between the second time t2 and the third time t3, which in turn is greater than the time interval between the first time t1 and the second time t2.
- the fifth dead center T5 of the internal combustion engine is not reached.
- the crankshaft 50 executes a pendulum motion in which the second cylinder ZYL2 oscillates in its compression stroke and its intake stroke, the first cylinder ZYL1 correspondingly in its power stroke and compression stroke.
- FIG. 3 shows the sequence of the procedure, which corresponds to the in FIG. 2 corresponds to illustrated behavior.
- Step 1010 follows by shutting off injection and ignition. The internal combustion engine is thus in the outlet.
- step 1020 follows in which the throttle valve is closed.
- a switchover to a smaller cam can take place in step 1020, so that the air charge in the cylinders is reduced.
- the valves of the internal combustion engine can be closed in step 1020.
- step 1030 in which it is checked whether the speed n of the internal combustion engine has fallen below the speed threshold value ns. If this is the case, step 1040 follows. If this is not the case, step 1030 is repeated until the speed n of the internal combustion engine has fallen below the speed threshold value ns.
- step 1040 the throttle valve 100 is opened at the opening timing tauf. In internal combustion engines with camshaft adjustment, instead, in step 1040, for example, be switched to a larger cam, so that the air charge increases in the intake cylinder ZYL2.
- step 1040 the intake valve 160 of the intake cylinder ZYL2 may be controlled to be open during the intake stroke of the intake cylinder ZYL2, thus increasing the air charge in the intake cylinder ZYL2.
- step 1060 follows.
- fuel is injected into the intake manifold 80 of the engine via the port injection valve 150. This injection of fuel is carried out so that in the intake stroke, a fuel / air mixture is sucked into the intake cylinder ZYL2.
- step 1100 the inventive method ends.
- the internal combustion engine oscillates in a standstill position, in which the inlet cylinder ZYL2 comes to stand in the intake stroke or in the compression stroke.
- Injection of fuel in step 1060 is advantageous to an intake manifold injection internal combustion engine for a quick restart of the engine.
- FIG. 4 shows the time course of the speed n of the internal combustion engine when stopping and restarting.
- the speed n of the internal combustion engine falls during a phase-out phase T_outflow in the in FIG. 2b illustrated way, and changes Finally, the sign when the rotational movement of the internal combustion engine to in FIG. 2b illustrated return pendulum time tosc reverses.
- Such a determined start request before the stop time tstopp is also referred to as "change of mind”.
- the course of the speed n of the internal combustion engine performs a resulting course until it reaches the in FIG. 2b illustrated stop time t stop falls to zero and stays there.
- the stop time tstopp marked in FIG. 4 the end of the pendulum phase T_Pendel.
- the first Einspurzeittician tein1 and the second Einspurzeittician tein2 are characterized in that the speed n of the internal combustion engine is so low that the starter 200 can be Solutionsspurt.
- the first Einspurzeittician tein1 and the second Einspurzeittician tein2 are determined by the controller 70. If the time interval between the start desired time tstart and the first Einspurzeit Vietnamese tein1 greater than the An horrtotzeit T tot, the starter 200 is meshed and driven so that it starts a rotational movement for the first Einspurzeittician tein1. If the first Einspurzeittician tein1 time too close to the start-desired time tstart, the starter 200 is meshed and driven so that it starts a rotational movement to the second Einspurzeitticiantein2.
- FIG. 5 illustrates in detail the choice of the first Einspurzeitticiants tein1 and the second Einspurzeitpaints tein2.
- the first Einspurzeittician tein1 is determined after opening the throttle valve 100, for example, based on maps or based on stored in the control unit 70 models and corresponds to the estimated rinsependelzeittician tosc.
- the return time tosc other times, to which the speed n of the internal combustion engine has a zero crossing, are predicted, and be selected as the first Einspurzeittician tein1.
- a second Einspurzeittician tein2 can be selected, from which it is ensured that the speed n of the internal combustion engine no longer leaves a speed band in which a meshing of the starter 200 is possible.
- This speed band is given, for example, by a positive threshold nplus, for example 70 revolutions per minute, up to which the starter 200 can be meshed in a forward rotation of the internal combustion engine, and by a negative threshold nminus, for example 30 rpm, up to that of the starter 200 can beLespurt in a reverse rotation of the internal combustion engine.
- the control unit 70 calculates, for example based on maps, that the kinetic energy of the internal combustion engine from the second Einspurzeittician tein2 has dropped so far that the speed band [nminus, nplus] will not leave.
- the starter 200 At the second Einspurzeittician tein2 or at any time after the second Einspurzeittician tein2 the starter 200 and can be meshed and placed in a rotary motion.
- FIG. 6 shows the sequence of the inventive method for restarting the internal combustion engine.
- Step 2000 coincides with the in FIG. 3 step 1000.
- Step 2005 follows.
- step 2005 the throttle is closed, or other measures, such as adjustment of the cams 180, 182, or appropriate electrohydraulic actuation of the valves 160 and 170, are taken to reduce the air charge in the cylinders. It follows step 2010.
- step 2010 it is determined whether during the outflow of the internal combustion engine, ie during the in FIG. 4 Outflow phase T_output a start request for starting the internal combustion engine is determined. If this is the case, step 2020 follows. If this is not the case, step 2090 follows.
- step 2020 it is checked whether the engine speed n (possibly by a minimum distance, for example 10 revolutions per minute) is above the speed threshold value ns. These checks can be done continuously, or crankshaft synchronous, in particular to each dead center of the internal combustion engine. If the speed n of the internal combustion engine is above the speed threshold value ns, then step 2030 follows, otherwise step 2070 follows.
- step 2030 the throttle is opened, or other measures, e.g. Adjusting the cams 180, 182 or a suitable electrohydraulic control of the valves 160 and 170, taken to increase the air charge in the cylinder, which is next in the intake stroke.
- Fuel is injected into intake manifold 80 via intake manifold injector 50.
- step 2040 in which the intake cylinder ZYL2 is determined, that is, the cylinder whose air charge substantially increases next in the intake stroke.
- the intake cylinder ZYL2 goes into the intake stroke and sucks the fuel / air mixture, which is located in the intake manifold 80. Subsequently, the inlet cylinder ZYL2 goes into the compression stroke.
- the speed n is greater than the speed threshold ns.
- the speed threshold value ns is selected such that the intake cylinder ZYL2 is no longer going through a top dead center. At the rotational speed n of the internal combustion engine, it is therefore ensured that the intake cylinder ZYL2 again passes through a top dead center and transitions into the power stroke.
- Step 2050 follows.
- step 2050 the fuel / air mixture in the intake cylinder ZYL2 is ignited, which accelerates the rotation of the crankshaft 50
- step 2060 follows.
- step 2060 further measures are taken to start the engine to accomplish, in particular, a fuel / air mixture is ignited in the other cylinders of the internal combustion engine accordingly. With the start of the internal combustion engine, the inventive method ends.
- step 2070 fuel is injected into the draft tube 80 via the port injection valve 150. It follows step 2100.
- Step 1030 checks whether the rotational speed n of the internal combustion engine has fallen below the rotational speed threshold value ns. If this is not the case, the method branches back to step 2010. If this is the case, step 2100 follows.
- Step 2100 corresponds to step 1040 of FIG. 3 ,
- the throttle valve is opened or another LuftdosierINA, for example, a cam adjustment or an electro-hydraulic valve control, so controlled that the amount of air supplied is increased. It follows step 2110.
- step 2110 it is determined whether there is a request to start the engine. If so, step 2120 follows. If not, step 2110 is repeated until there is a request to start the engine.
- step 2120 it is checked whether the internal combustion engine is stationary. This corresponds to the in FIG. 4 shown period after the end of the pendulum phase T_Phase. If this is the case, then step 2060 follows, in which conventional measures for starting the internal combustion engine are carried out. As in FIG. 4 the internal combustion engine is started at a time tSdT.
- step 2150 the first meshing time tein1 is predicted. This prediction is done, for example, using a map. Based on the rotational speed n, the intake cylinder ZYL2 was determined in the last run of a top dead center (in the embodiment at the fourth time t4), the kinetic energy of the internal combustion engine can be determined, from the second position DK2 of Lucasdosier adopted the air filling of the intake cylinder ZYL2, and thus the magnitude of the gas spring compressed by the intake cylinder ZYL2 in the compression stroke can be estimated. From this it is possible to estimate the return oscillation time tosc, which is predicted as the first Einspurzeittician tein1.
- step 2160 in which it is checked whether the time difference between the first Einspurzeittician tein1 and the current time is greater than the Anêttotzeit T_tot of the starter 200. If so, step 2170 follows. If not, step 2180 follows.
- step 2180 the second meshing time tein2 is determined.
- the second Einspurzeittician tein2 is selected so that the rotational speed n of the internal combustion engine from the second Einspurzeittician tein2 remains in the speed interval between the negative threshold nminus and the positive threshold nplus.
- step 2190 the starter 200 is meshed and started from the second Einspurzeittician tein2. This is followed by step 2060, in which the further measures for starting the internal combustion engine are performed.
- step 2180 it is also possible to determine in step 2180 a one-track interval during which the speed n remains between the negative threshold nminus and the positive threshold nplus.
- the starter 200 is meshed and started at the one-track interval.
- the injection valves of the internal combustion engine is arranged in the combustion chamber, that is configured as a direct injection valve.
- the injection of fuel into the intake manifold immediately after opening the throttle may be omitted. It is important only that fuel is injected properly into the intake cylinder ZYL2 before it is ignited at restart.
- FIG. 7 illustrates the choice of the speed threshold ns.
- Figure 7a illustrates the oscillation behavior of the intake cylinder ZYL2 at the correctly selected speed threshold value ns.
- the intake cylinder ZYL2 is in a forward movement, passes through the bottom dead center UT corresponding to the fourth dead center T4, and reverses at the return pendulum angle RPW.
- the further pendulum movement of the intake cylinder ZYL2 to standstill is in Figure 7a only hinted.
- FIG. 7b illustrates the pendulum behavior of the intake cylinder ZYL2 at too high a selected speed threshold ns.
- Too high a speed threshold value ns means that the kinetic energy of the internal combustion engine when opening the throttle valve 100, ie at the opening crankshaft angle KWauf, is too high.
- the inlet cylinder ZYL2 passes through the bottom dead center UT corresponding to the fourth dead center T4 and subsequently also to the top dead center OT corresponding to the fifth dead center T5. This leads to undesirable Vibrations in the drive train, and is perceived by the driver as uncomfortable.
- FIG. 7c illustrates the oscillation behavior of the intake cylinder ZYL2 when the speed threshold value ns selected is too low. Too low a threshold speed ns means that the kinetic energy of the internal combustion engine when opening the throttle valve 100, that is, at the opening crankshaft angle KWauf, is too low.
- the inlet cylinder ZYL2 passes through the bottom dead center UT corresponding to the fourth dead center, but has a relatively large return pendulum angle RPW. If it is determined in step 3020 that the rotational speed n of the internal combustion engine is greater than the rotational speed threshold value ns, it can no longer be reliably assumed that the intake cylinder ZYL2 rotates above the top dead center OT and the internal combustion engine can thus be started quickly.
- FIG. 8 describes an adaptation method with which an initially predetermined speed threshold value ns can be adapted to compensate for errors in the initialization or changes in the characteristics of the internal combustion engine.
- step 3000 it is determined that there is a stop request to the internal combustion engine, and measures for starting the internal combustion engine are initiated.
- step 3010 it is checked in step 1030 whether the rotational speed n of the internal combustion engine has fallen below the rotational speed threshold ns. If so, step 3020 follows by opening the throttle in accordance with step 1040. It is followed by step 3030, in which it is checked whether the inlet cylinder ZYL2 has already passed through the bottom dead center UT. If not, step 3040 follows. If so, step 3060 follows.
- step 3040 the case is intercepted that the speed threshold value ns is set so low that the internal combustion engine comes to a stop before the intake cylinder ZYL2 passes through the bottom dead center UT.
- step 3040 checks whether the internal combustion engine is stationary. If this is not the case, the method branches back to step 3030. If the internal combustion engine is present, step 3050 follows. In step 3050, the speed threshold value ns is increased. This is followed by step 3100, which ends the procedure.
- step 3060 the rotational movement of the internal combustion engine is monitored. If the internal combustion engine continues to rotate the inlet cylinder ZYL2 above the top dead center OT, step 3070 follows. If the top dead center OT is not reached, step 3080 follows. In step 3070, the in FIG. 7b illustrated behavior before, and the speed threshold ns is reduced. This is followed by step 3100, which ends the procedure.
- step 3080 the return angle RPW is determined using, for example, the crankshaft sensor 220.
- Step 3090 it is checked whether the return pendulum angle RPW is smaller than a minimum return pendulum angle RPWS which is, for example, 10 °. If the return pendulum angle RPW is smaller than the minimum return pendulum angle RPWS, then the proper behavior is according to Figure 7a and step 3100 follows, ending the procedure. If the return pendulum angle RPW is greater than the minimum return oscillation angle RPWS, then this is in FIG. 7c illustrated behavior, and it follows step 3050, in which the speed threshold value ns is increased.
- the increase of the speed threshold ns in step 3050 may be either incremental, or the speed threshold ns is increased to an initial threshold nsi, at which it is ensured that the internal combustion engine is running in the FIG. 7b illustrated behavior shows that the speed threshold ns is then initially too large.
- the initial threshold value nsi can be designed, for example, as an applicable threshold value. It is chosen so that in the context of the possible during operation of the internal combustion engine operating parameters, for example, different leakage of the air filling, different engine oil or different specimen scattering of the friction effect of the internal combustion engine, the internal combustion engine in FIG. 7b illustrated behavior shows that so the intake cylinder ZYL2 goes into the power stroke.
- the adaptation of the speed threshold value ns can optionally also be carried out if the restart of the internal combustion engine has not proceeded correctly:
- the speed threshold value ns is increased if it was decided in step 2020 that the determined speed n of the internal combustion engine is greater than the speed threshold value ns, and Performing steps 2030, 2040 and 2050 is determined in step 2060 that the inlet cylinder ZYL2 (ZYL2) has not gone into the power stroke.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Description
Insbesondere bei Fahrzeugen mit Start-/Stopp-Technologie, das heißt wenn der Motor häufig während des normalen Fahrbetriebs aus- und wieder eingeschaltet wird, ist ein komfortabler Auslauf der Brennkraftmaschine und ein schneller Neustart der Brennkraftmaschine von großer Bedeutung.In particular, in vehicles with start / stop technology, that is, when the engine is often switched off and on again during normal driving, a comfortable outlet of the internal combustion engine and a quick restart of the internal combustion engine is of great importance.
Die
Für den Neustart der Brennkraftmaschine wird allerdings möglichst viel Luft in den Zylindern, in denen für den Neustart gezündet wird, benötigt. Man ist also in einem Zielkonflikt zwischen einem schnellen Motorstart (der viel Luft im Zylinder erfordert) und einem komfortablen, das heißt vibrationsarmen Motorauslauf (der wenig Luft im Zylinder erfordert). Dieser Zielkonflikt wird mit der vorliegenden Erfindung aufgelöst.For the restart of the internal combustion engine, however, as much air in the cylinders, in which is ignited for the restart required. One is therefore in a conflict of objectives between a fast engine start (which requires a lot of air in the cylinder) and a comfortable, that is low-vibration engine spout (which requires little air in the cylinder). This conflict of objectives is resolved by the present invention.
Im Stand der Technik allgemein bekannt siehe zum Beispiel
Wird mit Hilfe einer Luftdosiereinrichtungen eine der Brennkraftmaschine zugeführte Luftmenge reduziert, und erst kurz vor einem Stillstand der Brennkraftmaschine wieder erhöht, so kann ein sogenanntes Motorschütteln, also die spürbare Entstehung von Vibrationen, vermieden werden. Dies wird dadurch erreicht, dass im Auslauf der Brennkraftmaschine die der Brennkraftmaschine zugeführte Luftmenge zunächst reduziert wird, und dann, wenn eine erfasste Drehzahl der Brennkraftmaschine unter einen Drehzahlschwellenwert abgefallen ist, wieder erhöht wird.If, with the aid of an air dosing device, an amount of air supplied to the internal combustion engine is reduced, and only increased again shortly before a standstill of the internal combustion engine, so-called engine shaking, ie the noticeable generation of vibrations, can be avoided. This is achieved in that in the outlet of the internal combustion engine, the amount of air supplied to the engine is first reduced, and then, when a detected speed of the internal combustion engine has fallen below a speed threshold, is increased again.
Einem Einlasszylinder, der sich unmittelbar nach oder während der Erhöhung der zugeführten Luftmenge in einem Ansaugtakt befindet, wird dann eine erhöhte Luftmenge zugeführt, und er hat dann eine erhöhte Luftfüllung. Geht dieser Einlasszylinder nun in einen Kompressionstakt über, so wird die erhöhte Luftfüllung als Gasfeder, die ein starkes rückstellendes Drehmoments über den Einlasszylinder ZYL2 eine Kurbelwelle ausübt. Umgekehrt übt die jeweilige Luftfüllung in den Zylindern, die in eine Abwärtsbewegung gehen, ein Drehmoment auf die Kurbelwelle aus, dass in Richtung der Vorwärtsdrehung der Kurbelwelle wirkt. Da diese in eine Abwärtsbewegung gehenden Zylinder aber eine geringe Luftfüllung aufweisen, wirkt auf die Kurbelwelle in Summe ein rückstellendes Drehmoment.An intake cylinder that is in an intake stroke immediately after or during the increase in the amount of air supplied is then supplied with an increased amount of air, and then has an increased air charge. If this intake cylinder now goes into a compression stroke, the increased air charge as a gas spring, which exerts a strong restoring torque via the intake cylinder ZYL2 crankshaft. Conversely, the respective air charge in the cylinders, which are going down, exerts a torque on the crankshaft that acts in the direction of forward rotation of the crankshaft. Since these cylinders, which are moving in a downward movement, have a low air charge, a restoring torque acts on the crankshaft as a whole.
Wird der Drehzahlschwellenwert geeignet gewählt, so kann sichergestellt werden, dass der Einlasszylinder nach der Erhöhung der zugemessene Luftmenge nicht mehr in einen Arbeitstakt geht. Dies hat den Vorteil, dass eine Kompression der erhöhten Luftfüllung vermieden wird, was unerwünschte Vibrationen verhindert.If the speed threshold value is selected appropriately, it can be ensured that the intake cylinder no longer goes into a power stroke after the increased air quantity has been increased. This has the advantage that compression of the increased air charge is avoided, which prevents unwanted vibrations.
Besonders vorteilhaft ist es, wenn der Drehzahischwellenwert so gewählt wird, dass der Einlasszylinder nach der Erhöhung der zugemessene Luftmenge gerade nicht mehr in den Arbeitstakt geht. Ist der Drehzahlschwellenwert derart gewählt, und ist die Drehzahl der Brennkraftmaschine größer als der Drehzahlschwellenwert, wenn eine Anforderung zum Wiederstart ermittelt wird, so lässt sich ein Verfahren zum besonders schnellen Wiederstart der Brennkraftmaschine realisieren.It is particularly advantageous if the rotational speed threshold value is selected such that the inlet cylinder no longer goes into the power stroke after the increased amount of air has been increased. If the speed threshold is selected and if the engine speed is greater than the engine speed threshold, when a re-start request is determined, a method of restarting the engine particularly quickly can be realized.
Um den Drehzahlschwellenwert robust genauso zu wählen, dass der Einlasszylinder nach der Erhöhung der zugemessene Luftmenge gerade nicht mehr in den Arbeitstakt geht, wird erfindungsgemäß ein Adaptionsverfahren vorgeschlagen. Hierzu ist es notwendig, geeignete Kriterien zu definieren, bei denen der Drehzahlschwellenwert reduziert beziehungsweise erhöht wird.In order to robustly select the speed threshold value in such a way that the inlet cylinder, after the increase in the metered amount of air, is no longer in the power stroke, an adaptation method is proposed according to the invention. For this purpose, it is necessary to define suitable criteria in which the speed threshold value is reduced or increased.
Wird der Drehzahlschwellenwert reduziert, wenn der Einlasszylinder nach der Erhöhung der zugemessene Luftmenge und vor dem Stillstand der Brennkraftmaschine einen oberen Totpunkt noch durchläuft, so wird auf besonders einfache Weise sichergestellt, dass im weiteren Betrieb der Brennkraftmaschine Vibrationen durch das unzulässige Durchlaufen eines oberen Totpunkt bei hoher Luftfüllung unterbunden werden.If the speed threshold value is reduced, if the inlet cylinder still passes a top dead center after the increase in the metered amount of air and before the engine is stopped, it is ensured in a particularly simple manner that vibrations in the further operation of the internal combustion engine due to the inadmissible passing through a top dead center at high Air filling are prevented.
Wird der Drehzahlschwellenwert erhöht, wenn der Einlasszylinder nach der Erhöhung der zugemessene Luftmenge nicht mehr in einen Verdichtungstakt geht, wird auf besonders einfacher Weise sichergestellt, dass der Einlasszylinder im weiteren Betrieb der Brennkraftmaschine beim Stoppen ein Pendelverhalten zeigt.If the speed threshold value is increased when the intake cylinder no longer enters a compression stroke after the increased air quantity has been increased, it is ensured in a particularly simple manner that the intake cylinder shows a pendulum behavior during the further operation of the internal combustion engine.
Wird der Drehzahlschwellenwert abhängig von einem Rückpendelwinkel geändert, so kann in besonders einfacher Weise sichergestellt werden, dass der Einlasszylinder im zukünftigen Betrieb der Brennkraftmaschine ein definiertes Pendelverhalten zeigt.If the speed threshold value is changed as a function of a return pendulum angle, it can be ensured in a particularly simple manner that the inlet cylinder exhibits a defined pendulum behavior in the future operation of the internal combustion engine.
Wird der Drehzahlschwellenwert erhöht, wenn der Rückpendelwinkel kleiner als ein vorgebbarer Mindestrückpendelwinkel ist, wird erreicht, dass der Einlasszylinder besonders robust den oberen Totpunkt gerade nicht mehr erreicht.If the speed threshold value is increased when the return pendulum angle is smaller than a predefinable minimum return pendulum angle, it is achieved that the intake cylinder is particularly robust, the top dead center just not reached.
Wird der Drehzahlschwellenwert auf einen vorgebbaren Initialschwellenwert erhöht, so hat das erfindungsgemäße Adaptionsverfahren definierte Einstiegspunkte, und es somit besonders robust.If the speed threshold value is increased to a predefinable initial threshold value, then the adaptation method according to the invention has defined entry points, and thus it is particularly robust.
Wird der Initialschwellenwert so groß gewählt, dass der Einlasszylinder den oberen Totpunkt sicher durchläuft, so wird erreicht, dass der Drehzahlschwellenwert ns stets von zu großen Werten kommend adaptiert wird, was das Adaptionsverfahren besonders einfach macht.If the initial threshold value chosen so large that the inlet cylinder passes through top dead center safely, it is achieved that the speed threshold value ns is always adapted coming from too large values, which makes the adaptation process particularly simple.
Die Überwachung der Drehzahl der Brennkraftmaschine erfolgt am einfachsten an den Totpunkten. Wird nun bei einem Totpunkt ermittelt, dass die Drehzahl unter die Drehzahlschwelle gefallen ist, so geht der Einlasszylinder gerade in den Einlasstakt. Wird die von der Luftdosiereinrichtung zugemessene Luftmenge erhöht, noch während das Auslassventil des Einlasszylinders geöffnet ist, so wird eine erhöhte Luftmenge von einem Saugrohr in ein Abgasrohr gepumpt. Dies führt zu nachteiliger Geräuschentwicklung. Wird andererseits die von der Luftdosiereinrichtung zugemessene Luftmenge zu spät während des Einlasstakts des Einlasszylinders erhöht, so ergibt sich ein hohes Druckgefälle zwischen Ansaugrohr und Zylinder. Dass Einströmen von Luft führt in diesem Fall zu erheblicher unerwünschter Geräuschentwicklung. Um diese Geräuschentwicklung zu minimieren, ist es vorteilhaft, wenn die von der Luftdosiereinrichtung zugemessene Luftmenge unmittelbar nach dem Ende der Ventilüberschneidung des Einlasszylinders, also unmittelbar nach dem Schließen das Auslassventils, erhöht wird.The monitoring of the speed of the internal combustion engine is easiest at the dead centers. If it is determined at a dead center that the speed has fallen below the speed threshold, then the intake cylinder is just in the intake stroke. When the amount of air metered by the air metering device is increased while the exhaust valve of the intake cylinder is opened, an increased amount of air is pumped from a suction pipe into an exhaust pipe. This leads to disadvantageous noise development. On the other hand, if the amount of air metered in by the air metering device is increased too late during the intake stroke of the intake cylinder, a high pressure gradient results between the intake pipe and the cylinder. The inflow of air in this case leads to significant unwanted noise. In order to minimize this noise development, it is advantageous if the air quantity metered by the air metering device is increased immediately after the end of the valve overlap of the intake cylinder, ie immediately after the closing of the exhaust valve.
Da die Brennkraftmaschine angehalten wird, ist die Einspritzung von Kraftstoff abgeschaltet. Zum schnellen Neustart der Brennkraftmaschine ist dies nachteilig, da kein zündfähiges Gemisch in den Zylindern vorhanden ist. Da bei dem erfindungsgemäßen Verfahren Luft aus dem Saugrohr in den Einlasszylinder geführt wird, lässt sich bei geeigneter Einspritzung vor dem Ende des Einlasstakts sicherstellen, dass im Einlasszylinder ein zündfähiges Kraftstoff-/Luft-Gemisch vorhanden ist. Da der Einlasszylinder in der Nähe eines unteren Totpunkt oder im Kompressionstakt zum Stehen kommt, ist dies für einen schnellen Neustart sehr vorteilhaft, da ein Starter nur eine Drehung von 180° der Kurbelwelle durchführen muss, bis im Einlasszylinder gezündet werden kann.Since the internal combustion engine is stopped, the injection of fuel is switched off. For a quick restart of the internal combustion engine this is disadvantageous because no ignitable mixture is present in the cylinders. Since in the method according to the invention air is led from the intake manifold into the intake cylinder, with suitable injection before the end of the intake stroke it can be ensured that an ignitable fuel / air mixture is present in the intake cylinder. Since the intake cylinder comes to a halt near a bottom dead center or in the compression stroke, this is very advantageous for a quick restart, since a starter only has to perform a rotation of 180 ° of the crankshaft until it can be ignited in the intake cylinder.
Wird der Kraftstoff bevor oder unmittelbar nachdem der Einlasszylinder in den Einlasstakt geht eingespritzt, so ist dies besonders günstig für die Gemischbildung. Bei Saugrohreinspritzung kann die zugemessene Kraftstoffmenge besonders fein dosiert werden, bei Direkteinspritzung ist die frühe Einspritzung von Kraftstoff vorteilhaft für die Verwirbelung von Luft und Kraftstoff.If the fuel is injected before or immediately after the intake cylinder goes into the intake stroke, this is particularly favorable for mixture formation. With intake manifold injection, the metered amount of fuel can be metered very finely, in direct injection, the early injection of fuel is advantageous for the turbulence of air and fuel.
Nachfolgend werden Ausführungsformen der Erfindung unter Bezugnahme auf die beiliegende Zeichnung näher erläutert. In der Zeichnung zeigen:
Figur 1- die Darstellung eines Zylinders einer Brennkraftmaschine ,
- Figur 2
- schematisch den Verlauf einiger Kenngrößen der Brennkraftmaschine beim Stoppen der Brennkraftmaschine,
- Figur 3
- den Ablauf des erfindungsgemäßen Verfahrens zum Stoppen der Brennkraftmaschine,
- Figur 4
- einen Drehzahlverlauf beim Stoppen und Wiederstart der Brennkraftmaschine,
- Figur 5
- detailliert den Drehzahlverlauf beim Stoppen und Wiederstart der Brennkraftmaschine,
- Figur 6
- den Ablauf des erfindungsgemäßen Verfahrens beim Wiederstart der Brennkraftmaschine,
- Figur 7
- schematisch ein Auspendelverhalten der Brennkraftmaschine bei verschiedenen Drehzahlschwellenwerten,
- Figur 8
- den Ablauf des erfindungsgemäßen Verfahrens zur Bestimmung des Drehzahlschwellenwerts.
- FIG. 1
- the representation of a cylinder of an internal combustion engine,
- FIG. 2
- schematically the course of some characteristics of the internal combustion engine when stopping the internal combustion engine,
- FIG. 3
- the sequence of the method according to the invention for stopping the internal combustion engine,
- FIG. 4
- a speed curve when stopping and restarting the internal combustion engine,
- FIG. 5
- detailed the speed curve when stopping and restarting the internal combustion engine,
- FIG. 6
- the sequence of the method according to the invention when restarting the internal combustion engine,
- FIG. 7
- schematically a Auspendelverhalten the internal combustion engine at different speed thresholds,
- FIG. 8
- the sequence of the method according to the invention for determining the speed threshold value.
Über ein Ansaugrohr 80 wird in bekannter Weise bei einer Abwärtsbewegung des Kolbens 30 zu verbrennende Luft in den Brennraum 20 gesaugt. Dies wird als Ansaugtakt bzw. Einlasstakt bezeichnet. Über ein Abgasrohr 90 wird die verbrannte Luft bei einer Aufwärtsbewegung des Kolbens 30 aus dem Brennraum 20 gedrückt. Dies wird üblicherweise als Auslasstakt bezeichnet. Die Menge der über das Ansaugrohr 80 angesaugten Luft wird über eine Luftdosiereinrichtung, im Ausführungsbeispiel eine Drosselklappe 100, deren Stellung von einem Steuergerät 70 bestimmt wird, eingestellt.Via a
Über ein Saugrohreinspritzventil 150, das im Ansaugrohr 80 angeordnet ist, wird Kraftstoff in die aus dem Ansaugrohr 80 angesaugte Luft gespritzt und ein Kraftstoff-Luft-Gemisch im Brennraum 20 erzeugt. Die Menge des durch das Saugrohreinspritzventil 150 eingespritzten Kraftstoffs wird vom Steuergerät 70 bestimmt, üblicherweise über die Dauer und/oder die Stärke eines Ansteuersignals. Eine Zündkerze 120 zündet das Kraftstoff-Luftgemisch.Through a suction
Ein Einlassventil 160 an der Zuführung des Ansaugrohrs 80 zum Brennraum 20 wird über Nocken 180 von einer Nockenwelle 190 angetrieben. Ebenso wird ein Auslassventil 170 an der Zuführung des Abgasrohrs 90 zum Brennraum 20 über Nocken 182 können von der Nockenwelle 190 angetrieben in. Die Nockenwelle 190 ist gekoppelt mit der Kurbelwelle 50. Üblicherweise führt die Nockenwelle 190 pro zwei Umdrehungen der Kurbelwelle 50 eine Umdrehung durch. Die Nockenwelle 190 ist so ausgestaltet, dass sich das Auslassventil 170 im Ausstoßtakt öffnet, und in der Nähe des oberen Totpunkts schließt. Das Einlassventil 160 öffnet in der Nähe des oberen Totpunkts und schließt im Einlasstakt. Einer Phase, in der Auslassventil 170 und Einlassventil einer Technik gleichzeitig geöffnet sind, wird als Ventilüberschneidung bezeichnet. Eine solche Ventilüberscheidung dient beispielsweise zur inneren Abgasrückführung. Die Nockenwelle 190 kann insbesondere vom Steuergerät 70 ansteuerbar ausgestaltet sein, so dass sich abhängig von den Betriebsparametern der Brennkraftmaschine unterschiedliche Hubverläufe des Einlassventils 160 und des Auslassventils 170 einstellen lassen. Ebenso ist aber auch möglich, dass das Einlassventils 160 und das Auslassventil 170 nicht über die Nockenwelle 190, sondern über elektrohydraulische Ventilsteller auf- und abbewegt werden. In diesem Fall können die Nockenwelle 190 sowie die Nocken 180 und 182 entfallen. Ebenso ist bei solchen elektrohydraulische Ventilstellern die Drosselklappe 100 nicht notwendig.An
Ein Starter 200 ist über eine mechanische Kopplung 210 mit der Kurbelwelle 50 mechanisch verbindbar. Das Herstellen der mechanische Verbindung zwischen Starter 200 und Kurbelwelle 50 wird auch als Einspuren bezeichnet. Das Lösen der mechanischen Verbindung zwischen Starter 200 und Kurbelwelle 50 wird auch als Abwerfen bezeichnet. Das Einspuren ist nur möglich, wenn die Drehzahl der Brennkraftmaschine unter einem von der Brennkraftmaschine und dem Starter abhängigen Drehzahlschwellenwert liegt.A
Durch die Öffnung der Drosselklappe 100 strömt im Einlasstakt nun viel Luft in den Einlasszylinder. Geht der Einlasszylinder ZYL2 nach dem vierten Zeitpunkt t4 in den Verdichtungstakt, so überwiegt die an der gegenüber den restlichen Zylindern stark erhöhten Luftfüllung zu leistende Kompressionsarbeit die in den expandierenden Zylindern freiwerdende Kompressionsenergie, und die Drehzahl n der Brennkraftmaschine fällt schnell ab, bis sie zu einem Rückpendelzeitpunkt tosc auf null abfällt. Die Rotationsbewegung der Kurbelwelle 50 dreht sich nun um, und die Drehzahl n der Brennkraftmaschine wird negativ. Der Rückpendelzeitpunkt tosc entspricht einem in
Bei dem im Stand der Technik bekannten Verfahren zum Starten der Brennkraftmaschine wird im Anschluss an die Pendelphase T_Pendel erkannt, dass die Brennkraftmaschine steht, wird der Starter 200 eingespurt, und der Starter angesteuert. Nach einer in
Ergänzend zum Nulldurchgang der Drehzahl n der Brennkraftmaschine kann ein zweiter Einspurzeitpunkt tein2 gewählt werden, ab dem sichergestellt ist, dass die Drehzahl n der Brennkraftmaschine ein Drehzahlband, in dem ein Einspuren des Starters 200 möglich ist, nicht mehr verlässt. Dieses Drehzahlband ist beispielsweise gegeben durch eine positive Schwelle nplus, beispielsweise 70 Umdrehungen pro Minute, bis zu der der Starter 200 bei einer Vorwärtsdrehung der Brennkraftmaschine eingespurt werden kann, und durch eine negative Schwelle nminus, beispielsweise 30 U/min, bis zu der der Starter 200 bei einer Rückwärtsdrehung der Brennkraftmaschine eingespurt werden kann. Das Steuergerät 70 berechnet beispielsweise anhand von Kennfeldern, dass die kinetische Energie der Brennkraftmaschine ab dem zweiten Einspurzeitpunkt tein2 soweit abgefallen ist, dass das Drehzahlband [nminus, nplus] nicht mehr verlassen wird. Zum zweiten Einspurzeitpunkt tein2 oder zu einem beliebigen Zeitpunkt nach den zweiten Einspurzeitpunkt tein2 kann der Starter 200 und eingespurt und in eine Drehbewegung versetzt werden.In addition to the zero crossing of the speed n of the internal combustion engine, a second Einspurzeitpunkt tein2 can be selected, from which it is ensured that the speed n of the internal combustion engine no longer leaves a speed band in which a meshing of the
In Schritt 2010 wird ermittelt, ob noch während des Auslaufs der Brennkraftmaschine, also während der in
In Schritt 2030 wird die Drosselklappe geöffnet, beziehungsweise andere Maßnahmen, z.B. Verstellung der Nocken 180, 182 oder eine geeignete elektrohydraulischer Ansteuerung der Ventile 160 und 170, ergriffen, um die Luftfüllung in dem Zylinder, der als nächstes im Einlasstakt ist, zu erhöhen. Über das Saugrohreinspritzventil eine 50 wird Kraftstoff in das Ansaugrohr 80 eingespritzt. Es folgt Schritt 2040, indem der Einlasszylinder ZYL2 ermittelt wird, also der Zylinder, dessen Luftfüllung sich als nächstes im Einlasstakt wesentlich erhöht. Der Einlasszylinder ZYL2 geht in den Einlasstakt und saugt das Kraftstoff-/Luft-Gemisch, das sich im Saugrohr 80 befindet ein. Anschließend geht der Einlasszylinder ZYL2 in den Verdichtungstakt über. Die Drehzahl n ist größer als der Drehzahlschwellenwerts ns. Der Drehzahlschwellenwerts ns ist so gewählt ist, dass der Einlasszylinder ZYL2 gerade nicht mehr einen oberen Totpunkt durchläuft. Bei der Drehzahl n der Brennkraftmaschine ist daher sichergestellt, dass der Einlasszylinder ZYL2 einen oberen Totpunkt nochmals durchläuft, und in den Arbeitstakt übergeht. Es folgt Schritt 2050. In Schritt 2050 wird das Kraftstoff-/Luft-Gemisch im Einlasszylinder ZYL2 gezündet, der die Rotation der Kurbelwel-le 50 beschleunigt, und es folgt Schritt 2060. In Schritt 2060 werden weitere Maßnahmen durchgeführt, um den Start der Brennkraftmaschine zu bewerkstelligen, insbesondere wird in den übrigen Zylindern der Brennkraftmaschine entsprechend ein Kraftstoff-/Luft-Gemisch gezündet. Mit dem Start der Brennkraftmaschine endet das erfindungsgemäßen Verfahren.In
In Schritt 2070 wird über das Saugrohreinspritzventil 150 Kraftstoff in das Saugrohr 80 eingespritzt. Es folgt Schritt 2100.In
In Schritt 2090 wird entsprechend dem in
Schritt 2100 entspricht Schritt 1040 der
In Schritt 2110 wird ermittelt, ob eine Anforderung zum Starten der Brennkraftmaschine vorliegt. Ist dies der Fall, folgt Schritt 2120. Ist dies nicht der Fall, wird Schritt 2110 solange wiederholt, bis eine Anforderung zum Starten der Brennkraftmaschine vorliegt. In Schritt 2120 wird überprüft, ob die Brennkraftmaschine stillsteht. Dies entspricht dem in
Ist die Brennkraftmaschine im Schritt 2120 nicht im Stillstand, so folgt Schritt 2150. In Schritt 2150 wird der erste Einspurzeitpunkt tein1 prädiziert. Diese Prädiktion erfolgt beispielsweise anhand eines Kennfeld. Anhand der Drehzahl n, die beim letzten Durchlauf eines oberen Totpunkts das Einlasszylinders ZYL2 ermittelt wurde (im Ausführungsbeispiel zum vierten Zeitpunkt t4) kann die kinetische Energie der Brennkraftmaschine ermittelt werden, aus der zweiten Stellung DK2 der Luftdosiereinrichtung kann die Luftfüllung des Einlasszylinders ZYL2, und damit die Stärke der Gasfeder, die vom Einlasszylinder ZYL2 im Verdichtungstakt komprimiert wird, geschätzt werden. Hieraus lässt sich der Rückpendelzeitpunkt tosc schätzen, der als erster Einspurzeitpunkt tein1 prädiziert wird. Es folgt Schritt 2160, in dem geprüft wird, ob die zeitliche Differenz zwischen erstem Einspurzeitpunkt tein1 und dem momentanen Zeitpunkt größer ist als die Ansteuertotzeit T_tot des Starters 200. Ist dies der Fall folgt Schritt 2170. Ist dies nicht der Fall, folgt Schritt 2180.If the internal combustion engine is not at a standstill in
In Schritt 2180 wird der zweite Einspurzeitpunkt tein2 ermittelt. Wie in
Statt eines Saugrohreinspritzventils 150 ist es auch denkbar, dass das Einspritzventile der Brennkraftmaschine im Brennraum angeordnet ist, also als ein Direkteinspritzventil ausgestaltet ist. In diesem Fall kann die Einspritzung von Kraftstoff in das Saugrohr unmittelbar nachdem Öffnen der Drosselklappe entfallen. Wichtig ist nur, dass Kraftstoff geeignet in den Einlasszylinder ZYL2 eingespritzt wird, bevor er beim Wiederstart gezündet wird.Instead of a suction
Die Wahl des Drehzahlschwellenwerts ns ist also für das Funktionieren des erfindungsgemäßen Verfahrens von zentraler Bedeutung, sie ist andererseits aber sehr schwierig, da sie von Größen abhängt, die sich während der Lebensdauer der Brennkraftmaschine verändert, wie beispielsweise dem Reibkoeffizienten des verwendeten Motoröls.The choice of the speed threshold value ns is thus of central importance to the functioning of the method according to the invention, but on the other hand is very difficult since it depends on variables which change during the service life of the internal combustion engine, such as the friction coefficient of the engine oil used.
In Schritt 3040 wird der Fall abgefangen, dass der Drehzahlschwellenwerts ns so niedrig gewählt ist, dass die Brennkraftmaschine zum stehen kommt, noch bevor der Einlasszylinder ZYL2 den unteren Totpunkt UT durchläuft. Hierzu wird in Schritt 3040 überprüft, ob die Brennkraftmaschine steht. Ist dies nicht der Fall, wird zurückverzweigt zu Schritt 3030. Steht die Brennkraftmaschine, folgt Schritt 3050. In Schritt 3050 wird der Drehzahlschwellenwert ns erhöht. Es folgt Schritt 3100, mit dem das Verfahren endet.In
In Schritt 3060 wird die Drehbewegung der Brennkraftmaschine überwacht. Dreht die Brennkraftmaschine den Einlasszylinder ZYL2 weiter über den oberen Totpunkt OT, folgt Schritt 3070. Wird der obere Totpunkt OT nicht erreicht, folgt Schritt 3080. In Schritt 3070 liegt das in
In Schritt 3080 wird der Rückpendelwinkel RPW beispielsweise mithilfe des Kurbelwellensensors 220 bestimmt. Es folgt Schritt 3090. In Schritt 3090 wird überprüft, ob der Rückpendelwinkel RPW kleiner ist als ein Mindestrückpendelwinkel RPWS, der beispielsweise 10° beträgt. Ist der Rückpendelwinkel RPW kleiner als der Mindestrückpendelwinkel RPWS, so liegt das ordnungsgemäße Verhalten gemäß
Die Erhöhung des Drehzahlschwellenwerts ns in Schritt 3050 kann entweder inkrementell erfolgen, oder der Drehzahlschwellenwert ns wird auf einen Initialschwellenwert nsi erhöht, bei dem sichergestellt ist, dass die Brennkraftmaschine das in
Die Adaptation des Drehzahlschwellenwerts ns kann optional auch durchgeführt werden, wenn der Neustart der Brennkraftmaschine nicht ordnungsgemäß abgelaufen ist: Der Drehzahlschwellenwert ns wird erhöht, wenn in Schritt 2020 entschieden wurde, dass die ermittelte Drehzahl n der Brennkraftmaschine größer ist als der Drehzahlschwellenwert ns, und nach Durchführung der Schritte 2030, 2040 und 2050 in Schritt 2060 festgestellt wird, dass der Einlasszylinder ZYL2 (ZYL2) nicht in den Arbeitstakt gegangen ist.The adaptation of the speed threshold value ns can optionally also be carried out if the restart of the internal combustion engine has not proceeded correctly: The speed threshold value ns is increased if it was decided in
Claims (13)
- Method for stopping an internal combustion engine, in which a quantity of air supplied to the internal combustion engine via an air metering device, in particular a throttle valve (100), is reduced after a stop, request has been detected, wherein the quantity of air supplied to the internal combustion engine via the air metering device is increased again if a detected speed (n) of the internal combustion engine falls below a specifiable speed threshold value (ns), characterized in that an inlet cylinder (ZYL2), to which the quantity of air is supplied, still goes into its compression stroke, but no longer goes into a power stroke after the quantity of air supplied is increased.
- Method according to Claim 1, characterized in that the speed threshold value (ns) is reduced if the inlet cylinder (ZYL2) goes into the power stroke after the quantity of air metered in is increased and before the internal combustion engine comes to a halt.
- Method according to one of the preceding claims, characterized in that the speed threshold value is increased if the inlet cylinder (ZYL2) no longer goes into a compression stroke after the quantity of air metered in is increased.
- Method according to one of the preceding claims, characterized in that the specifiable speed threshold value is modified in accordance with a reverse oscillation angle (RPW).
- Method according to Claim 4, characterized in that the speed threshold value is increased if the reverse oscillation angle (RPW) is greater than a specifiable minimum reverse oscillation angle (RPWS).
- Method according to either of Claims 4 and 5, characterized in that the specifiable speed threshold value (ns) is increased to a specifiable initial threshold value (nsi).
- Method according to Claim 6, characterized in that the selected magnitude of the initial threshold value (nsi) is such that the inlet cylinder (ZYL2) passes through the top dead center position.
- Method according to one of the preceding claims, characterized in that the quantity of air metered in by the air metering device is increased immediately after the closure of an outlet valve (160) of the inlet cylinder (ZYL2).
- Method according to one of the preceding claims, characterized in that fuel is injected in such a way that an ignitable fuel/air mixture is present in the inlet cylinder (ZYL2) when it leaves the inlet stroke.
- Method according to one of the preceding claims, characterized in that fuel is injected before or immediately after the inlet cylinder (ZYL2) goes into the inlet stroke.
- Computer program, characterized in that it is programmed for use in a method according to one of Claims 1 to 10.
- Electric storage medium for an open-loop and/or closed-loop control device for an internal combustion engine, characterized in that a computer program for use in a method according to Claims 1 to 10 is stored on said medium.
- Ppen-loop and/or closed-loop control device for an internal combustion engine, characterized in that it is programmed for use in a method according to one of Claims 1 to 10.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010040559 | 2010-09-10 | ||
PCT/EP2011/062922 WO2012031826A1 (en) | 2010-09-10 | 2011-07-27 | Method and device for controlling an internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2614249A1 EP2614249A1 (en) | 2013-07-17 |
EP2614249B1 true EP2614249B1 (en) | 2016-09-21 |
Family
ID=44629130
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11736369.7A Active EP2614249B1 (en) | 2010-09-10 | 2011-07-27 | Method and device for controlling an internal combustion engine |
EP11754657.2A Not-in-force EP2614251B1 (en) | 2010-09-10 | 2011-09-08 | Method and device for controlling an internal combustion engine |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11754657.2A Not-in-force EP2614251B1 (en) | 2010-09-10 | 2011-09-08 | Method and device for controlling an internal combustion engine |
Country Status (7)
Country | Link |
---|---|
US (2) | US20130166177A1 (en) |
EP (2) | EP2614249B1 (en) |
JP (3) | JP2013541663A (en) |
KR (2) | KR20130108549A (en) |
CN (2) | CN103097718B (en) |
DE (2) | DE102011082198A1 (en) |
WO (2) | WO2012031826A1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130166177A1 (en) * | 2010-09-10 | 2013-06-27 | Robert Bosch Gmbh | Method and device for controlling an internal combustion engine |
DE102012216934A1 (en) * | 2011-10-06 | 2013-04-11 | Robert Bosch Gmbh | Method and device for controlling an internal combustion engine |
DE102012203324A1 (en) | 2012-03-02 | 2013-09-05 | Robert Bosch Gmbh | Method for stopping internal combustion engine, involves increasing amount of air supplied to internal combustion engine such that predetermined target pressure exists in cylinder at inlet valve-closing-time point of cylinder |
DE102012219130A1 (en) | 2012-10-19 | 2014-05-15 | Robert Bosch Gmbh | Method for controlling pause conduct of internal combustion engine, involves closing air measuring apparatus, if pause requirement of internal combustion engine is detected |
US20140251267A1 (en) * | 2013-03-07 | 2014-09-11 | Ford Global Technologies, Llc | Method and system for improving engine starting |
DE102013210392A1 (en) * | 2013-06-05 | 2014-12-11 | Robert Bosch Gmbh | Method for operating an internal combustion engine |
DE102014204086A1 (en) | 2013-07-15 | 2015-01-15 | Robert Bosch Gmbh | Method and device for controlling an internal combustion engine |
DE102013225074A1 (en) | 2013-12-06 | 2015-06-11 | Robert Bosch Gmbh | Method for stopping an internal combustion engine |
GB2521428B (en) * | 2013-12-19 | 2018-08-15 | Jaguar Land Rover Ltd | Improvements to engine shutdown |
DE102014201653B4 (en) * | 2014-01-30 | 2024-08-08 | Robert Bosch Gmbh | Method and device for controlling an internal combustion engine |
DE102014207583A1 (en) | 2014-04-22 | 2015-10-22 | Robert Bosch Gmbh | Method for stopping an internal combustion engine |
JP6504006B2 (en) | 2015-09-29 | 2019-04-24 | 株式会社デンソー | Engine control device |
JP6376118B2 (en) * | 2015-12-24 | 2018-08-22 | トヨタ自動車株式会社 | Control device for internal combustion engine |
DE102018117360A1 (en) * | 2017-12-04 | 2019-06-06 | Schaeffler Technologies AG & Co. KG | A method of controlling an internal combustion engine of a hybrid powertrain |
US10677212B2 (en) * | 2018-05-01 | 2020-06-09 | GM Global Technology Operations LLC | Method and apparatus for controlled stopping of internal combustion engine |
DE102019215898A1 (en) * | 2019-10-16 | 2021-04-22 | Robert Bosch Gmbh | Method for switching off an internal combustion engine |
Family Cites Families (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5543424B2 (en) * | 1972-11-22 | 1980-11-06 | ||
JP3379271B2 (en) * | 1995-03-28 | 2003-02-24 | 株式会社デンソー | Engine cylinder discriminator |
US5983857A (en) * | 1997-02-12 | 1999-11-16 | Mazda Motor Corporation | Engine control system |
JPH10288055A (en) * | 1997-04-15 | 1998-10-27 | Toyota Motor Corp | Intake air amount control device of internal combustion engine |
JP2000213375A (en) * | 1999-01-20 | 2000-08-02 | Toyota Motor Corp | Method and device for stop controlling internal combustion engine |
JP2002364438A (en) * | 2001-06-11 | 2002-12-18 | Denso Corp | Controller for internal combustion engine |
DE10148217C1 (en) * | 2001-09-28 | 2003-04-24 | Bosch Gmbh Robert | Method, computer program and control and / or regulating device for operating an internal combustion engine, and internal combustion engine |
JP4140242B2 (en) * | 2002-01-28 | 2008-08-27 | トヨタ自動車株式会社 | Control device for internal combustion engine |
EP1403511A1 (en) * | 2002-09-30 | 2004-03-31 | Mazda Motor Corporation | Engine starting system |
DE50206323D1 (en) * | 2002-10-25 | 2006-05-18 | Ford Global Tech Llc | PROCESS FOR DISCONNECTING A COMBUSTION ENGINE AND INTERNAL COMBUSTION ENGINE SUITABLE FOR CARRYING OUT THIS METHOD |
US7263959B2 (en) * | 2003-01-27 | 2007-09-04 | Toyota Jidosha Kabushiki Kaisha | Control apparatus of internal combustion engine |
JP3794389B2 (en) * | 2003-01-27 | 2006-07-05 | トヨタ自動車株式会社 | Stop control device for internal combustion engine |
JP3770235B2 (en) * | 2003-01-28 | 2006-04-26 | トヨタ自動車株式会社 | Internal combustion engine stop position estimation device |
US7027911B2 (en) * | 2003-01-30 | 2006-04-11 | Denso Corporation | Apparatus for controlling engine rotation stop by estimating kinetic energy and stop position |
JP3941705B2 (en) * | 2003-02-13 | 2007-07-04 | トヨタ自動車株式会社 | Internal combustion engine stop / start control device |
DE10306632A1 (en) * | 2003-02-18 | 2004-08-26 | Robert Bosch Gmbh | Method for operating an internal combustion engine |
DE10314677A1 (en) * | 2003-04-01 | 2004-10-14 | Robert Bosch Gmbh | Method for operating an internal combustion engine |
JP4062264B2 (en) * | 2003-06-06 | 2008-03-19 | アイシン・エィ・ダブリュ株式会社 | Vehicle drive control device, vehicle drive control method, and program |
US7000592B2 (en) * | 2003-08-29 | 2006-02-21 | Honda Motor Co., Ltd. | Throttle device for multipurpose engine |
JP2005133576A (en) * | 2003-10-28 | 2005-05-26 | Mitsubishi Motors Corp | Diesel engine |
JP4096863B2 (en) * | 2003-11-07 | 2008-06-04 | トヨタ自動車株式会社 | Engine starting device and engine starting method |
EP1533501B1 (en) * | 2003-11-21 | 2012-06-20 | Mazda Motor Corporation | "Engine starting system" |
JP4341391B2 (en) * | 2003-12-03 | 2009-10-07 | マツダ株式会社 | Engine starter |
JP4031428B2 (en) * | 2003-12-24 | 2008-01-09 | 三菱電機株式会社 | Ignition control device for internal combustion engine |
US6988031B2 (en) * | 2004-01-07 | 2006-01-17 | Visteon Global Technologies, Inc. | System and method for determining engine stop position |
US7240663B2 (en) * | 2004-03-19 | 2007-07-10 | Ford Global Technologies, Llc | Internal combustion engine shut-down for engine having adjustable valves |
JP4239868B2 (en) * | 2004-03-25 | 2009-03-18 | 株式会社デンソー | Cylinder discrimination device for internal combustion engine |
US7082899B2 (en) * | 2004-03-26 | 2006-08-01 | Bose Corporation | Controlled starting and braking of an internal combustion engine |
JP4395726B2 (en) * | 2004-03-29 | 2010-01-13 | マツダ株式会社 | Engine starter |
JP4412025B2 (en) * | 2004-03-29 | 2010-02-10 | マツダ株式会社 | Engine starter |
US7079941B2 (en) * | 2004-03-29 | 2006-07-18 | Mazda Motor Corporation | Engine starting system |
JP3772890B2 (en) * | 2004-03-29 | 2006-05-10 | マツダ株式会社 | Engine starter |
JP4012893B2 (en) * | 2004-06-11 | 2007-11-21 | トヨタ自動車株式会社 | Control device for internal combustion engine |
JP2006029247A (en) * | 2004-07-20 | 2006-02-02 | Denso Corp | Stop and start control device for engine |
JP2006070793A (en) * | 2004-09-01 | 2006-03-16 | Toyota Motor Corp | Control device for internal combustion engine |
JP4371047B2 (en) * | 2004-12-08 | 2009-11-25 | トヨタ自動車株式会社 | Internal combustion engine device and control method for internal combustion engine |
JP4453536B2 (en) * | 2004-12-10 | 2010-04-21 | トヨタ自動車株式会社 | Drive device, automobile equipped with the drive device, and control method of drive device |
JP4506504B2 (en) * | 2005-02-25 | 2010-07-21 | トヨタ自動車株式会社 | Control device for internal combustion engine |
JP4550627B2 (en) | 2005-03-02 | 2010-09-22 | 日立オートモティブシステムズ株式会社 | Internal combustion engine stop control method and stop control device |
JP4385971B2 (en) * | 2005-03-02 | 2009-12-16 | トヨタ自動車株式会社 | Vehicle abnormality detection device |
JP4466443B2 (en) * | 2005-03-31 | 2010-05-26 | マツダ株式会社 | Vehicle engine starting device |
JP4321497B2 (en) * | 2005-06-16 | 2009-08-26 | トヨタ自動車株式会社 | Starter for internal combustion engine |
JP4581949B2 (en) * | 2005-09-30 | 2010-11-17 | マツダ株式会社 | Powertrain engine starter |
US8042164B2 (en) * | 2006-11-17 | 2011-10-18 | Qualcomm Incorporated | Device and process for unique internet access identification |
JP4276680B2 (en) * | 2007-02-06 | 2009-06-10 | 株式会社日本自動車部品総合研究所 | Control device for multi-cylinder internal combustion engine |
US7464690B1 (en) * | 2007-05-29 | 2008-12-16 | Wisconsin Alumni Research Foundation | Adaptive engine injection for emissions reduction |
JP4985111B2 (en) * | 2007-06-04 | 2012-07-25 | 日産自動車株式会社 | DIESEL ENGINE CONTROL DEVICE AND STOP CONTROL METHOD |
JP4849040B2 (en) * | 2007-09-10 | 2011-12-28 | マツダ株式会社 | Diesel engine control device |
JP2009221952A (en) * | 2008-03-17 | 2009-10-01 | Yamaha Motor Co Ltd | Throttle opening control device, motorcycle and method for producing control map |
JP2009228637A (en) * | 2008-03-25 | 2009-10-08 | Mitsubishi Motors Corp | Control device of engine |
JP5057251B2 (en) * | 2008-07-02 | 2012-10-24 | 株式会社デンソー | Engine starter |
US7975534B2 (en) * | 2008-08-04 | 2011-07-12 | Gm Global Technology Operations, Inc. | Crankshaft reversal detection systems |
US8412443B2 (en) * | 2008-11-06 | 2013-04-02 | Ford Global Technologies, Llc | Engine shutdown control |
JP5209454B2 (en) * | 2008-12-09 | 2013-06-12 | 本田技研工業株式会社 | Device for controlling when ignition is stopped when the internal combustion engine is stopped |
US8589056B2 (en) * | 2009-07-30 | 2013-11-19 | Honda Motor Co., Ltd. | Stop control system and method for internal combustion engine |
JP5152304B2 (en) * | 2009-11-23 | 2013-02-27 | 株式会社デンソー | Engine control device |
US8099998B2 (en) * | 2010-05-19 | 2012-01-24 | Delphi Technologies, Inc. | Apparatus and method for estimating stopped engine crank angle |
DE102010040562B4 (en) * | 2010-09-10 | 2022-02-03 | Robert Bosch Gmbh | Method for restarting an internal combustion engine |
US20130166177A1 (en) * | 2010-09-10 | 2013-06-27 | Robert Bosch Gmbh | Method and device for controlling an internal combustion engine |
-
2011
- 2011-07-27 US US13/821,027 patent/US20130166177A1/en not_active Abandoned
- 2011-07-27 CN CN201180043471.5A patent/CN103097718B/en active Active
- 2011-07-27 WO PCT/EP2011/062922 patent/WO2012031826A1/en active Application Filing
- 2011-07-27 JP JP2013527516A patent/JP2013541663A/en active Pending
- 2011-07-27 EP EP11736369.7A patent/EP2614249B1/en active Active
- 2011-07-27 KR KR1020137006035A patent/KR20130108549A/en not_active Application Discontinuation
- 2011-09-06 DE DE102011082198A patent/DE102011082198A1/en not_active Withdrawn
- 2011-09-06 DE DE102011082196A patent/DE102011082196A1/en not_active Withdrawn
- 2011-09-08 CN CN201180043425.5A patent/CN103080532B/en not_active Expired - Fee Related
- 2011-09-08 KR KR1020137006037A patent/KR20130108550A/en not_active Application Discontinuation
- 2011-09-08 WO PCT/EP2011/065537 patent/WO2012032110A1/en active Application Filing
- 2011-09-08 JP JP2013527598A patent/JP5635193B2/en not_active Expired - Fee Related
- 2011-09-08 US US13/820,316 patent/US9624849B2/en active Active
- 2011-09-08 EP EP11754657.2A patent/EP2614251B1/en not_active Not-in-force
-
2014
- 2014-11-27 JP JP2014239569A patent/JP2015057549A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2012032110A1 (en) | 2012-03-15 |
JP2013541663A (en) | 2013-11-14 |
EP2614251A1 (en) | 2013-07-17 |
CN103097718A (en) | 2013-05-08 |
EP2614249A1 (en) | 2013-07-17 |
KR20130108549A (en) | 2013-10-04 |
CN103097718B (en) | 2016-07-13 |
US20130166177A1 (en) | 2013-06-27 |
DE102011082196A1 (en) | 2012-03-15 |
WO2012031826A1 (en) | 2012-03-15 |
US9624849B2 (en) | 2017-04-18 |
CN103080532B (en) | 2016-06-08 |
KR20130108550A (en) | 2013-10-04 |
CN103080532A (en) | 2013-05-01 |
EP2614251B1 (en) | 2016-07-06 |
JP2015057549A (en) | 2015-03-26 |
JP5635193B2 (en) | 2014-12-03 |
DE102011082198A1 (en) | 2012-03-15 |
US20130231849A1 (en) | 2013-09-05 |
JP2013537272A (en) | 2013-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2614249B1 (en) | Method and device for controlling an internal combustion engine | |
DE102010040562B4 (en) | Method for restarting an internal combustion engine | |
DE60305826T2 (en) | Engine starting system | |
DE102006043678B4 (en) | Device and method for operating an internal combustion engine | |
DE102015107539B4 (en) | Control system for an internal combustion engine | |
EP1413727A1 (en) | Method for shutdown of an internal combustion engine and internal combustion engine to carry out this method | |
WO2006013168A1 (en) | Device and method for control of an internal combustion engine | |
DE102016102735B4 (en) | Control device of a multi-cylinder internal combustion engine | |
DE112015002875T5 (en) | Control device and control method for an internal combustion engine | |
WO2013050256A1 (en) | Process and device for controlling an internal combustion engine | |
EP1287257A1 (en) | Starting method and device for internal combustion engines | |
DE102015104941A1 (en) | Engine-starting device | |
DE102007009857B4 (en) | Motor control for controlling an automatic shutdown of a direct injection internal combustion engine | |
DE10200511B4 (en) | Method and device for controlling a solenoid valve for internal combustion engines | |
DE102010041519B3 (en) | Method for stoppage of diesel internal combustion engine, involves stopping multiple intake valves or exhaust valves after deactivation request and during phasing out of diesel internal combustion engine | |
DE102019107782B4 (en) | CONTROL DEVICE FOR COMBUSTION ENGINE | |
DE10351891A1 (en) | Method and control device for restarting an internal combustion engine | |
DE102016203237A1 (en) | Method and device for controlling an internal combustion engine | |
DE102016118234A1 (en) | POWER CONTROL DEVICE MACHINE | |
DE102013225074A1 (en) | Method for stopping an internal combustion engine | |
DE102011090149A1 (en) | Method for controlling an organ in the air supply tract of an internal combustion engine, in particular a throttle valve | |
EP3434891B1 (en) | Start stop method for a combustion engine, combustion engine and motor vehicle | |
DE102014201653B4 (en) | Method and device for controlling an internal combustion engine | |
DE102012209062A1 (en) | Method for stopping and starting internal combustion engine, involves turning off starting cylinder located at starting injection cylinder and providing position units for adjusting fresh-air charge passing through exhaust stroke | |
DE112011102615T5 (en) | Control device and control method for starter, and vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130410 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160622 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 831268 Country of ref document: AT Kind code of ref document: T Effective date: 20161015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011010737 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Ref country code: NL Ref legal event code: MP Effective date: 20160921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161221 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161222 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170123 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170121 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161221 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011010737 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
26N | No opposition filed |
Effective date: 20170622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170727 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170727 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170727 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 831268 Country of ref document: AT Kind code of ref document: T Effective date: 20170727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110727 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 502011010737 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240919 Year of fee payment: 14 |