Nothing Special   »   [go: up one dir, main page]

EP2614249B1 - Method and device for controlling an internal combustion engine - Google Patents

Method and device for controlling an internal combustion engine Download PDF

Info

Publication number
EP2614249B1
EP2614249B1 EP11736369.7A EP11736369A EP2614249B1 EP 2614249 B1 EP2614249 B1 EP 2614249B1 EP 11736369 A EP11736369 A EP 11736369A EP 2614249 B1 EP2614249 B1 EP 2614249B1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
air
threshold value
zyl2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11736369.7A
Other languages
German (de)
French (fr)
Other versions
EP2614249A1 (en
Inventor
Norbert Mueller
Ruediger Weiss
Karthik Rai
Manfred Dietrich
Elias Calva
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2614249A1 publication Critical patent/EP2614249A1/en
Application granted granted Critical
Publication of EP2614249B1 publication Critical patent/EP2614249B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/006Providing a combustible mixture inside the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • F02N2019/008Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation the engine being stopped in a particular position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/022Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/08Parameters used for control of starting apparatus said parameters being related to the vehicle or its components
    • F02N2200/0801Vehicle speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the JP-2008298031 A describes a method in which the throttle of the internal combustion engine is closed in the outlet to suppress vibrations. By this measure, the air charge in the cylinders in the internal combustion engine is reduced, thus reducing the roughness of the spout, since compression and decompression are minimized.
  • EP 1 582 738 A2 are devices that change the stroke course in particular of the intake valves of the internal combustion engine, and thus provide the air filling of the cylinder.
  • the stroke profile of the intake valves can be varied as desired by electrohydraulic actuators.
  • Internal combustion engines with such an electro-hydraulic valve adjustment do not require a throttle valve.
  • the stroke course in particular of the intake valves by an adjustment the camshaft can be varied.
  • Such devices as well as the throttle valve, with which the air filling of the cylinder can be changed are referred to below as Heildosier sensibleen.
  • An intake cylinder that is in an intake stroke immediately after or during the increase in the amount of air supplied is then supplied with an increased amount of air, and then has an increased air charge. If this intake cylinder now goes into a compression stroke, the increased air charge as a gas spring, which exerts a strong restoring torque via the intake cylinder ZYL2 crankshaft. Conversely, the respective air charge in the cylinders, which are going down, exerts a torque on the crankshaft that acts in the direction of forward rotation of the crankshaft. Since these cylinders, which are moving in a downward movement, have a low air charge, a restoring torque acts on the crankshaft as a whole.
  • the speed threshold value is selected appropriately, it can be ensured that the intake cylinder no longer goes into a power stroke after the increased air quantity has been increased. This has the advantage that compression of the increased air charge is avoided, which prevents unwanted vibrations.
  • the rotational speed threshold value is selected such that the inlet cylinder no longer goes into the power stroke after the increased amount of air has been increased. If the speed threshold is selected and if the engine speed is greater than the engine speed threshold, when a re-start request is determined, a method of restarting the engine particularly quickly can be realized.
  • the speed threshold value is reduced, if the inlet cylinder still passes a top dead center after the increase in the metered amount of air and before the engine is stopped, it is ensured in a particularly simple manner that vibrations in the further operation of the internal combustion engine due to the inadmissible passing through a top dead center at high Air filling are prevented.
  • the speed threshold value is increased when the intake cylinder no longer enters a compression stroke after the increased air quantity has been increased, it is ensured in a particularly simple manner that the intake cylinder shows a pendulum behavior during the further operation of the internal combustion engine.
  • the speed threshold value is changed as a function of a return pendulum angle, it can be ensured in a particularly simple manner that the inlet cylinder exhibits a defined pendulum behavior in the future operation of the internal combustion engine.
  • the speed threshold value is increased when the return pendulum angle is smaller than a predefinable minimum return pendulum angle, it is achieved that the intake cylinder is particularly robust, the top dead center just not reached.
  • the adaptation method according to the invention has defined entry points, and thus it is particularly robust.
  • the speed threshold value ns is always adapted coming from too large values, which makes the adaptation process particularly simple.
  • the monitoring of the speed of the internal combustion engine is easiest at the dead centers. If it is determined at a dead center that the speed has fallen below the speed threshold, then the intake cylinder is just in the intake stroke.
  • the amount of air metered by the air metering device is increased while the exhaust valve of the intake cylinder is opened, an increased amount of air is pumped from a suction pipe into an exhaust pipe. This leads to disadvantageous noise development.
  • the amount of air metered in by the air metering device is increased too late during the intake stroke of the intake cylinder, a high pressure gradient results between the intake pipe and the cylinder. The inflow of air in this case leads to significant unwanted noise.
  • it is advantageous if the air quantity metered by the air metering device is increased immediately after the end of the valve overlap of the intake cylinder, ie immediately after the closing of the exhaust valve.
  • the fuel is injected before or immediately after the intake cylinder goes into the intake stroke, this is particularly favorable for mixture formation.
  • the metered amount of fuel can be metered very finely, in direct injection, the early injection of fuel is advantageous for the turbulence of air and fuel.
  • FIG. 1 shows a cylinder 10 of an internal combustion engine with a combustion chamber 20, a piston 30 which is connected to a connecting rod 40 with a crankshaft 50 is.
  • the piston 30 performs in a known manner by an upward and downward movement. The reversal points of the movement are called dead centers. The transition from upward movement to downward movement is referred to as top dead center, and the transition from downward movement to upward movement is referred to as bottom dead center.
  • An angular position of the crankshaft 50 is defined in a conventional manner relative to top dead center.
  • a crankshaft sensor 220 detects the angular position of the crankshaft 50.
  • a suction pipe 80 air to be burned is sucked into the combustion chamber 20 in a known manner during a downward movement of the piston 30. This is referred to as intake stroke or intake stroke.
  • intake stroke or intake stroke the burned air is forced out of the combustion chamber 20 during an upward movement of the piston 30. This is commonly referred to as outlet stroke.
  • the amount of air sucked in via the intake pipe 80 is adjusted via an air metering device, in the exemplary embodiment a throttle valve 100 whose position is determined by a control unit 70.
  • a suction pipe injection valve 150 which is arranged in the intake pipe 80, fuel is injected into the air sucked from the intake pipe 80 and a fuel-air mixture in the combustion chamber 20 is generated.
  • the amount of fuel injected through the port injection valve 150 is determined by the controller 70, typically over the duration and / or magnitude of a drive signal.
  • a spark plug 120 ignites the fuel-air mixture.
  • An intake valve 160 at the inlet of the intake pipe 80 to the combustion chamber 20 is driven by cams 180 from a camshaft 190.
  • an exhaust valve 170 at the inlet of the exhaust pipe 90 to the combustion chamber 20 via cams 182 may be driven by the camshaft 190.
  • the camshaft 190 is coupled to the crankshaft 50. Typically, the camshaft 190 makes one revolution per two revolutions of the crankshaft 50.
  • the camshaft 190 is configured such that the exhaust valve 170 opens in the exhaust stroke and closes near the top dead center.
  • the intake valve 160 opens near top dead center and closes in the intake stroke.
  • a phase in which exhaust valve 170 and inlet valve of a technique open simultaneously are referred to as valve overlap.
  • Such a valve is used for example for internal exhaust gas recirculation.
  • the camshaft 190 can be designed so as to be controllable by the control unit 70, so that depending on the operating parameters of the internal combustion engine, different stroke profiles of the inlet valve 160 and the outlet valve 170 can be set.
  • the intake valve 160 and the exhaust valve 170 are not moved up and down via the camshaft 190 but via electrohydraulic valve actuators.
  • the camshaft 190 and the cams 180 and 182 may be omitted.
  • the throttle valve 100 is not necessary.
  • a starter 200 is mechanically connectable via a mechanical coupling 210 with the crankshaft 50. Establishing the mechanical connection between starter 200 and crankshaft 50 is also referred to as Einspuren. The release of the mechanical connection between starter 200 and crankshaft 50 is also referred to as dropping. The meshing is only possible if the speed of the internal combustion engine is below a dependent of the engine and the starter speed threshold.
  • FIG. 2 shows the behavior of the internal combustion engine when stopping the internal combustion engine.
  • the first dead center T1, the third dead center T3 and the fifth dead center T5 are bottom dead centers, the second dead center T2 and the fourth dead center T4 are top dead centers.
  • the first dead center T1, the third dead center T3 and the fifth dead center T5 are top dead centers, the second dead center T2 and the fourth dead center T4 are bottom dead centers.
  • FIG. 2b shows parallel to the in FIG. 2a shown cycles the course of a speed n of the internal combustion engine over time t.
  • the speed n is defined, for example, as the time derivative of the crankshaft angle KW.
  • the first dead center T1 corresponds to a first time t1
  • the second dead center T2 corresponds to a second time t2
  • the third dead center T3 corresponds to a third time t3
  • the fourth dead center T4 corresponds to a fourth time t4.
  • the speed initially increases briefly, in order then to drop monotonically.
  • the short speed increase is due to the compression of the air charge in the cylinders.
  • a cylinder which passes through a top dead center, compresses its maximum air charge, so that it is stored in compression energy. This compression energy is partially converted into rotational energy during further rotation of the internal combustion engine.
  • FIG. 2c shows parallel to Figure 2a and 2b the timing of a drive signal DK of the throttle valve 100.
  • the throttle valve 100 is initially closed when stopping the engine, which corresponds to a first drive signal DK1.
  • the throttle valve 100 is opened according to the invention at an opening time tiller, which corresponds to a second drive signal DK2.
  • the opening time tauf is chosen so that it occurs shortly after the third dead center T3, which is the next dead center, after the engine speed n has fallen below the speed threshold value ns.
  • the second cylinder ZYL2 goes to the third dead center T3 in the intake stroke.
  • the opening time tiller coincides with the end of the valve overlap of the intake cylinder, that is, with the timing of closing the exhaust valve 170 of the intake cylinder ZYL2.
  • the opening timing tiller corresponds to an opening crankshaft angle KWiller.
  • the time interval between the third time t3 and the fourth time t4 is greater than the time interval between the second time t2 and the third time t3, which in turn is greater than the time interval between the first time t1 and the second time t2.
  • the fifth dead center T5 of the internal combustion engine is not reached.
  • the crankshaft 50 executes a pendulum motion in which the second cylinder ZYL2 oscillates in its compression stroke and its intake stroke, the first cylinder ZYL1 correspondingly in its power stroke and compression stroke.
  • FIG. 3 shows the sequence of the procedure, which corresponds to the in FIG. 2 corresponds to illustrated behavior.
  • Step 1010 follows by shutting off injection and ignition. The internal combustion engine is thus in the outlet.
  • step 1020 follows in which the throttle valve is closed.
  • a switchover to a smaller cam can take place in step 1020, so that the air charge in the cylinders is reduced.
  • the valves of the internal combustion engine can be closed in step 1020.
  • step 1030 in which it is checked whether the speed n of the internal combustion engine has fallen below the speed threshold value ns. If this is the case, step 1040 follows. If this is not the case, step 1030 is repeated until the speed n of the internal combustion engine has fallen below the speed threshold value ns.
  • step 1040 the throttle valve 100 is opened at the opening timing tauf. In internal combustion engines with camshaft adjustment, instead, in step 1040, for example, be switched to a larger cam, so that the air charge increases in the intake cylinder ZYL2.
  • step 1040 the intake valve 160 of the intake cylinder ZYL2 may be controlled to be open during the intake stroke of the intake cylinder ZYL2, thus increasing the air charge in the intake cylinder ZYL2.
  • step 1060 follows.
  • fuel is injected into the intake manifold 80 of the engine via the port injection valve 150. This injection of fuel is carried out so that in the intake stroke, a fuel / air mixture is sucked into the intake cylinder ZYL2.
  • step 1100 the inventive method ends.
  • the internal combustion engine oscillates in a standstill position, in which the inlet cylinder ZYL2 comes to stand in the intake stroke or in the compression stroke.
  • Injection of fuel in step 1060 is advantageous to an intake manifold injection internal combustion engine for a quick restart of the engine.
  • FIG. 4 shows the time course of the speed n of the internal combustion engine when stopping and restarting.
  • the speed n of the internal combustion engine falls during a phase-out phase T_outflow in the in FIG. 2b illustrated way, and changes Finally, the sign when the rotational movement of the internal combustion engine to in FIG. 2b illustrated return pendulum time tosc reverses.
  • Such a determined start request before the stop time tstopp is also referred to as "change of mind”.
  • the course of the speed n of the internal combustion engine performs a resulting course until it reaches the in FIG. 2b illustrated stop time t stop falls to zero and stays there.
  • the stop time tstopp marked in FIG. 4 the end of the pendulum phase T_Pendel.
  • the first Einspurzeittician tein1 and the second Einspurzeittician tein2 are characterized in that the speed n of the internal combustion engine is so low that the starter 200 can be Solutionsspurt.
  • the first Einspurzeittician tein1 and the second Einspurzeittician tein2 are determined by the controller 70. If the time interval between the start desired time tstart and the first Einspurzeit Vietnamese tein1 greater than the An horrtotzeit T tot, the starter 200 is meshed and driven so that it starts a rotational movement for the first Einspurzeittician tein1. If the first Einspurzeittician tein1 time too close to the start-desired time tstart, the starter 200 is meshed and driven so that it starts a rotational movement to the second Einspurzeitticiantein2.
  • FIG. 5 illustrates in detail the choice of the first Einspurzeitticiants tein1 and the second Einspurzeitpaints tein2.
  • the first Einspurzeittician tein1 is determined after opening the throttle valve 100, for example, based on maps or based on stored in the control unit 70 models and corresponds to the estimated rinsependelzeittician tosc.
  • the return time tosc other times, to which the speed n of the internal combustion engine has a zero crossing, are predicted, and be selected as the first Einspurzeittician tein1.
  • a second Einspurzeittician tein2 can be selected, from which it is ensured that the speed n of the internal combustion engine no longer leaves a speed band in which a meshing of the starter 200 is possible.
  • This speed band is given, for example, by a positive threshold nplus, for example 70 revolutions per minute, up to which the starter 200 can be meshed in a forward rotation of the internal combustion engine, and by a negative threshold nminus, for example 30 rpm, up to that of the starter 200 can beLespurt in a reverse rotation of the internal combustion engine.
  • the control unit 70 calculates, for example based on maps, that the kinetic energy of the internal combustion engine from the second Einspurzeittician tein2 has dropped so far that the speed band [nminus, nplus] will not leave.
  • the starter 200 At the second Einspurzeittician tein2 or at any time after the second Einspurzeittician tein2 the starter 200 and can be meshed and placed in a rotary motion.
  • FIG. 6 shows the sequence of the inventive method for restarting the internal combustion engine.
  • Step 2000 coincides with the in FIG. 3 step 1000.
  • Step 2005 follows.
  • step 2005 the throttle is closed, or other measures, such as adjustment of the cams 180, 182, or appropriate electrohydraulic actuation of the valves 160 and 170, are taken to reduce the air charge in the cylinders. It follows step 2010.
  • step 2010 it is determined whether during the outflow of the internal combustion engine, ie during the in FIG. 4 Outflow phase T_output a start request for starting the internal combustion engine is determined. If this is the case, step 2020 follows. If this is not the case, step 2090 follows.
  • step 2020 it is checked whether the engine speed n (possibly by a minimum distance, for example 10 revolutions per minute) is above the speed threshold value ns. These checks can be done continuously, or crankshaft synchronous, in particular to each dead center of the internal combustion engine. If the speed n of the internal combustion engine is above the speed threshold value ns, then step 2030 follows, otherwise step 2070 follows.
  • step 2030 the throttle is opened, or other measures, e.g. Adjusting the cams 180, 182 or a suitable electrohydraulic control of the valves 160 and 170, taken to increase the air charge in the cylinder, which is next in the intake stroke.
  • Fuel is injected into intake manifold 80 via intake manifold injector 50.
  • step 2040 in which the intake cylinder ZYL2 is determined, that is, the cylinder whose air charge substantially increases next in the intake stroke.
  • the intake cylinder ZYL2 goes into the intake stroke and sucks the fuel / air mixture, which is located in the intake manifold 80. Subsequently, the inlet cylinder ZYL2 goes into the compression stroke.
  • the speed n is greater than the speed threshold ns.
  • the speed threshold value ns is selected such that the intake cylinder ZYL2 is no longer going through a top dead center. At the rotational speed n of the internal combustion engine, it is therefore ensured that the intake cylinder ZYL2 again passes through a top dead center and transitions into the power stroke.
  • Step 2050 follows.
  • step 2050 the fuel / air mixture in the intake cylinder ZYL2 is ignited, which accelerates the rotation of the crankshaft 50
  • step 2060 follows.
  • step 2060 further measures are taken to start the engine to accomplish, in particular, a fuel / air mixture is ignited in the other cylinders of the internal combustion engine accordingly. With the start of the internal combustion engine, the inventive method ends.
  • step 2070 fuel is injected into the draft tube 80 via the port injection valve 150. It follows step 2100.
  • Step 1030 checks whether the rotational speed n of the internal combustion engine has fallen below the rotational speed threshold value ns. If this is not the case, the method branches back to step 2010. If this is the case, step 2100 follows.
  • Step 2100 corresponds to step 1040 of FIG. 3 ,
  • the throttle valve is opened or another LuftdosierINA, for example, a cam adjustment or an electro-hydraulic valve control, so controlled that the amount of air supplied is increased. It follows step 2110.
  • step 2110 it is determined whether there is a request to start the engine. If so, step 2120 follows. If not, step 2110 is repeated until there is a request to start the engine.
  • step 2120 it is checked whether the internal combustion engine is stationary. This corresponds to the in FIG. 4 shown period after the end of the pendulum phase T_Phase. If this is the case, then step 2060 follows, in which conventional measures for starting the internal combustion engine are carried out. As in FIG. 4 the internal combustion engine is started at a time tSdT.
  • step 2150 the first meshing time tein1 is predicted. This prediction is done, for example, using a map. Based on the rotational speed n, the intake cylinder ZYL2 was determined in the last run of a top dead center (in the embodiment at the fourth time t4), the kinetic energy of the internal combustion engine can be determined, from the second position DK2 of Lucasdosier adopted the air filling of the intake cylinder ZYL2, and thus the magnitude of the gas spring compressed by the intake cylinder ZYL2 in the compression stroke can be estimated. From this it is possible to estimate the return oscillation time tosc, which is predicted as the first Einspurzeittician tein1.
  • step 2160 in which it is checked whether the time difference between the first Einspurzeittician tein1 and the current time is greater than the Anêttotzeit T_tot of the starter 200. If so, step 2170 follows. If not, step 2180 follows.
  • step 2180 the second meshing time tein2 is determined.
  • the second Einspurzeittician tein2 is selected so that the rotational speed n of the internal combustion engine from the second Einspurzeittician tein2 remains in the speed interval between the negative threshold nminus and the positive threshold nplus.
  • step 2190 the starter 200 is meshed and started from the second Einspurzeittician tein2. This is followed by step 2060, in which the further measures for starting the internal combustion engine are performed.
  • step 2180 it is also possible to determine in step 2180 a one-track interval during which the speed n remains between the negative threshold nminus and the positive threshold nplus.
  • the starter 200 is meshed and started at the one-track interval.
  • the injection valves of the internal combustion engine is arranged in the combustion chamber, that is configured as a direct injection valve.
  • the injection of fuel into the intake manifold immediately after opening the throttle may be omitted. It is important only that fuel is injected properly into the intake cylinder ZYL2 before it is ignited at restart.
  • FIG. 7 illustrates the choice of the speed threshold ns.
  • Figure 7a illustrates the oscillation behavior of the intake cylinder ZYL2 at the correctly selected speed threshold value ns.
  • the intake cylinder ZYL2 is in a forward movement, passes through the bottom dead center UT corresponding to the fourth dead center T4, and reverses at the return pendulum angle RPW.
  • the further pendulum movement of the intake cylinder ZYL2 to standstill is in Figure 7a only hinted.
  • FIG. 7b illustrates the pendulum behavior of the intake cylinder ZYL2 at too high a selected speed threshold ns.
  • Too high a speed threshold value ns means that the kinetic energy of the internal combustion engine when opening the throttle valve 100, ie at the opening crankshaft angle KWauf, is too high.
  • the inlet cylinder ZYL2 passes through the bottom dead center UT corresponding to the fourth dead center T4 and subsequently also to the top dead center OT corresponding to the fifth dead center T5. This leads to undesirable Vibrations in the drive train, and is perceived by the driver as uncomfortable.
  • FIG. 7c illustrates the oscillation behavior of the intake cylinder ZYL2 when the speed threshold value ns selected is too low. Too low a threshold speed ns means that the kinetic energy of the internal combustion engine when opening the throttle valve 100, that is, at the opening crankshaft angle KWauf, is too low.
  • the inlet cylinder ZYL2 passes through the bottom dead center UT corresponding to the fourth dead center, but has a relatively large return pendulum angle RPW. If it is determined in step 3020 that the rotational speed n of the internal combustion engine is greater than the rotational speed threshold value ns, it can no longer be reliably assumed that the intake cylinder ZYL2 rotates above the top dead center OT and the internal combustion engine can thus be started quickly.
  • FIG. 8 describes an adaptation method with which an initially predetermined speed threshold value ns can be adapted to compensate for errors in the initialization or changes in the characteristics of the internal combustion engine.
  • step 3000 it is determined that there is a stop request to the internal combustion engine, and measures for starting the internal combustion engine are initiated.
  • step 3010 it is checked in step 1030 whether the rotational speed n of the internal combustion engine has fallen below the rotational speed threshold ns. If so, step 3020 follows by opening the throttle in accordance with step 1040. It is followed by step 3030, in which it is checked whether the inlet cylinder ZYL2 has already passed through the bottom dead center UT. If not, step 3040 follows. If so, step 3060 follows.
  • step 3040 the case is intercepted that the speed threshold value ns is set so low that the internal combustion engine comes to a stop before the intake cylinder ZYL2 passes through the bottom dead center UT.
  • step 3040 checks whether the internal combustion engine is stationary. If this is not the case, the method branches back to step 3030. If the internal combustion engine is present, step 3050 follows. In step 3050, the speed threshold value ns is increased. This is followed by step 3100, which ends the procedure.
  • step 3060 the rotational movement of the internal combustion engine is monitored. If the internal combustion engine continues to rotate the inlet cylinder ZYL2 above the top dead center OT, step 3070 follows. If the top dead center OT is not reached, step 3080 follows. In step 3070, the in FIG. 7b illustrated behavior before, and the speed threshold ns is reduced. This is followed by step 3100, which ends the procedure.
  • step 3080 the return angle RPW is determined using, for example, the crankshaft sensor 220.
  • Step 3090 it is checked whether the return pendulum angle RPW is smaller than a minimum return pendulum angle RPWS which is, for example, 10 °. If the return pendulum angle RPW is smaller than the minimum return pendulum angle RPWS, then the proper behavior is according to Figure 7a and step 3100 follows, ending the procedure. If the return pendulum angle RPW is greater than the minimum return oscillation angle RPWS, then this is in FIG. 7c illustrated behavior, and it follows step 3050, in which the speed threshold value ns is increased.
  • the increase of the speed threshold ns in step 3050 may be either incremental, or the speed threshold ns is increased to an initial threshold nsi, at which it is ensured that the internal combustion engine is running in the FIG. 7b illustrated behavior shows that the speed threshold ns is then initially too large.
  • the initial threshold value nsi can be designed, for example, as an applicable threshold value. It is chosen so that in the context of the possible during operation of the internal combustion engine operating parameters, for example, different leakage of the air filling, different engine oil or different specimen scattering of the friction effect of the internal combustion engine, the internal combustion engine in FIG. 7b illustrated behavior shows that so the intake cylinder ZYL2 goes into the power stroke.
  • the adaptation of the speed threshold value ns can optionally also be carried out if the restart of the internal combustion engine has not proceeded correctly:
  • the speed threshold value ns is increased if it was decided in step 2020 that the determined speed n of the internal combustion engine is greater than the speed threshold value ns, and Performing steps 2030, 2040 and 2050 is determined in step 2060 that the inlet cylinder ZYL2 (ZYL2) has not gone into the power stroke.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

Stand der TechnikState of the art

Insbesondere bei Fahrzeugen mit Start-/Stopp-Technologie, das heißt wenn der Motor häufig während des normalen Fahrbetriebs aus- und wieder eingeschaltet wird, ist ein komfortabler Auslauf der Brennkraftmaschine und ein schneller Neustart der Brennkraftmaschine von großer Bedeutung.In particular, in vehicles with start / stop technology, that is, when the engine is often switched off and on again during normal driving, a comfortable outlet of the internal combustion engine and a quick restart of the internal combustion engine is of great importance.

Die JP-2008298031 A beschreibt ein Verfahren, bei dem die Drosselklappe der Brennkraftmaschine im Auslauf geschlossen wird, um Vibrationen zu unterdrücken. Durch diese Maßnahme wird die Luftfüllung in den Zylindern in der Brennkraftmaschine reduziert, und somit die Rauigkeit des Auslauf verringert, da Kompression und Dekompression minimiert werden.The JP-2008298031 A describes a method in which the throttle of the internal combustion engine is closed in the outlet to suppress vibrations. By this measure, the air charge in the cylinders in the internal combustion engine is reduced, thus reducing the roughness of the spout, since compression and decompression are minimized.

Für den Neustart der Brennkraftmaschine wird allerdings möglichst viel Luft in den Zylindern, in denen für den Neustart gezündet wird, benötigt. Man ist also in einem Zielkonflikt zwischen einem schnellen Motorstart (der viel Luft im Zylinder erfordert) und einem komfortablen, das heißt vibrationsarmen Motorauslauf (der wenig Luft im Zylinder erfordert). Dieser Zielkonflikt wird mit der vorliegenden Erfindung aufgelöst.For the restart of the internal combustion engine, however, as much air in the cylinders, in which is ignited for the restart required. One is therefore in a conflict of objectives between a fast engine start (which requires a lot of air in the cylinder) and a comfortable, that is low-vibration engine spout (which requires little air in the cylinder). This conflict of objectives is resolved by the present invention.

Im Stand der Technik allgemein bekannt siehe zum Beispiel EP 1 582 738 A2 sind Vorrichtungen, die den Hubverlauf insbesondere der Einlassventile der Brennkraftmaschine ändern, und somit die Luftfüllung der Zylinder stellen. Insbesondere ist es bekannt, dass durch elektrohydraulische Aktuatoren der Hubverlauf der Einlassventile in weiten Grenzen beliebig gestaltet werden kann. Brennkraftmaschinen mit einer solchen elektrohydraulischen Ventilverstellung benötigen keine Drosselklappe. Ebenso ist es bekannt, dass der Hubverlauf insbesondere der Einlassventile durch eine Verstellung der Nockenwelle variiert werden kann. Solche Vorrichtungen wie auch die Drosselklappe, mit denen die Luftfüllung der Zylinder verändert werden kann, werden im folgenden auch als Luftdosiereinrichtungen bezeichnet.For example, as generally known in the art, see EP 1 582 738 A2 are devices that change the stroke course in particular of the intake valves of the internal combustion engine, and thus provide the air filling of the cylinder. In particular, it is known that the stroke profile of the intake valves can be varied as desired by electrohydraulic actuators. Internal combustion engines with such an electro-hydraulic valve adjustment do not require a throttle valve. It is also known that the stroke course in particular of the intake valves by an adjustment the camshaft can be varied. Such devices as well as the throttle valve, with which the air filling of the cylinder can be changed, are referred to below as Luftdosiereinrichtungen.

Offenbarung der ErfindungDisclosure of the invention

Wird mit Hilfe einer Luftdosiereinrichtungen eine der Brennkraftmaschine zugeführte Luftmenge reduziert, und erst kurz vor einem Stillstand der Brennkraftmaschine wieder erhöht, so kann ein sogenanntes Motorschütteln, also die spürbare Entstehung von Vibrationen, vermieden werden. Dies wird dadurch erreicht, dass im Auslauf der Brennkraftmaschine die der Brennkraftmaschine zugeführte Luftmenge zunächst reduziert wird, und dann, wenn eine erfasste Drehzahl der Brennkraftmaschine unter einen Drehzahlschwellenwert abgefallen ist, wieder erhöht wird.If, with the aid of an air dosing device, an amount of air supplied to the internal combustion engine is reduced, and only increased again shortly before a standstill of the internal combustion engine, so-called engine shaking, ie the noticeable generation of vibrations, can be avoided. This is achieved in that in the outlet of the internal combustion engine, the amount of air supplied to the engine is first reduced, and then, when a detected speed of the internal combustion engine has fallen below a speed threshold, is increased again.

Einem Einlasszylinder, der sich unmittelbar nach oder während der Erhöhung der zugeführten Luftmenge in einem Ansaugtakt befindet, wird dann eine erhöhte Luftmenge zugeführt, und er hat dann eine erhöhte Luftfüllung. Geht dieser Einlasszylinder nun in einen Kompressionstakt über, so wird die erhöhte Luftfüllung als Gasfeder, die ein starkes rückstellendes Drehmoments über den Einlasszylinder ZYL2 eine Kurbelwelle ausübt. Umgekehrt übt die jeweilige Luftfüllung in den Zylindern, die in eine Abwärtsbewegung gehen, ein Drehmoment auf die Kurbelwelle aus, dass in Richtung der Vorwärtsdrehung der Kurbelwelle wirkt. Da diese in eine Abwärtsbewegung gehenden Zylinder aber eine geringe Luftfüllung aufweisen, wirkt auf die Kurbelwelle in Summe ein rückstellendes Drehmoment.An intake cylinder that is in an intake stroke immediately after or during the increase in the amount of air supplied is then supplied with an increased amount of air, and then has an increased air charge. If this intake cylinder now goes into a compression stroke, the increased air charge as a gas spring, which exerts a strong restoring torque via the intake cylinder ZYL2 crankshaft. Conversely, the respective air charge in the cylinders, which are going down, exerts a torque on the crankshaft that acts in the direction of forward rotation of the crankshaft. Since these cylinders, which are moving in a downward movement, have a low air charge, a restoring torque acts on the crankshaft as a whole.

Wird der Drehzahlschwellenwert geeignet gewählt, so kann sichergestellt werden, dass der Einlasszylinder nach der Erhöhung der zugemessene Luftmenge nicht mehr in einen Arbeitstakt geht. Dies hat den Vorteil, dass eine Kompression der erhöhten Luftfüllung vermieden wird, was unerwünschte Vibrationen verhindert.If the speed threshold value is selected appropriately, it can be ensured that the intake cylinder no longer goes into a power stroke after the increased air quantity has been increased. This has the advantage that compression of the increased air charge is avoided, which prevents unwanted vibrations.

Besonders vorteilhaft ist es, wenn der Drehzahischwellenwert so gewählt wird, dass der Einlasszylinder nach der Erhöhung der zugemessene Luftmenge gerade nicht mehr in den Arbeitstakt geht. Ist der Drehzahlschwellenwert derart gewählt, und ist die Drehzahl der Brennkraftmaschine größer als der Drehzahlschwellenwert, wenn eine Anforderung zum Wiederstart ermittelt wird, so lässt sich ein Verfahren zum besonders schnellen Wiederstart der Brennkraftmaschine realisieren.It is particularly advantageous if the rotational speed threshold value is selected such that the inlet cylinder no longer goes into the power stroke after the increased amount of air has been increased. If the speed threshold is selected and if the engine speed is greater than the engine speed threshold, when a re-start request is determined, a method of restarting the engine particularly quickly can be realized.

Um den Drehzahlschwellenwert robust genauso zu wählen, dass der Einlasszylinder nach der Erhöhung der zugemessene Luftmenge gerade nicht mehr in den Arbeitstakt geht, wird erfindungsgemäß ein Adaptionsverfahren vorgeschlagen. Hierzu ist es notwendig, geeignete Kriterien zu definieren, bei denen der Drehzahlschwellenwert reduziert beziehungsweise erhöht wird.In order to robustly select the speed threshold value in such a way that the inlet cylinder, after the increase in the metered amount of air, is no longer in the power stroke, an adaptation method is proposed according to the invention. For this purpose, it is necessary to define suitable criteria in which the speed threshold value is reduced or increased.

Wird der Drehzahlschwellenwert reduziert, wenn der Einlasszylinder nach der Erhöhung der zugemessene Luftmenge und vor dem Stillstand der Brennkraftmaschine einen oberen Totpunkt noch durchläuft, so wird auf besonders einfache Weise sichergestellt, dass im weiteren Betrieb der Brennkraftmaschine Vibrationen durch das unzulässige Durchlaufen eines oberen Totpunkt bei hoher Luftfüllung unterbunden werden.If the speed threshold value is reduced, if the inlet cylinder still passes a top dead center after the increase in the metered amount of air and before the engine is stopped, it is ensured in a particularly simple manner that vibrations in the further operation of the internal combustion engine due to the inadmissible passing through a top dead center at high Air filling are prevented.

Wird der Drehzahlschwellenwert erhöht, wenn der Einlasszylinder nach der Erhöhung der zugemessene Luftmenge nicht mehr in einen Verdichtungstakt geht, wird auf besonders einfacher Weise sichergestellt, dass der Einlasszylinder im weiteren Betrieb der Brennkraftmaschine beim Stoppen ein Pendelverhalten zeigt.If the speed threshold value is increased when the intake cylinder no longer enters a compression stroke after the increased air quantity has been increased, it is ensured in a particularly simple manner that the intake cylinder shows a pendulum behavior during the further operation of the internal combustion engine.

Wird der Drehzahlschwellenwert abhängig von einem Rückpendelwinkel geändert, so kann in besonders einfacher Weise sichergestellt werden, dass der Einlasszylinder im zukünftigen Betrieb der Brennkraftmaschine ein definiertes Pendelverhalten zeigt.If the speed threshold value is changed as a function of a return pendulum angle, it can be ensured in a particularly simple manner that the inlet cylinder exhibits a defined pendulum behavior in the future operation of the internal combustion engine.

Wird der Drehzahlschwellenwert erhöht, wenn der Rückpendelwinkel kleiner als ein vorgebbarer Mindestrückpendelwinkel ist, wird erreicht, dass der Einlasszylinder besonders robust den oberen Totpunkt gerade nicht mehr erreicht.If the speed threshold value is increased when the return pendulum angle is smaller than a predefinable minimum return pendulum angle, it is achieved that the intake cylinder is particularly robust, the top dead center just not reached.

Wird der Drehzahlschwellenwert auf einen vorgebbaren Initialschwellenwert erhöht, so hat das erfindungsgemäße Adaptionsverfahren definierte Einstiegspunkte, und es somit besonders robust.If the speed threshold value is increased to a predefinable initial threshold value, then the adaptation method according to the invention has defined entry points, and thus it is particularly robust.

Wird der Initialschwellenwert so groß gewählt, dass der Einlasszylinder den oberen Totpunkt sicher durchläuft, so wird erreicht, dass der Drehzahlschwellenwert ns stets von zu großen Werten kommend adaptiert wird, was das Adaptionsverfahren besonders einfach macht.If the initial threshold value chosen so large that the inlet cylinder passes through top dead center safely, it is achieved that the speed threshold value ns is always adapted coming from too large values, which makes the adaptation process particularly simple.

Die Überwachung der Drehzahl der Brennkraftmaschine erfolgt am einfachsten an den Totpunkten. Wird nun bei einem Totpunkt ermittelt, dass die Drehzahl unter die Drehzahlschwelle gefallen ist, so geht der Einlasszylinder gerade in den Einlasstakt. Wird die von der Luftdosiereinrichtung zugemessene Luftmenge erhöht, noch während das Auslassventil des Einlasszylinders geöffnet ist, so wird eine erhöhte Luftmenge von einem Saugrohr in ein Abgasrohr gepumpt. Dies führt zu nachteiliger Geräuschentwicklung. Wird andererseits die von der Luftdosiereinrichtung zugemessene Luftmenge zu spät während des Einlasstakts des Einlasszylinders erhöht, so ergibt sich ein hohes Druckgefälle zwischen Ansaugrohr und Zylinder. Dass Einströmen von Luft führt in diesem Fall zu erheblicher unerwünschter Geräuschentwicklung. Um diese Geräuschentwicklung zu minimieren, ist es vorteilhaft, wenn die von der Luftdosiereinrichtung zugemessene Luftmenge unmittelbar nach dem Ende der Ventilüberschneidung des Einlasszylinders, also unmittelbar nach dem Schließen das Auslassventils, erhöht wird.The monitoring of the speed of the internal combustion engine is easiest at the dead centers. If it is determined at a dead center that the speed has fallen below the speed threshold, then the intake cylinder is just in the intake stroke. When the amount of air metered by the air metering device is increased while the exhaust valve of the intake cylinder is opened, an increased amount of air is pumped from a suction pipe into an exhaust pipe. This leads to disadvantageous noise development. On the other hand, if the amount of air metered in by the air metering device is increased too late during the intake stroke of the intake cylinder, a high pressure gradient results between the intake pipe and the cylinder. The inflow of air in this case leads to significant unwanted noise. In order to minimize this noise development, it is advantageous if the air quantity metered by the air metering device is increased immediately after the end of the valve overlap of the intake cylinder, ie immediately after the closing of the exhaust valve.

Da die Brennkraftmaschine angehalten wird, ist die Einspritzung von Kraftstoff abgeschaltet. Zum schnellen Neustart der Brennkraftmaschine ist dies nachteilig, da kein zündfähiges Gemisch in den Zylindern vorhanden ist. Da bei dem erfindungsgemäßen Verfahren Luft aus dem Saugrohr in den Einlasszylinder geführt wird, lässt sich bei geeigneter Einspritzung vor dem Ende des Einlasstakts sicherstellen, dass im Einlasszylinder ein zündfähiges Kraftstoff-/Luft-Gemisch vorhanden ist. Da der Einlasszylinder in der Nähe eines unteren Totpunkt oder im Kompressionstakt zum Stehen kommt, ist dies für einen schnellen Neustart sehr vorteilhaft, da ein Starter nur eine Drehung von 180° der Kurbelwelle durchführen muss, bis im Einlasszylinder gezündet werden kann.Since the internal combustion engine is stopped, the injection of fuel is switched off. For a quick restart of the internal combustion engine this is disadvantageous because no ignitable mixture is present in the cylinders. Since in the method according to the invention air is led from the intake manifold into the intake cylinder, with suitable injection before the end of the intake stroke it can be ensured that an ignitable fuel / air mixture is present in the intake cylinder. Since the intake cylinder comes to a halt near a bottom dead center or in the compression stroke, this is very advantageous for a quick restart, since a starter only has to perform a rotation of 180 ° of the crankshaft until it can be ignited in the intake cylinder.

Wird der Kraftstoff bevor oder unmittelbar nachdem der Einlasszylinder in den Einlasstakt geht eingespritzt, so ist dies besonders günstig für die Gemischbildung. Bei Saugrohreinspritzung kann die zugemessene Kraftstoffmenge besonders fein dosiert werden, bei Direkteinspritzung ist die frühe Einspritzung von Kraftstoff vorteilhaft für die Verwirbelung von Luft und Kraftstoff.If the fuel is injected before or immediately after the intake cylinder goes into the intake stroke, this is particularly favorable for mixture formation. With intake manifold injection, the metered amount of fuel can be metered very finely, in direct injection, the early injection of fuel is advantageous for the turbulence of air and fuel.

Nachfolgend werden Ausführungsformen der Erfindung unter Bezugnahme auf die beiliegende Zeichnung näher erläutert. In der Zeichnung zeigen:

Figur 1
die Darstellung eines Zylinders einer Brennkraftmaschine ,
Figur 2
schematisch den Verlauf einiger Kenngrößen der Brennkraftmaschine beim Stoppen der Brennkraftmaschine,
Figur 3
den Ablauf des erfindungsgemäßen Verfahrens zum Stoppen der Brennkraftmaschine,
Figur 4
einen Drehzahlverlauf beim Stoppen und Wiederstart der Brennkraftmaschine,
Figur 5
detailliert den Drehzahlverlauf beim Stoppen und Wiederstart der Brennkraftmaschine,
Figur 6
den Ablauf des erfindungsgemäßen Verfahrens beim Wiederstart der Brennkraftmaschine,
Figur 7
schematisch ein Auspendelverhalten der Brennkraftmaschine bei verschiedenen Drehzahlschwellenwerten,
Figur 8
den Ablauf des erfindungsgemäßen Verfahrens zur Bestimmung des Drehzahlschwellenwerts.
Hereinafter, embodiments of the invention will be explained in more detail with reference to the accompanying drawings. In the drawing show:
FIG. 1
the representation of a cylinder of an internal combustion engine,
FIG. 2
schematically the course of some characteristics of the internal combustion engine when stopping the internal combustion engine,
FIG. 3
the sequence of the method according to the invention for stopping the internal combustion engine,
FIG. 4
a speed curve when stopping and restarting the internal combustion engine,
FIG. 5
detailed the speed curve when stopping and restarting the internal combustion engine,
FIG. 6
the sequence of the method according to the invention when restarting the internal combustion engine,
FIG. 7
schematically a Auspendelverhalten the internal combustion engine at different speed thresholds,
FIG. 8
the sequence of the method according to the invention for determining the speed threshold value.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Figur 1 zeigt einen Zylinder 10 einer Brennkraftmaschine mit einem Brennraum 20, einem Kolben 30, der mit einer Pleuelstange 40 mit einer Kurbelwelle 50 verbunden ist. Der Kolben 30 führt in bekannter Weise eine Auf- und Abwärtsbewegung durch. Die Umkehrpunkte der Bewegung werden als Totpunkte bezeichnet. Der Übergang von Aufwärtsbewegung in Abwärtsbewegung wird als oberer Totpunkt, der Übergang von Abwärtsbewegung zu Aufwärtsbewegung als unterer Totpunkt bezeichnet. Eine Winkelstellung der Kurbelwelle 50, ein so genannter Kurbelwellenwinkel, wird in üblicher Weise relativ zum oberen Totpunkt definiert. Ein Kurbelwellensensor 220 erfasst die Winkelstellung der Kurbelwelle 50. FIG. 1 shows a cylinder 10 of an internal combustion engine with a combustion chamber 20, a piston 30 which is connected to a connecting rod 40 with a crankshaft 50 is. The piston 30 performs in a known manner by an upward and downward movement. The reversal points of the movement are called dead centers. The transition from upward movement to downward movement is referred to as top dead center, and the transition from downward movement to upward movement is referred to as bottom dead center. An angular position of the crankshaft 50, a so-called crankshaft angle, is defined in a conventional manner relative to top dead center. A crankshaft sensor 220 detects the angular position of the crankshaft 50.

Über ein Ansaugrohr 80 wird in bekannter Weise bei einer Abwärtsbewegung des Kolbens 30 zu verbrennende Luft in den Brennraum 20 gesaugt. Dies wird als Ansaugtakt bzw. Einlasstakt bezeichnet. Über ein Abgasrohr 90 wird die verbrannte Luft bei einer Aufwärtsbewegung des Kolbens 30 aus dem Brennraum 20 gedrückt. Dies wird üblicherweise als Auslasstakt bezeichnet. Die Menge der über das Ansaugrohr 80 angesaugten Luft wird über eine Luftdosiereinrichtung, im Ausführungsbeispiel eine Drosselklappe 100, deren Stellung von einem Steuergerät 70 bestimmt wird, eingestellt.Via a suction pipe 80, air to be burned is sucked into the combustion chamber 20 in a known manner during a downward movement of the piston 30. This is referred to as intake stroke or intake stroke. Via an exhaust pipe 90, the burned air is forced out of the combustion chamber 20 during an upward movement of the piston 30. This is commonly referred to as outlet stroke. The amount of air sucked in via the intake pipe 80 is adjusted via an air metering device, in the exemplary embodiment a throttle valve 100 whose position is determined by a control unit 70.

Über ein Saugrohreinspritzventil 150, das im Ansaugrohr 80 angeordnet ist, wird Kraftstoff in die aus dem Ansaugrohr 80 angesaugte Luft gespritzt und ein Kraftstoff-Luft-Gemisch im Brennraum 20 erzeugt. Die Menge des durch das Saugrohreinspritzventil 150 eingespritzten Kraftstoffs wird vom Steuergerät 70 bestimmt, üblicherweise über die Dauer und/oder die Stärke eines Ansteuersignals. Eine Zündkerze 120 zündet das Kraftstoff-Luftgemisch.Through a suction pipe injection valve 150, which is arranged in the intake pipe 80, fuel is injected into the air sucked from the intake pipe 80 and a fuel-air mixture in the combustion chamber 20 is generated. The amount of fuel injected through the port injection valve 150 is determined by the controller 70, typically over the duration and / or magnitude of a drive signal. A spark plug 120 ignites the fuel-air mixture.

Ein Einlassventil 160 an der Zuführung des Ansaugrohrs 80 zum Brennraum 20 wird über Nocken 180 von einer Nockenwelle 190 angetrieben. Ebenso wird ein Auslassventil 170 an der Zuführung des Abgasrohrs 90 zum Brennraum 20 über Nocken 182 können von der Nockenwelle 190 angetrieben in. Die Nockenwelle 190 ist gekoppelt mit der Kurbelwelle 50. Üblicherweise führt die Nockenwelle 190 pro zwei Umdrehungen der Kurbelwelle 50 eine Umdrehung durch. Die Nockenwelle 190 ist so ausgestaltet, dass sich das Auslassventil 170 im Ausstoßtakt öffnet, und in der Nähe des oberen Totpunkts schließt. Das Einlassventil 160 öffnet in der Nähe des oberen Totpunkts und schließt im Einlasstakt. Einer Phase, in der Auslassventil 170 und Einlassventil einer Technik gleichzeitig geöffnet sind, wird als Ventilüberschneidung bezeichnet. Eine solche Ventilüberscheidung dient beispielsweise zur inneren Abgasrückführung. Die Nockenwelle 190 kann insbesondere vom Steuergerät 70 ansteuerbar ausgestaltet sein, so dass sich abhängig von den Betriebsparametern der Brennkraftmaschine unterschiedliche Hubverläufe des Einlassventils 160 und des Auslassventils 170 einstellen lassen. Ebenso ist aber auch möglich, dass das Einlassventils 160 und das Auslassventil 170 nicht über die Nockenwelle 190, sondern über elektrohydraulische Ventilsteller auf- und abbewegt werden. In diesem Fall können die Nockenwelle 190 sowie die Nocken 180 und 182 entfallen. Ebenso ist bei solchen elektrohydraulische Ventilstellern die Drosselklappe 100 nicht notwendig.An intake valve 160 at the inlet of the intake pipe 80 to the combustion chamber 20 is driven by cams 180 from a camshaft 190. Also, an exhaust valve 170 at the inlet of the exhaust pipe 90 to the combustion chamber 20 via cams 182 may be driven by the camshaft 190. The camshaft 190 is coupled to the crankshaft 50. Typically, the camshaft 190 makes one revolution per two revolutions of the crankshaft 50. The camshaft 190 is configured such that the exhaust valve 170 opens in the exhaust stroke and closes near the top dead center. The intake valve 160 opens near top dead center and closes in the intake stroke. A phase in which exhaust valve 170 and inlet valve of a technique open simultaneously are referred to as valve overlap. Such a valve is used for example for internal exhaust gas recirculation. In particular, the camshaft 190 can be designed so as to be controllable by the control unit 70, so that depending on the operating parameters of the internal combustion engine, different stroke profiles of the inlet valve 160 and the outlet valve 170 can be set. Likewise, however, it is also possible that the intake valve 160 and the exhaust valve 170 are not moved up and down via the camshaft 190 but via electrohydraulic valve actuators. In this case, the camshaft 190 and the cams 180 and 182 may be omitted. Likewise, in such electro-hydraulic valve actuators, the throttle valve 100 is not necessary.

Ein Starter 200 ist über eine mechanische Kopplung 210 mit der Kurbelwelle 50 mechanisch verbindbar. Das Herstellen der mechanische Verbindung zwischen Starter 200 und Kurbelwelle 50 wird auch als Einspuren bezeichnet. Das Lösen der mechanischen Verbindung zwischen Starter 200 und Kurbelwelle 50 wird auch als Abwerfen bezeichnet. Das Einspuren ist nur möglich, wenn die Drehzahl der Brennkraftmaschine unter einem von der Brennkraftmaschine und dem Starter abhängigen Drehzahlschwellenwert liegt.A starter 200 is mechanically connectable via a mechanical coupling 210 with the crankshaft 50. Establishing the mechanical connection between starter 200 and crankshaft 50 is also referred to as Einspuren. The release of the mechanical connection between starter 200 and crankshaft 50 is also referred to as dropping. The meshing is only possible if the speed of the internal combustion engine is below a dependent of the engine and the starter speed threshold.

Figur 2 zeigt das Verhalten der Brennkraftmaschine beim Stoppen der Brennkraftmaschine. Figur 2a zeigt die Abfolge der verschiedenen Takte eines ersten Zylinders ZYL1 und eines zweiten Zylinders ZYL2, aufgetragen über den Winkel der Kurbelwelle KW. Eingetragen sind ein erster Totpunkt T1, ein zweiter Totpunkt T2, ein dritter Totpunkt T3, ein vierter Totpunkt T4 und ein fünfter Totpunkt T5 der Brennkraftmaschine. Zwischen diesen Totpunkten durchläuft der erste Zylinder ZYL1 in bekannter Weise den Ausstoßtakt, den Einlasstakt, einen Verdichtungstakt und einen Arbeitstakt. Im Ausführungsbeispiel einer Brennkraftmaschine mit vier Zylindern sind die Takte des zweiten Zylinders ZYL2 um 720°/4= 180° verschoben. Bezogen auf den ersten Zylinder ZYL1 sind der erste Totpunkt T1, der dritte Totpunkt T3 und der fünfte Totpunkt T5 untere Totpunkte, der zweite Totpunkt T2 und der vierte Totpunkt T4 obere Totpunkte. Bezogen auf den zweiten Zylinder ZYL2 sind der erste Totpunkt T1, der dritte Totpunkt T3 und der fünfte Totpunkt T5 obere Totpunkte, der zweite Totpunkt T2 und der vierte Totpunkt T4 untere Totpunkte. FIG. 2 shows the behavior of the internal combustion engine when stopping the internal combustion engine. FIG. 2a shows the sequence of different clocks of a first cylinder ZYL1 and a second cylinder ZYL2, plotted against the angle of the crankshaft KW. Registered are a first dead center T1, a second dead center T2, a third dead center T3, a fourth dead center T4 and a fifth dead center T5 of the internal combustion engine. Between these dead centers, the first cylinder ZYL1 passes in a known manner the exhaust stroke, the intake stroke, a compression stroke and a power stroke. In the embodiment of an internal combustion engine with four cylinders, the clocks of the second cylinder ZYL2 are shifted by 720 ° / 4 = 180 °. With respect to the first cylinder ZYL1, the first dead center T1, the third dead center T3 and the fifth dead center T5 are bottom dead centers, the second dead center T2 and the fourth dead center T4 are top dead centers. With respect to the second cylinder ZYL2, the first dead center T1, the third dead center T3 and the fifth dead center T5 are top dead centers, the second dead center T2 and the fourth dead center T4 are bottom dead centers.

Figur 2b zeigt parallel zu den in Figur 2a dargestellten Takten den Verlauf einer Drehzahl n der Brennkraftmaschine über der Zeit t. Die Drehzahl n ist beispielsweise definiert als die zeitliche Ableitung des Kurbelwellenwinkels KW. Der erste Totpunkt T1 entspricht einem ersten Zeitpunkt t1, der zweite Totpunkt T2 entspricht einem zweiten Zeitpunkt t2 der dritte Totpunkt T3 entspricht einem dritten Zeitpunkt t3, und der vierte Totpunkt T4 entspricht einem vierten Zeitpunkt t4. Zwischen je zwei aufeinander folgenden Zeitpunkten, beispielsweise zwischen dem ersten Zeitpunkt t1 und dem zweiten Zeitpunkt t2 steigt die Drehzahl zunächst kurz an, um dann monoton abzufallen. Der kurze Drehzahlanstieg ist in der Kompression der Luftfüllung in den Zylindern begründet. Ein Zylinder, der einen oberen Totpunkt durchläuft, komprimiert seine Luftfüllung maximal, so dass in ihr Kompressionsenergie gespeichert wird. Diese Kompressionsenergie wird beim Weiterdrehen der Brennkraftmaschine teilweise in Rotationsenergie umgewandelt. FIG. 2b shows parallel to the in FIG. 2a shown cycles the course of a speed n of the internal combustion engine over time t. The speed n is defined, for example, as the time derivative of the crankshaft angle KW. The first dead center T1 corresponds to a first time t1, the second dead center T2 corresponds to a second time t2, the third dead center T3 corresponds to a third time t3, and the fourth dead center T4 corresponds to a fourth time t4. Between every two successive points in time, for example between the first time t1 and the second time t2, the speed initially increases briefly, in order then to drop monotonically. The short speed increase is due to the compression of the air charge in the cylinders. A cylinder, which passes through a top dead center, compresses its maximum air charge, so that it is stored in compression energy. This compression energy is partially converted into rotational energy during further rotation of the internal combustion engine.

Figur 2c zeigt parallel zu Figur 2a und Figur 2b den zeitlichen Verlauf eines Ansteuersignals DK der Drosselklappe 100. Wie aus dem Stand der Technik bekannt, wird beim Stoppen der Brennkraftmaschine die Drosselklappe 100 zunächst geschlossen, was einen ersten Ansteuersignal DK1 entspricht. Fällt wie in Figur 2b dargestellt die Drehzahl n der Brennkraftmaschine unter einen Drehzahlschwellenwert ns, beispielsweise 300 U/min, so wird erfindungsgemäß zu einem Öffnungszeitpunkt tauf die Drosselklappe 100 geöffnet, was einem zweiten Ansteuersignal DK2 entspricht. Der Öffnungszeitpunkt tauf ist dabei so gewählt, dass er kurz nach dem dritten Totpunkt T3 erfolgt, der der nächste Totpunkt ist, nachdem die Drehzahl n der Brennkraftmaschine unter den Drehzahlschwellenwert ns gefallen ist. Der zweite Zylinder ZYL2 geht zum dritten Totpunkt T3 in den Einlasstakt. Er wird deswegen im Folgenden auch als Einlasszylinder ZYL2 bezeichnet. Im Ausführungsbeispiel fällt der Öffnungszeitpunkt tauf mit dem Ende der Ventilüberschneidung des Einlasszylinder, also mit dem Zeitpunkt des Schließen des Auslassventils 170 des Einlasszylinders ZYL2 zusammen. Bezogen auf den oberen Totpunkt des Einlasszylinders ZYL2 entspricht der Öffnungszeitpunkt tauf einem Öffnungskurbelwellenwinkel KWauf. Zur Ermittlung des Zeitpunkts, zu dem die Drehzahl n der Brennkraftmaschine unter den Drehzahlschwellenwert ns gefallen ist, kann die Drehzahl n der Brennkraftmaschine entweder kontinuierlich überwacht werden. Da der Anstieg der Drehzahl n der Brennkraftmaschine nach den Totpunkten klein ist, und der Öffnungszeitpunkt tauf kurz nach einem Totpunkt liegen soll, ist es aber auch möglich, an jedem Totpunkt der Brennkraftmaschine zu überprüfen, ob die Drehzahl n der Brennkraftmaschine unter die Drehzahlschwelle ns gefallen ist. Im in Figur 2b illustrierten Ausführungsbeispiel wird zum ersten Zeitpunkt t1 und zum zweiten Zeitpunkt t2 erkannt, dass die Drehzahl n der Brennkraftmaschine noch nicht unter die Drehzahlschwelle ns gefallen ist. Zum dritten Zeitpunkt t3 wird erstmalig erkannt, dass die Drehzahl n der Brennkraftmaschine unter die Drehzahlschwelle ns gefallen ist, und die Drosselklappe 100 geöffnet. Figure 2c shows parallel to Figure 2a and 2b the timing of a drive signal DK of the throttle valve 100. As known from the prior art, the throttle valve 100 is initially closed when stopping the engine, which corresponds to a first drive signal DK1. Falls like in FIG. 2b illustrated the speed n of the internal combustion engine below a speed threshold value ns, for example 300 U / min, the throttle valve 100 is opened according to the invention at an opening time tauf, which corresponds to a second drive signal DK2. The opening time tauf is chosen so that it occurs shortly after the third dead center T3, which is the next dead center, after the engine speed n has fallen below the speed threshold value ns. The second cylinder ZYL2 goes to the third dead center T3 in the intake stroke. It is therefore also referred to below as the inlet cylinder ZYL2. In the embodiment, the opening time tauf coincides with the end of the valve overlap of the intake cylinder, that is, with the timing of closing the exhaust valve 170 of the intake cylinder ZYL2. With respect to the top dead center of the intake cylinder ZYL2, the opening timing tauf corresponds to an opening crankshaft angle KWauf. To determine the time at which the speed n of the internal combustion engine below the speed threshold ns has fallen, the speed n of the internal combustion engine can be monitored either continuously. Since the increase in the rotational speed n of the internal combustion engine after the dead centers is small, and the opening time tauf should be shortly after a dead center, but it is also possible to check at each dead center of the internal combustion engine, whether the speed n of the internal combustion engine below the speed threshold ns fallen is. Im in FIG. 2b illustrated embodiment, it is detected at the first time t1 and the second time t2 that the speed n of the internal combustion engine has not fallen below the speed threshold ns. At the third time t3, it is detected for the first time that the engine speed n has fallen below the speed threshold ns, and the throttle valve 100 is opened.

Durch die Öffnung der Drosselklappe 100 strömt im Einlasstakt nun viel Luft in den Einlasszylinder. Geht der Einlasszylinder ZYL2 nach dem vierten Zeitpunkt t4 in den Verdichtungstakt, so überwiegt die an der gegenüber den restlichen Zylindern stark erhöhten Luftfüllung zu leistende Kompressionsarbeit die in den expandierenden Zylindern freiwerdende Kompressionsenergie, und die Drehzahl n der Brennkraftmaschine fällt schnell ab, bis sie zu einem Rückpendelzeitpunkt tosc auf null abfällt. Die Rotationsbewegung der Kurbelwelle 50 dreht sich nun um, und die Drehzahl n der Brennkraftmaschine wird negativ. Der Rückpendelzeitpunkt tosc entspricht einem in Figur 2a eingezeichneten Rückpendelwinkel RPW der Kurbelwelle 50. Zu einem Stoppzeitpunkt tstopp bleibt die Brennkraftmaschine stehen. Es ist zu beachten, dass die Darstellung der Zeitachse nichtlinear ist. Entsprechend dem Abfall der Drehzahl n der Brennkraftmaschine ist der zeitliche Abstand zwischen dem dritten Zeitpunkt t3 und dem vierten Zeitpunkt t4 größer als der zeitliche Abstand zwischen dem zweiten Zeitpunkt t2 und dem dritten Zeitpunkt t3, der wiederum größer ist als der zeitliche Abstand zwischen dem ersten Zeitpunkt t1 und dem zweiten Zeitpunkt t2. Der fünfte Totpunkt T5 der Brennkraftmaschine wird nicht erreicht. In dem Zeitintervall zwischen dem Rückpendelzeitpunkt tosc und dem Stoppzeitpunkt tstopp führt die Kurbelwelle 50 eine Pendelbewegung aus, in der der zweite Zylinder ZYL2 in seinem Verdichtungstakt und seinem Einlasstakt pendelt, der erste Zylinder ZYL1 entsprechend in seinem Arbeitstakt und seinem Verdichtungstakt.Through the opening of the throttle valve 100, a lot of air flows into the intake cylinder in the intake stroke. If the intake cylinder ZYL2 after the fourth time t4 in the compression stroke, so prevails at the compared to the remaining cylinders greatly increased air charge compression work to be released in the expanding cylinders compression energy, and the speed n of the engine drops quickly until they come to a Returning time tosc drops to zero. The rotational movement of the crankshaft 50 now rotates, and the engine speed n becomes negative. The return period tosc corresponds to a FIG. 2a drawn Rückpendelwinkel RPW the crankshaft 50. At a stop time t stop the engine stops. It should be noted that the representation of the time axis is nonlinear. Corresponding to the drop in the rotational speed n of the internal combustion engine, the time interval between the third time t3 and the fourth time t4 is greater than the time interval between the second time t2 and the third time t3, which in turn is greater than the time interval between the first time t1 and the second time t2. The fifth dead center T5 of the internal combustion engine is not reached. In the time interval between the return pendulum time tosc and the stop time tstopp, the crankshaft 50 executes a pendulum motion in which the second cylinder ZYL2 oscillates in its compression stroke and its intake stroke, the first cylinder ZYL1 correspondingly in its power stroke and compression stroke.

Figur 3 zeigt den Ablauf des Verfahrens, das dem in Figur 2 illustrierten Verhalten entspricht. Bei laufender Brennkraftmaschine wird in einem Stopperfassungsschritt 1000 ermittelt, dass die Brennkraftmaschine ausgestellt werden soll. Es folgt Schritt 1010, indem die Einspritzung und die Zündung abgeschaltet werden. Die Brennkraftmaschine befindet sich also im Auslauf. Anschließend folgt Schritt 1020, in dem die Drosselklappe geschlossen wird. Bei Brennkraftmaschinen mit Nockenwellenverstellung kann in Schritt 1020 alternativ eine Umschaltung auf einem kleineren Nocken erfolgen, so dass die Luftfüllung in den Zylindern verringert wird. Bei Brennkraftmaschinen mit elektrohydraulischer Ventilverstellung können in Schritt 1020 die Ventile der Brennkraftmaschine geschlossen werden. Es folgt Schritt 1030, in dem überprüft wird, ob die Drehzahl n der Brennkraftmaschine den Drehzahlschwellenwert ns unterschritten hat. Ist dies der Fall, folgt Schritt 1040. Ist dies nicht der Fall, wird Schritt 1030 solange wiederholt, bis die Drehzahl n der Brennkraftmaschine den Drehzahlschwellenwert ns unterschritten hat. In Schritt 1040 wird die Drosselklappe 100 zum Öffnungszeitpunkt tauf geöffnet. Bei Brennkraftmaschinen mit Nockenwellenverstellung kann stattdessen in Schritt 1040 beispielsweise auf einen größeren Nocken umgeschaltet werden, so dass sich die Luftfüllung in dem Einlasszylinder ZYL2 erhöht. Bei Brennkraftmaschinen mit elektrohydraulischer Ventilverstellung kann in Schritt 1040 das Einlassventil 160 des Einlasszylinders ZYL2 so angesteuert werden, dass es während des Einlasstakts des Einlasszylinders ZYL2 geöffnet ist, und so die Luftfüllung in dem Einlasszylinder ZYL2 erhöht wird. Es folgt Schritt 1060. Im optionalen Schritt 1060 wird über das Saugrohreinspritzventil 150 Kraftstoff in das Saugrohr 80 der Brennkraftmaschine gespritzt. Diese Einspritzung von Kraftstoff erfolgt so, dass im Einlasstakts ein Kraftstoff-/Luft-Gemisch in den Einlasszylinder ZYL2 gesaugt wird. In Schritt 1100 endet das erfindungsgemäße Verfahren. Wie in Figur 2b illustriert, pendelt die Brennkraftmaschine in eine Stillstandposition, bei der der Einlasszylinder ZYL2 im Einlasstakt oder im Verdichtungstakt zu stehen kommt. Die Einspritzung von Kraftstoff in Schritt 1060 ist für eine Brennkraftmaschine mit Saugrohreinspritzung vorteilhaft für einen schnellen Wiederstart der Brennkraftmaschine. FIG. 3 shows the sequence of the procedure, which corresponds to the in FIG. 2 corresponds to illustrated behavior. When the internal combustion engine is running, it is determined in a stop detection step 1000 that the internal combustion engine should be issued. Step 1010 follows by shutting off injection and ignition. The internal combustion engine is thus in the outlet. Subsequently, step 1020 follows in which the throttle valve is closed. In internal combustion engines with camshaft adjustment, alternatively, a switchover to a smaller cam can take place in step 1020, so that the air charge in the cylinders is reduced. In internal combustion engines with electrohydraulic valve timing, the valves of the internal combustion engine can be closed in step 1020. This is followed by step 1030, in which it is checked whether the speed n of the internal combustion engine has fallen below the speed threshold value ns. If this is the case, step 1040 follows. If this is not the case, step 1030 is repeated until the speed n of the internal combustion engine has fallen below the speed threshold value ns. In step 1040, the throttle valve 100 is opened at the opening timing tauf. In internal combustion engines with camshaft adjustment, instead, in step 1040, for example, be switched to a larger cam, so that the air charge increases in the intake cylinder ZYL2. In electrohydraulic valve timing engines, in step 1040, the intake valve 160 of the intake cylinder ZYL2 may be controlled to be open during the intake stroke of the intake cylinder ZYL2, thus increasing the air charge in the intake cylinder ZYL2. Step 1060 follows. In optional step 1060, fuel is injected into the intake manifold 80 of the engine via the port injection valve 150. This injection of fuel is carried out so that in the intake stroke, a fuel / air mixture is sucked into the intake cylinder ZYL2. In step 1100, the inventive method ends. As in FIG. 2b illustrates, the internal combustion engine oscillates in a standstill position, in which the inlet cylinder ZYL2 comes to stand in the intake stroke or in the compression stroke. Injection of fuel in step 1060 is advantageous to an intake manifold injection internal combustion engine for a quick restart of the engine.

Figur 4 zeigt den zeitlichen Verlauf der Drehzahl n der Brennkraftmaschine beim Stoppen und Wiederstart. Die Drehzahl n der Brennkraftmaschine fällt während einer Auslaufphase T_Auslauf in der in Figur 2b illustrierten Weise ab, und wechselt schließlich das Vorzeichen, wenn die Rotationsbewegung der Brennkraftmaschine sich zum in Figur 2b illustrierten Rückpendelzeitpunkt tosc umkehrt. Dies ist in Figur 4 als Ende der Auslaufphase T_Auslauf und Beginn einer Pendelphase T_Pendel dargestellt. Noch während der Auslaufphase T_Auslauf wird zu einem Startwunschzeitpunkt tstart ermittelt, dass die Brennkraftmaschine wieder gestartet werden soll, beispielsweise weil erfasst wurde, dass ein Fahrer ein Gaspedal gedrückt hat. Eine solche ermittelte Startanforderung vor dem Stoppzeitpunkt tstopp wird auch als "Change of Mind" bezeichnet. In der Pendelphase T_Pendel führt der Verlauf der Drehzahl n der Brennkraftmaschine einen resultierenden Verlauf durch, bis er zu dem in Figur 2b illustrierten Stoppzeitpunkt tstopp auf konstant null fällt und dort bleibt. Der Stoppzeitpunkt tstopp markiert in Figur 4 das Ende der Pendelphase T_Pendel. FIG. 4 shows the time course of the speed n of the internal combustion engine when stopping and restarting. The speed n of the internal combustion engine falls during a phase-out phase T_outflow in the in FIG. 2b illustrated way, and changes Finally, the sign when the rotational movement of the internal combustion engine to in FIG. 2b illustrated return pendulum time tosc reverses. This is in FIG. 4 represented as the end of the phase-out phase T_output and beginning of a pendulum phase T_Pendel. Even during the phase-out phase T_outrun, it is determined at a start-up desired time tstart that the internal combustion engine should be restarted, for example because it was detected that a driver pressed an accelerator pedal. Such a determined start request before the stop time tstopp is also referred to as "change of mind". In the pendulum phase T_Pendel the course of the speed n of the internal combustion engine performs a resulting course until it reaches the in FIG. 2b illustrated stop time t stop falls to zero and stays there. The stop time tstopp marked in FIG. 4 the end of the pendulum phase T_Pendel.

Bei dem im Stand der Technik bekannten Verfahren zum Starten der Brennkraftmaschine wird im Anschluss an die Pendelphase T_Pendel erkannt, dass die Brennkraftmaschine steht, wird der Starter 200 eingespurt, und der Starter angesteuert. Nach einer in Figur 4 nicht dargestellten Ansteuertotzeit T_tot des Starters 200 von beispielsweise 50ms beginnt der Starter 200 zu einem Zeitpunkt tSdT eine Drehbewegung und setzt somit die Kurbelwelle 50 wieder in Bewegung. Bei dem erfindungsgemäßen Verfahren wird demgegenüber ein erster Einspurzeitpunkt tein1 und gegebenenfalls ein zweiter Einspurzeitpunkt tein2 ermittelt. Der erster Einspurzeitpunkt tein1 und der zweite Einspurzeitpunkt tein2 sind dadurch charakterisiert, dass die Drehzahl n der Brennkraftmaschine so niedrig ist, dass der Starter 200 eingespurt werden kann. Der erstes Einspurzeitpunkt tein1 und der zweite Einspurzeitpunkt tein2 werden vom Steuergerät 70 ermittelt. Ist der zeitliche Abstand zwischen dem Startwunschzeitpunkt tstart und dem ersten Einspurzeitpunkt tein1 größer als die Ansteuertotzeit T tot, so wird der Starter 200 eingespurt und so angesteuert, dass er zum ersten Einspurzeitpunkt tein1 eine Drehbewegung beginnt. Ist der erster Einspurzeitpunkt tein1 zeitlich zu nah am Startwunschzeitpunkt tstart, so wird der Starter 200 eingespurt und so angesteuert, dass er zum zweiten Einspurzeitpunkttein2 eine Drehbewegung beginnt.In the known in the prior art method for starting the internal combustion engine is detected after the pendulum phase T_Pendel that the internal combustion engine is stationary, the starter 200 is meshed, and the starter driven. After a in FIG. 4 Not shown Ansteuertotzeit T_tot of the starter 200 of, for example, 50ms starts the starter 200 at a time tSdT a rotational movement and thus sets the crankshaft 50 in motion again. In contrast, in the method according to the invention a first Einspurzeitpunkt tein1 and optionally a second Einspurzeitpunkt tein2 is determined. The first Einspurzeitpunkt tein1 and the second Einspurzeitpunkt tein2 are characterized in that the speed n of the internal combustion engine is so low that the starter 200 can be eingespurt. The first Einspurzeitpunkt tein1 and the second Einspurzeitpunkt tein2 are determined by the controller 70. If the time interval between the start desired time tstart and the first Einspurzeitpunkt tein1 greater than the Ansteuertotzeit T tot, the starter 200 is meshed and driven so that it starts a rotational movement for the first Einspurzeitpunkt tein1. If the first Einspurzeitpunkt tein1 time too close to the start-desired time tstart, the starter 200 is meshed and driven so that it starts a rotational movement to the second Einspurzeitpunkttein2.

Figur 5 illustriert im Detail die Wahl des ersten Einspurzeitpunkts tein1 und des zweiten Einspurzeitpunkts tein2. Wie beschrieben fällt die Drehzahl n der Brennkraftmaschine nach dem Öffnungszeitpunkt tauf rasch auf null ab, und die Brennkraftmaschine beginnt zum Rückpendelzeitpunkt t_osc eine Rückwärtsbewegung. Der erste Einspurzeitpunkt tein1 wird nach dem Öffnen der Drosselklappe 100 beispielsweise anhand von Kennfeldern oder anhand von im Steuergerät 70 hinterlegter Modelle ermittelt und entspricht den geschätzten Rückpendelzeitpunkt tosc. Selbstverständlich ist es auch möglich, dass anstelle des Rückpendelzeitpunkts tosc andere Zeitpunkte, zu denen die Drehzahl n der Brennkraftmaschine einen Nulldurchgang aufweist, prädiziert werden, und als erster Einspurzeitpunkt tein1 gewählt werden. FIG. 5 illustrates in detail the choice of the first Einspurzeitpunktts tein1 and the second Einspurzeitpaints tein2. As described, the speed n of the internal combustion engine drops after the opening time tauf rapidly down to zero, and the internal combustion engine starts at the return time t_osc a backward movement. The first Einspurzeitpunkt tein1 is determined after opening the throttle valve 100, for example, based on maps or based on stored in the control unit 70 models and corresponds to the estimated Rückpendelzeitpunkt tosc. Of course, it is also possible that instead of the return time tosc other times, to which the speed n of the internal combustion engine has a zero crossing, are predicted, and be selected as the first Einspurzeitpunkt tein1.

Ergänzend zum Nulldurchgang der Drehzahl n der Brennkraftmaschine kann ein zweiter Einspurzeitpunkt tein2 gewählt werden, ab dem sichergestellt ist, dass die Drehzahl n der Brennkraftmaschine ein Drehzahlband, in dem ein Einspuren des Starters 200 möglich ist, nicht mehr verlässt. Dieses Drehzahlband ist beispielsweise gegeben durch eine positive Schwelle nplus, beispielsweise 70 Umdrehungen pro Minute, bis zu der der Starter 200 bei einer Vorwärtsdrehung der Brennkraftmaschine eingespurt werden kann, und durch eine negative Schwelle nminus, beispielsweise 30 U/min, bis zu der der Starter 200 bei einer Rückwärtsdrehung der Brennkraftmaschine eingespurt werden kann. Das Steuergerät 70 berechnet beispielsweise anhand von Kennfeldern, dass die kinetische Energie der Brennkraftmaschine ab dem zweiten Einspurzeitpunkt tein2 soweit abgefallen ist, dass das Drehzahlband [nminus, nplus] nicht mehr verlassen wird. Zum zweiten Einspurzeitpunkt tein2 oder zu einem beliebigen Zeitpunkt nach den zweiten Einspurzeitpunkt tein2 kann der Starter 200 und eingespurt und in eine Drehbewegung versetzt werden.In addition to the zero crossing of the speed n of the internal combustion engine, a second Einspurzeitpunkt tein2 can be selected, from which it is ensured that the speed n of the internal combustion engine no longer leaves a speed band in which a meshing of the starter 200 is possible. This speed band is given, for example, by a positive threshold nplus, for example 70 revolutions per minute, up to which the starter 200 can be meshed in a forward rotation of the internal combustion engine, and by a negative threshold nminus, for example 30 rpm, up to that of the starter 200 can be eingespurt in a reverse rotation of the internal combustion engine. The control unit 70 calculates, for example based on maps, that the kinetic energy of the internal combustion engine from the second Einspurzeitpunkt tein2 has dropped so far that the speed band [nminus, nplus] will not leave. At the second Einspurzeitpunkt tein2 or at any time after the second Einspurzeitpunkt tein2 the starter 200 and can be meshed and placed in a rotary motion.

Figur 6 zeigt den Ablauf des erfindungsgemäßen Verfahrens zum Wiederstart der Brennkraftmaschine. Schritt 2000 fällt zusammen mit dem in Figur 3 dargestellten Schritt 1000. In ihm wird eine Anforderung, die Brennkraftmaschine zu stoppen, ermittelt. Es folgt Schritt 2005. In Schritt 2005 wird die Drosselklappe geschlossen, beziehungsweise andere Maßnahmen, z.B. Verstellung der Nocken 180,182 oder eine geeignete elektrohydraulischer Ansteuerung der Ventile 160 und 170, ergriffen, um die Luftfüllung in den Zylindern zu reduzieren. Es folgt Schritt 2010. FIG. 6 shows the sequence of the inventive method for restarting the internal combustion engine. Step 2000 coincides with the in FIG. 3 step 1000. In it a request to stop the internal combustion engine, determined. Step 2005 follows. In step 2005, the throttle is closed, or other measures, such as adjustment of the cams 180, 182, or appropriate electrohydraulic actuation of the valves 160 and 170, are taken to reduce the air charge in the cylinders. It follows step 2010.

In Schritt 2010 wird ermittelt, ob noch während des Auslaufs der Brennkraftmaschine, also während der in Figur 4 dargestellten Auslaufphase T_Auslauf eine Startanforderung zum Starten der Brennkraftmaschine ermittelt wird. Ist dies der Fall, folgt Schritt 2020. Ist dies nicht der Fall, folgt Schritt 2090. In Schritt 2020 wird geprüft, ob die Drehzahl n der Brennkraftmaschine (gegebenenfalls um einen Mindestabstand, beispielsweise 10 Umdrehungen pro Minute) über dem Drehzahlschwellwert ns liegt. Diese Überprüfungen kann kontinuierlich geschehen, oder auch kurbelwellensynchron, insbesondere zu jedem Totpunkt der Brennkraftmaschine. Liegt die Drehzahl n der Brennkraftmaschine über den Drehzahlschwellenwert ns, so folgt Schritt 2030, andernfalls folgt Schritt 2070.In step 2010, it is determined whether during the outflow of the internal combustion engine, ie during the in FIG. 4 Outflow phase T_output a start request for starting the internal combustion engine is determined. If this is the case, step 2020 follows. If this is not the case, step 2090 follows. In step 2020, it is checked whether the engine speed n (possibly by a minimum distance, for example 10 revolutions per minute) is above the speed threshold value ns. These checks can be done continuously, or crankshaft synchronous, in particular to each dead center of the internal combustion engine. If the speed n of the internal combustion engine is above the speed threshold value ns, then step 2030 follows, otherwise step 2070 follows.

In Schritt 2030 wird die Drosselklappe geöffnet, beziehungsweise andere Maßnahmen, z.B. Verstellung der Nocken 180, 182 oder eine geeignete elektrohydraulischer Ansteuerung der Ventile 160 und 170, ergriffen, um die Luftfüllung in dem Zylinder, der als nächstes im Einlasstakt ist, zu erhöhen. Über das Saugrohreinspritzventil eine 50 wird Kraftstoff in das Ansaugrohr 80 eingespritzt. Es folgt Schritt 2040, indem der Einlasszylinder ZYL2 ermittelt wird, also der Zylinder, dessen Luftfüllung sich als nächstes im Einlasstakt wesentlich erhöht. Der Einlasszylinder ZYL2 geht in den Einlasstakt und saugt das Kraftstoff-/Luft-Gemisch, das sich im Saugrohr 80 befindet ein. Anschließend geht der Einlasszylinder ZYL2 in den Verdichtungstakt über. Die Drehzahl n ist größer als der Drehzahlschwellenwerts ns. Der Drehzahlschwellenwerts ns ist so gewählt ist, dass der Einlasszylinder ZYL2 gerade nicht mehr einen oberen Totpunkt durchläuft. Bei der Drehzahl n der Brennkraftmaschine ist daher sichergestellt, dass der Einlasszylinder ZYL2 einen oberen Totpunkt nochmals durchläuft, und in den Arbeitstakt übergeht. Es folgt Schritt 2050. In Schritt 2050 wird das Kraftstoff-/Luft-Gemisch im Einlasszylinder ZYL2 gezündet, der die Rotation der Kurbelwel-le 50 beschleunigt, und es folgt Schritt 2060. In Schritt 2060 werden weitere Maßnahmen durchgeführt, um den Start der Brennkraftmaschine zu bewerkstelligen, insbesondere wird in den übrigen Zylindern der Brennkraftmaschine entsprechend ein Kraftstoff-/Luft-Gemisch gezündet. Mit dem Start der Brennkraftmaschine endet das erfindungsgemäßen Verfahren.In step 2030, the throttle is opened, or other measures, e.g. Adjusting the cams 180, 182 or a suitable electrohydraulic control of the valves 160 and 170, taken to increase the air charge in the cylinder, which is next in the intake stroke. Fuel is injected into intake manifold 80 via intake manifold injector 50. This is followed by step 2040, in which the intake cylinder ZYL2 is determined, that is, the cylinder whose air charge substantially increases next in the intake stroke. The intake cylinder ZYL2 goes into the intake stroke and sucks the fuel / air mixture, which is located in the intake manifold 80. Subsequently, the inlet cylinder ZYL2 goes into the compression stroke. The speed n is greater than the speed threshold ns. The speed threshold value ns is selected such that the intake cylinder ZYL2 is no longer going through a top dead center. At the rotational speed n of the internal combustion engine, it is therefore ensured that the intake cylinder ZYL2 again passes through a top dead center and transitions into the power stroke. Step 2050 follows. In step 2050, the fuel / air mixture in the intake cylinder ZYL2 is ignited, which accelerates the rotation of the crankshaft 50, and step 2060 follows. In step 2060, further measures are taken to start the engine to accomplish, in particular, a fuel / air mixture is ignited in the other cylinders of the internal combustion engine accordingly. With the start of the internal combustion engine, the inventive method ends.

In Schritt 2070 wird über das Saugrohreinspritzventil 150 Kraftstoff in das Saugrohr 80 eingespritzt. Es folgt Schritt 2100.In step 2070, fuel is injected into the draft tube 80 via the port injection valve 150. It follows step 2100.

In Schritt 2090 wird entsprechend dem in Figur 3 dargestellten Schritt 1030 überprüft, ob die Drehzahl n der Brennkraftmaschine unter den Drehzahlschwellenwert ns abgefallen ist. Ist dies nicht der Fall, wird zurückverzweigt zu Schritt 2010. Ist dies der Fall, folgt Schritt 2100.In step 2090, according to the FIG. 3 Step 1030 checks whether the rotational speed n of the internal combustion engine has fallen below the rotational speed threshold value ns. If this is not the case, the method branches back to step 2010. If this is the case, step 2100 follows.

Schritt 2100 entspricht Schritt 1040 der Figur 3. Die Drosselklappe wird geöffnet beziehungsweise eine andere Luftdosiereinrichtung, beispielsweise eine Nockenverstellung oder eine elektrohydraulische Ventilsteuerung, so angesteuert, dass die zugeführte Luftmenge erhöht wird. Es folgt Schritt 2110.Step 2100 corresponds to step 1040 of FIG FIG. 3 , The throttle valve is opened or another Luftdosiereinrichtung, for example, a cam adjustment or an electro-hydraulic valve control, so controlled that the amount of air supplied is increased. It follows step 2110.

In Schritt 2110 wird ermittelt, ob eine Anforderung zum Starten der Brennkraftmaschine vorliegt. Ist dies der Fall, folgt Schritt 2120. Ist dies nicht der Fall, wird Schritt 2110 solange wiederholt, bis eine Anforderung zum Starten der Brennkraftmaschine vorliegt. In Schritt 2120 wird überprüft, ob die Brennkraftmaschine stillsteht. Dies entspricht dem in Figur 4 dargestellten Zeitraum nach dem Ende der Pendelphase T_Phase. Ist dies der Fall, so folgt Schritt 2060, in dem konventionelle Maßnahmen zum Starten der Brennkraftmaschine durchgeführt werden. Wie in Figur 4 dargestellt wird die Brennkraftmaschine zu einem Zeitpunkt tSdT gestartet.In step 2110, it is determined whether there is a request to start the engine. If so, step 2120 follows. If not, step 2110 is repeated until there is a request to start the engine. In step 2120, it is checked whether the internal combustion engine is stationary. This corresponds to the in FIG. 4 shown period after the end of the pendulum phase T_Phase. If this is the case, then step 2060 follows, in which conventional measures for starting the internal combustion engine are carried out. As in FIG. 4 the internal combustion engine is started at a time tSdT.

Ist die Brennkraftmaschine im Schritt 2120 nicht im Stillstand, so folgt Schritt 2150. In Schritt 2150 wird der erste Einspurzeitpunkt tein1 prädiziert. Diese Prädiktion erfolgt beispielsweise anhand eines Kennfeld. Anhand der Drehzahl n, die beim letzten Durchlauf eines oberen Totpunkts das Einlasszylinders ZYL2 ermittelt wurde (im Ausführungsbeispiel zum vierten Zeitpunkt t4) kann die kinetische Energie der Brennkraftmaschine ermittelt werden, aus der zweiten Stellung DK2 der Luftdosiereinrichtung kann die Luftfüllung des Einlasszylinders ZYL2, und damit die Stärke der Gasfeder, die vom Einlasszylinder ZYL2 im Verdichtungstakt komprimiert wird, geschätzt werden. Hieraus lässt sich der Rückpendelzeitpunkt tosc schätzen, der als erster Einspurzeitpunkt tein1 prädiziert wird. Es folgt Schritt 2160, in dem geprüft wird, ob die zeitliche Differenz zwischen erstem Einspurzeitpunkt tein1 und dem momentanen Zeitpunkt größer ist als die Ansteuertotzeit T_tot des Starters 200. Ist dies der Fall folgt Schritt 2170. Ist dies nicht der Fall, folgt Schritt 2180.If the internal combustion engine is not at a standstill in step 2120, step 2150 follows. In step 2150, the first meshing time tein1 is predicted. This prediction is done, for example, using a map. Based on the rotational speed n, the intake cylinder ZYL2 was determined in the last run of a top dead center (in the embodiment at the fourth time t4), the kinetic energy of the internal combustion engine can be determined, from the second position DK2 of Luftdosiereinrichtung the air filling of the intake cylinder ZYL2, and thus the magnitude of the gas spring compressed by the intake cylinder ZYL2 in the compression stroke can be estimated. From this it is possible to estimate the return oscillation time tosc, which is predicted as the first Einspurzeitpunkt tein1. It is followed by step 2160, in which it is checked whether the time difference between the first Einspurzeitpunkt tein1 and the current time is greater than the Ansteuertotzeit T_tot of the starter 200. If so, step 2170 follows. If not, step 2180 follows.

In Schritt 2180 wird der zweite Einspurzeitpunkt tein2 ermittelt. Wie in Figur 5 erläutert, wird der zweite Einspurzeitpunkt tein2 so gewählt, dass die Drehzahl n der Brennkraftmaschine ab dem zweiten Einspurzeitpunkt tein2 in dem Drehzahlintervall zwischen der negativen Schwelle nminus und der positiven Schwelle nplus bleibt. Im folgenden Schritt 2190 wird der Starter 200 eingespurt und ab dem zweiten Einspurzeitpunkt tein2 gestartet. Es folgt Schritt 2060, in dem die weiteren Maßnahmen zum Starten der Brennkraftmaschine durchgeführt werden. Alternativ ist es auch möglich, in Schritt 2180 ein Einspurintervall zu bestimmen, während dessen die Drehzahl n zwischen der negativen Schwelle nminus und der positiven Schwelle nplus verbleibt. In Schritt 2190 wird in diesem Fall der Starter 200 im Einspurintervall eingespurt und gestartet.In step 2180, the second meshing time tein2 is determined. As in FIG. 5 explains, the second Einspurzeitpunkt tein2 is selected so that the rotational speed n of the internal combustion engine from the second Einspurzeitpunkt tein2 remains in the speed interval between the negative threshold nminus and the positive threshold nplus. In the following step 2190, the starter 200 is meshed and started from the second Einspurzeitpunkt tein2. This is followed by step 2060, in which the further measures for starting the internal combustion engine are performed. Alternatively, it is also possible to determine in step 2180 a one-track interval during which the speed n remains between the negative threshold nminus and the positive threshold nplus. In step 2190, in this case, the starter 200 is meshed and started at the one-track interval.

Statt eines Saugrohreinspritzventils 150 ist es auch denkbar, dass das Einspritzventile der Brennkraftmaschine im Brennraum angeordnet ist, also als ein Direkteinspritzventil ausgestaltet ist. In diesem Fall kann die Einspritzung von Kraftstoff in das Saugrohr unmittelbar nachdem Öffnen der Drosselklappe entfallen. Wichtig ist nur, dass Kraftstoff geeignet in den Einlasszylinder ZYL2 eingespritzt wird, bevor er beim Wiederstart gezündet wird.Instead of a suction pipe injection valve 150, it is also conceivable that the injection valves of the internal combustion engine is arranged in the combustion chamber, that is configured as a direct injection valve. In this case, the injection of fuel into the intake manifold immediately after opening the throttle may be omitted. It is important only that fuel is injected properly into the intake cylinder ZYL2 before it is ignited at restart.

Figur 7 illustriert die Wahl des Drehzahlschwellenwerts ns. Figur 7a illustriert das Pendelverhalten des Einlasszylinders ZYL2 bei korrekt gewählten Drehzahlschwellenwert ns. Beim Öffnungskurbelwellenwinkel KWauf ist der Einlasszylinder ZYL2 in einer Vorwärtsbewegung, durchläuft den dem vierten Totpunkt T4 entsprechenden unteren Totpunkt UT, und kehrt beim Rückpendelwinkel RPW seine Drehrichtung um. Die weitere Pendelbewegung des Einlasszylinders ZYL2 bis zum Stillstand ist in Figur 7a nur angedeutet. FIG. 7 illustrates the choice of the speed threshold ns. Figure 7a illustrates the oscillation behavior of the intake cylinder ZYL2 at the correctly selected speed threshold value ns. At the opening crank shaft angle KWauf, the intake cylinder ZYL2 is in a forward movement, passes through the bottom dead center UT corresponding to the fourth dead center T4, and reverses at the return pendulum angle RPW. The further pendulum movement of the intake cylinder ZYL2 to standstill is in Figure 7a only hinted.

Figur 7b illustriert das Pendelverhalten des Einlasszylinders ZYL2 bei zu hoch gewähltem Drehzahlschwellenwert ns. Ein zu hoher Drehzahlschwellenwert ns bedeutet, dass die kinetische Energie der Brennkraftmaschine beim Öffnen der Drosselklappe 100, also beim Öffnungskurbelwellenwinkel KWauf zu hoch ist. Dies führt dazu, dass der Einlasszylinder ZYL2 den dem vierten Totpunkt T4 entsprechenden unteren Totpunkt UT durchläuft und anschließend auch den dem fünften Totpunkt T5 entsprechenden oberen Totpunkt OT. Dies führt zu unerwünschten Vibrationen im Antriebstrang, und wird vom Fahrer als unkomfortabel wahrgenommen. FIG. 7b illustrates the pendulum behavior of the intake cylinder ZYL2 at too high a selected speed threshold ns. Too high a speed threshold value ns means that the kinetic energy of the internal combustion engine when opening the throttle valve 100, ie at the opening crankshaft angle KWauf, is too high. As a result, the inlet cylinder ZYL2 passes through the bottom dead center UT corresponding to the fourth dead center T4 and subsequently also to the top dead center OT corresponding to the fifth dead center T5. This leads to undesirable Vibrations in the drive train, and is perceived by the driver as uncomfortable.

Figur 7c illustriert das Pendelverhalten des Einlasszylinders ZYL2 bei zu niedrig gewähltem Drehzahlschwellenwert ns. Ein zu niedriger Drehzahlschwellenwert ns bedeutet, dass die kinetische Energie der Brennkraftmaschine beim Öffnen der Drosselklappe 100, also beim Öffnungskurbelwellenwinkel KWauf zu niedrig ist. Der Einlasszylinder ZYL2 durchläuft in dem vierten Totpunkt entsprechenden unteren Totpunkt UT, hat aber einen relativ großen Rückpendelwinkel RPW. Wird in Schritt 3020 ermittelt, dass die Drehzahl n der Brennkraftmaschine größer ist als der Drehzahlschwellenwerts ns, so kann nicht mehr sicher davon ausgegangen werden, dass der Einlasszylinder ZYL2 über den oberen Totpunkt OT rotiert, und die Brennkraftmaschine somit schnell gestartet werden kann. FIG. 7c illustrates the oscillation behavior of the intake cylinder ZYL2 when the speed threshold value ns selected is too low. Too low a threshold speed ns means that the kinetic energy of the internal combustion engine when opening the throttle valve 100, that is, at the opening crankshaft angle KWauf, is too low. The inlet cylinder ZYL2 passes through the bottom dead center UT corresponding to the fourth dead center, but has a relatively large return pendulum angle RPW. If it is determined in step 3020 that the rotational speed n of the internal combustion engine is greater than the rotational speed threshold value ns, it can no longer be reliably assumed that the intake cylinder ZYL2 rotates above the top dead center OT and the internal combustion engine can thus be started quickly.

Die Wahl des Drehzahlschwellenwerts ns ist also für das Funktionieren des erfindungsgemäßen Verfahrens von zentraler Bedeutung, sie ist andererseits aber sehr schwierig, da sie von Größen abhängt, die sich während der Lebensdauer der Brennkraftmaschine verändert, wie beispielsweise dem Reibkoeffizienten des verwendeten Motoröls.The choice of the speed threshold value ns is thus of central importance to the functioning of the method according to the invention, but on the other hand is very difficult since it depends on variables which change during the service life of the internal combustion engine, such as the friction coefficient of the engine oil used.

Figur 8 beschreibt ein Adaptionsverfahren, mit dem ein initial vorgegebener Drehzahlschwellenwert ns adaptiert werden kann, um Fehler in der Initialisierung oder Veränderungen der Eigenschaften der Brennkraftmaschine zu kompensieren. In Schritt 3000 wird ermittelt, dass eine Stopp Anforderung an die Brennkraftmaschine vorliegt, und Maßnahmen zum Starten der Brennkraftmaschine eingeleitet. In Schritt 3010 wird entsprechend Schritt 1030 überprüft, ob die Drehzahl n der Brennkraftmaschine unter die Drehzahlschwelle ns abgefallen ist. Ist dies der Fall, folgt Schritt 3020, indem entsprechend Schritt 1040 die Drosselklappe geöffnet wird. Es folgt Schritt 3030, in dem überprüft wird, ob der Einlasszylinder ZYL2 den unteren Totpunkt UT bereits durchlaufen hat. Ist dies nicht der Fall folgt Schritt 3040. Ist es der Fall, folgt Schritt 3060. FIG. 8 describes an adaptation method with which an initially predetermined speed threshold value ns can be adapted to compensate for errors in the initialization or changes in the characteristics of the internal combustion engine. In step 3000, it is determined that there is a stop request to the internal combustion engine, and measures for starting the internal combustion engine are initiated. In step 3010, it is checked in step 1030 whether the rotational speed n of the internal combustion engine has fallen below the rotational speed threshold ns. If so, step 3020 follows by opening the throttle in accordance with step 1040. It is followed by step 3030, in which it is checked whether the inlet cylinder ZYL2 has already passed through the bottom dead center UT. If not, step 3040 follows. If so, step 3060 follows.

In Schritt 3040 wird der Fall abgefangen, dass der Drehzahlschwellenwerts ns so niedrig gewählt ist, dass die Brennkraftmaschine zum stehen kommt, noch bevor der Einlasszylinder ZYL2 den unteren Totpunkt UT durchläuft. Hierzu wird in Schritt 3040 überprüft, ob die Brennkraftmaschine steht. Ist dies nicht der Fall, wird zurückverzweigt zu Schritt 3030. Steht die Brennkraftmaschine, folgt Schritt 3050. In Schritt 3050 wird der Drehzahlschwellenwert ns erhöht. Es folgt Schritt 3100, mit dem das Verfahren endet.In step 3040, the case is intercepted that the speed threshold value ns is set so low that the internal combustion engine comes to a stop before the intake cylinder ZYL2 passes through the bottom dead center UT. For this purpose is in step 3040 checks whether the internal combustion engine is stationary. If this is not the case, the method branches back to step 3030. If the internal combustion engine is present, step 3050 follows. In step 3050, the speed threshold value ns is increased. This is followed by step 3100, which ends the procedure.

In Schritt 3060 wird die Drehbewegung der Brennkraftmaschine überwacht. Dreht die Brennkraftmaschine den Einlasszylinder ZYL2 weiter über den oberen Totpunkt OT, folgt Schritt 3070. Wird der obere Totpunkt OT nicht erreicht, folgt Schritt 3080. In Schritt 3070 liegt das in Figur 7b illustrierter Verhalten vor, und der Drehzahlschwellenwerts ns wird reduziert. Es folgt Schritt 3100, mit dem das Verfahren endet.In step 3060, the rotational movement of the internal combustion engine is monitored. If the internal combustion engine continues to rotate the inlet cylinder ZYL2 above the top dead center OT, step 3070 follows. If the top dead center OT is not reached, step 3080 follows. In step 3070, the in FIG. 7b illustrated behavior before, and the speed threshold ns is reduced. This is followed by step 3100, which ends the procedure.

In Schritt 3080 wird der Rückpendelwinkel RPW beispielsweise mithilfe des Kurbelwellensensors 220 bestimmt. Es folgt Schritt 3090. In Schritt 3090 wird überprüft, ob der Rückpendelwinkel RPW kleiner ist als ein Mindestrückpendelwinkel RPWS, der beispielsweise 10° beträgt. Ist der Rückpendelwinkel RPW kleiner als der Mindestrückpendelwinkel RPWS, so liegt das ordnungsgemäße Verhalten gemäß Figur 7a vor, und es folgt Schritt 3100, mit dem das Verfahren endet. Ist der Rückpendelwinkel RPW größer als der Mindestrückpendelwinkel RPWS, so liegt das in Figur 7c illustrierte Verhalten vor, und es folgt Schritt 3050, in dem der Drehzahlschwellenwert ns erhöht wird.In step 3080, the return angle RPW is determined using, for example, the crankshaft sensor 220. Step 3090 follows. In Step 3090, it is checked whether the return pendulum angle RPW is smaller than a minimum return pendulum angle RPWS which is, for example, 10 °. If the return pendulum angle RPW is smaller than the minimum return pendulum angle RPWS, then the proper behavior is according to Figure 7a and step 3100 follows, ending the procedure. If the return pendulum angle RPW is greater than the minimum return oscillation angle RPWS, then this is in FIG. 7c illustrated behavior, and it follows step 3050, in which the speed threshold value ns is increased.

Die Erhöhung des Drehzahlschwellenwerts ns in Schritt 3050 kann entweder inkrementell erfolgen, oder der Drehzahlschwellenwert ns wird auf einen Initialschwellenwert nsi erhöht, bei dem sichergestellt ist, dass die Brennkraftmaschine das in Figur 7b illustrierte Verhalten zeigt, dass der Drehzahlschwellenwert ns dann also zunächst zu groß gewählt ist. Der Initialschwellenwert nsi kann beispielsweise als ein applizierbarer Schwellwert ausgebildet sein. Er wird so gewählt, dass im Rahmen der während des Betriebs der Brennkraftmaschine möglichen Betriebsparameter, beispielsweise unterschiedlicher Leckage der Luftfüllung, unterschiedlichem Motoröl oder unterschiedlicher Exemplarstreuung der Reibwirkung der Brennkraftmaschine die Brennkraftmaschine das in Figur 7b illustrierte Verhalten zeigt, dass also der Einlasszylinder ZYL2 in den Arbeitstakt geht.The increase of the speed threshold ns in step 3050 may be either incremental, or the speed threshold ns is increased to an initial threshold nsi, at which it is ensured that the internal combustion engine is running in the FIG. 7b illustrated behavior shows that the speed threshold ns is then initially too large. The initial threshold value nsi can be designed, for example, as an applicable threshold value. It is chosen so that in the context of the possible during operation of the internal combustion engine operating parameters, for example, different leakage of the air filling, different engine oil or different specimen scattering of the friction effect of the internal combustion engine, the internal combustion engine in FIG. 7b illustrated behavior shows that so the intake cylinder ZYL2 goes into the power stroke.

Die Adaptation des Drehzahlschwellenwerts ns kann optional auch durchgeführt werden, wenn der Neustart der Brennkraftmaschine nicht ordnungsgemäß abgelaufen ist: Der Drehzahlschwellenwert ns wird erhöht, wenn in Schritt 2020 entschieden wurde, dass die ermittelte Drehzahl n der Brennkraftmaschine größer ist als der Drehzahlschwellenwert ns, und nach Durchführung der Schritte 2030, 2040 und 2050 in Schritt 2060 festgestellt wird, dass der Einlasszylinder ZYL2 (ZYL2) nicht in den Arbeitstakt gegangen ist.The adaptation of the speed threshold value ns can optionally also be carried out if the restart of the internal combustion engine has not proceeded correctly: The speed threshold value ns is increased if it was decided in step 2020 that the determined speed n of the internal combustion engine is greater than the speed threshold value ns, and Performing steps 2030, 2040 and 2050 is determined in step 2060 that the inlet cylinder ZYL2 (ZYL2) has not gone into the power stroke.

Claims (13)

  1. Method for stopping an internal combustion engine, in which a quantity of air supplied to the internal combustion engine via an air metering device, in particular a throttle valve (100), is reduced after a stop, request has been detected, wherein the quantity of air supplied to the internal combustion engine via the air metering device is increased again if a detected speed (n) of the internal combustion engine falls below a specifiable speed threshold value (ns), characterized in that an inlet cylinder (ZYL2), to which the quantity of air is supplied, still goes into its compression stroke, but no longer goes into a power stroke after the quantity of air supplied is increased.
  2. Method according to Claim 1, characterized in that the speed threshold value (ns) is reduced if the inlet cylinder (ZYL2) goes into the power stroke after the quantity of air metered in is increased and before the internal combustion engine comes to a halt.
  3. Method according to one of the preceding claims, characterized in that the speed threshold value is increased if the inlet cylinder (ZYL2) no longer goes into a compression stroke after the quantity of air metered in is increased.
  4. Method according to one of the preceding claims, characterized in that the specifiable speed threshold value is modified in accordance with a reverse oscillation angle (RPW).
  5. Method according to Claim 4, characterized in that the speed threshold value is increased if the reverse oscillation angle (RPW) is greater than a specifiable minimum reverse oscillation angle (RPWS).
  6. Method according to either of Claims 4 and 5, characterized in that the specifiable speed threshold value (ns) is increased to a specifiable initial threshold value (nsi).
  7. Method according to Claim 6, characterized in that the selected magnitude of the initial threshold value (nsi) is such that the inlet cylinder (ZYL2) passes through the top dead center position.
  8. Method according to one of the preceding claims, characterized in that the quantity of air metered in by the air metering device is increased immediately after the closure of an outlet valve (160) of the inlet cylinder (ZYL2).
  9. Method according to one of the preceding claims, characterized in that fuel is injected in such a way that an ignitable fuel/air mixture is present in the inlet cylinder (ZYL2) when it leaves the inlet stroke.
  10. Method according to one of the preceding claims, characterized in that fuel is injected before or immediately after the inlet cylinder (ZYL2) goes into the inlet stroke.
  11. Computer program, characterized in that it is programmed for use in a method according to one of Claims 1 to 10.
  12. Electric storage medium for an open-loop and/or closed-loop control device for an internal combustion engine, characterized in that a computer program for use in a method according to Claims 1 to 10 is stored on said medium.
  13. Ppen-loop and/or closed-loop control device for an internal combustion engine, characterized in that it is programmed for use in a method according to one of Claims 1 to 10.
EP11736369.7A 2010-09-10 2011-07-27 Method and device for controlling an internal combustion engine Active EP2614249B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010040559 2010-09-10
PCT/EP2011/062922 WO2012031826A1 (en) 2010-09-10 2011-07-27 Method and device for controlling an internal combustion engine

Publications (2)

Publication Number Publication Date
EP2614249A1 EP2614249A1 (en) 2013-07-17
EP2614249B1 true EP2614249B1 (en) 2016-09-21

Family

ID=44629130

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11736369.7A Active EP2614249B1 (en) 2010-09-10 2011-07-27 Method and device for controlling an internal combustion engine
EP11754657.2A Not-in-force EP2614251B1 (en) 2010-09-10 2011-09-08 Method and device for controlling an internal combustion engine

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11754657.2A Not-in-force EP2614251B1 (en) 2010-09-10 2011-09-08 Method and device for controlling an internal combustion engine

Country Status (7)

Country Link
US (2) US20130166177A1 (en)
EP (2) EP2614249B1 (en)
JP (3) JP2013541663A (en)
KR (2) KR20130108549A (en)
CN (2) CN103097718B (en)
DE (2) DE102011082198A1 (en)
WO (2) WO2012031826A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130166177A1 (en) * 2010-09-10 2013-06-27 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE102012216934A1 (en) * 2011-10-06 2013-04-11 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE102012203324A1 (en) 2012-03-02 2013-09-05 Robert Bosch Gmbh Method for stopping internal combustion engine, involves increasing amount of air supplied to internal combustion engine such that predetermined target pressure exists in cylinder at inlet valve-closing-time point of cylinder
DE102012219130A1 (en) 2012-10-19 2014-05-15 Robert Bosch Gmbh Method for controlling pause conduct of internal combustion engine, involves closing air measuring apparatus, if pause requirement of internal combustion engine is detected
US20140251267A1 (en) * 2013-03-07 2014-09-11 Ford Global Technologies, Llc Method and system for improving engine starting
DE102013210392A1 (en) * 2013-06-05 2014-12-11 Robert Bosch Gmbh Method for operating an internal combustion engine
DE102014204086A1 (en) 2013-07-15 2015-01-15 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE102013225074A1 (en) 2013-12-06 2015-06-11 Robert Bosch Gmbh Method for stopping an internal combustion engine
GB2521428B (en) * 2013-12-19 2018-08-15 Jaguar Land Rover Ltd Improvements to engine shutdown
DE102014201653B4 (en) * 2014-01-30 2024-08-08 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE102014207583A1 (en) 2014-04-22 2015-10-22 Robert Bosch Gmbh Method for stopping an internal combustion engine
JP6504006B2 (en) 2015-09-29 2019-04-24 株式会社デンソー Engine control device
JP6376118B2 (en) * 2015-12-24 2018-08-22 トヨタ自動車株式会社 Control device for internal combustion engine
DE102018117360A1 (en) * 2017-12-04 2019-06-06 Schaeffler Technologies AG & Co. KG A method of controlling an internal combustion engine of a hybrid powertrain
US10677212B2 (en) * 2018-05-01 2020-06-09 GM Global Technology Operations LLC Method and apparatus for controlled stopping of internal combustion engine
DE102019215898A1 (en) * 2019-10-16 2021-04-22 Robert Bosch Gmbh Method for switching off an internal combustion engine

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543424B2 (en) * 1972-11-22 1980-11-06
JP3379271B2 (en) * 1995-03-28 2003-02-24 株式会社デンソー Engine cylinder discriminator
US5983857A (en) * 1997-02-12 1999-11-16 Mazda Motor Corporation Engine control system
JPH10288055A (en) * 1997-04-15 1998-10-27 Toyota Motor Corp Intake air amount control device of internal combustion engine
JP2000213375A (en) * 1999-01-20 2000-08-02 Toyota Motor Corp Method and device for stop controlling internal combustion engine
JP2002364438A (en) * 2001-06-11 2002-12-18 Denso Corp Controller for internal combustion engine
DE10148217C1 (en) * 2001-09-28 2003-04-24 Bosch Gmbh Robert Method, computer program and control and / or regulating device for operating an internal combustion engine, and internal combustion engine
JP4140242B2 (en) * 2002-01-28 2008-08-27 トヨタ自動車株式会社 Control device for internal combustion engine
EP1403511A1 (en) * 2002-09-30 2004-03-31 Mazda Motor Corporation Engine starting system
DE50206323D1 (en) * 2002-10-25 2006-05-18 Ford Global Tech Llc PROCESS FOR DISCONNECTING A COMBUSTION ENGINE AND INTERNAL COMBUSTION ENGINE SUITABLE FOR CARRYING OUT THIS METHOD
US7263959B2 (en) * 2003-01-27 2007-09-04 Toyota Jidosha Kabushiki Kaisha Control apparatus of internal combustion engine
JP3794389B2 (en) * 2003-01-27 2006-07-05 トヨタ自動車株式会社 Stop control device for internal combustion engine
JP3770235B2 (en) * 2003-01-28 2006-04-26 トヨタ自動車株式会社 Internal combustion engine stop position estimation device
US7027911B2 (en) * 2003-01-30 2006-04-11 Denso Corporation Apparatus for controlling engine rotation stop by estimating kinetic energy and stop position
JP3941705B2 (en) * 2003-02-13 2007-07-04 トヨタ自動車株式会社 Internal combustion engine stop / start control device
DE10306632A1 (en) * 2003-02-18 2004-08-26 Robert Bosch Gmbh Method for operating an internal combustion engine
DE10314677A1 (en) * 2003-04-01 2004-10-14 Robert Bosch Gmbh Method for operating an internal combustion engine
JP4062264B2 (en) * 2003-06-06 2008-03-19 アイシン・エィ・ダブリュ株式会社 Vehicle drive control device, vehicle drive control method, and program
US7000592B2 (en) * 2003-08-29 2006-02-21 Honda Motor Co., Ltd. Throttle device for multipurpose engine
JP2005133576A (en) * 2003-10-28 2005-05-26 Mitsubishi Motors Corp Diesel engine
JP4096863B2 (en) * 2003-11-07 2008-06-04 トヨタ自動車株式会社 Engine starting device and engine starting method
EP1533501B1 (en) * 2003-11-21 2012-06-20 Mazda Motor Corporation "Engine starting system"
JP4341391B2 (en) * 2003-12-03 2009-10-07 マツダ株式会社 Engine starter
JP4031428B2 (en) * 2003-12-24 2008-01-09 三菱電機株式会社 Ignition control device for internal combustion engine
US6988031B2 (en) * 2004-01-07 2006-01-17 Visteon Global Technologies, Inc. System and method for determining engine stop position
US7240663B2 (en) * 2004-03-19 2007-07-10 Ford Global Technologies, Llc Internal combustion engine shut-down for engine having adjustable valves
JP4239868B2 (en) * 2004-03-25 2009-03-18 株式会社デンソー Cylinder discrimination device for internal combustion engine
US7082899B2 (en) * 2004-03-26 2006-08-01 Bose Corporation Controlled starting and braking of an internal combustion engine
JP4395726B2 (en) * 2004-03-29 2010-01-13 マツダ株式会社 Engine starter
JP4412025B2 (en) * 2004-03-29 2010-02-10 マツダ株式会社 Engine starter
US7079941B2 (en) * 2004-03-29 2006-07-18 Mazda Motor Corporation Engine starting system
JP3772890B2 (en) * 2004-03-29 2006-05-10 マツダ株式会社 Engine starter
JP4012893B2 (en) * 2004-06-11 2007-11-21 トヨタ自動車株式会社 Control device for internal combustion engine
JP2006029247A (en) * 2004-07-20 2006-02-02 Denso Corp Stop and start control device for engine
JP2006070793A (en) * 2004-09-01 2006-03-16 Toyota Motor Corp Control device for internal combustion engine
JP4371047B2 (en) * 2004-12-08 2009-11-25 トヨタ自動車株式会社 Internal combustion engine device and control method for internal combustion engine
JP4453536B2 (en) * 2004-12-10 2010-04-21 トヨタ自動車株式会社 Drive device, automobile equipped with the drive device, and control method of drive device
JP4506504B2 (en) * 2005-02-25 2010-07-21 トヨタ自動車株式会社 Control device for internal combustion engine
JP4550627B2 (en) 2005-03-02 2010-09-22 日立オートモティブシステムズ株式会社 Internal combustion engine stop control method and stop control device
JP4385971B2 (en) * 2005-03-02 2009-12-16 トヨタ自動車株式会社 Vehicle abnormality detection device
JP4466443B2 (en) * 2005-03-31 2010-05-26 マツダ株式会社 Vehicle engine starting device
JP4321497B2 (en) * 2005-06-16 2009-08-26 トヨタ自動車株式会社 Starter for internal combustion engine
JP4581949B2 (en) * 2005-09-30 2010-11-17 マツダ株式会社 Powertrain engine starter
US8042164B2 (en) * 2006-11-17 2011-10-18 Qualcomm Incorporated Device and process for unique internet access identification
JP4276680B2 (en) * 2007-02-06 2009-06-10 株式会社日本自動車部品総合研究所 Control device for multi-cylinder internal combustion engine
US7464690B1 (en) * 2007-05-29 2008-12-16 Wisconsin Alumni Research Foundation Adaptive engine injection for emissions reduction
JP4985111B2 (en) * 2007-06-04 2012-07-25 日産自動車株式会社 DIESEL ENGINE CONTROL DEVICE AND STOP CONTROL METHOD
JP4849040B2 (en) * 2007-09-10 2011-12-28 マツダ株式会社 Diesel engine control device
JP2009221952A (en) * 2008-03-17 2009-10-01 Yamaha Motor Co Ltd Throttle opening control device, motorcycle and method for producing control map
JP2009228637A (en) * 2008-03-25 2009-10-08 Mitsubishi Motors Corp Control device of engine
JP5057251B2 (en) * 2008-07-02 2012-10-24 株式会社デンソー Engine starter
US7975534B2 (en) * 2008-08-04 2011-07-12 Gm Global Technology Operations, Inc. Crankshaft reversal detection systems
US8412443B2 (en) * 2008-11-06 2013-04-02 Ford Global Technologies, Llc Engine shutdown control
JP5209454B2 (en) * 2008-12-09 2013-06-12 本田技研工業株式会社 Device for controlling when ignition is stopped when the internal combustion engine is stopped
US8589056B2 (en) * 2009-07-30 2013-11-19 Honda Motor Co., Ltd. Stop control system and method for internal combustion engine
JP5152304B2 (en) * 2009-11-23 2013-02-27 株式会社デンソー Engine control device
US8099998B2 (en) * 2010-05-19 2012-01-24 Delphi Technologies, Inc. Apparatus and method for estimating stopped engine crank angle
DE102010040562B4 (en) * 2010-09-10 2022-02-03 Robert Bosch Gmbh Method for restarting an internal combustion engine
US20130166177A1 (en) * 2010-09-10 2013-06-27 Robert Bosch Gmbh Method and device for controlling an internal combustion engine

Also Published As

Publication number Publication date
WO2012032110A1 (en) 2012-03-15
JP2013541663A (en) 2013-11-14
EP2614251A1 (en) 2013-07-17
CN103097718A (en) 2013-05-08
EP2614249A1 (en) 2013-07-17
KR20130108549A (en) 2013-10-04
CN103097718B (en) 2016-07-13
US20130166177A1 (en) 2013-06-27
DE102011082196A1 (en) 2012-03-15
WO2012031826A1 (en) 2012-03-15
US9624849B2 (en) 2017-04-18
CN103080532B (en) 2016-06-08
KR20130108550A (en) 2013-10-04
CN103080532A (en) 2013-05-01
EP2614251B1 (en) 2016-07-06
JP2015057549A (en) 2015-03-26
JP5635193B2 (en) 2014-12-03
DE102011082198A1 (en) 2012-03-15
US20130231849A1 (en) 2013-09-05
JP2013537272A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
EP2614249B1 (en) Method and device for controlling an internal combustion engine
DE102010040562B4 (en) Method for restarting an internal combustion engine
DE60305826T2 (en) Engine starting system
DE102006043678B4 (en) Device and method for operating an internal combustion engine
DE102015107539B4 (en) Control system for an internal combustion engine
EP1413727A1 (en) Method for shutdown of an internal combustion engine and internal combustion engine to carry out this method
WO2006013168A1 (en) Device and method for control of an internal combustion engine
DE102016102735B4 (en) Control device of a multi-cylinder internal combustion engine
DE112015002875T5 (en) Control device and control method for an internal combustion engine
WO2013050256A1 (en) Process and device for controlling an internal combustion engine
EP1287257A1 (en) Starting method and device for internal combustion engines
DE102015104941A1 (en) Engine-starting device
DE102007009857B4 (en) Motor control for controlling an automatic shutdown of a direct injection internal combustion engine
DE10200511B4 (en) Method and device for controlling a solenoid valve for internal combustion engines
DE102010041519B3 (en) Method for stoppage of diesel internal combustion engine, involves stopping multiple intake valves or exhaust valves after deactivation request and during phasing out of diesel internal combustion engine
DE102019107782B4 (en) CONTROL DEVICE FOR COMBUSTION ENGINE
DE10351891A1 (en) Method and control device for restarting an internal combustion engine
DE102016203237A1 (en) Method and device for controlling an internal combustion engine
DE102016118234A1 (en) POWER CONTROL DEVICE MACHINE
DE102013225074A1 (en) Method for stopping an internal combustion engine
DE102011090149A1 (en) Method for controlling an organ in the air supply tract of an internal combustion engine, in particular a throttle valve
EP3434891B1 (en) Start stop method for a combustion engine, combustion engine and motor vehicle
DE102014201653B4 (en) Method and device for controlling an internal combustion engine
DE102012209062A1 (en) Method for stopping and starting internal combustion engine, involves turning off starting cylinder located at starting injection cylinder and providing position units for adjusting fresh-air charge passing through exhaust stroke
DE112011102615T5 (en) Control device and control method for starter, and vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130410

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160622

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 831268

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011010737

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161222

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170123

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170121

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011010737

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

26N No opposition filed

Effective date: 20170622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170727

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170727

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170727

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 831268

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110727

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160921

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502011010737

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240919

Year of fee payment: 14