EP2699783B1 - Method and device for calibrating a fuel metering system of a motor vehicle - Google Patents
Method and device for calibrating a fuel metering system of a motor vehicle Download PDFInfo
- Publication number
- EP2699783B1 EP2699783B1 EP12709871.3A EP12709871A EP2699783B1 EP 2699783 B1 EP2699783 B1 EP 2699783B1 EP 12709871 A EP12709871 A EP 12709871A EP 2699783 B1 EP2699783 B1 EP 2699783B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- injector
- excitation
- injection
- determined
- test injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000000034 method Methods 0.000 title claims description 27
- 239000000446 fuel Substances 0.000 title claims description 26
- 238000002347 injection Methods 0.000 claims description 64
- 239000007924 injection Substances 0.000 claims description 64
- 230000005284 excitation Effects 0.000 claims description 44
- 238000012360 testing method Methods 0.000 claims description 27
- 238000002485 combustion reaction Methods 0.000 claims description 24
- 238000010586 diagram Methods 0.000 claims description 4
- 230000004913 activation Effects 0.000 description 8
- 230000010355 oscillation Effects 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2464—Characteristics of actuators
- F02D41/2467—Characteristics of actuators for injectors
- F02D41/247—Behaviour for small quantities
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1497—With detection of the mechanical response of the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2438—Active learning methods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/26—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
- F02D41/28—Interface circuits
- F02D2041/286—Interface circuits comprising means for signal processing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/12—Introducing corrections for particular operating conditions for deceleration
- F02D41/123—Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2441—Methods of calibrating or learning characterised by the learning conditions
Definitions
- the invention relates to a method and a device for calibrating a fuel metering system of an internal combustion engine, in particular of a motor vehicle.
- the small amounts of fuel in the part injections mentioned require a precise metering of the respective injection quantities. Falls a partial injection completely away, for example, because a present injection component, injectors in common-rail injection systems, due to conventional tolerances at an underlying drive signal is not yet injected, this has a significant impact on the operation of the engine, which, for example, by increased Noise during combustion manifests.
- An essential one The tolerance source for the quantity accuracy of the pilot injection is a so-called drift of the respective injector.
- pressure generation and injection are decoupled from one another by means of a high-pressure accumulator, wherein the injection pressure is generated independently of the engine speed and the injection quantity and is available for injection in the high-pressure accumulator.
- the respective injection time and the respective injection quantity are calculated in an electronic engine control unit and added by the respective injectors of each cylinder of the internal combustion engine via remote-controlled valves. It has to be ensured that the said partial injections are always realized with the highest possible precision.
- the injectors of a fuel metering system When manufacturing injectors of a corresponding fuel metering system occurring manufacturing tolerances cause differences in the operating characteristics of the individual injectors, which often occur only over the life of the respective injectors or the fuel metering system or are even enhanced during the life.
- the injectors of a fuel metering system usually have different quantity maps, d. H. different dependencies between injection quantities, rail pressure and activation duration. As a result, the various injectors fill the combustion chamber with different amounts of fuel, even with very precise control.
- a metering of said minimum amounts is based on a so-called zero-quantity calibration.
- This is, for example, in the publication DE 199 45 618 A1 described.
- a single injector is activated and the actuation period is increased stepwise until a change in a quantity substitute signal (short: quantity signal) occurs at a minimum actuation time, for example a torque increase measurable on the internal combustion engine, on the basis of which now that an injection or injection has taken place.
- the control duration then present corresponds to an operating state in which the injection for the relevant internal combustion engine, ie the cylinder of the internal combustion engine, is being used. This approach will apply to all Injectors or cylinders of the internal combustion engine carried out accordingly.
- control periods thus obtained are stored in a so-called control map, which is used in a subsequent control of the injectors in the context of a zero-quantity calibration, wherein a current value of the control period is respectively converted into a correction value for the amount of fuel to be supplied.
- a method and a device for calibrating a fuel metering system of an internal combustion engine in which at least one injector with a first test injection is activated with a first test injection quantity and a resulting resulting first quantity signal is detected.
- a first emergencyan Taverndauer is determined and it is further provided that the at least one injector with at least one second injection injection is controlled with a deviating from the first injection amount second injection quantity and thereby resulting at least second quantity signal is detected, wherein at least this second injection quantity an at least secondISan Taverndauer is determined.
- a regression calculation is performed.
- the zero-rate calibration learning process can be improved by reducing the time required to learn a calibration value.
- the DE 103 59 306 A1 discloses another method for calibrating a fuel metering system of an internal combustion engine.
- test injections with variable actuation duration are carried out in the thrust on a cylinder or the injector associated therewith.
- the associated quantity replacement signal which can be obtained, for example, by processing the measured speed signal, is calculated.
- the control period is varied so long until a predetermined setpoint of the quantity signal is reached.
- a drive duration learning value is calculated and stored non-volatile. The method is used individually for each injector at several rail pressure levels.
- An object of the present invention was now to accelerate the determination of the above learning values.
- a first injector with a first test injection and a first activation duration and a second injector with a second test injection and a second activation duration are provided for calibrating a fuel metering system of an internal combustion engine, in particular a motor vehicle, and a resulting overall excitation as a superimposition of a first injector Detecting excitation of the first injector and a second excitation of the second injector. From this, a total vibration is then determined, from which the first excitation of the first injector and the second excitation of the second injector are reconstructed. On the basis of the respective excitation as a respective quantity signal for the respective injector, a zero quantity calibration is then carried out independently of the other injector, whereby a respective minimum actuation duration is determined for a respective injector.
- the learning values are determined as in the normal zero-quantity calibration in the thrust.
- the proposed method with respect to the learning process is carried out independently on two injectors in parallel. From each test injection of the two injectors results in a stimulation of the drive train. These suggestions, as parallel or approximately at the same time, are superimposed on the drive train. A corresponding speed signal evaluation determines a total vibration with magnitude and phase. From this, the excitation of the respective individual injectors can then be reconstructed according to the principle of vector addition. On the basis of the quantity signal reconstructed for the respective injector, a calibration for each injector then takes place independently as in the case of a previously mentioned "normal" zero-quantity calibration.
- Advantage of the proposed method is the ability to double the calibration without having to accept a deterioration in the signal-to-noise ratio in purchasing.
- the first test injection for the first injector and the second test injection for the second injector are made in the thrust and in approximately the same time.
- the first injector or the first cylinder assigned to it and the second injector or the second cylinder assigned to it are mutually orthogonal.
- first injector and the second injector and the respective cylinders may also be in opposite phase to each other or according to yet another embodiment also to each other so that they include an angle ⁇ , where ⁇ is not equal to a multiple of 90 °.
- the determined respective excitations are entered as respective quantity signals for a respective injector in a respective drive duration map and stored in this.
- two injectors are simultaneously subjected to respective test injections during thrust.
- Each of these test injections excites the vibratory components of the powertrain.
- the resulting superposition of these two excited vibrations can be measured by means of a speed sensor.
- the amplitudes of the individual signals belonging to the respective injectors are then reconstructed from the superimposed signal.
- the invention further relates to a device for calibrating a Kraftstoffzumesssystems an internal combustion engine, in particular a motor vehicle.
- the device comprises control means for driving a first injector with a first test injection having a first drive duration and a second injector with a second test injection having a second drive duration.
- Further Sensor means are provided which are configured to detect a resulting total excitation as a superposition of a first excitation of the first injector and a second excitation of the second injector and to determine a resulting overall vibration.
- the proposed device comprises computing means which are configured to reconstruct from the overall vibration the first excitation of the first injector and the second excitation of the second injector.
- a zero quantity calibration can be carried out independently of the other injector on the basis of a respective excitation as a respective quantity signal for a respective injector, whereby a respective minimum actuation duration can be determined for a respective injector.
- the proposed device can be used in particular in a common rail diesel injection system.
- FIG. 1 As part of an embodiment of the method according to the invention, a reconstruction of excitations of two injectors acted upon at the same time by respective test injections from a measured excitation of oscillatable components of the drive train within an internal combustion engine, in particular of a motor vehicle is shown.
- the measured excitation or oscillation results as a superimposition of oscillations, excited by the respective individual two injectors loaded with respective test injections.
- the two injectors loaded with respective test injections or the correspondingly assigned cylinders are orthogonal to one another.
- the first injector or the associated cylinder 1 is characterized by the ordinate
- the second injector or cylinder 2 is represented by the abscissa.
- the now measured oscillation is first represented by an amplitude A12 and a corresponding phase ⁇ . This can be done, for example, as a Fourier transformation of a corresponding speed signal.
- the respective phases of a pure excitation or oscillation on the first cylinder 1 or the second cylinder 2 are known from the prior art and are, as already mentioned above, used as axes in the coordinate system shown here.
- A12 is the amplitude of the total vibration d. H. the superposition of the two oscillations caused by the respective injectors, A1 is the reconstructed amplitude of cylinder 1 and A2 represents the reconstructed amplitude of cylinder 2. ⁇ results from the phase or phase shift of the measured excitation with respect to the phase of cylinder 2 or cylinder 1.
- a search algorithm according to the prior art is performed for each of the two injectors, the first injector 1 and the second injector 2, wherein a drive duration of a respective injector is tracked until a predetermined target amount is reached and then it becomes a above-mentioned Learning value determined according to the prior art.
- FIG. 2 is a test result again, which was obtained on a motor vehicle with a 4-cylinder engine after performing the method according to the invention.
- a received drive characteristic map of a second injector 2 was determined three times.
- the respective activation duration of a first injector 1 was used as a parameter and assumed in each case the activation duration 140 ⁇ s, 180 ⁇ s and 220 ⁇ s.
- the three determined drive duty curves 10, 20, 30 are in this case in a graph showing a respective specific quantity signal S2 of the second injector 1 over the drive time T, measured in ⁇ s, registered.
- the Anberichtdauerkennfeld 10 represents the Antechnischdauerkennfeld the second injector 2, at a drive time of the first injector of 140 microseconds.
- the drive duration map 20 was recorded at a drive duration of the first injector of 180 .mu.s, and the drive duration map 30 was recorded for a drive duration of the first injector of 220 .mu.s.
- the three determined control duration maps of the second injector 2 are exactly within the measurement accuracy of the speed evaluation used.
- FIG. 3 a corresponding graph for corresponding control duration maps of the first injector 1 is shown, here almost opposite FIG. 2 Injector 1 and injector 2 have their roles "swapped".
- a respective specific quantity signal S1 of the first injector 1 was plotted over the activation duration T, measured in ⁇ s.
- the drive duration of the second injector 2 was used as a parameter and amounted to drive actuation characteristic 10 '140 microseconds, for drive duration map 20' 180 microseconds and for An confusedauerkennfeld 30 '220 microseconds.
- the three Anberichtdauerkennfelder determined for injector 1 in the measurement accuracy of the Drehiereauswertmies exactly to each other.
- FIG. 4 Now shows a made according to the method of the invention reconstruction of each of a first injector and a second injector excited vibrations from a result of the two oscillations and measured total vibration.
- the injectors 1 and 2 enclose an angle ⁇ which is not equal to a multiple of 90 °.
- FIG. 1 This constellation is also shown in a coordinate system, wherein the second cylinder 2 and injector 2 on a horizontal axis and the first cylinder 1 and injector 1 is marked on a relative to the horizontal axis rotated by ⁇ axis.
- the coordinate axes of this coordinate system therefore include an angle ⁇ .
- the measured signal is in turn converted into a representation with amplitude and phase and drawn accordingly in this coordinate system.
- a reconstruction of the individual amplitudes A1 and A2 results here by application of the sine theorem analogous to the reconstruction in FIG. 1 , This results in a generalized evaluation relationship as follows:
- a ⁇ 1 A ⁇ 12 ⁇ sin ⁇ / sin 180 ⁇ ° - ⁇
- a ⁇ 2 A ⁇ 12 ⁇ sin ⁇ - ⁇ / sin 180 ⁇ ° - ⁇
- FIG. 5 shows a simplified block diagram of an embodiment of an inventive device for controlling a fuel metering system.
- an internal combustion engine 10 which receives a certain amount of fuel from a Kraftstoffzumessaku 30 at a given time.
- sensor means in the form of various sensors 40, in particular a rotational speed sensor, are present, which detect measured values 15 which characterize the operating state of the internal combustion engine 10 and forward them accordingly to a control unit 20.
- the control unit 20 moreover, output signals 25 of other existing sensors 45, which detect quantities that characterize the state of the fuel metering unit 30 and / or environmental conditions.
- Such a size 25 is, for example, a given driver's request. In the other sizes 25, for example, may also be the pressure and temperature of the ambient air.
- the control unit 20 calculates, on the basis of the measured values 15 and the further variables 25, control pulses 35 with which the fuel metering unit 30 is acted upon.
- the internal combustion engine is preferably a direct injection and / or a self-igniting internal combustion engine.
- the fuel metering unit 30 may be configured differently. It may, for example, be designed as a previously mentioned and described common rail injection system. In such a system, a high pressure pump compresses fuel in a reservoir. From this memory then the fuel passes through injectors into respective combustion chambers of the internal combustion engine. The duration and / or the beginning of the fuel injection is controlled by the injectors.
- the injectors preferably each include a solenoid valve or a piezoelectric actuator.
- an electrically actuated valve is provided in each case.
- the solenoid valve and / or the piezoelectric actuator, which affects the fuel metering is referred to as an electrically actuable valve.
- An electrically operable valve is arranged so that an amount of fuel to be injected is determined by opening time or by closing time of the valve.
- control unit 20 For the calibration of the fuel metering system, the control unit 20 according to the invention now has control means 50 for driving a first injector with a first test injection having a first drive duration by means of drive pulse 35_1 and for driving a second injector with a second test injection having a second drive duration by means of drive pulse 35_2.
- the sensors 40 in particular a provided speed sensor, are configured to detect a total excitation resulting therefrom as a superposition of a first excitation of the first injector and a second excitation of the second injector and to determine a resulting overall vibration.
- the control unit 20 further has computing means 55 which are configured to reconstruct from the overall vibration the first excitation of the first injector and the second excitation of the second injector and based on the respective excitations as a respective quantity signal for the respective injector independently of the other injector to perform a zero-quantity calibration. As a result, a respective minimum activation duration is determined for a respective injector.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Fuel-Injection Apparatus (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Kalibrierung eines Kraftstoffzumesssystems einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs.The invention relates to a method and a device for calibrating a fuel metering system of an internal combustion engine, in particular of a motor vehicle.
In modernen Kraftstoffeinspritzsystemen der hier betroffenen Art, wie bspw. in Common-Rail-Diesel-Einspritzsystemen, erfolgen zur Verbesserung einer Gemischaufbereitung zeitgleich vor oder nach einer entsprechenden Haupteinspritzung Teileinspritzungen mit relativ kleinen Kraftstoffmengen. Die genannte Haupteinspritzung wird dabei in der Regel auf Basis einer Momentenanforderung eines entsprechenden Fahrers berechnet. Die Einspritzmengen der genannten Teileinspritzungen sollen möglichst gering sein, um Emissionsnachteile zu vermeiden. Andererseits müssen die Einspritzmengen groß genug sein, damit unter Berücksichtigung aller Toleranzquellen stets die für den entsprechenden Verbrennungsprozess notwendige Mindestmenge abgesetzt wird. Eine derart verbesserte Gemischaufbereitung ermöglicht reduzierte Abgasemissionen sowie verringerte Verbrennungsgeräusche.In modern fuel injection systems of the type concerned here, such as in common-rail diesel injection systems, carried out to improve a mixture preparation at the same time before or after a corresponding main injection partial injections with relatively small amounts of fuel. The said main injection is calculated as a rule on the basis of a torque request of a corresponding driver. The injection quantities of said partial injections should be as low as possible in order to avoid emission disadvantages. On the other hand, the injection quantities must be large enough so that, taking into account all tolerance sources, the minimum quantity necessary for the corresponding combustion process is always emitted. Such improved mixture preparation allows reduced exhaust emissions and reduced combustion noise.
Die geringen Kraftstoffmengen bei den genannten Teileinspritzungen erfordern eine präzise Zumessung der jeweiligen Einspritzmengen. Fällt eine Teileinspritzung gänzlich weg, bspw. weil eine vorliegende Einspritzkomponente, bei Common-Rail-Einspritzsystemen ein Injektor, aufgrund von üblichen Toleranzen bei einem zugrundeliegenden Ansteuersignal noch nicht einspritzt, hat dies erhebliche Auswirkungen auf den Betrieb der Brennkraftmaschine, was sich bspw. durch erhöhte Geräuschentwicklung bei der Verbrennung äußert. Eine wesentliche Toleranzquelle für die Mengengenauigkeit der Voreinspritzung ist eine sogenannte Drift des jeweiligen Injektors.The small amounts of fuel in the part injections mentioned require a precise metering of the respective injection quantities. Falls a partial injection completely away, for example, because a present injection component, injectors in common-rail injection systems, due to conventional tolerances at an underlying drive signal is not yet injected, this has a significant impact on the operation of the engine, which, for example, by increased Noise during combustion manifests. An essential one The tolerance source for the quantity accuracy of the pilot injection is a so-called drift of the respective injector.
Bei den genannten Common-Rail-Diesel-Einspritzsystemen werden mittels eines Hochdruckspeichers, eines sogenannten "Rails" Druckerzeugung und Einspritzung voneinander entkoppelt, wobei der Einspritzdruck unabhängig von der Motordrehzahl und der Einspritzmenge erzeugt wird und in dem Hochdruckspeicher für die Einspritzung zur Verfügung steht. Der jeweilige Einspritzzeitpunkt und die jeweilige Einspritzmenge werden dabei in einem elektronischen Motorsteuergerät berechnet und von den entsprechenden Injektoren jedes Zylinders der Brennkraftmaschine über ferngesteuerte Ventile zugesetzt. Es ist dabei zu gewährleisten, dass die genannten Teileinspritzungen stets mit möglichst hoher Präzision verwirklicht werden.In the aforementioned common-rail diesel injection systems, pressure generation and injection are decoupled from one another by means of a high-pressure accumulator, wherein the injection pressure is generated independently of the engine speed and the injection quantity and is available for injection in the high-pressure accumulator. The respective injection time and the respective injection quantity are calculated in an electronic engine control unit and added by the respective injectors of each cylinder of the internal combustion engine via remote-controlled valves. It has to be ensured that the said partial injections are always realized with the highest possible precision.
Bei Herstellung von Injektoren eines entsprechenden Kraftstoffzumesssystems auftretende Fertigungstoleranzen bedingen Unterschiede in den Betriebskenngrößen der einzelnen Injektoren, welche oft erst über die Lebensdauer der jeweiligen Injektoren bzw. des Kraftstoffzumessystems auftreten oder während der Lebensdauer sogar noch verstärkt werden. Dazu kommt, dass die Injektoren eines Kraftstoffzumessystems üblicherweise unterschiedliche Mengenkennfelder aufweisen, d. h. unterschiedliche Abhängigkeiten zwischen Einspritzmengen, Raildruck und Ansteuerdauer. Dies führt dazu, dass die verschiedenen Injektoren den entsprechenden Verbrennungsraum auch bei sehr präziser Ansteuerung mit unterschiedlichen Mengen an Kraftstoff füllen.When manufacturing injectors of a corresponding fuel metering system occurring manufacturing tolerances cause differences in the operating characteristics of the individual injectors, which often occur only over the life of the respective injectors or the fuel metering system or are even enhanced during the life. In addition, the injectors of a fuel metering system usually have different quantity maps, d. H. different dependencies between injection quantities, rail pressure and activation duration. As a result, the various injectors fill the combustion chamber with different amounts of fuel, even with very precise control.
Eine Zumessung der genannten Minimalmengen erfolgt auf Grundlage einer sogenannten Nullmengenkalibrierung. Diese ist bspw. in der Druckschrift
Aus der
Bei der oben bereits erwähnten Nullmengenkalibrierung werden im Schub auf einem Zylinder bzw. dem diesem zugeordneten Injektor Testeinspritzungen mit variabler Ansteuerdauer durchgeführt. Zu jeder Ansteuerdauer wird das zugehörige Mengenersatzsignal, das durch Aufbereitung des gemessenen Drehzahlsignals bspw. gewonnen werden kann, berechnet. Die Ansteuerdauer wird hierbei so lange variiert, bis ein vorgegebener Sollwert des Mengensignals erreicht ist. In einem darauffolgenden Schritt wird ein Ansteuerdauer-Lernwert berechnet und nicht flüchtig abgespeichert. Das Verfahren wird dabei für jeden Injektor bei mehreren Raildruckstufen einzeln angewendet.In the zero-quantity calibration already mentioned above, test injections with variable actuation duration are carried out in the thrust on a cylinder or the injector associated therewith. For each activation period, the associated quantity replacement signal, which can be obtained, for example, by processing the measured speed signal, is calculated. The control period is varied so long until a predetermined setpoint of the quantity signal is reached. In a subsequent step, a drive duration learning value is calculated and stored non-volatile. The method is used individually for each injector at several rail pressure levels.
Die Kalibrierung der einzelnen Injektoren bei den einzelnen Raildruckstufen erfolgt demnach sequenziell.The calibration of the individual injectors at the individual rail pressure stages is therefore sequential.
Eine Aufgabe der vorliegenden Erfindung war es nunmehr die Ermittlung der obigen Lernwerte zu beschleunigen.An object of the present invention was now to accelerate the determination of the above learning values.
Diese Aufgabe wird gelöst durch ein Verfahren gemäß dem unabhängigen Patentanspruch 1 bzw. einer entsprechenden Vorrichtung gemäß dem unabhängigen Patentanspruch 6. Vorteilhafte Ausführungsformen sind in den jeweiligen Unteransprüchen formuliert.This object is achieved by a method according to the independent claim 1 and a corresponding device according to the independent claim 6. Advantageous embodiments are formulated in the respective subclaims.
Gemäß dem erfindungsgemäßen Verfahren ist vorgesehen zur Kalibrierung eines Kraftstoffzumesssystems einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs einen ersten Injektor mit einer ersten Testeinspritzung und einer ersten Ansteuerdauer und einen zweiten Injektor mit einer zweiten Testeinspritzung und einer zweiten Ansteuerdauer anzusteuern und eine sich daraus ergebende Gesamtanregung als Überlagerung einer ersten Anregung des ersten Injektors und einer zweiten Anregung des zweiten Injektors zu erfassen. Daraus wird sodann eine Gesamtschwingung ermittelt, aus der die erste Anregung des ersten Injektors und die zweite Anregung des zweiten Injektors rekonstruiert werden. Auf Basis der jeweiligen Anregung als jeweiligem Mengensignal für den jeweiligen Injektor wird dann unabhängig von dem anderen Injektor eine Nullmengenkalibrierung durchgeführt, wodurch für einen jeweiligen Injektor eine jeweilige Mindestansteuerdauer ermittelt wird.According to the method of the invention, a first injector with a first test injection and a first activation duration and a second injector with a second test injection and a second activation duration are provided for calibrating a fuel metering system of an internal combustion engine, in particular a motor vehicle, and a resulting overall excitation as a superimposition of a first injector Detecting excitation of the first injector and a second excitation of the second injector. From this, a total vibration is then determined, from which the first excitation of the first injector and the second excitation of the second injector are reconstructed. On the basis of the respective excitation as a respective quantity signal for the respective injector, a zero quantity calibration is then carried out independently of the other injector, whereby a respective minimum actuation duration is determined for a respective injector.
Die Ermittlung von Lernwerten erfolgt dabei wie bei der normalen Nullmengenkalibrierung im Schub. Allerdings wird das vorgeschlagene Verfahren hinsichtlich des Lernvorgangs jeweils autark auf zwei Injektoren parallel durchgeführt. Aus jeder Testeinspritzung der beiden Injektoren ergibt sich eine Anregung des Antriebsstrangs. Diese Anregungen, da parallel bzw. in etwa zeitgleich, werden auf dem Antriebsstrang überlagert. Eine entsprechende Drehzahlsignalauswertung ermittelt daraus eine Gesamtschwingung mit Betrag und Phase. Daraus lässt sich dann nach dem Prinzip der Vektoraddition die Anregung der jeweiligen einzelnen Injektoren rekonstruieren. Auf Basis des für den jeweiligen Injektor rekonstruierten Mengensignals erfolgt sodann eine Kalibrierung für jeden Injektor autark wie bei einer zuvor erwähnten "normalen" Nullmengenkalibrierung.The learning values are determined as in the normal zero-quantity calibration in the thrust. However, the proposed method with respect to the learning process is carried out independently on two injectors in parallel. From each test injection of the two injectors results in a stimulation of the drive train. These suggestions, as parallel or approximately at the same time, are superimposed on the drive train. A corresponding speed signal evaluation determines a total vibration with magnitude and phase. From this, the excitation of the respective individual injectors can then be reconstructed according to the principle of vector addition. On the basis of the quantity signal reconstructed for the respective injector, a calibration for each injector then takes place independently as in the case of a previously mentioned "normal" zero-quantity calibration.
Vorteil des vorgeschlagenen Verfahrens ist die Möglichkeit, die Kalibriergeschwindigkeit zu verdoppeln ohne eine Verschlechterung im Signal-/Rausch-Abstand in Kauf nehmen zu müssen.Advantage of the proposed method is the ability to double the calibration without having to accept a deterioration in the signal-to-noise ratio in purchasing.
Gemäß einer Ausführungsform des vorgeschlagenen Verfahrens werden die erste Testeinspritzung für den ersten Injektor und die zweite Testeinspritzung für den zweiten Injektor im Schub und in etwa zeitgleich vorgenommen.According to one embodiment of the proposed method, the first test injection for the first injector and the second test injection for the second injector are made in the thrust and in approximately the same time.
Gemäß einer möglichen Ausführungsform des vorgeschlagenen Verfahrens liegen der erste Injektor bzw. der ihm zugeordnete erste Zylinder und der zweite Injektor bzw. der ihm zugeordnete zweite Zylinder dabei zueinander orthogonal.According to one possible embodiment of the proposed method, the first injector or the first cylinder assigned to it and the second injector or the second cylinder assigned to it are mutually orthogonal.
Alternativ dazu können der erste Injektor und der zweite Injektor bzw. die jeweiligen Zylinder auch gegenphasig zueinander liegen oder gemäß einer noch weiteren Ausführungsform auch so zueinander liegen, dass sie einen Winkel τ einschließen, wobei τ ungleich einem Vielfachen von 90° beträgt.Alternatively, the first injector and the second injector and the respective cylinders may also be in opposite phase to each other or according to yet another embodiment also to each other so that they include an angle τ, where τ is not equal to a multiple of 90 °.
Ferner kann vorgesehen sein, dass die ermittelten jeweiligen Anregungen als jeweilige Mengensignale für einen jeweiligen Injektor in ein jeweiliges Ansteuerdauerkennfeld eingetragen und in diesem gespeichert werden.Furthermore, it can be provided that the determined respective excitations are entered as respective quantity signals for a respective injector in a respective drive duration map and stored in this.
Bei Durchführung des erfindungsgemäßen Verfahrens werden im Schub zwei Injektoren gleichzeitig mit jeweiligen Testeinspritzungen beaufschlagt. Jede dieser Testeinspritzung bewirkt eine Anregung der schwingungsfähigen Bauteile des Antriebsstrangs. Die resultierende Überlagerung dieser beiden angeregten Schwingungen kann mittels eines Drehzahlsensors gemessen werden. Gemäß dem erfindungsgemäßen Verfahren werden sodann aus dem überlagerten Signal die Amplituden der zu den jeweiligen Injektoren gehörenden Einzelsignalen rekonstruiert.When carrying out the method according to the invention, two injectors are simultaneously subjected to respective test injections during thrust. Each of these test injections excites the vibratory components of the powertrain. The resulting superposition of these two excited vibrations can be measured by means of a speed sensor. In accordance with the method according to the invention, the amplitudes of the individual signals belonging to the respective injectors are then reconstructed from the superimposed signal.
Die Erfindung betrifft ferner eine Vorrichtung zur Kalibrierung eines Kraftstoffzumesssystems einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs. Die Vorrichtung umfasst Steuermittel zur Ansteuerung eines ersten Injektors mit einer ersten Testeinspritzung mit einer ersten Ansteuerdauer und eines zweiten Injektors mit einer zweiten Testeinspritzung mit einer zweiten Ansteuerdauer. Ferner sind Sensormittel vorgesehen, die dazu konfiguriert sind, eine sich daraus ergebende Gesamtanregung als Überlagerung einer ersten Anregung des ersten Injektors und einer zweiten Anregung des zweiten Injektors zu erfassen und eine sich daraus ergebende Gesamtschwingung zu ermitteln. Ferner umfasst die vorgeschlagene Vorrichtung Rechenmittel, die dazu konfiguriert sind, aus der Gesamtschwingung die erste Anregung des ersten Injektors und die zweite Anregung des zweiten Injektors zu rekonstruieren. Ferner kann mit Hilfe der vorgesehenen Rechenmittel auf Basis einer jeweiligen Anregung als jeweiligem Mengensignal für einen jeweiligen Injektor unabhängig vom anderen Injektor eine Nullmengenkalibrierung durchgeführt werden, wodurch für einen jeweiligen Injektor eine jeweilige Mindestansteuerdauer zu ermitteln ist.The invention further relates to a device for calibrating a Kraftstoffzumesssystems an internal combustion engine, in particular a motor vehicle. The device comprises control means for driving a first injector with a first test injection having a first drive duration and a second injector with a second test injection having a second drive duration. Further Sensor means are provided which are configured to detect a resulting total excitation as a superposition of a first excitation of the first injector and a second excitation of the second injector and to determine a resulting overall vibration. Furthermore, the proposed device comprises computing means which are configured to reconstruct from the overall vibration the first excitation of the first injector and the second excitation of the second injector. Furthermore, a zero quantity calibration can be carried out independently of the other injector on the basis of a respective excitation as a respective quantity signal for a respective injector, whereby a respective minimum actuation duration can be determined for a respective injector.
Die vorgeschlagene Vorrichtung kann insbesondere in einem Common-Rail-Diesel-Einspritzsystem zur Anwendung kommen.The proposed device can be used in particular in a common rail diesel injection system.
Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus der Beschreibung und den beiliegenden Zeichnungen.Further advantages and embodiments of the invention will become apparent from the description and the accompanying drawings.
Es versteht sich, dass die voranstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweiligen angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.It is understood that the features mentioned above and those yet to be explained below can be used not only in the particular combination indicated, but also in other combinations or in isolation, without departing from the scope of the present invention.
- Figur 1FIG. 1
- zeigt eine grafische Darstellung am Beispiel eines 4-Zylindersystems einer Überlagerung von Amplitudensignalen zweier orthogonaler Injektoren bzw. Zylindern und deren nach einer Ausführungsform des erfindungsgemäßen Verfahrens durchgeführten Separierung in jeweilig einzelne Amplitudensignale der zwei einzelnen Injektoren.shows a graphical representation of the example of a 4-cylinder system of a superposition of amplitude signals of two orthogonal injectors or cylinders and their carried out according to an embodiment of the method separation into respective individual amplitude signals of the two individual injectors.
- Figur 2FIG. 2
- zeigt ein Ansteuerdauerkennfeld eines zweiten Injektors der gemäß einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens zusammen mit einem ersten Injektor parallel kalibriert wurde, wobei die Ansteuerdauer des ersten Injektors dabei als Parameter eingeht.shows a Ansteuerdauerkennfeld a second injector which has been calibrated in parallel with a first injector according to a further embodiment of the method according to the invention, wherein the drive duration of the first injector received as a parameter.
- Figur 3FIG. 3
- zeigt ein Ansteuerdauerkennfeld eines ersten Injektors, der gemäß einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens zusammen mit einem zweiten Injektor parallel kalibriert wurde, wobei hier die Ansteuerdauer des zweiten Injektors als Parameter eingeht.shows a Ansteuerdauerkennfeld a first injector, which was calibrated in parallel with a second injector according to a further embodiment of the method according to the invention, in which case the drive duration of the second injector received as a parameter.
- Figur 4FIG. 4
- zeigt in grafischer Darstellung eine Überlagerung von zwei Amplitudensignalen zweier Injektoren, die so zueinander liegen, dass sie einen Winkel τ einschließen, welcher ungleich einem Vielfachen von 90° ist.shows a graphical representation of a superposition of two amplitude signals of two injectors, which lie to each other so that they include an angle τ, which is not equal to a multiple of 90 °.
- Figur 5FIG. 5
- zeigt ein Übersichtsblockdiagramm einer Ausführungsform einer erfindungsgemäßen Vorrichtung.shows an overview block diagram of an embodiment of a device according to the invention.
In
Im vorliegenden Fall wird nunmehr am Beispiel eines 4-Zylindersystems angenommen, dass die zwei mit jeweiligen Testeinspritzungen beaufschlagten Injektoren bzw. die entsprechend zugeordneten Zylinder orthogonal zueinander liegen. Demnach ist der erste Injektor bzw. der zugehörige Zylinder 1 durch die Ordinate gekennzeichnet, während der zweite Injektor bzw. Zylinder 2 durch die Abszisse dargestellt ist. Die nunmehr gemessene Schwingung wird zunächst durch eine Amplitude A12 und eine entsprechende Phase α dargestellt. Dies kann bspw. als Fouriertransformation eines entsprechenden Drehzahlsignals vorgenommen werden. Die jeweiligen Phasen einer reinen Anregung bzw. Schwingung auf dem ersten Zylinder 1 oder dem zweiten Zylinder 2 sind aus dem Stand der Technik bekannt und werden, wie bereits voranstehend erwähnt, in dem hier dargestellten Koordinatensystem als Achsen verwendet. Das gemessene Signal mit Amplitude A12 und Phase α wird sodann gemäß trigonometrischem Standard auf die beiden Achsen projiziert. Dies lautet dann wie folgt:
wobeiIn the present case, it is now assumed using the example of a 4-cylinder system that the two injectors loaded with respective test injections or the correspondingly assigned cylinders are orthogonal to one another. Accordingly, the first injector or the associated cylinder 1 is characterized by the ordinate, while the second injector or
in which
A12 die Amplitude der Gesamtschwingung d. h. der Überlagerung der beiden durch die jeweiligen Injektoren verursachten Schwingungen ist, A1 die rekonstruierte Amplitude von Zylinder 1 und A2 die rekonstruierte Amplitude von Zylinder 2 darstellt. α ergibt sich aus der Phase bzw. Phasenverschiebung der gemessenen Anregung gegenüber der Phase von Zylinder 2 bzw. Zylinder 1.A12 is the amplitude of the total vibration d. H. the superposition of the two oscillations caused by the respective injectors, A1 is the reconstructed amplitude of cylinder 1 and A2 represents the reconstructed amplitude of
Dadurch lassen sich in einfacher Weise die beiden die Gesamtanregung verursachenden Einzelanregungen der Injektoren 1 und 2 separieren.As a result, the two individual excitations of the
Sodann wird für jeden der beiden Injektoren, den ersten Injektor 1 und den zweiten Injektor 2 ein Suchalgorithmus gemäß dem Stand der Technik durchgeführt, wobei eine Ansteuerdauer eines jeweiligen Injektors so lange nachgeführt wird, bis eine vorgegebene Zielmenge erreicht ist und anschließend wird daraus ein voranstehend erwähnter Lernwert gemäß Stand der Technik bestimmt.Then, a search algorithm according to the prior art is performed for each of the two injectors, the first injector 1 and the
In
Alternativ zum genannten Szenario, in welchem zwei orthogonale Injektoren 1 und 2 bzw. entsprechende Zylinder mit jeweiligen Testeinspritzungen beaufschlagt werden, können auch zwei gegenphasig liegende Injektoren bzw. Zylinder angeregt werden. Die beiden Schwingungen löschen sich dann exakt aus, wenn die Einspritzmengen für die jeweiligen Injektoren gleich groß sind. Dies kann bspw. dazu verwendet werden, zwei Injektoren exakt aufeinander abzugleichen, wenn ein Absolutbetrag der jeweiligen Einspritzung für die der Abgleich erfolgt, nicht relevant ist.As an alternative to the aforementioned scenario, in which two
Bei der Brennkraftmaschine handelt es vorzugsweise um eine Direkteinspritzung und/oder eine selbstzündende Brennkraftmaschine.The internal combustion engine is preferably a direct injection and / or a self-igniting internal combustion engine.
Die Kraftstoffzumesseinheit 30 kann verschieden ausgestaltet sein. Sie kann bspw. als voranstehend bereits erwähntes und beschriebenes Common-Rail-Einspritzsystem ausgebildet sein. Bei einem derartigen System verdichtet eine Hochdruckpumpe Kraftsoff in einem Speicher. Von diesem Speicher gelangt dann der Kraftstoff über Injektoren in jeweilige Brennräume der Brennkraftmaschine. Die Dauer und/oder der Beginn der Kraftstoffeinspritzung wird mittels der Injektoren gesteuert. Dabei beinhalten die Injektoren vorzugweise jeweils ein Magnetventil bzw. einen piezoelektrischen Aktor.The
Pro Zylinder wird jeweils ein elektrisch betätigbares Ventil vorgesehen. Im Folgendem wird das Magnetventil und/oder der piezoelektrischen Aktor, der die Kraftstoffzumessung beeinflusst als elektrisch betätigbares Ventil bezeichnet.Per cylinder, an electrically actuated valve is provided in each case. In the following, the solenoid valve and / or the piezoelectric actuator, which affects the fuel metering is referred to as an electrically actuable valve.
Ein elektrisch betätigbares Ventil ist so angeordnet, dass durch Öffnungsdauer bzw. durch Schließdauer des Ventils eine einzuspritzende Kraftstoffmenge festgelegt wird.An electrically operable valve is arranged so that an amount of fuel to be injected is determined by opening time or by closing time of the valve.
Zur Kalibrierung des Kraftstoffzumesssystems verfügt nun das Steuergerät 20 erfindungsgemäß über Steuermittel 50 zur Ansteuerung eines ersten Injektors mit einer ersten Testeinspritzung mit einer ersten Ansteuerdauer mittels Ansteuerimpuls 35_1 und zur Ansteuerung eines zweiten Injektors mit einer zweiten Testeinspritzung mit einer zweiten Ansteuerdauer mittels Ansteuerimpuls 35_2. Ferner sind die Sensoren 40, insbesondere ein vorgesehener Drehzahlsensor, dazu konfiguriert, eine sich daraus ergebene Gesamtanregung als Überlagerung einer ersten Anregung des ersten Injektors und einer zweiten Anregung des zweiten Injektors zu erfassen und eine sich daraus ergebende Gesamtschwingung zu ermitteln. Das Steuergerät 20 verfügt des weiteren über Rechenmittel 55, die dazu konfiguriert sind, aus der Gesamtschwingung die erste Anregung des ersten Injektors und die zweite Anregung des zweiten Injektors zu rekonstruieren und auf Basis der jeweiligen Anregungen als jeweiligem Mengensignal für den jeweiligen Injektor unabhängig vom anderen Injektor eine Nullmengenkalibrierung durchzuführen. Dadurch wird eine jeweilige Mindestansteuerdauer für einen jeweiligen Injektor bestimmt.For the calibration of the fuel metering system, the
Claims (7)
- Method for calibrating a fuel metering system of an internal combustion engine, in particular of a motor vehicle, in which a first injector is actuated with a first test injection with a first actuation period and a second injector is actuated with a second test injection with a second actuation period, and a total vibration excitation of the drive train which results therefrom is detected as superimposition of a first excitation of the first injector and a second excitation of the second injector, wherein a total vibration is determined therefrom, from which vibration the first excitation of the first injector and the second excitation of the second injector are reconstructed, and zero quantity calibration is carried out on the basis of the respective excitation as a respective quantity signal for the respective injector independently of the other injector, as a result of which a respective minimum actuation period is determined for a respective injector, wherein the total vibration is determined with an absolute value and a phase, on the basis of which the first excitation of the first injector and the second excitation of the second injector are reconstructed by applying vector addition, wherein the first test injection for the first injector and the second test injection for the second injector are performed in the overrun mode and approximately simultaneously.
- Method according to Claim 1, wherein the first injector and the second injector are located orthogonally with respect to one another.
- Method according to Claim 1, wherein the first injector and the second injector are located in antiphase with respect to one another.
- Method according to Claim 1, wherein the first injector and the second injector are located with respect to one another in such a way that they enclose an angle τ, where τ ≠ n · 90°, n = 0, 1, 2, etc.
- Method according to one of the preceding claims, wherein the respective determined excitations are input as respective quantity signals for a respective injector into a respective actuation period characteristic diagram and stored therein.
- Device for calibrating a fuel metering system of an internal combustion engine, in particular of a motor vehicle, with control means for actuating a first injector with a first test injection with a first actuation period and a second injector with a second test injection with a second actuation period, with sensor means for detecting a total vibration excitation of the drive train which results therefrom as a superimposition of a first excitation of the first injector and a second excitation of the second injector, and for determining a total vibration which results therefrom, and with computing means which are configured to reconstruct from the total vibration the first excitation of the first injector and the second excitation of the second injector, and to carry out zero quantity calibration on the basis of the respective excitation as a respective quantity signal for the respective injector independently of the other injector, as a result of which a respective minimum actuation period can be determined for a respective injector, wherein the total vibration is determined with an absolute value and a phase, on the basis of which the first excitation of the first injector and the second excitation of the second injector are reconstructed by applying vector addition, wherein the first test injection for the first injector and the second test injection for the second injector are performed in the overrun mode and approximately simultaneously.
- Device according to Claim 6, for application in a common rail injection system.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011007563A DE102011007563A1 (en) | 2011-04-18 | 2011-04-18 | Method and device for calibrating a fuel metering system of a motor vehicle |
PCT/EP2012/054641 WO2012143187A1 (en) | 2011-04-18 | 2012-03-16 | Method and device for calibrating a fuel metering system of a motor vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2699783A1 EP2699783A1 (en) | 2014-02-26 |
EP2699783B1 true EP2699783B1 (en) | 2015-06-17 |
Family
ID=45872962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12709871.3A Not-in-force EP2699783B1 (en) | 2011-04-18 | 2012-03-16 | Method and device for calibrating a fuel metering system of a motor vehicle |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2699783B1 (en) |
KR (1) | KR101858295B1 (en) |
CN (1) | CN103492693B (en) |
DE (1) | DE102011007563A1 (en) |
WO (1) | WO2012143187A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014202121A1 (en) | 2014-02-06 | 2015-08-06 | Robert Bosch Gmbh | Method for determining fuel quantities in a direct injection of a motor vehicle |
JP5949819B2 (en) * | 2014-03-25 | 2016-07-13 | トヨタ自動車株式会社 | Fuel injection control device for internal combustion engine |
DE102014208992A1 (en) * | 2014-05-13 | 2015-11-19 | Robert Bosch Gmbh | Method for calibrating post-injections in a fuel injection system of an internal combustion engine, in particular of a motor vehicle |
DE102014209587B4 (en) | 2014-05-20 | 2016-03-31 | Continental Automotive Gmbh | Characterization of a measurement channel for measuring a feedback signal generated by an operating fuel injector |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1284681B1 (en) * | 1996-07-17 | 1998-05-21 | Fiat Ricerche | CALIBRATION PROCEDURE FOR AN INJECTION SYSTEM FITTED WITH INJECTORS. |
DE19945618B4 (en) | 1999-09-23 | 2017-06-08 | Robert Bosch Gmbh | Method and device for controlling a fuel metering system of an internal combustion engine |
DE10359306A1 (en) * | 2003-12-17 | 2005-07-21 | Robert Bosch Gmbh | Method and device for operating an internal combustion engine |
JP2007064191A (en) * | 2005-09-02 | 2007-03-15 | Toyota Motor Corp | Fuel injection control device for diesel engine |
DE102007019099B4 (en) * | 2007-04-23 | 2016-12-15 | Continental Automotive Gmbh | Method and device for calibrating fuel injectors |
DE102008002482A1 (en) | 2008-06-17 | 2009-12-24 | Robert Bosch Gmbh | Method and device for calibrating a Kraftstoffzumesssystems an internal combustion engine, in particular a motor vehicle |
DE102008043165B4 (en) * | 2008-10-24 | 2020-08-06 | Robert Bosch Gmbh | Method and device for calibrating the pre-injection quantity of an internal combustion engine, in particular a motor vehicle |
-
2011
- 2011-04-18 DE DE102011007563A patent/DE102011007563A1/en not_active Withdrawn
-
2012
- 2012-03-16 WO PCT/EP2012/054641 patent/WO2012143187A1/en active Application Filing
- 2012-03-16 CN CN201280018857.5A patent/CN103492693B/en not_active Expired - Fee Related
- 2012-03-16 EP EP12709871.3A patent/EP2699783B1/en not_active Not-in-force
- 2012-03-16 KR KR1020137027435A patent/KR101858295B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR101858295B1 (en) | 2018-05-15 |
WO2012143187A1 (en) | 2012-10-26 |
CN103492693B (en) | 2016-06-15 |
EP2699783A1 (en) | 2014-02-26 |
KR20140024324A (en) | 2014-02-28 |
DE102011007563A1 (en) | 2012-10-18 |
CN103492693A (en) | 2014-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006006303B3 (en) | Process to estimate the exact amount of fuel injected to a single automotive cylinder in a single operation | |
DE102011089296B4 (en) | Method and device for calibrating a fuel metering system of a motor vehicle | |
DE102010043989B4 (en) | Adaptation method of an injector of an internal combustion engine | |
EP1712768A2 (en) | Method and device for controlling of fuel metering in at least one combustion chamber of an internal combustion engine | |
DE10305523A1 (en) | Calibration method for fuel injection system of combustion engine of motor vehicle determining change of operation value of combustion engine and increasing operation duration of actuator until operation value changes | |
DE102015214780A1 (en) | Method for detecting faulty components of a fuel injection system | |
EP2699783B1 (en) | Method and device for calibrating a fuel metering system of a motor vehicle | |
DE102011006915A1 (en) | Method for calibrating an injection quantity | |
WO2012079970A1 (en) | Method for operating an internal combustion engine | |
EP2019195B1 (en) | Method for determining the amount of fuel injected | |
DE102008005154A1 (en) | Method and device for monitoring a motor control unit | |
DE102005059909B4 (en) | Method for controlling an internal combustion engine | |
DE102005058445B3 (en) | Fuel amount reporting process for internal combustion engine cylinder involves detecting setting or movement signals at least when engine is switched off | |
DE102005059908A1 (en) | Method for metering fuel into combustion chambers of an internal combustion engine | |
DE102012201601A1 (en) | Method for controlling an internal combustion engine | |
DE102015220405A1 (en) | Method and device for controlling a fuel injection system of an internal combustion engine | |
DE102016214286A1 (en) | Method for zero-quantity calibration of injector-metered fuel in an internal combustion engine | |
DE102012206582A1 (en) | Method and device for operating an internal combustion engine | |
DE102011006909A1 (en) | Method for calibrating fuel injection quantity of fuel measuring system of combustion engine used in e.g. motor vehicle, involves determining correction value for partial fuel injection into individual cylinder of combustion engine | |
DE102012222101A1 (en) | Method for controlling internal combustion engine with direct injection, involves equating all injection valves of all cylinders of internal combustion engine with respect to injected fuel mass | |
DE10036154B4 (en) | Method for checking a fuel pressure control system | |
DE102007061732A1 (en) | Internal combustion engine operating method for motor vehicle, involves plausibilizing parameter determined in function level to control engine and another parameter determined in function monitoring level to monitor engine's function | |
DE102005011836B4 (en) | Method and device for controlling an internal combustion engine | |
DE102012208456A1 (en) | Method for correcting a quantity replacement signal | |
DE10226506A1 (en) | Method, computer program, and control and / or regulating device for operating an internal combustion engine, and internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20131118 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20141006 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150327 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 732075 Country of ref document: AT Kind code of ref document: T Effective date: 20150715 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012003484 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150917 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Ref country code: NL Ref legal event code: MP Effective date: 20150617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150918 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151019 Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150617 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151017 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012003484 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 |
|
26N | No opposition filed |
Effective date: 20160318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160331 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160316 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160316 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 732075 Country of ref document: AT Kind code of ref document: T Effective date: 20170316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120316 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200325 Year of fee payment: 9 Ref country code: GB Payment date: 20200325 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200324 Year of fee payment: 9 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210316 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220525 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502012003484 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231003 |