Nothing Special   »   [go: up one dir, main page]

EP2691952B1 - Allocation, by sub-bands, of bits for quantifying spatial information parameters for parametric encoding - Google Patents

Allocation, by sub-bands, of bits for quantifying spatial information parameters for parametric encoding Download PDF

Info

Publication number
EP2691952B1
EP2691952B1 EP12717796.2A EP12717796A EP2691952B1 EP 2691952 B1 EP2691952 B1 EP 2691952B1 EP 12717796 A EP12717796 A EP 12717796A EP 2691952 B1 EP2691952 B1 EP 2691952B1
Authority
EP
European Patent Office
Prior art keywords
sub
band
bits
bands
allocated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12717796.2A
Other languages
German (de)
French (fr)
Other versions
EP2691952A1 (en
Inventor
Adrien Daniel
Rozenn Nicol
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
Orange SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orange SA filed Critical Orange SA
Publication of EP2691952A1 publication Critical patent/EP2691952A1/en
Application granted granted Critical
Publication of EP2691952B1 publication Critical patent/EP2691952B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/002Dynamic bit allocation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition

Definitions

  • the present invention relates to the coding of multichannel audio streams representing spatialized sound scenes for the purpose of storage or transmission.
  • It relates more particularly to the parametric coding / decoding of multichannel audio streams.
  • This type of coding is based on the coding of a signal resulting from a channel reduction processing ("downmix" in English) of the multichannel audio stream and the associated coding of parameters of spatial information of the sound sources.
  • the spatial information parameters are used to find the spatialization of the sound sources from the “downmix” signal which will be called hereinafter, sum signal.
  • the invention relates more particularly to the coding and decoding of these spatial information parameters.
  • the bit budget available according to the coders is not always sufficient. In the case of coding by frequency sub-band, this budget is divided by sub-bands.
  • Another technique is to perform intra or inter-frame differential coding.
  • a quantification based on psycho-acoustic criteria is proposed by Breebaart in the document of Breebaart, J; Van de Par, S; Kohlrausch, A & Schuijers, E, "Parametric Coding of stereo Audio” in EURASIP Journal on Applied Signal Processing, 2005,9, pp 1305-1322 .
  • the method described in this document is based on the perception that a listener can have on certain frequency bands for particular parameters of the inter-channel difference type, or on the sensitivity to a variation of these parameters as a function of the range of values. concerned. It is for example described that certain parameters are coded only on the frequency bands lower than 1 kHz. Beyond this frequency, the parameters are no longer useful for the hearing system to locate a source.
  • the psycho-acoustic criterion used here relates to a sensitivity to the coded parameters and not to a sensitivity of spatial displacements of the sound sources.
  • the auditory perception or the sensitivity with respect to a spatial resolution in the sub-bands can vary at each instant from one sub-band to another, independently of the parameter to be coded.
  • the method according to the invention uses a psycho-acoustic criterion to optimize the allocation strategy for the quantization bits of the spatial information parameters as a function of the sub-band, so as to favor the sub-bands at all times. which are most useful for the hearing system, regardless of the spatial information parameters to be coded or decoded.
  • the spatial resolution properties of the auditory system are thus exploited.
  • the spatial resolution in a sub-band can be defined as the smallest angle between two sources, which the hearing system is able to discriminate.
  • the spatial resolution associated with a sub-band is inversely proportional to the energy in this sub-band.
  • the energy in a sub-band is strong, this already gives an indication of the little influence that the other sub-bands can have with respect to it and thus gives a first dynamic allocation approach ( taking into account the other sub-bands).
  • the energy properties can correspond to the energy measured in the sub-band or more precisely to a measurement of the energy distance of this sub-band at its masking / audibility threshold.
  • the spectral properties of a sub-band are both energy properties in the sub-band and the central frequency of the sub-band.
  • the spatial resolution of a sub-band is further estimated from the energy properties of the other sub-bands of a set of sub-bands defining the sound sources.
  • the other sub-bands can be considered as competing distractive sources which are liable to degrade the spatial sensitivity associated with this sub-band.
  • the spectral properties of the other frequency sub-bands makes it possible to estimate this degradation and to predict the spatial resolution associated with the sub-band.
  • This taking into account makes it possible to dynamically define with what precision the spatialization information associated with each sub-band must be coded, on the basis of a decrease or an increase in the spatial resolution.
  • the resulting quantization error is adapted as a function of the spatial sensitivity in order to minimize the error when the sensitivity is maximum, and conversely to maximize it when the sensitivity is minimum.
  • the quantification error is thus, from a perceptual point of view, homogeneously minimized.
  • the spectral properties of a sub-band are obtained from a decoded sum signal originating from a reduction processing of the channels of the multi-channel audio stream.
  • the estimation of the spatial resolution by sub-band does not require information of the position type of the sound sources but only information on the spectral properties of the sub-bands. This information can therefore be obtained from the sum signal decoded either locally in an encoder at the coding stage or decoded by the decoder itself at the decoding stage. It is therefore not necessary to send additional information to the decoder to find the allocation strategy for quantization bits. This greatly reduces the amount of information to be transmitted between the coder and the decoder.
  • the energy properties in a sub-band include the primary energy and ambient energy properties in the sub-band.
  • the share of correlated energy (primary energy) between the different channels of the multichannel signal is differentiated from that which is not correlated (ambient) in the psycho-acoustic model allowing the spatial resolution to be estimated.
  • the estimation of the spatial resolution is more precise and closer to reality.
  • the number of bits to be allocated for a sub-band is part of a predetermined number of bits to be distributed between the sub-bands, adding to a number of bits already allocated by sub-bands .
  • the allocation defined here applies to a number of bits remaining to be allocated in a quantization bit budget, a part of the quantification bits of the overall budget having already been distributed between the sub-bands.
  • the decoder it is possible to approximately decode the spatial information parameters from the quantization bits already allocated, the additional bit budget making it possible to refine the decoding and to adapt it to auditory perception.
  • the determination of the number of bits to be allocated for a sub-band is adjusted as a function of the difference between the resolution in this sub-band and a predetermined reference resolution, to which a bit allocation corresponds. of predetermined reference.
  • the method is implemented for a set of unmasked sub-bands determined by an energy masking analysis step between sub-bands.
  • the allocation method is implemented only for the audible, that is to say non-masked, sub-bands, which makes it possible to concentrate the budget of bits to be allocated on these sub-bands.
  • This provides a calculation gain since the method is not implemented in all the sub-bands and a transmission gain since the spatial information parameters associated with the masked sub-bands will not be transmitted (0 bits allocated).
  • This device has the same advantages as the method described above, which it implements.
  • the invention relates to an encoder or a decoder comprising such an allocation device.
  • It relates to a computer program comprising code instructions for the implementation of the steps of the allocation method as described, when these instructions are executed by a processor.
  • the invention relates to a storage medium, readable by a processor, integrated or not into the allocation device, possibly removable, memorizing a computer program implementing an allocation method as described above.
  • the figure 1 thus describes a parametric coding / decoding system for a multichannel audio stream.
  • This figure illustrates the encoder 100, the decoder 110 as well as the allocation device 120 according to an embodiment of the invention.
  • the channels x 1 ( n ) , x 2 ( n ) , ..., x n ( n ) of the multichannel audio stream are first transformed by a time / frequency transformation module 106, before being applied as an input to both a channel reduction processing module 101 or also a “Downmix” module and a module for extracting spatial information parameters 102.
  • the transformation operated by the module 106 can be of different types. It can for example use a filter bank technique, or a Short-Term Fourier Transform (TFCT) technique using an algorithm of FFT type (“Fast Fourier Transform” in English).
  • TFCT Short-Term Fourier Transform
  • the filters can be defined so that the resulting frequency sub-bands describe perceptual frequency scales, for example by choosing constant bandwidths in the ERB scales (for "Equivalent Rectangular Bandwidth" in English).
  • the same process can be applied in the case of a technique by TFCT by grouping the frequency bins of each time frame according to the ERB scales.
  • a “downmix” signal or sum signal, originating from the channel reduction processing module 101 (mono or stereo signal) is obtained by summation, optionally weighted, of the different channels in each sub-band.
  • This sum signal is then coded by a core coding module 103 which may be of different type, for example of MPEG-4 AAC standardized audio coding type.
  • This coded signal is then transmitted over the network to be subsequently decoded by the corresponding core decoder 113.
  • the module 102 extracts the spatial information parameters of the audio channels. These parameters are those which describe the spatial position of the channels. These parameters can for example be the pair of parameters ILD (for “Interaural Level Difference” in English) and IPD (for “Interaural Phase Difference” in English) as defined for the stereo parametric coding method described in the document of Breebaart, J; Van de Par, S; Kohlrausch, A & Schuijers, E, "Parametric Coding of stereo Audio” in EURASIP Journal on Applied Signal Processing, 2005,9, pp 1305-1322 .
  • ILD for “Interaural Level Difference” in English
  • IPD for “Interaural Phase Difference” in English
  • These parameters can, in another example, be of the type of primary and ambient position vectors as for the representation described in the document "Spatial audio scene coding” by Goodwin, M. & Jot, J., 125th AES Convention, 2008 October 2-5, San Francisco, USA, 2008 .
  • the spatial information parameters thus extracted are then quantified by the quantization module 104 according to an allocation of quantization bits defined by the allocation device 120.
  • the allocation device 120 implements an allocation method which will be described with reference to the figure 2 .
  • This allocation device 120 receives as input the sum signal decoded S sd by a local decoder 105 of the coder or in the case of the decoder, decoded by the decoding module 113.
  • a module 121 for estimating a spatial resolution by frequency sub-band determines the spectral properties of the frequency sub-bands.
  • the spectral properties determined are energy properties in the sub-band.
  • the spectral properties are both the energy properties and the center frequency in the subband.
  • This spatial resolution corresponds to the smallest angle between two sources that the human hearing system can discriminate.
  • This spatial resolution can also be called MAA (for “Minimum Audible Angle” in English) as defined by the document of Mills AW "On the Minimum Audible Angle” in The Journal of the Acoustical Society of America, 83 (S1): S122, May 1988 .
  • the spatial resolution by frequency sub-band thus determined makes it possible to determine a number of bits to be allocated to the sub-band for the quantification of the spatial information parameters.
  • This step is implemented by the module 122 for determining the number of bits. This step will be explained in more detail with reference to the figure 2 .
  • This allocation of the number of bits per frequency sub-band is then based on psycho-acoustic and not purely mathematical considerations as was done previously in the state of the art. Thus, this allocation takes into account the perception of the hearing system in the frequency bands.
  • the quantification errors of the spatial parameters result in changes in the position of the sound sources at the time of decoding. These changes in position induce a spatial distortion of the sound scene which, evolving over time, results in spatial instability. Spatial resolution can be interpreted as a sensitivity to this spatial distortion. This sensitivity can be expressed for each sub-band by the module 121. The allocation device 120 will then model the quantization error as a function of this sensitivity in order to minimize the error when the sensitivity is maximum, and vice versa of the maximize when sensitivity is minimal.
  • the allocation thus determined makes it possible to quantify (Q) at the coder, the spatial information parameters by the quantization module 104 or to perform an inverse quantization (Q -1 ) at the decoder by the inverse quantization module 114 to obtain these settings.
  • the synthesis module 112 will be able, from the spatial information thus de-quantified and from the decoded sum signal S sd , to obtain the multichannel audio stream in the frequency domain then after time / inverse frequency transformation of the module 116, the audio stream in the time domain x ⁇ 1 ( n ) , x ⁇ 2 ( n ) , ..., x ⁇ n ( n ).
  • the figure 2 now illustrates the steps of the bit allocation method in an embodiment of the invention.
  • an analysis step E201 of energy masking between the frequency sub-bands can optionally be carried out.
  • This step allows you to select a set of frequency sub-bands audible by the hearing system.
  • a sub-band having a high energy level can potentially mask ( ie . Make inaudible) the neighboring sub-bands having a too low energy level.
  • a comparative analysis of the energies of the different sub-bands can be carried out in order to determine whether certain sub-bands are not masked by other sub-bands. It is then unnecessary to keep the spatial information of the masked sub-bands, which frees quantization bits for the other sub-bands for the quantization bit allocation process given by the following steps of the method.
  • a set of sub-bands ⁇ b k ⁇ is thus defined to implement the steps of the allocation method.
  • each sub-band is considered as a target source, the other sub-bands can be considered as distracting sources.
  • step E202 spectral properties of the sub-bands of the set ⁇ b k ⁇ are extracted.
  • these spectral properties are either only its energy properties (I), or both the central frequency f c of the current sub-band and its energy properties.
  • each sub-band does not quite reflect reality in terms of perception at the time of the restoration, and this because only part of this energy will be restored in a correlated way between the different channels. The rest will be decorrelated. It is therefore interesting to estimate and specify to the psycho-acoustic model what will be the share of correlated energy (primary energy) and uncorrelated (ambient energy).
  • the energy properties can then be discriminated in primary energy (I p ) which represents the energy correlated between the sub-bands and the ambient energy (I a ) representing the energy decorrelated in the current sub-band.
  • step E203 makes an estimation of the spatial resolution in the current sub-band.
  • Each sub-band being considered in turn as a target.
  • a psycho-acoustic model ⁇ is determined and makes it possible to obtain the spatial resolution or even the MAA, associated with each sub-band.
  • the spatial resolution of the hearing system can be defined as the smallest angle between two sound sources that it can discriminate.
  • the benchmark study by Mills mentioned above was supported by more recent studies described for example in the document of Perrott DR and Saberi K., "Minimum audible angle thresholds for sources varying in both elevation and azimuth" in The journal of the acoustical Society of America, 87 (4): 1728-1731, April 1990 .
  • the MAA defines the minimum precision with which the position of a sound source must be described in order not to introduce audible artifacts. A position error lower than the MAA will not be perceived by the hearing system. Thus the MAA represents the “spatial blur” of perception of a sound source.
  • Another simplified psycho-acoustic model only takes into account the energy properties of the current sub-band.
  • the energy properties correspond to the energy measured in the sub-band.
  • the associated MAA is considered to be inversely proportional to the energy in this sub-band.
  • the energy properties correspond to a measurement of the energy distance of this sub-band at its masking / audibility threshold.
  • the MAA associated with this sub-band is also inversely proportional to the audible energy in this sub-band. In other words, the more audible energy a subband contains, the smaller its MAA will be assumed.
  • the psycho-acoustic model takes into account not only the characteristics of the current sub-band but also those of the other sub-bands which are then considered as distractive sub-bands.
  • the effect of the position of the distractive sources on “blurring” is negligible, in the sense that the MAA can be estimated without the position information of the distractive sources.
  • the MAA associated with a source depends on the position of this source in relation to the head of the listener. The best performance (lowest MAA) is observed when the auditor faces the source considered.
  • the psycho-acoustic model according to the invention it is assumed that the listener is free to orient his head within the listening device. Consequently, it is assumed, when estimating the MAA associated with a given source, that the listener always faces the source considered. Consequently, to estimate the MAA associated with a given source, the position information of this source is not necessary. From these results, a psychoacoustic model that describes the MAA associated with a given source can be constructed based on the presence and properties (energy, frequency content) of other sources.
  • the MAAs associated with the different sub-bands can be calculated from the “downmix” or sum signal component as described with reference to the figure 1 .
  • the consequence is that, for decoding, it is not necessary to transmit the quantization strategy, but that it can be deduced from the sum signal according to the same procedure as for encoding.
  • the psycho-acoustic model is described by a function ⁇ (c, d 1 , d 2 , ..., d N ), where c represents the target source, and the d i are the distractive sources.
  • each sub-band constitutes a source characterized by its central frequency and its energy (primary and ambient).
  • the function ⁇ produces the MAA associated with it in the presence of the other sources considered to be distracting, i.e. the maximum non-perceptible position error applicable to this source in the presence of others.
  • each source is characterized in step E202 by three parameters ⁇ f c , I p , I a ⁇ , where f c is the central frequency of the sub-band considered, and I p and I a are respectively the primary and ambient energy in this sub-band.
  • the psycho-acoustic model ⁇ (c, d 1 , d 2 , ..., d N ) produces a couple MAA values ⁇ p , ⁇ a ⁇ , corresponding respectively to the primary and ambient energy components, associated with step E203 with each sub-band considered in turn as target.
  • the MAA value considered will be ⁇ p or ⁇ a respectively , and therefore this distinction will no longer be made in the rest of the document. If the distribution I p / I a is unknown (parameter not transmitted), the decoder will assume that all the energy is correlated (primary energy), as well as the psycho-acoustic model, so as to obtain a correspondence during the restitution .
  • the function ⁇ (b k , b 1 , ..., b k - 1 , b k + 1 , ..., b K ) is called to estimate the spatial “blurring” exerted on this sub-band by the other sub-bands, which are therefore considered to be distracting, and ⁇ produces the MAA associated with this sub-band.
  • the spatial resolution is then estimated dynamically since the influence of the other sub-bands is taken into account.
  • the different spatial resolutions thus estimated in the frequency sub-bands make it possible to determine the number of bits to be allocated for the quantification of the spatial information parameters in each of the sub-bands.
  • step E204 a determination of the number of bits to be allocated to the current sub-band as a function of the estimated spatial resolution, is carried out.
  • the strategy for allocating the quantization bits of the spatialization parameters will then consist in maximizing the number of bits for the sub-bands having the minimum MAA, to the detriment of the sub-bands for which the MAA is maximum.
  • the number of bits to be allocated for a sub-band is inversely proportional to the spatial resolution estimated for this sub-band.
  • the allocation method can therefore adapt the allocation of bits from one sub-band to another according to the sensitivity of the auditory system to spatial distortion. This sensitivity is given by the psycho-acoustic model.
  • This method can be implemented both in the context of transmission at a constrained rate and in the context of transmission at an unconstrained rate.
  • bit budget is left available for variable allocation from one sub-band to another according to the MAA associated with it.
  • a certain budget of “floating” bits is therefore to be distributed between the same parameter of each of the sub-bands so as to perceptively minimize the spatial distortion resulting from the quantization process, in a homogeneous manner in each of the sub-bands.
  • the rest of the bit budget is distributed evenly across all sub-bands.
  • the quality of spatial coding is therefore defined by the average number, over all the sub-bands, of bits allocated to the same parameter, or, in an equivalent manner, by the total number of bits allocated to the same parameter for all the sub- bands.
  • a target spatial coding quality is chosen and imposed by the user.
  • This target quality is defined by the average number, over all time frames and over all sub-bands, of bits allocated to the same setting.
  • the average MAA then considered as a reference resolution value, is assumed to be estimable or predictable, all sub-bands combined, over all or part of the time frames.
  • the sub-bands whose estimated MAA is worth the average MAA will be allocated the average number of bits per parameter defined by the user.
  • the allocation of bits for the other sub-bands is made, as in the context of constrained bit rate, so as to perceptively minimize the spatial distortion resulting from the quantization process, homogeneously in each of the sub-bands, but given the number bits to be allocated to the medium MAA sub-bands.
  • the determination of the number of bits to be allocated for a sub-band is carried out if the resolution in the sub-band is different from a predetermined reference value, here the average MAA.
  • a minimum number of bits is already allocated per sub-band to code each parameter, which on the one hand ensures a minimum quality of spatial reproduction for all the audible sub-bands, and on the other hand provides an approximate value of the parameter concerned which is accessible for decoding.
  • the sub-band coded on the most bits (bm) must be the sub-band having the smallest MAA ( ⁇ m ), and the coding accuracy ratio between the current sub-band bk and bm must be inversely proportional to the ratio of the MAA of these two sub-bands:
  • the sum of the floating bits of each sub-band must not exceed the total number of floating bits available N flo : ⁇ NOT k ⁇ NOT flo .
  • Formulas (2) and (3) respectively give a first approximation of the number of bits to be allocated to the parameter of the sub-bands N k and N m . If there are still bits to allocate, or if too many bits have been allocated, the following heuristic (so-called "gluttonous" algorithm) makes it possible to finalize the process of allocating floating bits.
  • the index of the sub-band to which the next bit is to be allocated or to be resumed will be determined respectively by argmax k ( ⁇ k ) or argmin k ( ⁇ k ).
  • ⁇ k is recalculated after each operation (allocation or withdrawal) on one bit.
  • the allocation is finalized when the total number of floating bits allocated is exactly N float .
  • the coding accuracy ratio between the current subband b k and the reference subband b ⁇ must be inversely proportional to the ratio of the MAA of these two sub-bands:
  • the formula (5) gives the number of bits to allocate in total to the coding of the parameter of the sub-band b k .
  • each parameter is then quantized (Q) to the coder to form the binary train or de-quantized (Q -1 ) to the decoder according to the number of bits allocated to it.
  • the primary and ambient energy distribution parameters which are coded on a fixed number of bits, must be transmitted first, as they will then be necessary for decoding the parameters coded on a variable number of bits. .
  • the inverse quantization of the bit stream of spatial parameters requires knowing the number of bits allocated to each parameter.
  • the invention makes it possible to avoid transmission of additional information on the bit allocation strategy.
  • the primary and ambient energy distribution parameters which are coded on a fixed number of bits, have been transmitted beforehand. They are therefore decoded before decoding the other parameters.
  • n fixed is non-zero, it is possible to recover a first approximate value of each of the parameters without having to know the number of bits allocated to each of the parameters. Indeed, it suffices to organize the bit stream so as to send first n fixed most significant bits for each of the parameters, followed by the N k bits remaining for each parameter. This can be useful if other experimental studies show that certain position information is actually necessary to more accurately estimate the MAA. In this case, the sum signal or “downmix” would no longer suffice, and these approximate values of the parameters could be used to estimate the MAA at encoding (respectively at decoding) in order to know the number of bits to be allocated (respectively allocated) to each setting. Thus, the higher n is fixed , the more we have a good approximation of the parameters available for the estimation of MAA.
  • Encoders and decoders as described with reference to figure 1 as well as the allocation device that is the subject of the invention can be integrated into multimedia equipment of the living room decoder, "set top box” or audio or video content player type. They can also be integrated into mobile phone type communication equipment.
  • the figure 3 shows an exemplary embodiment of such equipment in which the allocation device according to the invention is integrated.
  • This device comprises a processor PROC cooperating with a memory block BM comprising a storage and / or working memory MEM.
  • the memory block can advantageously include a computer program comprising code instructions for implementing the steps of the allocation method within the meaning of the invention, when these instructions are executed by the processor PROC, and in particular the estimation steps.
  • the description of the figure 2 takes the steps of an algorithm of such a computer program.
  • the computer program can also be stored on a memory medium readable by a reader of the device or downloadable in the memory space of the latter.
  • Such equipment includes an input module capable of receiving a decoded sum signal either from an encoder via a local decoder, or from a decoder.
  • the device comprises an output module capable of transmitting the number of bits to be allocated per frequency sub-band to the quantization modules of an encoder or to the inverse quantization module of a decoder.
  • the device thus described may also include the coding and / or decoding functions in addition to the allocation functions according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

La présente invention se rapporte au codage de flux audio multicanaux représentant des scènes sonores spatialisées dans un objectif de stockage ou de transmission.The present invention relates to the coding of multichannel audio streams representing spatialized sound scenes for the purpose of storage or transmission.

Elle se rapporte plus particulièrement au codage/décodage paramétrique de flux audio multicanaux.It relates more particularly to the parametric coding / decoding of multichannel audio streams.

Ce type de codage se base sur le codage d'un signal issu d'un traitement de réduction de canaux (« downmix » en anglais) du flux audio multicanal et du codage associé de paramètres d'information spatiale des sources sonores. Ainsi, au décodage, les paramètres d'information spatiale sont utilisés pour retrouver la spatialisation des sources sonores à partir du signal « downmix » que l'on appellera par la suite, signal somme.This type of coding is based on the coding of a signal resulting from a channel reduction processing ("downmix" in English) of the multichannel audio stream and the associated coding of parameters of spatial information of the sound sources. Thus, during decoding, the spatial information parameters are used to find the spatialization of the sound sources from the “downmix” signal which will be called hereinafter, sum signal.

L'invention se rapporte plus particulièrement au codage et au décodage de ces paramètres d'information spatiale.The invention relates more particularly to the coding and decoding of these spatial information parameters.

Pour coder ces paramètres d'information spatiale, le budget de bits disponible selon les codeurs n'est pas toujours suffisant. Dans le cas d'un codage par sous-bande de fréquence, ce budget est divisé par sous-bandes.To code these spatial information parameters, the bit budget available according to the coders is not always sufficient. In the case of coding by frequency sub-band, this budget is divided by sub-bands.

Il existe des techniques qui permettent de réduire le nombre de bits à allouer par sous-bandes. Une de ces techniques consiste à ne coder que les paramètres d'une bande de fréquence sur deux pour chaque trame temporelle. Ainsi les sous-bandes non codées dans la trame courante se voient attribuées les valeurs correspondantes de la trame précédente.There are techniques that reduce the number of bits to be allocated per sub-band. One of these techniques consists in coding only the parameters of one frequency band out of two for each time frame. Thus the sub-bands not coded in the current frame are assigned the corresponding values of the previous frame.

Une autre technique est d'effectuer un codage différentiel intra ou inter-trame.Another technique is to perform intra or inter-frame differential coding.

La plupart du temps, ces techniques d'allocation ne sont pas basées sur des critères de perception auditive qu'un auditeur peut avoir du signal sonore. De ce fait, ces paramètres sont quantifiés de manière uniforme.Most of the time, these allocation techniques are not based on criteria of auditory perception that a listener can have a sound signal. Therefore, these parameters are quantified uniformly.

Manuel Briand, dans sa thèse de doctorat intitulée « Études d'algorithmes d'extraction des informations de spatialisation sonore : application aux formats multicanaux » soutenue en 2007 , propose un codage paramétrique basé sur l'analyse en composante prinicipale. Les angles de rotation originaux en sous-bandes sont obtenus par combinaison d'un angle de rotation moyen associé à l'angle de rotation à moyenne retranchée pour la première sous-bande et des angles de rotation différentiels pour les autres sous-bandes. La précision attribuée aux angles de rotation différentiels décroît avec la fréquence.Manuel Briand, in his doctoral thesis entitled "Studies of algorithms for extracting sound spatialization information: application to multichannel formats" defended in 2007 , offers parametric coding based on the principal component analysis. The original rotation angles in sub-bands are obtained by combination of an average rotation angle associated with the entrenched average rotation angle for the first sub-band and differential rotation angles for the other sub-bands. The accuracy attributed to differential angles of rotation decreases with frequency.

Une quantification basée sur des critères psycho-acoustiques est proposée par Breebaart dans le document de Breebaart,J ; Van de Par,S ; Kohlrausch,A & Schuijers,E, « Parametric Coding of stereo Audio » dans EURASIP Journal on Applied Signal Processing, 2005,9, pp 1305-1322 . La méthode décrite dans ce document est basée sur la perception qu'un auditeur peut avoir sur certaines bandes de fréquence pour des paramètres particuliers de type différences inter-canal, ou sur la sensibilité à une variation de ces paramètres en fonction de la plage de valeurs concernée. Il est par exemple décrit que certains paramètres ne sont codés que sur les bandes de fréquences inférieures à 1kHz. Au-delà de cette fréquence, les paramètres ne sont en effet plus utiles au système auditif pour localiser une source. Ainsi, le critère psycho-acoustique utilisé ici est relatif à une sensibilité aux paramètres codés et non pas à une sensibilité de déplacements spatiaux des sources sonores.A quantification based on psycho-acoustic criteria is proposed by Breebaart in the document of Breebaart, J; Van de Par, S; Kohlrausch, A & Schuijers, E, "Parametric Coding of stereo Audio" in EURASIP Journal on Applied Signal Processing, 2005,9, pp 1305-1322 . The method described in this document is based on the perception that a listener can have on certain frequency bands for particular parameters of the inter-channel difference type, or on the sensitivity to a variation of these parameters as a function of the range of values. concerned. It is for example described that certain parameters are coded only on the frequency bands lower than 1 kHz. Beyond this frequency, the parameters are no longer useful for the hearing system to locate a source. Thus, the psycho-acoustic criterion used here relates to a sensitivity to the coded parameters and not to a sensitivity of spatial displacements of the sound sources.

Or, la perception auditive ou la sensibilité par rapport à une résolution spatiale dans les sous-bandes, peut varier à chaque instant d'une sous-bande à une autre, indépendamment du paramètre à coder.However, the auditory perception or the sensitivity with respect to a spatial resolution in the sub-bands, can vary at each instant from one sub-band to another, independently of the parameter to be coded.

La présente invention vient améliorer la situation. Elle propose à cet effet, un procédé d'allocation de bits de quantification de paramètres d'information spatiale par sous-bande de fréquence, pour un codage/décodage paramétrique d'un flux audio multicanal représentant une scène sonore constituée d'une pluralité de sources sonores et comportant une étape de quantification/quantification inverse par sous-bande de fréquence de paramètres d'information spatiale décrivant la position spatiale des sources sonores de la scène sonore. Le procédé est tel qu'il comporte les étapes suivantes :

  • estimation d'une résolution spatiale de la sous-bande courante à partir de propriétés ; d'énergie de la sous-bande ;
  • détermination d'un nombre de bits à allouer à la sous-bande courante, le nombre de bits à allouer étant inversement proportionnel à la résolution spatiale estimée.
The present invention improves the situation. To this end, it proposes a method for allocating bits for quantifying spatial information parameters by frequency sub-band, for parametric coding / decoding of a multichannel audio stream representing a sound scene made up of a plurality of sound sources and comprising a step of quantification / inverse quantification by frequency sub-band of spatial information parameters describing the spatial position of the sound sources of the sound scene. The process is such that it includes the following steps:
  • estimation of a spatial resolution of the current subband from properties; energy of the sub-band;
  • determination of a number of bits to be allocated to the current sub-band, the number of bits to be allocated being inversely proportional to the estimated spatial resolution.

Ainsi, le procédé selon l'invention utilise un critère psycho-acoustique pour optimiser la stratégie d'allocation des bits de quantification des paramètres d'information spatiale en fonction de la sous-bande, de façon à privilégier à chaque instant les sous-bandes qui sont les plus utiles au système auditif, et ce quels que soient les paramètres d'information spatiale à coder ou à décoder.Thus, the method according to the invention uses a psycho-acoustic criterion to optimize the allocation strategy for the quantization bits of the spatial information parameters as a function of the sub-band, so as to favor the sub-bands at all times. which are most useful for the hearing system, regardless of the spatial information parameters to be coded or decoded.

Les propriétés de résolution spatiale du système auditif sont ainsi exploitées. La résolution spatiale dans une sous-bande peut être définie comme le plus petit angle entre deux sources, que le système auditif est capable de discriminer.The spatial resolution properties of the auditory system are thus exploited. The spatial resolution in a sub-band can be defined as the smallest angle between two sources, which the hearing system is able to discriminate.

La résolution spatiale associée à une sous-bande est inversement proportionnelle à l'énergie dans cette sous-bande. Ainsi, plus une sous-bande contient de l'énergie, plus sa résolution est estimée petite et plus le nombre de bits alloués pour cette sous-bande est important. De plus, si l'énergie dans une sous-bande est forte, cela donne déjà une indication du peu d'influence que peuvent avoir les autres sous-bandes par rapport à celle-ci et donne ainsi une première approche d'allocation dynamique (prenant en compte les autres sous-bandes). Les propriétés d'énergie peuvent correspondre à l'énergie mesurée dans la sous-bande ou de façon plus précise à une mesure de la distance énergétique de cette sous-bande à son seuil de masquage/audibilité.The spatial resolution associated with a sub-band is inversely proportional to the energy in this sub-band. Thus, the more energy a subband contains, the lower its resolution is estimated and the more the number of bits allocated for this subband. In addition, if the energy in a sub-band is strong, this already gives an indication of the little influence that the other sub-bands can have with respect to it and thus gives a first dynamic allocation approach ( taking into account the other sub-bands). The energy properties can correspond to the energy measured in the sub-band or more precisely to a measurement of the energy distance of this sub-band at its masking / audibility threshold.

Les différents modes particuliers de réalisation mentionnés ci-après peuvent être ajouté indépendamment ou en combinaison les uns avec les autres, aux étapes du procédé d'allocation défini ci-dessus.The different particular embodiments mentioned below can be added independently or in combination with each other, to the steps of the allocation method defined above.

De façon à affiner l'estimation de la résolution spatiale dans les sous-bandes, les propriétés spectrales d'une sous-bande sont à la fois des propriétés d'énergie dans la sous-bande et la fréquence centrale de la sous-bande.In order to refine the estimation of the spatial resolution in the sub-bands, the spectral properties of a sub-band are both energy properties in the sub-band and the central frequency of the sub-band.

Dans un mode de réalisation particulier, la résolution spatiale d'une sous-bande est estimée en outre à partir des propriétés d'énergie des autres sous-bandes d'un ensemble de sous-bandes définissant les sources sonores.In a particular embodiment, the spatial resolution of a sub-band is further estimated from the energy properties of the other sub-bands of a set of sub-bands defining the sound sources.

Pour une sous-bande donnée, les autres sous-bandes peuvent être considérées comme des sources concurrentes distractives qui sont susceptibles de dégrader la sensibilité spatiale associée à cette sous-bande. La prise en compte des propriétés spectrales des autres sous-bandes de fréquence permet d'estimer cette dégradation et de prédire la résolution spatiale associée à la sous-bande. Cette prise en compte permet de définir dynamiquement avec quelle précision doivent être codées les informations de spatialisation associées à chaque sous-bande, sur la base d'une diminution ou d'un accroissement de la résolution spatiale. Ainsi, on adapte l'erreur de quantification résultante en fonction de la sensibilité spatiale afin de minimiser l'erreur quand la sensibilité est maximale, et inversement de la maximiser lorsque la sensibilité est minimale. L'erreur de quantification est ainsi, d'un point de vue perceptif, minimisée de façon homogène.For a given sub-band, the other sub-bands can be considered as competing distractive sources which are liable to degrade the spatial sensitivity associated with this sub-band. Taking into account the spectral properties of the other frequency sub-bands makes it possible to estimate this degradation and to predict the spatial resolution associated with the sub-band. This taking into account makes it possible to dynamically define with what precision the spatialization information associated with each sub-band must be coded, on the basis of a decrease or an increase in the spatial resolution. Thus, the resulting quantization error is adapted as a function of the spatial sensitivity in order to minimize the error when the sensitivity is maximum, and conversely to maximize it when the sensitivity is minimum. The quantification error is thus, from a perceptual point of view, homogeneously minimized.

Dans un mode avantageux de réalisation, les propriétés spectrales d'une sous-bande sont obtenues à partir d'un signal somme décodé issu d'un traitement de réduction des canaux du flux audio multicanal.In an advantageous embodiment, the spectral properties of a sub-band are obtained from a decoded sum signal originating from a reduction processing of the channels of the multi-channel audio stream.

L'estimation de la résolution spatiale par sous-bande ne nécessite pas d'informations de type position des sources sonores mais seulement des informations sur les propriétés spectrales des sous-bandes. Ces informations peuvent donc être obtenues à partir du signal somme décodé soit localement dans un codeur à l'étape du codage soit décodé par le décodeur lui-même à l'étape du décodage. Il n'est donc pas nécessaire d'envoyer d'informations supplémentaires au décodeur pour retrouver la stratégie d'allocation de bits de quantification. Cela réduit ainsi fortement le nombre d'informations à transmettre entre le codeur et le décodeur.The estimation of the spatial resolution by sub-band does not require information of the position type of the sound sources but only information on the spectral properties of the sub-bands. This information can therefore be obtained from the sum signal decoded either locally in an encoder at the coding stage or decoded by the decoder itself at the decoding stage. It is therefore not necessary to send additional information to the decoder to find the allocation strategy for quantization bits. This greatly reduces the amount of information to be transmitted between the coder and the decoder.

Dans une variante de réalisation, les propriétés d'énergie dans une sous-bande comprennent les propriétés d'énergie primaire et d'énergie ambiante dans la sous-bande.In an alternative embodiment, the energy properties in a sub-band include the primary energy and ambient energy properties in the sub-band.

La part d'énergie corrélée (énergie primaire) entre les différents canaux du signal multicanal est différenciée de celle non corrélée (ambiante) dans le modèle psycho-acoustique permettant d'estimer la résolution spatiale. Ainsi, l'estimation de la résolution spatiale est plus précise et plus proche de la réalité.The share of correlated energy (primary energy) between the different channels of the multichannel signal is differentiated from that which is not correlated (ambient) in the psycho-acoustic model allowing the spatial resolution to be estimated. Thus, the estimation of the spatial resolution is more precise and closer to reality.

Dans un mode particulier de réalisation, le nombre de bits à allouer pour une sous-bande, fait partie d'un nombre de bits prédéterminé à répartir entre les sous-bandes, s'additionnant à un nombre de bits déjà alloué par sous-bandes.In a particular embodiment, the number of bits to be allocated for a sub-band is part of a predetermined number of bits to be distributed between the sub-bands, adding to a number of bits already allocated by sub-bands .

L'allocation définie ici, s'applique sur un nombre de bits restant à allouer dans un budget de bits de quantification, une partie des bits de quantification du budget global ayant été déjà distribuée entre les sous-bandes.The allocation defined here applies to a number of bits remaining to be allocated in a quantization bit budget, a part of the quantification bits of the overall budget having already been distributed between the sub-bands.

Ainsi, au décodeur, il est possible de décoder approximativement les paramètres d'information spatiale à partir des bits de quantification déjà alloués, le budget de bits supplémentaire permettant d'affiner le décodage et de l'adapter à la perception auditive.Thus, at the decoder, it is possible to approximately decode the spatial information parameters from the quantization bits already allocated, the additional bit budget making it possible to refine the decoding and to adapt it to auditory perception.

Dans un autre mode de réalisation particulier, la détermination du nombre de bits à allouer pour une sous-bande est ajustée en fonction de la différence entre la résolution dans cette sous-bande et une résolution de référence prédéterminée, à laquelle correspond une allocation de bits de référence prédéterminée.In another particular embodiment, the determination of the number of bits to be allocated for a sub-band is adjusted as a function of the difference between the resolution in this sub-band and a predetermined reference resolution, to which a bit allocation corresponds. of predetermined reference.

On se place ici dans le cadre d'un contexte de transmission à débit non-contraint où une qualité de codage spatial cible est choisie et imposée. Une résolution de référence est alors prédéterminée et un nombre de bits à allouer pour cette résolution est prédéfini. Si la résolution estimée est différente de cette résolution de référence, le processus d'allocation tel que défini ici s'applique alors.We place ourselves here in the context of a transmission at an unconstrained rate where a target spatial coding quality is chosen and imposed. A reference resolution is then predetermined and a number of bits to be allocated for this resolution is predefined. If the estimated resolution is different from this reference resolution, the allocation process as defined here then applies.

Dans un mode de réalisation particulier, le procédé est mis en œuvre pour un ensemble de sous-bandes non masquées déterminé par une étape d'analyse de masquage énergétique entre sous-bandes.In a particular embodiment, the method is implemented for a set of unmasked sub-bands determined by an energy masking analysis step between sub-bands.

Ainsi, lorsque certaines sous-bandes de fréquence sont masquées par d'autres sous-bandes, par exemple lorsqu'elles présentent un niveau énergétique trop faible, il n'est donc pas nécessaire de conserver l'information spatiale des ces sous-bandes masquées. Ainsi, le procédé d'allocation n'est mis en œuvre que pour les sous-bandes audibles, c'est-à-dire non-masquées, ce qui permet de concentrer le budget de bits à allouer sur ces sous-bandes.Thus, when certain frequency sub-bands are masked by other sub-bands, for example when they have a too low energy level, it is therefore not necessary to preserve the spatial information of these masked sub-bands . Thus, the allocation method is implemented only for the audible, that is to say non-masked, sub-bands, which makes it possible to concentrate the budget of bits to be allocated on these sub-bands.

Ceci apporte un gain de calcul puisque le procédé n'est pas mis en œuvre dans toutes les sous-bandes et un gain de transmission puisque les paramètres d'information spatiale associés aux sous-bandes masquées ne seront pas transmis (0 bits alloués).This provides a calculation gain since the method is not implemented in all the sub-bands and a transmission gain since the spatial information parameters associated with the masked sub-bands will not be transmitted (0 bits allocated).

De plus, ces propriétés de masquage énergétique peuvent être déterminées à partir du signal somme décodé. Il n'est donc pas nécessaire de transmettre ces informations au décodeur.In addition, these energy masking properties can be determined from the decoded sum signal. It is therefore not necessary to transmit this information to the decoder.

La présente invention vise également un dispositif d'allocation de bits de quantification de paramètres d'information spatiale par sous-bande de fréquence, pour un codeur/décodeur paramétrique d'un flux audio multicanal représentant une scène sonore constituée d'une pluralité de sources sonores et comportant un module de quantification/quantification inverse par sous-bande de fréquence de paramètres d'information spatiale décrivant la position spatiale des sources sonores de la scène sonore. Le dispositif est tel qu'il comporte:

  • un module d'estimation d'une résolution spatiale de la sous-bande courante à partir de propriétés d'énergie de la sous-bande ;
  • un module de détermination d'un nombre de bits à allouer à la sous-bande courante, le nombre de bits à allouer étant inversement proportionnel à la résolution spatiale estimée.
The present invention also relates to a device for allocating bits for quantifying spatial information parameters by frequency sub-band, for a parametric coder / decoder of a multichannel audio stream representing a sound scene made up of a plurality of sound sources and comprising a quantization / inverse quantization module by frequency sub-band of spatial information parameters describing the spatial position of the sound sources of the sound stage. The device is such that it includes:
  • a module for estimating a spatial resolution of the current sub-band from energy properties of the sub-band;
  • a module for determining a number of bits to be allocated to the current sub-band, the number of bits to be allocated being inversely proportional to the estimated spatial resolution.

Ce dispositif présente les mêmes avantages que le procédé décrit précédemment, qu'il met en œuvre.This device has the same advantages as the method described above, which it implements.

L'invention vise un codeur ou un décodeur comprenant un tel dispositif d'allocation.The invention relates to an encoder or a decoder comprising such an allocation device.

Elle vise un programme informatique comportant des instructions de code pour la mise en œuvre des étapes du procédé d'allocation tel que décrit, lorsque ces instructions sont exécutées par un processeur.It relates to a computer program comprising code instructions for the implementation of the steps of the allocation method as described, when these instructions are executed by a processor.

Enfin l'invention se rapporte à un support de stockage, lisible par un processeur, intégré ou non au dispositif d'allocation, éventuellement amovible, mémorisant un programme informatique mettant en œuvre un procédé d'allocation tel que décrit précédemment.Finally, the invention relates to a storage medium, readable by a processor, integrated or not into the allocation device, possibly removable, memorizing a computer program implementing an allocation method as described above.

D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante, donnée uniquement à titre d'exemple non limitatif, et faite en référence aux dessins annexés, sur lesquels :

  • la figure 1 illustre un système de codage et de décodage paramétrique d'un flux audio multicanal dans lequel le dispositif d'allocation selon un mode de réalisation de l'invention est prévu ;
  • la figure 2 illustre sous forme d'organigramme, les étapes d'un procédé d'allocation selon un mode de réalisation de l'invention ; et
  • la figure 3 illustre une configuration matérielle particulière d'un dispositif d'allocation selon l'invention.
Other characteristics and advantages of the invention will appear more clearly on reading the following description, given solely by way of nonlimiting example, and made with reference to the appended drawings, in which:
  • the figure 1 illustrates a system for parametric coding and decoding of a multichannel audio stream in which the allocation device according to an embodiment of the invention is provided;
  • the figure 2 illustrates in the form of a flowchart, the steps of an allocation method according to an embodiment of the invention; and
  • the figure 3 illustrates a particular hardware configuration of an allocation device according to the invention.

La figure 1 décrit ainsi un système de codage/décodage paramétrique d'un flux audio multicanal. Cette figure illustre le codeur 100, le décodeur 110 ainsi que le dispositif d'allocation 120 selon un mode de réalisation de l'invention.The figure 1 thus describes a parametric coding / decoding system for a multichannel audio stream. This figure illustrates the encoder 100, the decoder 110 as well as the allocation device 120 according to an embodiment of the invention.

Les canaux x 1(n),x2 (n), ...,xn (n) du flux audio multicanal sont d'abord transformés par un module de transformation temps/fréquence 106, avant d'être appliqués en entrée à la fois d'un module de traitement de réduction de canaux 101 ou encore module de « Downmix » et d'un module d'extraction de paramètres d'information spatiale 102.The channels x 1 ( n ) , x 2 ( n ) , ..., x n ( n ) of the multichannel audio stream are first transformed by a time / frequency transformation module 106, before being applied as an input to both a channel reduction processing module 101 or also a “Downmix” module and a module for extracting spatial information parameters 102.

La transformation opérée par le module 106 peut être de différents types. Elle peut utiliser par exemple une technique de banc de filtres, ou encore une technique de Transformée de Fourier à Court-Terme (TFCT) en utilisant un algorithme de type FFT (« Fast Fourier Transform » en anglais). Dans le cas d'une technique de banc de filtres, les filtres peuvent être définis de façon à ce que les sous-bandes de fréquence résultantes décrivent des échelles fréquentielles perceptives, par exemple en choisissant des largeurs de bande constantes dans les échelles ERB (pour « Equivalent Rectangular Bandwidth » en anglais). Le même processus peut être appliqué dans le cas d'une technique par TFCT en groupant les bins fréquentiels de chaque trame temporelle suivant les échelles ERB.The transformation operated by the module 106 can be of different types. It can for example use a filter bank technique, or a Short-Term Fourier Transform (TFCT) technique using an algorithm of FFT type (“Fast Fourier Transform” in English). In the case of a filter bank technique, the filters can be defined so that the resulting frequency sub-bands describe perceptual frequency scales, for example by choosing constant bandwidths in the ERB scales (for "Equivalent Rectangular Bandwidth" in English). The same process can be applied in the case of a technique by TFCT by grouping the frequency bins of each time frame according to the ERB scales.

Un signal « downmix » ou signal somme, issu du module de traitement de réduction de canaux 101 (signal mono ou stéréo) est obtenu par sommation éventuellement pondérée, des différents canaux dans chaque sous-bande. Ce signal somme est ensuite codé par un module de codage cœur 103 qui peut être de différent type, par exemple de type codage audio normalisé MPEG-4 AAC. Ce signal codé est ensuite transmis sur le réseau pour être ultérieurement décodé par le décodeur cœur correspondant 113.A “downmix” signal or sum signal, originating from the channel reduction processing module 101 (mono or stereo signal) is obtained by summation, optionally weighted, of the different channels in each sub-band. This sum signal is then coded by a core coding module 103 which may be of different type, for example of MPEG-4 AAC standardized audio coding type. This coded signal is then transmitted over the network to be subsequently decoded by the corresponding core decoder 113.

Le module 102 extrait les paramètres d'information spatiale des canaux audio. Ces paramètres sont ceux qui décrivent la position spatiale des canaux. Ces paramètres peuvent être par exemple le couple de paramètres ILD (pour « Interaural Level Différence » en anglais) et IPD (pour « Interaural Phase différence » en anglais) comme défini pour la méthode de codage paramétrique stéréo décrite dans le document de Breebaart,J ; Van de Par,S ; Kohlrausch,A & Schuijers,E, « Parametric Coding of stereo Audio » dans EURASIP Journal on Applied Signal Processing, 2005,9, pp 1305-1322 .The module 102 extracts the spatial information parameters of the audio channels. These parameters are those which describe the spatial position of the channels. These parameters can for example be the pair of parameters ILD (for “Interaural Level Difference” in English) and IPD (for “Interaural Phase Difference” in English) as defined for the stereo parametric coding method described in the document of Breebaart, J; Van de Par, S; Kohlrausch, A & Schuijers, E, "Parametric Coding of stereo Audio" in EURASIP Journal on Applied Signal Processing, 2005,9, pp 1305-1322 .

Ces paramètres peuvent, dans un autre exemple, être de type vecteurs de position primaire et ambiant comme pour la représentation décrite dans le document « Spatial audio scene coding » de Goodwin, M. & Jot, J., 125th AES Convention, 2008 October 2-5, San Francisco, USA, 2008 .These parameters can, in another example, be of the type of primary and ambient position vectors as for the representation described in the document "Spatial audio scene coding" by Goodwin, M. & Jot, J., 125th AES Convention, 2008 October 2-5, San Francisco, USA, 2008 .

Les techniques d'extraction de ces paramètres sont bien connues et ne seront donc pas décrites ici.The techniques for extracting these parameters are well known and will therefore not be described here.

Les paramètres d'information spatiale ainsi extraits sont ensuite quantifiés par le module de quantification 104 selon une allocation de bits de quantification définie par le dispositif d'allocation 120.The spatial information parameters thus extracted are then quantified by the quantization module 104 according to an allocation of quantization bits defined by the allocation device 120.

Le dispositif d'allocation 120 met en œuvre un procédé d'allocation qui sera décrit en référence à la figure 2.The allocation device 120 implements an allocation method which will be described with reference to the figure 2 .

Ce dispositif d'allocation 120 reçoit en entrée le signal somme décodé Ssd par un décodeur local 105 du codeur ou dans le cas du décodeur, décodé par le module de décodage 113.This allocation device 120 receives as input the sum signal decoded S sd by a local decoder 105 of the coder or in the case of the decoder, decoded by the decoding module 113.

A partir de ce signal somme décodé Ssd un module 121 d'estimation d'une résolution spatiale par sous-bande de fréquence, détermine les propriétés spectrales des sous-bandes de fréquence.On the basis of this decoded sum signal S sd, a module 121 for estimating a spatial resolution by frequency sub-band determines the spectral properties of the frequency sub-bands.

Les propriétés spectrales déterminées sont des propriétés d'énergie dans la sous-bande.The spectral properties determined are energy properties in the sub-band.

Dans un autre mode de réalisation, les propriétés spectrales sont à la fois les propriétés d'énergie et la fréquence centrale dans la sous-bande.In another embodiment, the spectral properties are both the energy properties and the center frequency in the subband.

Ces propriétés spectrales vont permettre de déterminer une résolution spatiale par sous-bande de fréquence. Cette résolution spatiale correspond au plus petit angle entre deux sources que le système auditif humain peut discriminer. Cette résolution spatiale peut encore être dénommé MAA (pour « Minimum Audible Angle » en anglais) comme défini par le document de Mills A.W « On the Minimum Audible Angle » dans The Journal of the Acoustical Society of America, 83(S1) :S122, May 1988 .These spectral properties will make it possible to determine a spatial resolution by frequency sub-band. This spatial resolution corresponds to the smallest angle between two sources that the human hearing system can discriminate. This spatial resolution can also be called MAA (for “Minimum Audible Angle” in English) as defined by the document of Mills AW "On the Minimum Audible Angle" in The Journal of the Acoustical Society of America, 83 (S1): S122, May 1988 .

La détermination de cette résolution spatiale sera explicitée plus en détails en référence avec la figure 2.The determination of this spatial resolution will be explained in more detail with reference to the figure 2 .

La résolution spatiale par sous-bande de fréquence, ainsi déterminée permet de déterminer un nombre de bits à allouer à la sous-bande pour la quantification des paramètres d'information spatiale. Cette étape est mise en œuvre par le module 122 de détermination du nombre de bits. Cette étape sera explicitée plus en détails en référence à la figure 2.The spatial resolution by frequency sub-band thus determined makes it possible to determine a number of bits to be allocated to the sub-band for the quantification of the spatial information parameters. This step is implemented by the module 122 for determining the number of bits. This step will be explained in more detail with reference to the figure 2 .

Cette allocation du nombre de bits par sous-bande de fréquence est alors basée sur des considérations psycho-acoustiques et non purement mathématiques comme cela était fait auparavant dans l'état de l'art. Ainsi, cette allocation prend en compte la perception du système auditif dans les bandes de fréquence.This allocation of the number of bits per frequency sub-band is then based on psycho-acoustic and not purely mathematical considerations as was done previously in the state of the art. Thus, this allocation takes into account the perception of the hearing system in the frequency bands.

En effet, les erreurs de quantification des paramètres spatiaux se traduisent par des changements de position des sources sonores au moment du décodage. Ces changements de position induisent une distorsion spatiale de la scène sonore qui, évoluant dans le temps, se traduit par une instabilité spatiale. La résolution spatiale peut être interprétée comme une sensibilité à cette distorsion spatiale. Cette sensibilité peut être exprimée pour chaque sous-bande par le module 121. Le dispositif d'allocation 120 va alors modeler l'erreur de quantification en fonction de cette sensibilité afin de minimiser l'erreur quand la sensibilité est maximale, et inversement de la maximiser lorsque la sensibilité est minimale.In fact, the quantification errors of the spatial parameters result in changes in the position of the sound sources at the time of decoding. These changes in position induce a spatial distortion of the sound scene which, evolving over time, results in spatial instability. Spatial resolution can be interpreted as a sensitivity to this spatial distortion. This sensitivity can be expressed for each sub-band by the module 121. The allocation device 120 will then model the quantization error as a function of this sensitivity in order to minimize the error when the sensitivity is maximum, and vice versa of the maximize when sensitivity is minimal.

L'allocation ainsi déterminée permet de quantifier (Q) au codeur, les paramètres d'information spatiale par le module de quantification 104 ou d'effectuer une quantification inverse (Q-1) au décodeur par le module de quantification inverse 114 pour obtenir ces paramètres.The allocation thus determined makes it possible to quantify (Q) at the coder, the spatial information parameters by the quantization module 104 or to perform an inverse quantization (Q -1 ) at the decoder by the inverse quantization module 114 to obtain these settings.

Ainsi, au décodeur 110, le module 112 de synthèse pourra, à partir des informations spatiales ainsi dé-quantifiées et du signal somme décodé Ssd, obtenir le flux audio multicanal dans le domaine fréquentiel puis après transformation temps/fréquence inverse du module 116, le flux audio dans le domaine temporel 1(n), x̂ 2(n), ...,n (n).Thus, at the decoder 110, the synthesis module 112 will be able, from the spatial information thus de-quantified and from the decoded sum signal S sd , to obtain the multichannel audio stream in the frequency domain then after time / inverse frequency transformation of the module 116, the audio stream in the time domain 1 ( n ) , x̂ 2 ( n ) , ..., n ( n ).

La figure 2 illustre à présent les étapes du procédé d'allocation de bits dans un mode de réalisation de l'invention.The figure 2 now illustrates the steps of the bit allocation method in an embodiment of the invention.

A partir du signal somme décodé Ssd, une étape d'analyse E201 de masquage énergétique entre les sous-bandes de fréquence peut optionnellement être effectuée.From the decoded sum signal S sd , an analysis step E201 of energy masking between the frequency sub-bands can optionally be carried out.

Cette étape permet de sélectionner un ensemble de sous-bandes de fréquence audibles par le système auditif.This step allows you to select a set of frequency sub-bands audible by the hearing system.

En effet, au sein d'une même trame, une sous-bande présentant un niveau énergétique élevé peut potentiellement masquer (i.e. rendre inaudible) les sous-bandes voisines présentant un niveau énergétique trop faible. Ainsi, lors d'une étape préalable E201, on peut effectuer une analyse comparée des énergies des différentes sous-bandes afin de déterminer si certaines sous-bandes ne sont pas masquées par d'autres sous-bandes. Il est alors inutile de conserver l'information spatiale des sous-bandes masquées, ce qui libère des bits de quantification pour les autres sous-bandes pour le processus d'allocation de bits de quantification donné par les étapes suivantes du procédé.Indeed, within the same frame, a sub-band having a high energy level can potentially mask ( ie . Make inaudible) the neighboring sub-bands having a too low energy level. Thus, during a prior step E201, a comparative analysis of the energies of the different sub-bands can be carried out in order to determine whether certain sub-bands are not masked by other sub-bands. It is then unnecessary to keep the spatial information of the masked sub-bands, which frees quantization bits for the other sub-bands for the quantization bit allocation process given by the following steps of the method.

Un ensemble de sous-bandes {bk} est ainsi défini pour mettre en œuvre les étapes du procédé d'allocation.A set of sub-bands {b k } is thus defined to implement the steps of the allocation method.

A tour de rôle, chaque sous-bande est considérée comme une source cible, les autres sous-bandes pouvant être considérées comme des sources distractives.In turn, each sub-band is considered as a target source, the other sub-bands can be considered as distracting sources.

A l'étape E202, des propriétés spectrales des sous-bandes de l'ensemble {bk} sont extraites.In step E202, spectral properties of the sub-bands of the set {b k } are extracted.

Selon plusieurs modes de réalisation, ces propriétés spectrales sont soit uniquement ses propriétés d'énergie (I), soit à la fois la fréquence centrale fc de la sous-bande courante et ses propriétés d'energie.According to several embodiments, these spectral properties are either only its energy properties (I), or both the central frequency f c of the current sub-band and its energy properties.

Cependant, l'énergie contenue dans chaque sous-bande ne reflète pas tout à fait la réalité en termes de perception au moment de la restitution, et cela parce qu'une partie seulement de cette énergie sera restituée de façon corrélée entre les différents canaux. Le reste le sera de façon décorrélée. Il est donc intéressant d'estimer et de préciser au modèle psycho-acoustique quelle sera la part d'énergie corrélée (énergie primaire) et non-corrélée (énergie ambiante).However, the energy contained in each sub-band does not quite reflect reality in terms of perception at the time of the restoration, and this because only part of this energy will be restored in a correlated way between the different channels. The rest will be decorrelated. It is therefore interesting to estimate and specify to the psycho-acoustic model what will be the share of correlated energy (primary energy) and uncorrelated (ambient energy).

Les propriétés d'énergie peuvent alors être discriminées en énergie primaire (Ip) qui représente l'énergie corrélée entre les sous-bandes et l'énergie ambiante (Ia) représentant l'énergie décorrélée dans la sous-bande courante.The energy properties can then be discriminated in primary energy (I p ) which represents the energy correlated between the sub-bands and the ambient energy (I a ) representing the energy decorrelated in the current sub-band.

A partir de la connaissance d'un ou de plusieurs de ces paramètres, l'étape E203 effectue une estimation de la résolution spatiale dans la sous-bande courante. Chaque sous-bande étant considérée tour à tour comme cible.On the basis of the knowledge of one or more of these parameters, step E203 makes an estimation of the spatial resolution in the current sub-band. Each sub-band being considered in turn as a target.

Pour cela, un modèle psycho-acoustique Ψ est déterminé et permet d'obtenir la résolution spatiale ou encore le MAA, associée à chaque sous-bande.For this, a psycho-acoustic model Ψ is determined and makes it possible to obtain the spatial resolution or even the MAA, associated with each sub-band.

Comme mentionné précédemment, la résolution spatiale du système auditif peut être définie comme le plus petit angle entre deux sources sonores que celui-ci est capable de discriminer. L'étude de référence par Mills mentionné ci-dessus a été confortée par des études plus récentes décrites par exemple dans le document de Perrott D.R et Saberi K., « Minimum audible angle thresholds for sources varying in both elevation and azimuth » dans The journal of the acoustical Society of America, 87(4) :1728-1731, April 1990 .As mentioned earlier, the spatial resolution of the hearing system can be defined as the smallest angle between two sound sources that it can discriminate. The benchmark study by Mills mentioned above was supported by more recent studies described for example in the document of Perrott DR and Saberi K., "Minimum audible angle thresholds for sources varying in both elevation and azimuth" in The journal of the acoustical Society of America, 87 (4): 1728-1731, April 1990 .

Ces études concluent sur un MAA entre 1° et 3° en azimut pour une source frontale, en fonction de son contenu fréquentiel. Dans un contexte de représentation de l'information spatiale d'une scène sonore, le MAA définit la précision minimale avec laquelle on doit décrire la position d'une source sonore pour ne pas introduire d'artefacts audibles. Une erreur de position inférieure au MAA ne sera pas perçue par le système auditif. Ainsi le MAA représente le « flou spatial » de perception d'une source sonore.These studies conclude on an MAA between 1 ° and 3 ° in azimuth for a frontal source, according to its frequency content. In a context of representation of the spatial information of a sound scene, the MAA defines the minimum precision with which the position of a sound source must be described in order not to introduce audible artifacts. A position error lower than the MAA will not be perceived by the hearing system. Thus the MAA represents the “spatial blur” of perception of a sound source.

Un autre modèle psycho-acoustique simplifié ne prend en compte que les propriétés d'énergie de la sous-bande courante.Another simplified psycho-acoustic model only takes into account the energy properties of the current sub-band.

De façon simple, les propriétés d'énergie correspondent à l'énergie mesurée dans la sous-bande. Dans ce cas, le MAA associé est considéré comme étant inversement proportionnel à l'énergie dans cette sous-bande.In a simple way, the energy properties correspond to the energy measured in the sub-band. In this case, the associated MAA is considered to be inversely proportional to the energy in this sub-band.

De façon plus précise, les propriétés d'énergie correspondent à une mesure de la distance énergétique de cette sous-bande à son seuil de masquage/audibilité. On parle alors d'énergie audible dans la sous-bande. Le MAA associé à cette sous-bande est également inversement proportionnel à l'énergie audible dans cette sous-bande. En d'autres termes, plus une sous-bande contient de l'énergie audible, plus son MAA sera supposé petit.More precisely, the energy properties correspond to a measurement of the energy distance of this sub-band at its masking / audibility threshold. We then speak of audible energy in the sub-band. The MAA associated with this sub-band is also inversely proportional to the audible energy in this sub-band. In other words, the more audible energy a subband contains, the smaller its MAA will be assumed.

Enfin, il est possible de combiner cette dernière possibilité avec la première pour l'affiner, en pondérant le MAA estimé via la distance énergétique au seuil de masquage/audibilité par le MAA estimé avec la fréquence centrale.Finally, it is possible to combine this last possibility with the first to refine it, by weighting the estimated MAA via the energy distance to the masking / audibility threshold by the estimated MAA with the central frequency.

Dans un mode de réalisation particulier, le modèle psycho-acoustique ne prend pas seulement en compte les caractéristiques de la sous-bande courante mais également celles des autres sous-bandes qui sont alors considérées comme des sous-bandes distractives.In a particular embodiment, the psycho-acoustic model takes into account not only the characteristics of the current sub-band but also those of the other sub-bands which are then considered as distractive sub-bands.

En effet, des mesures expérimentales ont permis de montrer que le MAA (ou résolution spatiale) change en présence de sources distractives, et que plus spécifiquement, il tend à augmenter. Ainsi, l'action, sur une source donnée, des sources concurrentes, peut-être vue comme un « floutage spatial » de cette source. L'effet de « floutage » dépend du contenu fréquentiel de la source et de son énergie, de même qu'il dépend du contenu fréquentiel et de l'énergie de chacune des sources concurrentes.Indeed, experimental measurements have made it possible to show that the MAA (or spatial resolution) changes in the presence of distractive sources, and that more specifically, it tends to increase. Thus, the action, on a given source, of competing sources, perhaps seen as a “spatial blurring” of this source. The "blurring" effect depends on the frequency content of the source and its energy, just as it depends on the frequency content and energy of each of the competing sources.

En revanche l'effet de la position des sources distractives sur le « floutage » est négligeable, en ce sens que le MAA peut être estimé sans l'information de position des sources distractives. Néanmoins, le MAA associé à une source dépend de la position de cette source par rapport à la tête de l'auditeur. La meilleure performance (MAA le plus faible) est observée lorsque l'auditeur fait face à la source considérée. Ainsi, dans le modèle psycho-acoustique selon l'invention, on fait l'hypothèse que l'auditeur est libre d'orienter sa tête au sein du dispositif d'écoute. Par suite il est supposé, lors de l'estimation du MAA associé à une source donnée, que l'auditeur fait toujours face à la source considérée. En conséquence de ces résultats, pour estimer le MAA associé à une source donnée, l'information de position de cette source n'est pas nécessaire. À partir de ces résultats, un modèle psycho-acoustique qui décrit le MAA associé à une source donnée peut être construit en fonction de la présence et des propriétés (énergie, contenu fréquentiel) d'autres sources.On the other hand, the effect of the position of the distractive sources on “blurring” is negligible, in the sense that the MAA can be estimated without the position information of the distractive sources. However, the MAA associated with a source depends on the position of this source in relation to the head of the listener. The best performance (lowest MAA) is observed when the auditor faces the source considered. Thus, in the psycho-acoustic model according to the invention, it is assumed that the listener is free to orient his head within the listening device. Consequently, it is assumed, when estimating the MAA associated with a given source, that the listener always faces the source considered. Consequently, to estimate the MAA associated with a given source, the position information of this source is not necessary. From these results, a psychoacoustic model that describes the MAA associated with a given source can be constructed based on the presence and properties (energy, frequency content) of other sources.

L'information d'énergie seule suffit à déterminer le « floutage spatial » correctement. L'information de position est donc inutile. Il en résulte que les MAA associés aux différentes sous-bandes peuvent être calculés à partir de la composante « downmix » ou signal somme comme décrit en référence à la figure 1. La conséquence est que, pour le décodage, il n'est pas nécessaire de transmettre la stratégie de quantification, mais qu'elle peut être déduite du signal somme selon la même procédure qu'à l'encodage.Energy information alone is sufficient to determine "spatial blurring" correctly. Position information is therefore unnecessary. As a result, the MAAs associated with the different sub-bands can be calculated from the “downmix” or sum signal component as described with reference to the figure 1 . The consequence is that, for decoding, it is not necessary to transmit the quantization strategy, but that it can be deduced from the sum signal according to the same procedure as for encoding.

Au final, le modèle psycho-acoustique est décrit par une fonction Ψ(c,d1,d2,...,dN), où c représente la source cible, et les di sont les sources distractives.Finally, the psycho-acoustic model is described by a function Ψ (c, d 1 , d 2 , ..., d N ), where c represents the target source, and the d i are the distractive sources.

Dans ce mode de réalisation, chaque sous-bande constitue une source caractérisée par sa fréquence centrale et son énergie (primaire et ambiante). Pour chacune de ces sources, considérées alors comme cible, la fonction Ψ produit le MAA qui lui est associé en présence des autres sources considérées comme distractives, c'est-à-dire l'erreur de position maximale non-perceptible applicable à cette source en présence des autres.In this embodiment, each sub-band constitutes a source characterized by its central frequency and its energy (primary and ambient). For each of these sources, then considered as target, the function Ψ produces the MAA associated with it in the presence of the other sources considered to be distracting, i.e. the maximum non-perceptible position error applicable to this source in the presence of others.

Ainsi, chaque source (cible ou distractive) est caractérisée à l'étape E202 par trois paramètres {fc,Ip,Ia}, où fc est la fréquence centrale de la sous-bande considérée, et Ip et Ia sont respectivement l'énergie primaire et ambiante dans cette sous-bande. A partir de la connaissance de ces paramètres {fc,Ip,Ia} pour toutes les sous-bandes, le modèle psycho-acoustique Ψ(c,d1,d2,...,dN) produit un couple de valeurs de MAA {αp,αa}, correspondant respectivement aux composants d'énergie primaire et ambiante, associé à l'étape E203 à chaque sous-bande considérée tour à tour comme cible.Thus, each source (target or distractive) is characterized in step E202 by three parameters {f c , I p , I a }, where f c is the central frequency of the sub-band considered, and I p and I a are respectively the primary and ambient energy in this sub-band. From the knowledge of these parameters {f c , I p , I a } for all the sub-bands, the psycho-acoustic model Ψ (c, d 1 , d 2 , ..., d N ) produces a couple MAA values {α p , αa}, corresponding respectively to the primary and ambient energy components, associated with step E203 with each sub-band considered in turn as target.

Selon si le paramètre à coder représente une composante primaire ou ambiante, la valeur de MAA considérée sera respectivement αp ou αa, et par conséquent cette distinction ne sera plus faite dans la suite du document. Si la répartition Ip/Ia est inconnue (paramètre non-transmis), le décodeur supposera que toute l'énergie est corrélée (énergie primaire), ainsi que le modèle psycho-acoustique, de façon à obtenir une correspondance lors de la restitution.Depending on whether the parameter to be coded represents a primary or ambient component, the MAA value considered will be α p or α a respectively , and therefore this distinction will no longer be made in the rest of the document. If the distribution I p / I a is unknown (parameter not transmitted), the decoder will assume that all the energy is correlated (primary energy), as well as the psycho-acoustic model, so as to obtain a correspondence during the restitution .

Ainsi, pour chaque sous-bande bk parmi K sous-bandes, la fonction Ψ(bk,b1,...,bk-1,bk+1,...,bK) est appelée pour estimer le « floutage » spatial exercé sur cette sous-bande par les autres sous-bandes, qui sont donc considérées comme distractives, et Ψ produit le MAA associé à cette sous-bande. L'estimation de la résolution spatiale se fait alors de façon dynamique puisque l'influence des autres sous-bandes est prise en compte.Thus, for each sub-band b k among K sub-bands, the function Ψ (b k , b 1 , ..., b k - 1 , b k + 1 , ..., b K ) is called to estimate the spatial “blurring” exerted on this sub-band by the other sub-bands, which are therefore considered to be distracting, and Ψ produces the MAA associated with this sub-band. The spatial resolution is then estimated dynamically since the influence of the other sub-bands is taken into account.

Les différentes résolutions spatiales ainsi estimées dans les sous-bandes de fréquences permettent de déterminer le nombre de bits à allouer pour la quantification des paramètres d'information spatiale dans chacune des sous-bandes.The different spatial resolutions thus estimated in the frequency sub-bands make it possible to determine the number of bits to be allocated for the quantification of the spatial information parameters in each of the sub-bands.

Ainsi, à l'étape E204, une détermination du nombre de bits à allouer à la sous-bande courante en fonction de la résolution spatiale estimée, est effectuée.Thus, in step E204, a determination of the number of bits to be allocated to the current sub-band as a function of the estimated spatial resolution, is carried out.

La stratégie d'allocation des bits de quantification des paramètres de spatialisation va alors consister à maximiser le nombre de bits pour les sous-bandes présentant le MAA minimal, au détriment des sous-bandes pour lesquelles le MAA est maximal.The strategy for allocating the quantization bits of the spatialization parameters will then consist in maximizing the number of bits for the sub-bands having the minimum MAA, to the detriment of the sub-bands for which the MAA is maximum.

Ainsi, le nombre de bits à allouer pour une sous-bande est inversement proportionnel à la résolution spatiale estimée pour cette sous-bande.Thus, the number of bits to be allocated for a sub-band is inversely proportional to the spatial resolution estimated for this sub-band.

Le procédé d'allocation peut donc adapter l'allocation de bits d'une sous-bande à une autre selon la sensibilité du système auditif à une distorsion spatiale. Cette sensibilité est donnée par le modèle psycho-acoustique.The allocation method can therefore adapt the allocation of bits from one sub-band to another according to the sensitivity of the auditory system to spatial distortion. This sensitivity is given by the psycho-acoustic model.

Ce procédé peut être mis en œuvre aussi bien en contexte de transmission à débit contraint qu'en contexte de transmission à débit non-contraint.This method can be implemented both in the context of transmission at a constrained rate and in the context of transmission at an unconstrained rate.

Dans les deux cas, une part du budget de bits est laissée disponible pour une allocation variable d'une sous-bande à une autre en fonction du MAA associé à celle-ci. Un certain budget de bits « flottants » est donc à répartir entre un même paramètre de chacune des sous-bandes de manière à minimiser perceptivement la distorsion spatiale résultant du processus de quantification, de façon homogène dans chacune des sous-bandes. Le reste du budget de bits est réparti équitablement entre toutes les sous-bandes. La qualité de codage spatial est donc définie par le nombre moyen, sur toutes les sous-bandes, de bits alloués à un même paramètre, ou, de manière équivalente, par le nombre total de bits alloués à un même paramètre pour toutes les sous-bandes.In both cases, a part of the bit budget is left available for variable allocation from one sub-band to another according to the MAA associated with it. A certain budget of “floating” bits is therefore to be distributed between the same parameter of each of the sub-bands so as to perceptively minimize the spatial distortion resulting from the quantization process, in a homogeneous manner in each of the sub-bands. The rest of the bit budget is distributed evenly across all sub-bands. The quality of spatial coding is therefore defined by the average number, over all the sub-bands, of bits allocated to the same parameter, or, in an equivalent manner, by the total number of bits allocated to the same parameter for all the sub- bands.

En contexte de transmission à débit non-contraint, une qualité de codage spatial cible est choisie et imposée par l'utilisateur. Cette qualité cible est définie par le nombre moyen, sur toutes les trames temporelles et sur toutes les sous-bandes, de bits affectés à un même paramètre. Ainsi, le MAA moyen, considérée alors comme une valeur de résolution de référence, est supposé estimable ou prédictible, toutes sous-bandes confondues, sur toutes ou partie des trames temporelles.In the context of transmission at an unconstrained rate, a target spatial coding quality is chosen and imposed by the user. This target quality is defined by the average number, over all time frames and over all sub-bands, of bits allocated to the same setting. Thus, the average MAA, then considered as a reference resolution value, is assumed to be estimable or predictable, all sub-bands combined, over all or part of the time frames.

Les sous-bandes dont le MAA estimé vaut le MAA moyen se verront allouer le nombre moyen de bits par paramètre défini par l'utilisateur. L'allocation de bits pour les autres sous-bandes est faite, comme en contexte de débit contraint, de façon à minimiser perceptivement la distorsion spatiale résultant du processus de quantification, de façon homogène dans chacune des sous-bandes, mais étant donné le nombre de bits à allouer aux sous-bandes de MAA moyen. Ainsi, dans ce mode de réalisation, la détermination du nombre de bits à allouer pour une sous-bande est effectuée si la résolution dans la sous-bande est différente d'une valeur de référence prédéterminée, ici le MAA moyen.The sub-bands whose estimated MAA is worth the average MAA will be allocated the average number of bits per parameter defined by the user. The allocation of bits for the other sub-bands is made, as in the context of constrained bit rate, so as to perceptively minimize the spatial distortion resulting from the quantization process, homogeneously in each of the sub-bands, but given the number bits to be allocated to the medium MAA sub-bands. Thus, in this embodiment, the determination of the number of bits to be allocated for a sub-band is carried out if the resolution in the sub-band is different from a predetermined reference value, here the average MAA.

Dans chacun des contextes, un certain nombre minimum de bits est déjà alloué par sous-bande pour coder chaque paramètre, ce qui d'une part assure une qualité minimum de reproduction spatiale pour toutes les sous-bandes audibles, et d'autre part procure une valeur approximative du paramètre concerné qui est accessible au décodage.In each context, a minimum number of bits is already allocated per sub-band to code each parameter, which on the one hand ensures a minimum quality of spatial reproduction for all the audible sub-bands, and on the other hand provides an approximate value of the parameter concerned which is accessible for decoding.

Pour simplifier, nous allons illustrer la stratégie d'allocation pour un des paramètres à coder par sous-bande. Mais le procédé est exactement le même pour les autres paramètres de chaque sous-bande. On considère que l'on traite une trame temporelle quelconque.

  • K : nombre de sous-bandes à coder (sous-bandes audibles)
  • N : nombre total de bits à allouer
  • nfixe : nombre de bits minimum affectés au paramètre de chaque sous-bande
  • Nflott : nombre de bits flottants à répartir entre les sous-bandes (suivant modèle psycho-acoustique)
  • bk : sous-bande k, k ∈{1,....,K}
  • argmaxk(Nk) = m : indice de la sous-bande à laquelle est alloué le plus de bits
  • ψ(bk,b1,...,bk-1,bk+1,...,bK) = αk : MAA associé à la sous-bande k (donné par le modèle psycho-acoustique)
  • Nk : nombre de bits flottants alloués au paramètre de bk
  • N'k : nombre de bits alloués au paramètre de bk au total (N'k= nfixe + Nk)
To simplify, we will illustrate the allocation strategy for one of the parameters to be coded by sub-band. But the procedure is exactly the same for the other parameters of each sub-band. We consider that we are processing any time frame.
  • K: number of sub-bands to be coded (audible sub-bands)
  • N: total number of bits to allocate
  • n fixed : minimum number of bits assigned to the parameter of each sub-band
  • N float : number of floating bits to be distributed between the sub-bands (according to psycho-acoustic model)
  • b k : sub-band k , k ∈ {1, ...., K }
  • argmax k (N k ) = m: index of the sub-band to which the most bits are allocated
  • ψ (b k , b 1 , ..., b k-1 , b k + 1 , ..., b K ) = α k : MAA associated with subband k (given by the psychoacoustic model)
  • N k : number of floating bits allocated to the parameter of b k
  • N ' k : total number of bits allocated to the parameter of b k (N' k = n fixed + N k )

Le budget total de bits est défini par : N = K × n fixe + N flott .

Figure imgb0001
The total bit budget is defined by: NOT = K × not fixed + NOT flo .
Figure imgb0001

Quelle que soit la répartition des valeurs de quantification (uniforme ou non), on suppose qu'ajouter un bit de codage double le nombre de valeurs de quantification et double donc la précision de la représentation de la valeur à coder. Si cette supposition n'est pas vérifiée, les formules (1) et (1') énoncées après doivent être ajustées en conséquence.Whatever the distribution of the quantization values (uniform or not), it is assumed that adding a coding bit doubles the number of quantization values and therefore doubles the precision of the representation of the value to be coded. If this assumption is not verified, the formulas (1) and (1 ') set out after must be adjusted accordingly.

À débit contraint, pour que l'erreur de quantification des paramètres de spatialisation soit modelée suivant le seuil de sensibilité à un déplacement angulaire, la sous-bande codée sur le plus de bits (bm) doit être la sous-bande ayant la plus petit MAA (αm), et le rapport de précision de codage entre la sous-bande courante bk et bm doit être inversement proportionnel au rapport des MAA de ces deux sous-bandes :

Figure imgb0002
At constrained throughput, for the quantization error of the spatialization parameters to be modeled according to the sensitivity threshold for angular displacement, the sub-band coded on the most bits (bm) must be the sub-band having the smallest MAA (α m ), and the coding accuracy ratio between the current sub-band bk and bm must be inversely proportional to the ratio of the MAA of these two sub-bands:
Figure imgb0002

D'où : N k = N m + log 2 α m α k .

Figure imgb0003
From where : NOT k = NOT m + log 2 α m α k .
Figure imgb0003

De plus, la somme des bits flottants de chaque sous-bande ne doit pas dépasser le nombre total de bits flottants disponibles Nflott : N k N flott .

Figure imgb0004
Furthermore, the sum of the floating bits of each sub-band must not exceed the total number of floating bits available N flo : NOT k NOT flo .
Figure imgb0004

D'où, en injectant dans cette relation l'expression précédente de Nk : N m N flott log 2 α m α k K .

Figure imgb0005
Hence, by injecting into this relation the previous expression of N k : NOT m NOT flo - log 2 α m α k K .
Figure imgb0005

Les formules (2) et (3) donnent respectivement une première approximation du nombre de bits à allouer au paramètre des sous-bandes Nk et Nm. S'il reste des bits à allouer, ou si trop de bits ont été alloués, l'heuristique suivante (algorithme dit « glouton ») permet de finaliser le processus d'allocation des bits flottants. Soit Δk l'écart entre la précision optimale de codage et la précision courante pour la sous-bande k, dérivé de la formule (1) : Δ k = α m α k 2 N k 2 N m .

Figure imgb0006
Formulas (2) and (3) respectively give a first approximation of the number of bits to be allocated to the parameter of the sub-bands N k and N m . If there are still bits to allocate, or if too many bits have been allocated, the following heuristic (so-called "gluttonous" algorithm) makes it possible to finalize the process of allocating floating bits. Let Δ k be the difference between the optimal coding precision and the current precision for sub-band k, derived from formula (1): Δ k = α m α k - 2 NOT k 2 NOT m .
Figure imgb0006

L'index de la sous-bande à laquelle le prochain bit est à allouer ou à reprendre sera respectivement déterminée par argmaxk (Δk ) ou argmink (Δk ). Δk est recalculé après chaque opération (allocation ou retrait) sur un bit. L'allocation est finalisée lorsque le nombre total de bits flottants alloués vaut exactement Nflott.The index of the sub-band to which the next bit is to be allocated or to be resumed will be determined respectively by argmax k ( Δ k ) or argmin k ( Δ k ). Δ k is recalculated after each operation (allocation or withdrawal) on one bit. The allocation is finalized when the total number of floating bits allocated is exactly N float .

Cas particulier : lorsque ∀k , Δk = 0 et que le nombre de bits alloués ne vaut pas Nflott, la sous-bande qui doit recevoir (respectivement à qui l'on doit enlever) le prochain bit est la sous-bande dont le MAA est le plus petit (respectivement le plus élevé).Special case: when ∀ k , Δ k = 0 and the number of allocated bits is not worth N float , the sub-band which must receive (respectively from which one must remove) the next bit is the sub-band whose the MAA is the smallest (respectively the highest).

Note : il est aussi possible de faire l'allocation complète avec cet algorithme.Note: it is also possible to do the full allocation with this algorithm.

Finalement, le nombre N'k de bits alloués au total au codage du paramètre de la sous-bande bk vaut : N k = n fixe + N k

Figure imgb0007
Finally, the number N ' k of bits allocated in total to the coding of the parameter of the sub-band b k is equal to: NOT k = not fixed + NOT k
Figure imgb0007

À débit non-contraint, il est nécessaire d'introduire trois nouvelles variables :

  • α : MAA moyen (estimé ou prédit) ou résolution spatiale de référence, toutes sous-bandes confondues, sur tout ou partie des trames temporelles
  • b α : sous-bande fictive de référence, de MAA α
  • N : nombre de bits flottants affectés au paramètre de α
At unconstrained flow, it is necessary to introduce three new variables:
  • α : Mean MAA (estimated or predicted) or reference spatial resolution, all sub-bands combined, over all or part of the time frames
  • b α : hypothetical reference sub-band, of MAA α
  • NOT : number of floating bits assigned to the parameter of α

Le rapport de précision de codage entre la sous-bande courante bk et la sous-bande de référence b α doit être inversement proportionnel au rapport des MAA de ces deux sous-bandes :

Figure imgb0008
The coding accuracy ratio between the current subband b k and the reference subband b α must be inversely proportional to the ratio of the MAA of these two sub-bands:
Figure imgb0008

Le nombre de bits flottants à allouer à chaque paramètre est donc donné par : N k = N + log 2 α α k .

Figure imgb0009
The number of floating bits to allocate to each parameter is therefore given by: NOT k = NOT + log 2 α α k .
Figure imgb0009

La formule (5) donne le nombre de bits à allouer au total au codage du paramètre de la sous-bande bk.The formula (5) gives the number of bits to allocate in total to the coding of the parameter of the sub-band b k .

Enfin, à débit contraint comme non-contraint, chaque paramètre est alors quantifié (Q) au codeur pour former le train binaire ou dé-quantifié (Q-1) au décodeur en fonction du nombre de bits qui lui est alloué.Finally, at a rate constrained as unconstrained, each parameter is then quantized (Q) to the coder to form the binary train or de-quantized (Q -1 ) to the decoder according to the number of bits allocated to it.

S'ils sont présents, les paramètres de répartition d'énergie primaire et ambiante, qui eux sont codés sur un nombre fixe de bits, doivent être transmis en premiers, car ils seront alors nécessaires au décodage des paramètres codés sur un nombre de bits variable.If present, the primary and ambient energy distribution parameters, which are coded on a fixed number of bits, must be transmitted first, as they will then be necessary for decoding the parameters coded on a variable number of bits. .

Au décodeur, la quantification inverse du train de bits des paramètres spatiaux nécessite de connaître le nombre de bits allouées à chaque paramètre. L'invention permet d'éviter une transmission d'informations supplémentaires sur la stratégie d'allocation de bits.At the decoder, the inverse quantization of the bit stream of spatial parameters requires knowing the number of bits allocated to each parameter. The invention makes it possible to avoid transmission of additional information on the bit allocation strategy.

Puisque le « floutage » spatial effectif peut être calculé à partir du « downmix » seul, il est possible de recalculer l'allocation de bits des paramètres spatiaux en utilisant le même modèle psycho-acoustique et la même procédure d'allocation de bits qu'à l'encodage. Ainsi, on économise la transmission de la stratégie de quantification. En contrepartie, cela impose de fixer le modèle psycho-acoustique et la procédure d'allocation de bits entre l'encodage et le décodage.Since the effective spatial “blurring” can be calculated from the “downmix” alone, it is possible to recalculate the allocation of bits of the spatial parameters using the same psycho-acoustic model and the same procedure of allocation of bits as encoding. This saves the transmission of the quantification strategy. In return, this requires fixing the psycho-acoustic model and the procedure for allocating bits between encoding and decoding.

S'ils sont présents, les paramètres de répartition d'énergie primaire et ambiante, qui eux sont codés sur un nombre fixe de bits, ont été au-préalable transmis. Ils sont donc décodés préalablement au décodage des autres paramètres.If present, the primary and ambient energy distribution parameters, which are coded on a fixed number of bits, have been transmitted beforehand. They are therefore decoded before decoding the other parameters.

De plus, si nfixe est non-nul, il est possible de récupérer une première valeur approximative de chacun des paramètres sans avoir à connaître le nombre de bits alloués à chacun des paramètres. En effet, il suffit d'organiser le train de bit de manière à envoyer d'abord nfixe bits de poids fort pour chacun des paramètres, suivi des Nk bits restants pour chaque paramètre. Cela peut être utile si d'autres études expérimentales venaient à montrer que certaines informations de positions sont en fait nécessaires pour estimer plus précisément le MAA. Dans ce cas, le signal somme ou « downmix » ne suffirait plus, et ces valeurs approximatives des paramètres pourraient servir à estimer le MAA à l'encodage (respectivement au décodage) pour connaître le nombre de bits à allouer (respectivement alloués) à chaque paramètre. Ainsi, plus nfixe est élevé, plus on a une bonne approximation des paramètres disponible pour l'estimation du MAA.In addition, if n fixed is non-zero, it is possible to recover a first approximate value of each of the parameters without having to know the number of bits allocated to each of the parameters. Indeed, it suffices to organize the bit stream so as to send first n fixed most significant bits for each of the parameters, followed by the N k bits remaining for each parameter. This can be useful if other experimental studies show that certain position information is actually necessary to more accurately estimate the MAA. In this case, the sum signal or “downmix” would no longer suffice, and these approximate values of the parameters could be used to estimate the MAA at encoding (respectively at decoding) in order to know the number of bits to be allocated (respectively allocated) to each setting. Thus, the higher n is fixed , the more we have a good approximation of the parameters available for the estimation of MAA.

Les codeurs et décodeurs tels que décrits en référence à la figure 1 ainsi que le dispositif d'allocation objet de l'invention peuvent être intégrés dans des équipements multimédia de type décodeur de salon, "set top box" ou lecteur de contenu audio ou vidéo. Ils peuvent également être intégré dans des équipements de communication de type téléphone mobile.Encoders and decoders as described with reference to figure 1 as well as the allocation device that is the subject of the invention can be integrated into multimedia equipment of the living room decoder, "set top box" or audio or video content player type. They can also be integrated into mobile phone type communication equipment.

La figure 3 représente un exemple de réalisation d'un tel équipement dans lequel le dispositif d'allocation selon l'invention est intégré. Ce dispositif comporte un processeur PROC coopérant avec un bloc mémoire BM comportant une mémoire de stockage et/ou de travail MEM.The figure 3 shows an exemplary embodiment of such equipment in which the allocation device according to the invention is integrated. This device comprises a processor PROC cooperating with a memory block BM comprising a storage and / or working memory MEM.

Le bloc mémoire peut avantageusement comporter un programme informatique comportant des instructions de code pour la mise en œuvre des étapes du procédé d'allocation au sens de l'invention, lorsque ces instructions sont exécutées par le processeur PROC, et notamment les étapes d'estimation d'une résolution spatiale de la sous-bande courante à partir de propriétés spectrales de la sous-bande et de détermination d'un nombre de bits à allouer à la sous-bande courante en fonction de la résolution spatiale estimée.The memory block can advantageously include a computer program comprising code instructions for implementing the steps of the allocation method within the meaning of the invention, when these instructions are executed by the processor PROC, and in particular the estimation steps. a spatial resolution of the current sub-band from spectral properties of the sub-band and determination of a number of bits to be allocated to the current sub-band as a function of the estimated spatial resolution.

Typiquement, la description de la figure 2 reprend les étapes d'un algorithme d'un tel programme informatique. Le programme informatique peut également être stocké sur un support mémoire lisible par un lecteur du dispositif ou téléchargeable dans l'espace mémoire de celui-ci.Typically, the description of the figure 2 takes the steps of an algorithm of such a computer program. The computer program can also be stored on a memory medium readable by a reader of the device or downloadable in the memory space of the latter.

Un tel équipement comporte un module d'entrée apte à recevoir un signal somme décodé soit d'un codeur par l'intermédiaire d'un décodeur local, soit d'un décodeur.Such equipment includes an input module capable of receiving a decoded sum signal either from an encoder via a local decoder, or from a decoder.

Le dispositif comporte un module de sortie apte à transmettre le nombre de bits à allouer par sous-bande de fréquence aux modules de quantification d'un codeur ou au module de quantification inverse d'un décodeur.The device comprises an output module capable of transmitting the number of bits to be allocated per frequency sub-band to the quantization modules of an encoder or to the inverse quantization module of a decoder.

Dans un mode possible de réalisation, le dispositif ainsi décrit peut également comporter les fonctions de codage et/ou de décodage en plus des fonctions d'allocation selon l'invention.In one possible embodiment, the device thus described may also include the coding and / or decoding functions in addition to the allocation functions according to the invention.

Claims (12)

  1. Method for allocating quantization bits for spatial information parameters per frequency sub-band, for a parametric coding/decoding of a multichannel audio stream representing a sound scene consisting of a plurality of sound sources and comprising a step of quantization/inverse quantization per frequency sub-band of spatial information parameters describing the spatial position of the sound sources of the sound scene, characterized in that that it comprises the following steps:
    - estimation (E203) of a spatial resolution of the current sub-band on the basis of spectral properties of the sub-band;
    - determination (E204) of a number of bits to be allocated to the current sub-band, the number of bits to be allocated being inversely proportional to the estimated spatial resolution.
  2. Method according to Claim 1, characterized in that the estimation of a spatial resolution of the current sub-band is performed furthermore on the basis of the central frequency of the sub-band.
  3. Method according to Claim 1, characterized in that the spatial resolution of a sub-band is estimated furthermore on the basis of the energy properties of the other sub-bands of a set of sub-bands defining the sound sources.
  4. Method according to Claim 1, characterized in that the spectral properties of a sub-band are obtained on the basis of a decoded sum signal arising from a reduction processing of the channels of the multichannel audio stream.
  5. Method according to one of Claims 1 to 4, characterized in that the energy properties in a sub-band comprise the properties of primary energy and of ambient energy in the sub-band.
  6. Method according to Claim 1, characterized in that the number of bits to be allocated for a sub-band forms part of a predetermined number of bits plus a number of bits already allocated per sub-band.
  7. Method according to Claim 6, characterized in that the determination of the number of bits to be allocated for a sub-band is adjusted as a function of the difference between the resolution in this sub-band and a predetermined reference resolution, to which there corresponds a predetermined allocation of reference bits.
  8. Method according to Claim 1, characterized in that it is implemented for a set of non-masked sub-bands which is determined by a step of analysis of energy-related masking between sub-bands.
  9. Device for allocating quantization bits for spatial information parameters per frequency sub-band, for a parametric coder/decoder of a multichannel audio stream representing a sound scene consisting of a plurality of sound sources and comprising a module for quantization/inverse quantization per frequency sub-band of spatial information parameters describing the spatial position of the sound sources of the sound scene, characterized in that that it comprises:
    - a module (121) for estimating a spatial resolution of the current sub-band on the basis of spectral properties of the sub-band;
    - a module (122) for determining a number of bits to be allocated to the current sub-band, the number of bits to be allocated being inversely proportional to the estimated spatial resolution.
  10. Parametric coder of a multichannel audio stream characterized in that it comprises a device for allocating quantization bits in accordance with Claim 9.
  11. Parametric decoder of a multichannel audio stream characterized in that it comprises a device for allocating quantization bits in accordance with Claim 9.
  12. Computer program comprising code instructions for the implementation of the steps of the allocation method according to one of Claims 1 to 8, when these instructions are executed by a processor.
EP12717796.2A 2011-03-29 2012-03-28 Allocation, by sub-bands, of bits for quantifying spatial information parameters for parametric encoding Active EP2691952B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1152602A FR2973551A1 (en) 2011-03-29 2011-03-29 QUANTIZATION BIT SOFTWARE ALLOCATION OF SPATIAL INFORMATION PARAMETERS FOR PARAMETRIC CODING
PCT/FR2012/050649 WO2012131253A1 (en) 2011-03-29 2012-03-28 Allocation, by sub-bands, of bits for quantifying spatial information parameters for parametric encoding

Publications (2)

Publication Number Publication Date
EP2691952A1 EP2691952A1 (en) 2014-02-05
EP2691952B1 true EP2691952B1 (en) 2020-04-29

Family

ID=46022482

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12717796.2A Active EP2691952B1 (en) 2011-03-29 2012-03-28 Allocation, by sub-bands, of bits for quantifying spatial information parameters for parametric encoding

Country Status (4)

Country Link
US (1) US9263050B2 (en)
EP (1) EP2691952B1 (en)
FR (1) FR2973551A1 (en)
WO (1) WO2012131253A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2973551A1 (en) * 2011-03-29 2012-10-05 France Telecom QUANTIZATION BIT SOFTWARE ALLOCATION OF SPATIAL INFORMATION PARAMETERS FOR PARAMETRIC CODING
CN103778918B (en) * 2012-10-26 2016-09-07 华为技术有限公司 The method and apparatus of the bit distribution of audio signal
CN105976824B (en) 2012-12-06 2021-06-08 华为技术有限公司 Method and apparatus for decoding a signal
TWI546799B (en) 2013-04-05 2016-08-21 杜比國際公司 Audio encoder and decoder
CN106409300B (en) * 2014-03-19 2019-12-24 华为技术有限公司 Method and apparatus for signal processing
US12125492B2 (en) 2015-09-25 2024-10-22 Voiceage Coproration Method and system for decoding left and right channels of a stereo sound signal
FR3048808A1 (en) * 2016-03-10 2017-09-15 Orange OPTIMIZED ENCODING AND DECODING OF SPATIALIZATION INFORMATION FOR PARAMETRIC CODING AND DECODING OF A MULTICANAL AUDIO SIGNAL
CN108959107B (en) * 2017-05-18 2020-06-16 深圳市中兴微电子技术有限公司 Sharing method and device
US10586546B2 (en) 2018-04-26 2020-03-10 Qualcomm Incorporated Inversely enumerated pyramid vector quantizers for efficient rate adaptation in audio coding
US10573331B2 (en) 2018-05-01 2020-02-25 Qualcomm Incorporated Cooperative pyramid vector quantizers for scalable audio coding
US10580424B2 (en) * 2018-06-01 2020-03-03 Qualcomm Incorporated Perceptual audio coding as sequential decision-making problems
US10734006B2 (en) 2018-06-01 2020-08-04 Qualcomm Incorporated Audio coding based on audio pattern recognition
US11133891B2 (en) 2018-06-29 2021-09-28 Khalifa University of Science and Technology Systems and methods for self-synchronized communications
GB2575305A (en) 2018-07-05 2020-01-08 Nokia Technologies Oy Determination of spatial audio parameter encoding and associated decoding
US10951596B2 (en) * 2018-07-27 2021-03-16 Khalifa University of Science and Technology Method for secure device-to-device communication using multilayered cyphers
MX2021007109A (en) * 2018-12-20 2021-08-11 Ericsson Telefon Ab L M Method and apparatus for controlling multichannel audio frame loss concealment.
EP3987513B1 (en) * 2019-06-24 2024-06-26 Qualcomm Incorporated Quantizing spatial components based on bit allocations determined for psychoacoustic audio coding
GB2595871A (en) * 2020-06-09 2021-12-15 Nokia Technologies Oy The reduction of spatial audio parameters
GB2595883A (en) * 2020-06-09 2021-12-15 Nokia Technologies Oy Spatial audio parameter encoding and associated decoding
CN116982108A (en) * 2021-01-29 2023-10-31 诺基亚技术有限公司 Determination of spatial audio parameter coding and associated decoding
WO2024111300A1 (en) * 2022-11-22 2024-05-30 富士フイルム株式会社 Sound data creation method and sound data creation device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL76283A0 (en) * 1985-09-03 1986-01-31 Ibm Process and system for coding signals
US4899384A (en) * 1986-08-25 1990-02-06 Ibm Corporation Table controlled dynamic bit allocation in a variable rate sub-band speech coder
US4956871A (en) * 1988-09-30 1990-09-11 At&T Bell Laboratories Improving sub-band coding of speech at low bit rates by adding residual speech energy signals to sub-bands
US5054075A (en) * 1989-09-05 1991-10-01 Motorola, Inc. Subband decoding method and apparatus
JPH05335967A (en) * 1992-05-29 1993-12-17 Takeo Miyazawa Sound information compression method and sound information reproduction device
US5623577A (en) * 1993-07-16 1997-04-22 Dolby Laboratories Licensing Corporation Computationally efficient adaptive bit allocation for encoding method and apparatus with allowance for decoder spectral distortions
US5632003A (en) * 1993-07-16 1997-05-20 Dolby Laboratories Licensing Corporation Computationally efficient adaptive bit allocation for coding method and apparatus
KR0154387B1 (en) * 1995-04-01 1998-11-16 김주용 Digital audio encoder applying multivoice system
KR100548891B1 (en) * 1998-06-15 2006-02-02 마츠시타 덴끼 산교 가부시키가이샤 Audio coding apparatus and method
JP2000059227A (en) * 1998-08-07 2000-02-25 Matsushita Electric Ind Co Ltd Encoding and decoding device and its method
JP4287545B2 (en) * 1999-07-26 2009-07-01 パナソニック株式会社 Subband coding method
US8379868B2 (en) * 2006-05-17 2013-02-19 Creative Technology Ltd Spatial audio coding based on universal spatial cues
US20090198500A1 (en) * 2007-08-24 2009-08-06 Qualcomm Incorporated Temporal masking in audio coding based on spectral dynamics in frequency sub-bands
FR2973551A1 (en) * 2011-03-29 2012-10-05 France Telecom QUANTIZATION BIT SOFTWARE ALLOCATION OF SPATIAL INFORMATION PARAMETERS FOR PARAMETRIC CODING

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR2973551A1 (en) 2012-10-05
EP2691952A1 (en) 2014-02-05
US9263050B2 (en) 2016-02-16
WO2012131253A1 (en) 2012-10-04
US20140219459A1 (en) 2014-08-07

Similar Documents

Publication Publication Date Title
EP2691952B1 (en) Allocation, by sub-bands, of bits for quantifying spatial information parameters for parametric encoding
EP2374123B1 (en) Improved encoding of multichannel digital audio signals
EP2374124B1 (en) Advanced encoding of multi-channel digital audio signals
EP3427260B1 (en) Optimized coding and decoding of spatialization information for the parametric coding and decoding of a multichannel audio signal
JP5485909B2 (en) Audio signal processing method and apparatus
EP2002424B1 (en) Device and method for scalable encoding of a multichannel audio signal based on a principal component analysis
US8972270B2 (en) Method and an apparatus for processing an audio signal
EP2005420B1 (en) Device and method for encoding by principal component analysis a multichannel audio signal
EP2489039B1 (en) Optimized low-throughput parametric coding/decoding
US20110002393A1 (en) Audio encoding device, audio encoding method, and video transmission device
EP2656342A1 (en) Improved stereo parametric encoding/decoding for channels in phase opposition
WO2017103418A1 (en) Adaptive channel-reduction processing for encoding a multi-channel audio signal
EP2168121B1 (en) Quantification after linear conversion combining audio signals of a sound scene, and related encoder
WO2010037427A1 (en) Apparatus for binaural audio coding
US20110206209A1 (en) Apparatus
JP2007333785A (en) Audio signal encoding device and audio signal encoding method
FR3049084A1 (en)
EP2347411B1 (en) Pre-echo attenuation in a digital audio signal
EP2232489B1 (en) Transform-based coding/decoding, with adaptive windows
WO2011073600A1 (en) Parametric stereo encoding/decoding having downmix optimisation
EP4042418B1 (en) Determining corrections to be applied to a multichannel audio signal, associated coding and decoding
FR2990551A1 (en) Method for parametric coding of stereo signal based on extraction of space information parameters, involves applying temporal transient resolution to determine parameters from temporal beginning positions of sounds and coding parameters

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131025

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190417

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602012069666

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G10L0019000000

Ipc: G10L0019002000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G10L 19/02 20130101ALI20191118BHEP

Ipc: G10L 19/008 20130101ALI20191118BHEP

Ipc: G10L 19/002 20130101AFI20191118BHEP

INTG Intention to grant announced

Effective date: 20191211

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1264499

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012069666

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ORANGE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200829

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200831

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200730

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1264499

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012069666

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210328

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120328

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240220

Year of fee payment: 13

Ref country code: GB

Payment date: 20240221

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240220

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429