EP2675927B1 - Method for producing a grain-oriented flat steel product - Google Patents
Method for producing a grain-oriented flat steel product Download PDFInfo
- Publication number
- EP2675927B1 EP2675927B1 EP11761066.7A EP11761066A EP2675927B1 EP 2675927 B1 EP2675927 B1 EP 2675927B1 EP 11761066 A EP11761066 A EP 11761066A EP 2675927 B1 EP2675927 B1 EP 2675927B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- laser
- flat steel
- steel product
- laser treatment
- varied
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 60
- 239000010959 steel Substances 0.000 title claims description 60
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000013532 laser treatment Methods 0.000 claims description 54
- 238000000034 method Methods 0.000 claims description 28
- 230000005291 magnetic effect Effects 0.000 claims description 18
- 239000000835 fiber Substances 0.000 claims description 6
- 238000011282 treatment Methods 0.000 claims description 5
- 238000005259 measurement Methods 0.000 claims description 4
- 238000009413 insulation Methods 0.000 claims description 2
- 238000000137 annealing Methods 0.000 description 16
- 230000008859 change Effects 0.000 description 13
- 230000006872 improvement Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 230000005415 magnetization Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000010287 polarization Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052839 forsterite Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 2
- 230000005381 magnetic domain Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1294—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14775—Fe-Si based alloys in the form of sheets
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/05—Grain orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
Definitions
- the invention relates to a method for producing a grain-oriented steel flat product with minimized magnetic loss values and optimized magnetostrictive properties.
- HGO material The grain-oriented flat steel products in question here, also referred to in the jargon as "HGO material", are steel bands, in technical language also simply “electrical tapes”, or steel sheets, in technical language simply called “electric sheets”. From such flat steel products parts are manufactured for electrical engineering applications.
- Grain-oriented electrical steel or sheet is particularly suitable for applications in which a particularly low loss of magnetization is in the foreground and high demands are placed on the permeability or polarization. Such requirements exist in particular for parts for power transformers, distribution transformers and higher quality small transformers.
- a cold strip is then rolled out of the hot strip in one or more steps, wherein an intermediate annealing can be carried out between the cold rolling steps, if necessary.
- an intermediate annealing can be carried out between the cold rolling steps, if necessary.
- the carbon content of the cold strip is usually significantly reduced to avoid magnetic aging.
- an annealing separator which is typically MgO, is applied to the strip surfaces.
- the annealing separator prevents the turns of a coil wound from the cold strip from sticking together during the high-temperature annealing that is then carried out.
- the texture is created in the cold strip by selective grain growth.
- the so-called "Glass Film” forms on the strip surfaces a forsterite layer, the so-called "Glass Film", off.
- the steel material is cleaned by diffusion processes occurring during the high-temperature annealing.
- the resulting flat steel product is coated with an insulating layer, thermally directed and subjected to low-stress annealing in a final "final annealing".
- This final annealing can be carried out before or after the assembly of the steel flat product produced in the above-described manner to the blanks required for further processing, wherein the additional stresses arising during the compartmenting process can be reduced by a final annealing after the blanks have been divided.
- Steel flat products produced in this way generally have a thickness of 0.15 mm to 0.5 mm.
- the metallurgical properties of the material, the degrees of cold rolling set in the production of flat steel products and the parameters of the heat treatment steps are coordinated so that targeted recrystallization processes occur. These recrystallization processes lead to the typical for the material "Goss texture", in which the direction of the easiest magnetization in the rolling direction of the finished strips. Grain-oriented flat steel products accordingly have a strongly anisotropic magnetic behavior.
- the orientational sharpness of the Goss texture of the flat steel product can be improved.
- Further loss reductions can be achieved by reducing the spacings of the 180 ° domain walls.
- High tensile stresses in the rolling direction which are transferred to the steel surface via insulating coatings, also contribute to the reduction of the domain distances and, as a result, to the reduction of the core losses.
- the required tensile stress values can only be realized to a limited extent for technical reasons.
- the laser treatment can improve the corona loss of a grain-oriented flat steel product with a nominal thickness of 0.23 mm typical for these products by more than 10% compared to the untreated state.
- the loss improvements depend both on the properties of the base material, such as the grain size and texture sharpness, and on the laser parameters, to which the distance L of the lines along which the laser beams are guided onto the respective flat steel product, the contact time t dwell and the specific Energy density U s belong.
- the tuning of these parameters has a decisive influence on the respectively achieved reduction of the re-magnetization losses.
- noise generation In addition to the re-magnetization losses, noise generation also plays a role in transformers. This is based on a known as magnetostriction physical effect.
- Magnetostriction is the change in length of a ferromagnetic material in the direction of its magnetization.
- a ferromagnetic component such as a transformer
- the main 180 ° domains are shifted, which alone, however, does not contribute to the magnetostriction.
- magnetostrictive stresses exist in the material. These form a sound source during operation in the alternating magnetic field and are the cause of the transformer noise.
- the selected process parameters "specific radiant energy”, "residence time” and “distance between two successive tracks of the laser beam on the steel sheet” are within 0.1 and 25 mJ / mm 2 , 1x10 -6s - 1x10 -2 s and 2 - 12 mm synchronously and continuously adjusted to optimize the improvement of at least one of the magnetic characteristics of the sheet, with the choice between magnetostriction, induction and core losses continuously measured before and after the laser beam treatment.
- the object of the invention was to provide a method for producing flat steel products, which are optimally suitable for the production of parts for transformers.
- the flat steel product provided for the method according to the invention can be produced using the measures generally known to the person skilled in the art and initially based on suitable steel alloys, which are also already well known from the prior art. Of course, this also includes such manufacturing processes and alloys that are not yet known.
- the parameters of the laser treatment are set so that a flat steel product produced according to the invention not only has minimized magnetization losses, but also optimizes its apparent power S 1.7 / 50 NACH after laser treatment.
- the apparent power S 1.7 / 50 of the flat steel product to be treated with the laser beam is detected before and after the laser treatment (step b)).
- the distance a of the linear deformations, the contact time t dwell then becomes the parameters of the laser treatment of the laser beam, the specific energy density U s , the laser power P, the focus size ⁇ s or the scan speed v scan varied so that the difference between the respectively detected before and after the laser treatment apparent power S 1.7 / 50 is less than 40%.
- the parameters of the laser treatment are thus adjusted according to the invention so that an increase in the apparent power S 1.7 / 50 of a steel flat product processed according to the invention during laser treatment is limited by setting the parameters of the laser treatment so that the apparent power S 1 detected after the laser treatment , 7/50 FOLLOWS BY THE FOLLOWING CONDITION : S 1.7 / 50 TO ⁇ 1.4 ⁇ S 1.7 / 50 IN FRONT
- the increase in the apparent power caused by the laser treatment is accordingly limited according to the invention so that the apparent power after laser cutting is not more than 40% is increased compared to its value on the same workpiece before lasing.
- the invention thus takes into account that in the design transformers are usually not the loss of magnetization of each processed flat steel products in the foreground, but the apparent power. Therefore, according to the invention, the parameters of the laser treatment are optimized not only with regard to the re-magnetization losses but also to the apparent powers with the same polarization.
- the subject matter of the method according to the invention is thus an optimization of the laser parameters with regard to the minimization of the magnetic reversal loss P 1.7 / 50 and the apparent power S 1.7 / 50 . It turned out that minimizing the apparent power minimizes the noise increase. This means that the laser treatment, although superficially causes the refinement of the main domains, which leads to the desired loss reduction, but that this is accompanied by the optimization of the laser treatment according to the invention with respect to the lowest possible apparent power, a comparatively small increase in volume areas with secondary magnetic structures.
- a minimization of the change in apparent power S 1.7 / 50 occurring via the laser treatment can be achieved by varying the exposure time t dwell of the laser beam in the range from 1 ⁇ 10 -5 s to 2 ⁇ 10 -4 s.
- the laser power P in the fiber lasers available today can be varied in the range from 200 to 3000 W in order to minimize the change in the apparent power S 1.7 / 50 occurring via the laser treatment become.
- Fiber lasers have the particular advantage here of allowing close focusing of the laser beam. For example, track widths of less than 20 ⁇ m can be achieved with a fiber laser.
- a CO 2 laser in the implementation of the method according to the invention as a laser source. Due to the fact that in such a laser, the laser beam can not be so strongly focused, here in the currently available CO 2 lasers, a variation of the laser power P in the range 1000 to 5000 W for the purpose of minimizing the entering via the laser treatment Change in Apparent power S 1,7 / 50 displayed.
- the inventive method can preferably be carried out on such flat steel products, which is occupied at least with an insulating layer.
- an insulating layer between the insulating layer and the steel substrate of the flat steel product, for example, a glass or forsterite layer may still be present.
- various parameters of the operational laser device were varied with a 1 kW multimode fiber laser.
- the parameters to be optimized were the distance L of the laser lines, the laser power P, the focus size ⁇ s and the scan speed v scan .
- Fig. 1 Loss improvement ⁇ P 1,7 / 50 (symbolized by filled squares) and apparent power change ⁇ S 1,7 / 50 (symbolized by empty circles) as a function of the distance L of the laser tracks.
- the reference quantities are in each case the changes ⁇ P 1.7 / 50 of the power loss P 1.7 / 50 and the change ⁇ S 1.7 / 50 of the apparent power S 1.7 / 50 in relation to the un-lasered state, ie the state before the laser treatment ( Step b)) specified.
- t dwell ⁇ ⁇ s / v scan
- Fig. 2 shows the noise N calculated from the measured change in length as a function of polarization J.
- the solid curve is in Fig. 2 the reference state before the laser treatment ("without laser treatment"), wherein the measured values, which form the basis of this curve, are symbolized by circles filled with black.
- the change ⁇ P 1.7 / 50 of the power loss P 1.7 / 50 achieved with the laser treatment was in each case - 13% compared to the initial state before the laser treatment.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Dispersion Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
- Laser Beam Processing (AREA)
Description
Die Erfindung betrifft ein Verfahren zum Erzeugen eines kornorientierten Stahlflachprodukts mit minimierten magnetischen Verlustwerten und optimierten magnetostriktiven Eigenschaften.The invention relates to a method for producing a grain-oriented steel flat product with minimized magnetic loss values and optimized magnetostrictive properties.
Bei den hier in Rede stehenden kornorientierten Stahlflachprodukten, in der Fachsprache auch als "HGO-Material" bezeichnet, handelt es sich um Stahlbänder, in der Fachsprache auch einfach "Elektrobänder", oder Stahlbleche, in der Fachsprache auch einfach "Elektrobleche" genannt. Aus solchen Stahlflachprodukte werden Teile für elektrotechnische Anwendungen gefertigt.The grain-oriented flat steel products in question here, also referred to in the jargon as "HGO material", are steel bands, in technical language also simply "electrical tapes", or steel sheets, in technical language simply called "electric sheets". From such flat steel products parts are manufactured for electrical engineering applications.
Kornorientiertes Elektroband oder -blech eignet sich insbesondere für Verwendungen, bei denen ein besonders niedriger Ummagnetisierungsverlust im Vordergrund steht und hohe Ansprüche an die Permeabilität oder Polarisation gestellt werden. Solche Anforderungen bestehen insbesondere bei Teilen für Leistungstransformatoren, Verteilungstransformatoren und höherwertigen Kleintransformatoren.Grain-oriented electrical steel or sheet is particularly suitable for applications in which a particularly low loss of magnetization is in the foreground and high demands are placed on the permeability or polarization. Such requirements exist in particular for parts for power transformers, distribution transformers and higher quality small transformers.
Wie im Einzelnen beispielsweise in der
Nach dem Haspeln und einer optional zusätzlich durchgeführten Glühung sowie einer ebenso optional absolvierten Entzunderungs- bzw. Beizbehandlung wird aus dem Warmband anschließend in ein oder mehreren Schritten ein Kaltband gewalzt, wobei zwischen den Kaltwalzschritten erforderlichenfalls eine Zwischenglühung durchgeführt werden kann. Bei der daraufhin durchgeführten Entkohlungsglühung wird üblicherweise zur Vermeidung einer magnetischen Alterung der Kohlenstoffgehalt des Kaltbands entscheidend verringert.After the reeling and optionally additionally performed annealing as well as a likewise optionally completed descaling or pickling treatment, a cold strip is then rolled out of the hot strip in one or more steps, wherein an intermediate annealing can be carried out between the cold rolling steps, if necessary. In the subsequent decarburization annealing, the carbon content of the cold strip is usually significantly reduced to avoid magnetic aging.
Nach dem Entkohlungsglühen wird auf die Bandoberflächen ein Glühseparator, bei dem es sich typischerweise um MgO handelt, aufgebracht. Der Glühseparator verhindert, dass die Windungen eines aus dem Kaltband gewickelten Coils bei der daraufhin durchgeführten Hochtemperaturglühung miteinander verkleben. Während der Hochtemperaturglühung, die typischerweise in einem Haubenofen unter Schutzgas durchgeführt wird, entsteht im Kaltband durch selektives Kornwachstum die Textur. Ferner bildet sich auf den Bandoberflächen eine Forsteritschicht, der sogenannte "Glasfilm", aus. Darüber hinaus wird durch während der Hochtemperaturglühung ablaufende Diffusionsvorgänge das Stahlmaterial gereinigt.After decarburization annealing, an annealing separator, which is typically MgO, is applied to the strip surfaces. The annealing separator prevents the turns of a coil wound from the cold strip from sticking together during the high-temperature annealing that is then carried out. During the high-temperature annealing, which is typically carried out in a hood furnace under protective gas, the texture is created in the cold strip by selective grain growth. Furthermore, forms on the strip surfaces a forsterite layer, the so-called "Glass Film", off. In addition, the steel material is cleaned by diffusion processes occurring during the high-temperature annealing.
Im Anschluss an die Hochtemperaturglühung wird das so erhaltene Stahlflachprodukt mit einer Isolierschicht beschichtet, thermisch gerichtet und in einer abschließenden "Schlussglühung" spannungsarm geglüht. Diese Schlussglühung kann vor oder nach der Konfektionierung des in der voranstehend beschriebenen Weise erzeugten Stahlflachprodukts zu den für die Weiterverarbeitung benötigten Zuschnitten erfolgen, wobei durch eine Schlussglühung nach dem Abteilen der Zuschnitte die im Zuge des Abteilvorgangs entstandenen zusätzlichen Spannungen abgebaut werden können. So erzeugte Stahlflachprodukte weisen in der Regel eine Dicke von 0,15 mm bis 0,5 mm auf.Following the high-temperature annealing, the resulting flat steel product is coated with an insulating layer, thermally directed and subjected to low-stress annealing in a final "final annealing". This final annealing can be carried out before or after the assembly of the steel flat product produced in the above-described manner to the blanks required for further processing, wherein the additional stresses arising during the compartmenting process can be reduced by a final annealing after the blanks have been divided. Steel flat products produced in this way generally have a thickness of 0.15 mm to 0.5 mm.
Die metallurgischen Eigenschaften des Werkstoffs, die bei der Erzeugung der Stahlflachprodukte eingestellten Umformgrade der Kaltwalzprozesse und die Parameter der Wärmebehandlungsschritte sind jeweils so aufeinander abgestimmt, dass gezielte Rekristallisationsprozesse ablaufen. Diese Rekristallisationsprozesse führen zu der für den Werkstoff typischen "Goss-Textur", bei der die Richtung der leichtesten Magnetisierbarkeit in Walzrichtung der Fertigbänder liegt. Kornorientierte Stahlflachprodukte weisen dementsprechend ein stark anisotropes magnetisches Verhalten auf.The metallurgical properties of the material, the degrees of cold rolling set in the production of flat steel products and the parameters of the heat treatment steps are coordinated so that targeted recrystallization processes occur. These recrystallization processes lead to the typical for the material "Goss texture", in which the direction of the easiest magnetization in the rolling direction of the finished strips. Grain-oriented flat steel products accordingly have a strongly anisotropic magnetic behavior.
Zur Verbesserung der Ummagnetisierungsverluste eines kornorientierten Stahlflachprodukts gibt es verschiedene Methoden. Zum Beispiel kann die Orientierungsschärfe der Goss-Textur des Stahlflachprodukts verbessert werden. Weitere Verlustverringerungen können durch Verringerung der Abstände der 180° Domänenwände erreicht werden. Hohe Zugspannungen in Walzrichtung, welche über isolierende Beschichtungen auf die Stahloberfläche übertragen werden, tragen ebenfalls zur Reduzierung der Domänenabstände und damit einhergehend zur Reduzierung der Ummagnetisierungsverluste bei. Jedoch sind die benötigten Zugspannungswerte aus technischen Gründen nur eingeschränkt realisierbar.There are various ways of improving the core losses of a grain-oriented flat steel product Methods. For example, the orientational sharpness of the Goss texture of the flat steel product can be improved. Further loss reductions can be achieved by reducing the spacings of the 180 ° domain walls. High tensile stresses in the rolling direction, which are transferred to the steel surface via insulating coatings, also contribute to the reduction of the domain distances and, as a result, to the reduction of the core losses. However, the required tensile stress values can only be realized to a limited extent for technical reasons.
Eine beispielsweise in der
Versuche, die Vorteile des mechanischen Anritzens oder Anstechens zu nutzen, ohne die Isolation zu zerstören, haben sich auf die Verwendung von Laserquellen konzentriert (
Da der anormale Ummagnetisierungsverlust vom Abstand der Hauptdomänen abhängt, werden die Verluste durch eine geeignete Laserbehandlung minimiert. Durch die Laserbehandlung kann der Ummagnetisierungsverlust eines kornorientierten Stahlflachprodukts mit einer für diese Produkte typischen Nenndicke von 0,23 mm um mehr als 10 % gegenüber dem unbehandelten Zustand verbessert werden. Die Verlustverbesserungen hängen sowohl von den Eigenschaften des Grundmaterials, wie beispielsweise der Korngröße und Texturschärfe, als auch von den Laserparametern ab, zu denen der Abstand L der Linien, entlang derer die Laserstrahlen auf das jeweilige Stahlflachprodukt geführt werden, die Einwirkzeit tdwell und die spezifische Energiedichte Us gehören. Die Abstimmung dieser Parameter hat entscheidenden Einfluss auf die jeweils erreichte Verminderung der Ummagnetisierungsverluste.Since the abnormal core loss depends on the distance of the main domains, the losses are minimized by a suitable laser treatment. The laser treatment can improve the corona loss of a grain-oriented flat steel product with a nominal thickness of 0.23 mm typical for these products by more than 10% compared to the untreated state. The loss improvements depend both on the properties of the base material, such as the grain size and texture sharpness, and on the laser parameters, to which the distance L of the lines along which the laser beams are guided onto the respective flat steel product, the contact time t dwell and the specific Energy density U s belong. The tuning of these parameters has a decisive influence on the respectively achieved reduction of the re-magnetization losses.
Neben den Ummagnetisierungsverlusten spielt bei Transformatoren auch die Geräuschentwicklung eine Rolle. Diese beruht auf einem als Magnetostriktion bekannten physikalischen Effekt.In addition to the re-magnetization losses, noise generation also plays a role in transformers. This is based on a known as magnetostriction physical effect.
Magnetostriktion ist die Längenänderung eines ferromagnetischen Materials in Richtung seiner Magnetisierung. Durch den Betrieb eines ferromagnetischen Bauteils, wie beispielsweise eines Transformators, in einem magnetischen Wechselfeld werden die 180° Hauptdomänen verschoben, was alleine jedoch noch keinen Beitrag zur Magnetostriktion liefert. Jedoch existieren an Übergängen zwischen den 180° Hauptdomänen zu den 90° Abschlussdomänen magnetostriktive Verspannungen im Material. Diese bilden beim Betrieb im magnetischen Wechselfeld eine Schallquelle und sind die Ursache für die Transformatorengeräusche.Magnetostriction is the change in length of a ferromagnetic material in the direction of its magnetization. By operating a ferromagnetic component, such as a transformer, in an alternating magnetic field, the main 180 ° domains are shifted, which alone, however, does not contribute to the magnetostriction. However, at transitions between the 180 ° major domains to the 90 ° terminal domains, magnetostrictive stresses exist in the material. These form a sound source during operation in the alternating magnetic field and are the cause of the transformer noise.
Die Einbringung von zusätzlichen 90° Abschlussdomänen, also von Sekundärstrukturen, durch eine Laserbehandlung führt allgemein zu einer Erhöhung der Magnetostriktion und somit der Geräuschemissionen insbesondere beim Betrieb eines Transformators.The introduction of additional 90 ° termination domains, ie of secondary structures, by laser treatment generally leads to an increase in the magnetostriction and thus the noise emissions, in particular during operation of a transformer.
Die Anforderungen, die hinsichtlich der Minimierung der Geräuschentwicklung beim Betrieb von Transformatoren gestellt werden, steigen ständig. Dies liegt einerseits an kontinuierlich verschärften gesetzlichen Vorgaben und Normen. Andererseits akzeptieren die Verbraucher heute in der Regel keine elektrischen Geräte mehr, bei denen es zu einem hörbaren "Transformatorbrummen" kommt. So hängt heute die Akzeptanz von Großtransformatoren in der Nähe von Wohnbebauung entscheidend von den Geräuschemissionen ab, die sich beim Betrieb solcher Transformatoren ergeben.The demands made on minimizing noise in the operation of transformers are constantly increasing. On the one hand, this is due to continuously tightened legal requirements and standards. On the other hand, consumers today generally no longer accept electrical appliances that cause an audible "transformer drone". So today depends the acceptance of large transformers in the vicinity of residential development is crucially dependent on the noise emissions resulting from the operation of such transformers.
Es sind eine Reihe von Laserbehandlungsprozessen vorgeschlagen worden, mit denen sich durch Wahl geeigneter Prozessparameter sowohl Verlustverbesserungen als auch bessere magnetostriktive Eigenschaften erzielen lassen (
Neben dem voranstehend erläuterten Stand der Technik ist aus der
Des Weiteren ist es auch aus der
Schließlich ist aus der
Vor dem Hintergrund des voranstehend erläuterten Standes der Technik bestand die Aufgabe der Erfindung darin, ein Verfahren zur Erzeugung von Stahlflachprodukten anzugeben, die in optimaler Weise für die Herstellung von Teilen für Transformatoren geeignet sind.Against the background of the prior art discussed above, the object of the invention was to provide a method for producing flat steel products, which are optimally suitable for the production of parts for transformers.
Diese Aufgabe ist erfindungsgemäß dadurch gelöst worden, dass bei der Erzeugung eines Stahlflachprodukts die in Anspruch 1 angegebenen Arbeitsschritte durchgeführt werden.This object has been achieved according to the invention, that in the production of a flat steel product, the operations specified in claim 1 are performed.
Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert.Advantageous embodiments of the invention are specified in the dependent claims and are explained below as the general inventive concept in detail.
In Übereinstimmung mit dem voranstehend erläuterten Stand der Technik umfasst ein erfindungsgemäßes Verfahren zum Erzeugen eines kornorientierten Stahlflachprodukts mit minimierten magnetischen Verlustwerten und optimierten magnetostriktiven Eigenschaften die Arbeitsschritte
- a) Bereitstellen eines Stahlflachprodukts,
und - b) Laserbehandeln des Stahlflachprodukts, wobei im Zuge der Laserbehandlung in die Oberfläche des Stahlflachprodukts mittels eines mit einer Leistung P von einer Laserstrahlquelle emittierten Laserstrahls linienförmige Verformungen eingeformt werden, die in einem Abstand L angeordnet sind.
- a) providing a flat steel product,
and - b) laser treatment of the flat steel product, wherein in the course of the laser treatment in the surface of the flat steel product by means of a laser emitted with a power P from a laser beam laser beam line deformations are formed, which are arranged at a distance L.
Besondere Anforderungen an die Art und Weise der Herstellung des gemäß Arbeitsschritt a) bereitgestellten Stahlflachprodukts bestehen nicht. So kann das für das erfindungsgemäße Verfahren bereitgestellte Stahlflachprodukt unter Anwendung der dem Fachmann allgemein bekannten, eingangs zusammengefassten Maßnahmen und unter Zugrundelegung von geeigneten Stahllegierungen hergestellt werden, die aus dem Stand der Technik ebenfalls bereits hinlänglich bekannt sind. Dies schließt selbstverständlich auch solche Fertigungsverfahren und Legierungen ein, die derzeit noch nicht bekannt sind.Special requirements for the manner of production of the flat steel product provided in step a) do not exist. Thus, the flat steel product provided for the method according to the invention can be produced using the measures generally known to the person skilled in the art and initially based on suitable steel alloys, which are also already well known from the prior art. Of course, this also includes such manufacturing processes and alloys that are not yet known.
Erfindungsgemäß werden nun die Parameter der Laserbehandlung (Arbeitsschritt b)) so eingestellt, dass ein erfindungsgemäß erzeugtes Stahlflachprodukt nicht nur minimierte Ummagnetisierungsverluste aufweist, sondern auch seine nach der Laserbehandlung gegebene Scheinleistung S1,7/50 NACH optimiert ist.According to the invention, the parameters of the laser treatment (step b)) are set so that a flat steel product produced according to the invention not only has minimized magnetization losses, but also optimizes its apparent power S 1.7 / 50 NACH after laser treatment.
Zu diesem Zweck wird erfindungsgemäß die bei einer Frequenz von 50 Hertz und einer Polarisation von 1,7 Tesla ermittelte Scheinleistung S1,7/50 des mit dem Laserstrahl zu behandelnden Stahlflachprodukts vor und nach der Laserbehandlung (Arbeitsschritt b)) erfasst.For this purpose, according to the invention, the apparent power S 1.7 / 50 of the flat steel product to be treated with the laser beam, determined at a frequency of 50 Hertz and a polarization of 1.7 Tesla, is detected before and after the laser treatment (step b)).
In Abhängigkeit von der Differenz zwischen der vor der Laserbehandlung erfassten Scheinleistung S1,7/50 VOR und der nach der Laserbehandlung erfassten Scheinleistung S1,7/50 NACH werden dann als Parameter der Laserbehandlung der Abstand a der linienförmigen Verformungen, die Einwirkzeit tdwell des Laserstrahls, die spezifische Energiedichte Us, die Laserleistung P, die Fokusgröße Δs oder die Scangeschwindigkeit vscan so variiert, dass die Differenz zwischen der vor und nach der Laserbehandlung jeweils erfassten Scheinleistung S1,7/50 weniger als 40 % beträgt.Depending on the difference between the apparent power S 1.7 / 50 VOR detected before the laser treatment and the apparent power S 1.7 / 50 AFR detected after the laser treatment, the distance a of the linear deformations, the contact time t dwell , then becomes the parameters of the laser treatment of the laser beam, the specific energy density U s , the laser power P, the focus size Δs or the scan speed v scan varied so that the difference between the respectively detected before and after the laser treatment apparent power S 1.7 / 50 is less than 40%.
Die Parameter der Laserbehandlung werden somit erfindungsgemäß so eingestellt, dass eine im Zuge der Laserbehandlung sich einstellende Zunahme der Scheinleistung S1,7/50 eines erfindungsgemäß verarbeiteten Stahlflachprodukts durch Einstellung der Parameter der Laserbehandlung so begrenzt wird, dass die nach der Laserbehandlung erfasste Scheinleistung S1,7/50 NACH folgende Bedingung erfüllt:
Die durch die Laserbehandlung verursachte Zunahme der Scheinleistung ist dementsprechend erfindungsgemäß so begrenzt, dass die Scheinleistung nach dem Lasern um nicht mehr als 40 % verglichen mit ihrem Wert an demselben Werkstück vor dem Lasern erhöht ist.The increase in the apparent power caused by the laser treatment is accordingly limited according to the invention so that the apparent power after laser cutting is not more than 40% is increased compared to its value on the same workpiece before lasing.
Die Erfindung berücksichtigt somit, dass bei der Auslegung Transformatoren in der Regel nicht die Ummagnetisierungsverluste der jeweils verarbeiteten Stahlflachprodukte im Vordergrund stehen, sondern die Scheinleistung. Daher werden erfindungsgemäß die Parameter der Laserbehandlung nicht nur im Hinblick auf die Ummagnetisierungsverluste sondern auch auf die Scheinleistungen bei gleicher Polarisation optimiert.The invention thus takes into account that in the design transformers are usually not the loss of magnetization of each processed flat steel products in the foreground, but the apparent power. Therefore, according to the invention, the parameters of the laser treatment are optimized not only with regard to the re-magnetization losses but also to the apparent powers with the same polarization.
Gegenstand des erfindungsgemäßen Verfahrens ist somit eine Optimierung der Laserparameter hinsichtlich der Minimierung des Ummagnetisierungsverlustes P1,7/50 und der Scheinleistung S1,7/50. Dabei stellte sich heraus, dass bei einer Minimierung der Scheinleistung die Geräuschzunahme minimiert wird. Das bedeutet, dass die Laserbehandlung zwar vordergründig die Verfeinerung der Hauptdomänen bewirkt, was zu der angestrebten Verlustverminderung führt, dass damit aber durch die erfindungsgemäße Optimierung der Laserbehandlung im Hinblick auf eine möglichst geringe Scheinleistung ein vergleichsweise geringer Anstieg der Volumenbereiche mit magnetischen Sekundärstrukturen einhergeht.The subject matter of the method according to the invention is thus an optimization of the laser parameters with regard to the minimization of the magnetic reversal loss P 1.7 / 50 and the apparent power S 1.7 / 50 . It turned out that minimizing the apparent power minimizes the noise increase. This means that the laser treatment, although superficially causes the refinement of the main domains, which leads to the desired loss reduction, but that this is accompanied by the optimization of the laser treatment according to the invention with respect to the lowest possible apparent power, a comparatively small increase in volume areas with secondary magnetic structures.
Grundsätzlich ist es denkbar, die Laserbehandlung an Elektroblechen bzw. Blechzuschnitten vorzunehmen. Besonders praxisgerecht erweist es sich jedoch, wenn ein als Bandmaterial vorliegendes Stahlflachprodukt verarbeitet wird, das die Laserbehandlung im kontinuierlichen Durchlauf durchläuft.In principle, it is conceivable to carry out the laser treatment on electrical sheets or sheet metal blanks. However, it proves to be particularly practical if a flat steel product present as strip material is processed, which passes through the laser treatment in a continuous pass.
Im Fall, dass die jeweilige Scheinleistung S1,7/50 vor und nach der Laserbehandlung im laufenden Betrieb online erfasst wird und die Parameter der Laserbehandlung in Abhängigkeit von der Differenz der erfassten Scheinleistungen S1,7/50 online variiert werden, lässt sich besonders zeitnah auf Veränderungen des Ergebnisses der Laserbehandlung reagieren.In the case that the respective apparent power S 1.7 / 50 is recorded online before and after the laser treatment during operation and the parameters of the laser treatment are varied online as a function of the difference of the detected apparent powers S 1.7 / 50 , it is particularly possible promptly respond to changes in the outcome of the laser treatment.
Jedoch ist es auch möglich, die Erfassung der Scheinleistung vor und nach dem Laserbehandeln sowie der Kalibrierung der Laserparameter zeitlich entkoppelt vorzunehmen. Dazu können in bestimmten Zeitabständen Proben des Stahlflachprodukts genommen werden, an diesen Proben die jeweilige Scheinleistung S1,7/50 vor und nach der Laserbehandlung ermittelt werden und die Parameter der Laserbehandlung in Abhängigkeit von dem Ergebnis dieser Erfassung variiert werden. Diese Ausgestaltung erlaubt es, das erfindungsgemäße Verfahren mit vergleichbarer Verfahrens- und Messtechnik auszuführen.However, it is also possible to perform the detection of the apparent power before and after the laser treatment and the calibration of the laser parameters decoupled in time. For this purpose, samples of the flat steel product can be taken at certain time intervals, the respective apparent power S 1.7 / 50 can be determined on these samples before and after the laser treatment and the parameters of the laser treatment can be varied depending on the result of this detection. This embodiment makes it possible to carry out the method according to the invention with comparable method and measuring technology.
Dabei haben praktische Versuche ergeben, dass es zur Erzielung optimaler Scheinleistung S1,7/50 zweckmäßig sein kann, den Abstand L der linienförmigen Verformungen im Bereich von 2 - 10 mm, insbesondere 4 - 7 mm, zu variieren.Practical tests have shown that to achieve optimum apparent power S 1.7 / 50 it may be expedient to vary the distance L of the linear deformations in the range from 2 to 10 mm, in particular 4 to 7 mm.
Ebenso kann eine Minimierung der über die Laserbehandlung eintretenden Veränderung der Scheinleistung S1,7/50 dadurch erzielt werden, dass die Einwirkzeit tdwell des Laserstrahls im Bereich von 1 x 10-5 s bis 2 x 10-4 s variiert wird.Likewise, a minimization of the change in apparent power S 1.7 / 50 occurring via the laser treatment can be achieved by varying the exposure time t dwell of the laser beam in the range from 1 × 10 -5 s to 2 × 10 -4 s.
Im Fall, dass als Laserquelle ein Faser-Laser eingesetzt wird, kann die Laserleistung P bei den heute zur Verfügung stehenden Faser-Lasern zwecks Minimierung der über die Laserbehandlung eintretenden Veränderung der Scheinleistung S1,7/50 im Bereich von 200 - 3000 W variiert werden. Faser-Laser haben hier den besonderen Vorteil, dass sie eine enge Fokussierung des Laserstrahls erlauben. So lassen sich mit einem Faser-Laser Spurbreiten von weniger als 20 µm realisieren.In the case where a fiber laser is used as the laser source, the laser power P in the fiber lasers available today can be varied in the range from 200 to 3000 W in order to minimize the change in the apparent power S 1.7 / 50 occurring via the laser treatment become. Fiber lasers have the particular advantage here of allowing close focusing of the laser beam. For example, track widths of less than 20 μm can be achieved with a fiber laser.
Es ist jedoch auch möglich, bei der Durchführung des erfindungsgemäßen Verfahrens als Laserquelle einen CO2-Laser einzusetzen. Aufgrund dessen, dass bei einem solchen Laser der Laserstrahl nicht so stark fokussiert werden kann, ist hier bei den heute zur Verfügung stehenden CO2-Lasern eine Variation der Laserleistung P im Bereich von 1000 - 5000 W zwecks Minimierung der über die Laserbehandlung eintretenden Veränderung der Scheinleistung S1,7/50 angezeigt.However, it is also possible to use a CO 2 laser in the implementation of the method according to the invention as a laser source. Due to the fact that in such a laser, the laser beam can not be so strongly focused, here in the currently available CO 2 lasers, a variation of the laser power P in the range 1000 to 5000 W for the purpose of minimizing the entering via the laser treatment Change in Apparent power S 1,7 / 50 displayed.
Selbstverständlich lässt sich das erfindungsgemäße Verfahren bevorzugt an solchen Stahlflachprodukten durchführen, die mindestens mit einer Isolationsschicht belegt ist. Zusätzlich kann dabei zwischen der Isolationsschicht und dem Stahlsubstrat des Stahlflachprodukts beispielsweise noch eine Glas- bzw. Forsteritschicht vorhanden sein.Of course, the inventive method can preferably be carried out on such flat steel products, which is occupied at least with an insulating layer. In addition, between the insulating layer and the steel substrate of the flat steel product, for example, a glass or forsterite layer may still be present.
Zum Nachweis der Wirkung der Erfindung sind folgende Beispiele für eine erfindungsgemäße Vorgehensweise untersucht worden. Es zeigen:
- Fig. 1
- ein Diagramm, in dem die Verlustverbesserung ΔP1,7/50 und Scheinleistungsänderung ΔS1,7/50 über den Abstand L der Laserspuren aufgetragen sind;
- Fig. 2
- ein Diagramm, in dem aus der gemessenen Längenänderung berechnete Geräusche N als Funktion der Polarisation J dargestellt sind.
- Fig. 1
- a diagram in which the loss improvement ΔP 1.7 / 50 and apparent power change ΔS 1.7 / 50 over the distance L of the laser tracks are plotted;
- Fig. 2
- a diagram in which from the measured change in length calculated noise N as a function of the polarization J are shown.
Im Rahmen systematischer Untersuchungen wurden diverse Parameter der betrieblichen Lasereinrichtung mit einem 1 kW multimode Faserlaser variiert. Die zu optimierenden Parameter waren der Abstand L der Laserlinien, die Laserleistung P, die Fokusgröße Δs und die Scangeschwindigkeit vscan.As part of systematic investigations, various parameters of the operational laser device were varied with a 1 kW multimode fiber laser. The parameters to be optimized were the distance L of the laser lines, the laser power P, the focus size Δs and the scan speed v scan .
Die empirische Auswertung einer Versuchsmatrix zeigte, dass Variationen der oben genannten Parameter bei deutlichen Verbesserungen der Ummagnetisierungsverluste gleichzeitig drastische Änderungen der Scheinleistung bewirken können.The empirical evaluation of a test matrix showed that variations of the above mentioned parameters can lead to drastic changes of the apparent power with significant improvements of the core losses.
Als Beispiel zeigt
Durch Variation der Fokusgröße Δs und der Scangeschwindigkeit vscan, d. h. der Geschwindigkeit, mit der der Laser bewegt wird, wurden unterschiedlich lange Einwirkzeiten tdwell des Laserstrahls auf der Oberfläche des als Bandmaterial vorliegenden Stahlflachprodukts generiert. Der Zusammenhang zwischen tdwell, Δs und vscan kann dabei wie folgt beschrieben werden:
Die von 1 x 10-5 Sekunden bis 2 x 10-4 Sekunden reichende Spanne der Einwirkzeiten resultiert in einem gewissen Bereich bei gleich großen Verbesserungen der Ummagnetisierungsverluste P1,7/50 in verschieden großen Scheinleistungsänderungen ΔS1,7/50. Es zeigte sich, dass sich bei minimierten Scheinleistungsänderungen ΔS1,7/50 ein optimales Geräuschverhalten des jeweils behandelten Stahlflachprodukts einstellt.The range of exposure times ranging from 1.times.10.sup.- 5 seconds to 2.times.10.sup.-4 seconds results in a certain range with equal improvements in the magnetization losses P 1.7 / 50 in different apparent power changes ΔS 1.7 / 50 . It was found that with minimized apparent power changes ΔS 1.7 / 50 an optimal noise behavior of the treated flat steel product is achieved.
Folgende Beispiele zeigen den Einfluss der Einwirkzeit tdwell auf Ummagnetisierungsverlust P1,7/50 und Scheinleistung S1,7/50:
Es wurden 0,23 mm dicke Stahlbänder laserbehandelt. Die Einwirkzeit tdwell wurde dabei unter Zugrundelegung der voranstehend erläuterten Zusammenhänge variiert.The following examples show the influence of exposure time t dwell on core loss P 1.7 / 50 and apparent power S 1.7 / 50 :
0.23 mm thick steel strips were laser-treated. The contact time t dwell was varied on the basis of the above-explained relationships.
Nach Messung der magnetischen Kenngrößen ergaben sich die in der nachfolgenden Tabelle 1 zusammengefassten Änderungen ΔP1,7/50, ΔS1,7/50 der Ummagnetisierungsverluste P1,7/50 und der Scheinleistung S1,7/50:
Die Proben wurden im Folgenden hinsichtlich ihrer magnetostriktiven Eigenschaften untersucht und daraus die im Betrieb erwarteten Geräusche berechnet. Zur Berechnung der Geräusche aus den Magnetostriktionsmessungen wurde eine Methode benutzt, die jeweils im IEC-Technical Report IEC 62581 TR sowie in der Veröffentlichung von
Die durchgezogene Kurve stellt in
Die gestrichelte Linie, deren Messwerte durch ungefüllte Quadrate gekennzeichnet sind, gibt in
Die enger gestrichelte Linie, deren Messwerte durch ungefüllte Dreiecke gekennzeichnet sind, gibt in
Die gepunktete Linie, deren Messwerte durch ungefüllte Kreise gekennzeichnet sind, gibt in
Die mit der Laserbehandlung erzielte Veränderung ΔP1,7/50 der Verlustleistung P1,7/50 betrug jeweils - 13 % gegenüber dem Ausgangszustand vor der Laserbehandlung.The change ΔP 1.7 / 50 of the power loss P 1.7 / 50 achieved with the laser treatment was in each case - 13% compared to the initial state before the laser treatment.
Die berechneten Geräusche mit der erfindungsgemäß erzielten, optimierten Scheinleistungsänderungen von ΔS = +18 % sind demnach stets kleiner als beim Ausgangszustand.The calculated noises with the inventively achieved, optimized apparent power changes of ΔS = +18% are therefore always smaller than in the initial state.
Wird dagegen der Scheinleistung keine Beachtung geschenkt, so wird bei vergleichbaren Verlustverbesserungen eine Geräuschzunahme von 1,1 bis 1,5 dB beobachtet.If, on the other hand, no attention is paid to the apparent power, a noise increase of 1.1 to 1.5 dB is observed for comparable loss improvements.
Aus
Indem die Laserparameter erfindungsgemäß so optimiert werden, dass der Unterschied zwischen der vor und nach der Laserbehandlung gemessenen Scheinleistung S1,7/50 weniger als 40 % beträgt, lässt sich somit einerseits eine wirksame Minimierung der Verlustleistungen P1,7/50 erreichen, andererseits aber auch die Schallemission im Betrieb minimieren. Dabei ist es unerheblich, ob der erfindungsgemäß durchgeführte Vergleich der vor und nach der Laserbehandlung gemessenen Werte der Scheinleistung S1,7/50 online am laufenden Band erfolgt oder im Rahmen zeitlich entkoppelt stattfindender Kalibrierungen durchgeführt wird.By optimizing the laser parameters according to the invention so that the difference between the apparent power S 1.7 / 50 measured before and after the laser treatment is less than 40%, an effective minimization of the power losses P 1.7 / 50 on the one hand can be achieved on the other hand but also minimize the noise emission during operation. It is irrelevant whether the inventively carried out comparison of measured before and after the laser treatment values of the apparent power S 1,7 / 50 online on-line or takes place in time decoupled held calibrations.
Claims (10)
- Method for producing a grain-oriented flat steel product that is intended for the manufacture of parts for electrotechnical applications and has minimised magnetic loss values and optimised magnetostrictive properties, including the operationsa) providing a flat steel product,b) laser-treating the flat steel product, wherein, in the course of the laser treatment, linear deformations, which are arranged with a spacing a, are formed into the surface of the flat steel product by means of a laser beam emitted by a laser beam source with a power P,characterised in that the apparent power S1.7/50 of the flat steel product before and after laser treatment (operation b)) at a frequency of 50 Hertz and a polarisation of 1.7 Tesla is measured, and in that as parameters of the laser treatment the spacing a between the linear deformations, the dwell time tdwell of the laser beam, the specific energy density Us, the laser power P, the focus size Δs or the scan speed vscan are varied such that the difference between the apparent power S1.7/50 measured before and after treatment is less than 40%.
- Method according to Claim 1, characterised in that the laser treatment is continuous.
- Method according to any one of the preceding claims, characterised in that the respective apparent power S1.7/50 before and after laser treatment in continuous operation is measured online and the parameters of the laser treatment are varied online depending on the difference between the apparent powers S1.7/50.
- Method according to either Claim 1 or Claim 2, characterised in that the samples of the flat steel product are taken at certain intervals, the apparent power S1.7/50 of each of these samples before and after laser treatment is determined and the parameters of the laser treatment are varied depending on the results of these measurements.
- Method according to any one of the preceding claims, characterised in that the spacing a between the linear deformations is varied in the range from 2-10 mm.
- Method according to Claim 5, characterised in that the spacing a between the linear deformations is varied in the range from 4-7 mm.
- Method according to any one of the preceding claims, characterised in that the dwell time tdwell of the laser beam is varied in the range from 1 x 10-5 s to 2 x 10-4 s.
- Method according to any one of the preceding claims, characterised in that a fibre laser is used as a laser source and the power P is varied in the range from 200 - 3000 W.
- Method according to any one of the preceding claims, characterised in that a CO2 laser is used as a laser source and the power P is varied in the range from 1000 - 5000 W.
- Method according to any one of the preceding claims, characterised in that the flat steel product is coated with an insulation layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL11761066T PL2675927T3 (en) | 2011-02-14 | 2011-09-22 | Method for producing a grain-oriented flat steel product |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011000712A DE102011000712A1 (en) | 2011-02-14 | 2011-02-14 | Method for producing a grain-oriented flat steel product |
PCT/EP2011/066512 WO2012110111A1 (en) | 2011-02-14 | 2011-09-22 | Method for producing a grain-oriented flat steel product |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2675927A1 EP2675927A1 (en) | 2013-12-25 |
EP2675927B1 true EP2675927B1 (en) | 2019-09-18 |
Family
ID=44677887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11761066.7A Active EP2675927B1 (en) | 2011-02-14 | 2011-09-22 | Method for producing a grain-oriented flat steel product |
Country Status (12)
Country | Link |
---|---|
US (1) | US20140034193A1 (en) |
EP (1) | EP2675927B1 (en) |
JP (1) | JP5822243B2 (en) |
KR (1) | KR101581878B1 (en) |
CN (1) | CN103429767B (en) |
BR (1) | BR112013019877B1 (en) |
DE (1) | DE102011000712A1 (en) |
ES (1) | ES2759823T3 (en) |
MX (1) | MX367050B (en) |
PL (1) | PL2675927T3 (en) |
RU (1) | RU2547377C2 (en) |
WO (1) | WO2012110111A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108754106A (en) * | 2018-06-07 | 2018-11-06 | 宁波革创新材料科技有限公司 | A kind of heat treatment process of automobile micro machine non-orientation silicon steel |
CN108425003A (en) * | 2018-06-07 | 2018-08-21 | 宁波革创新材料科技有限公司 | A kind of household electrical appliances non-orientation silicon steel board fabrication method |
BR112021013024A2 (en) * | 2019-01-28 | 2021-09-14 | Nippon Steel Corporation | ORIENTED GRAIN ELECTRIC STEEL SHEET, AND MANUFACTURING METHOD OF THE SAME |
TWI820338B (en) * | 2019-06-28 | 2023-11-01 | 日商博邁立鋮股份有限公司 | Fe based amorphous alloy thin strip, iron core, and transformer |
KR102236166B1 (en) * | 2019-12-13 | 2021-04-02 | 주식회사 포스코 | Apparatus for refining magnetic domains to grain oriented electrical steel |
EP4365319A1 (en) | 2022-11-03 | 2024-05-08 | Thyssenkrupp Electrical Steel Gmbh | Grain-oriented electrical steel strip and method for its production |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1804208B1 (en) | 1968-10-17 | 1970-11-12 | Mannesmann Ag | Process for reducing the watt losses of grain-oriented electrical steel sheets, in particular of cube-texture sheets |
JPS5518566A (en) | 1978-07-26 | 1980-02-08 | Nippon Steel Corp | Improving method for iron loss characteristic of directional electrical steel sheet |
US4456812A (en) | 1982-07-30 | 1984-06-26 | Armco Inc. | Laser treatment of electrical steel |
US5123977A (en) | 1989-07-19 | 1992-06-23 | Allegheny Ludlum Corporation | Method and apparatus for refining the domain structure of electrical steels by local hot deformation and product thereof |
JPH0565543A (en) * | 1991-09-05 | 1993-03-19 | Kawasaki Steel Corp | Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing |
JPH05279864A (en) * | 1992-03-31 | 1993-10-26 | Nippon Steel Corp | Formation of insulated film for grain oriented silicon steel sheet |
WO1998032884A1 (en) * | 1997-01-24 | 1998-07-30 | Nippon Steel Corporation | Grain-oriented electrical steel sheet having excellent magnetic characteristics, its manufacturing method and its manufacturing device |
JP3361709B2 (en) * | 1997-01-24 | 2003-01-07 | 新日本製鐵株式会社 | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties |
DE19745445C1 (en) | 1997-10-15 | 1999-07-08 | Thyssenkrupp Stahl Ag | Process for the production of grain-oriented electrical sheet with low magnetic loss and high polarization |
IT1306157B1 (en) * | 1999-05-26 | 2001-05-30 | Acciai Speciali Terni Spa | PROCEDURE FOR THE IMPROVEMENT OF MAGNETIC CHARACTERISTICS OF SILICON STEEL GRAIN STEEL ORIENTED BY TREATMENT |
JP4091749B2 (en) * | 2000-04-24 | 2008-05-28 | 新日本製鐵株式会社 | Oriented electrical steel sheet with excellent magnetic properties |
KR100442099B1 (en) | 2000-05-12 | 2004-07-30 | 신닛뽄세이테쯔 카부시키카이샤 | Low iron loss and low noise grain-oriented electrical steel sheet and a method for producing the same |
RU2301839C2 (en) | 2003-03-19 | 2007-06-27 | Ниппон Стил Корпорейшн | Grain-oriented electrical steel sheet at high electrical characteristics and method of manufacture of such sheet |
JP2005226122A (en) * | 2004-02-13 | 2005-08-25 | Nippon Steel Corp | System and method for manufacturing grain-oriented electromagnetic steel sheet, and device for predicting magnetic properties |
JP4272588B2 (en) * | 2004-05-26 | 2009-06-03 | 新日本製鐵株式会社 | Method for producing grain-oriented electrical steel sheet |
JP5000182B2 (en) | 2006-04-07 | 2012-08-15 | 新日本製鐵株式会社 | Method for producing grain-oriented electrical steel sheet with excellent magnetic properties |
US20080216926A1 (en) * | 2006-09-29 | 2008-09-11 | Chunlei Guo | Ultra-short duration laser methods for the nanostructuring of materials |
JP5606923B2 (en) * | 2007-12-26 | 2014-10-15 | ポスコ | Magnetic domain refinement apparatus and method for grain-oriented electrical steel sheet |
US9290831B2 (en) * | 2009-09-14 | 2016-03-22 | Hitachi Metals, Ltd. | Soft-magnetic, amorphous alloy ribbon and its production method, and magnetic core constituted thereby |
CN102031342B (en) * | 2009-09-30 | 2013-01-09 | 鞍钢股份有限公司 | Preparation method of high-magnetic-induction oriented silicon steel for refining secondary grain size |
WO2012033197A1 (en) * | 2010-09-09 | 2012-03-15 | 新日本製鐵株式会社 | Oriented electromagnetic steel sheet and process for production thereof |
-
2011
- 2011-02-14 DE DE102011000712A patent/DE102011000712A1/en not_active Withdrawn
- 2011-09-22 PL PL11761066T patent/PL2675927T3/en unknown
- 2011-09-22 JP JP2013553809A patent/JP5822243B2/en not_active Expired - Fee Related
- 2011-09-22 ES ES11761066T patent/ES2759823T3/en active Active
- 2011-09-22 US US13/984,308 patent/US20140034193A1/en not_active Abandoned
- 2011-09-22 KR KR1020137021149A patent/KR101581878B1/en active IP Right Grant
- 2011-09-22 EP EP11761066.7A patent/EP2675927B1/en active Active
- 2011-09-22 CN CN201180067569.4A patent/CN103429767B/en not_active Expired - Fee Related
- 2011-09-22 MX MX2013009016A patent/MX367050B/en active IP Right Grant
- 2011-09-22 BR BR112013019877-0A patent/BR112013019877B1/en not_active IP Right Cessation
- 2011-09-22 WO PCT/EP2011/066512 patent/WO2012110111A1/en active Application Filing
- 2011-09-22 RU RU2013138224/02A patent/RU2547377C2/en not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
MX367050B (en) | 2019-08-02 |
KR20130114246A (en) | 2013-10-16 |
EP2675927A1 (en) | 2013-12-25 |
WO2012110111A1 (en) | 2012-08-23 |
RU2013138224A (en) | 2015-02-20 |
JP2014512453A (en) | 2014-05-22 |
BR112013019877B1 (en) | 2018-05-15 |
CN103429767B (en) | 2015-04-29 |
RU2547377C2 (en) | 2015-04-10 |
US20140034193A1 (en) | 2014-02-06 |
JP5822243B2 (en) | 2015-11-24 |
PL2675927T3 (en) | 2020-04-30 |
CN103429767A (en) | 2013-12-04 |
ES2759823T3 (en) | 2020-05-12 |
MX2013009016A (en) | 2014-01-20 |
DE102011000712A1 (en) | 2012-08-16 |
KR101581878B1 (en) | 2015-12-31 |
BR112013019877A2 (en) | 2016-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2675927B1 (en) | Method for producing a grain-oriented flat steel product | |
DE60004244T2 (en) | METHOD FOR IMPROVING THE MAGNETIC PROPERTIES OF CORNORIENTED ELECTRIC STEEL SHEETS BY LASER TREATMENT | |
DE2819514C2 (en) | Process for the production of a grain-oriented electromagnetic steel sheet | |
EP2602339B1 (en) | Grain-oriented electrical steel sheet, and method for producing same | |
DE69706388T2 (en) | Grain-oriented electromagnetic steel sheet | |
DE69317810T2 (en) | Process for the production of grain-oriented electrical sheets made of silicon steel with low wattage losses and a low-noise transformer made of layered sheets during operation | |
EP2612942B1 (en) | Non-grain oriented electrical steel or sheet metal, component produced from same and method for producing non-grain oriented electrical steel or sheet metal | |
DE69705688T2 (en) | Grain-oriented electromagnetic steel sheet and its manufacturing process | |
DE102015114358B4 (en) | Method for producing a grain-oriented electrical strip and grain-oriented electrical strip | |
DE102010038038A1 (en) | Process for producing an insulation coating on a grain-oriented electro-steel flat product and electro-flat steel product coated with such an insulation coating | |
DE69021110T2 (en) | Process for the production of grain-oriented electrical steel sheets with excellent magnetic properties. | |
DE3220255C2 (en) | Process for the production of grain-oriented electrical steel sheet or strip | |
EP2813593A1 (en) | Grain-oriented electrical steel plate | |
EP3971919A1 (en) | Method for producing high permeability soft magnetic alloy | |
EP3730286A1 (en) | Laminated core and method for producing high permeability soft magnetic alloy | |
DE102011119395A1 (en) | Method for producing a grain-oriented electrical steel flat product intended for electrotechnical applications | |
DE68922333T2 (en) | Process for improving the magnetic reversal properties of electrical sheets. | |
EP0885445B1 (en) | Process for manufacturing tape wound core strips and inductive component with a tape wound core | |
DE60112357T2 (en) | Low noise grain oriented electrical steel sheet with low iron loss and its manufacturing process | |
DE68926470T2 (en) | Process for reducing iron losses in electrical sheets by creating heat-resistant, refined area structures | |
DE69030771T2 (en) | Process for producing a grain-oriented electrical steel strip | |
DE68909000T2 (en) | Grain-oriented silicon steel sheets with low wattage losses and method for producing the same. | |
DE69028241T3 (en) | Process for the production of thin grain-oriented electrical sheets with low iron losses and high flux density | |
DE69618682T2 (en) | Process for producing grain-oriented silicon steel sheets with excellent magnetic properties | |
DE102021121345A1 (en) | Alloy and method for producing a nanocrystalline metal ribbon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130816 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20171031 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190321 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: WANG, CHAOYONG Inventor name: LEMAITRE, REGIS Inventor name: HOLZAPFEL, CHRISTOF Inventor name: DUMAN, EYUP Inventor name: LAHN, LUDGER Inventor name: BELGRAND, THIERRY Inventor name: KRENKE, THORSTEN |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011016107 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1181382 Country of ref document: AT Kind code of ref document: T Effective date: 20191015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20191119 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191219 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20191122 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20191119 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200120 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20191224 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2759823 Country of ref document: ES Kind code of ref document: T3 Effective date: 20200512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011016107 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190922 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190922 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200119 |
|
26N | No opposition filed |
Effective date: 20200619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20201001 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1181382 Country of ref document: AT Kind code of ref document: T Effective date: 20200922 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110922 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200922 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200930 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20220119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190918 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230519 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240924 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240924 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240924 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240823 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240916 Year of fee payment: 14 |