EP2672123A1 - Cell wheel, in particular for a pressure wave charger - Google Patents
Cell wheel, in particular for a pressure wave charger Download PDFInfo
- Publication number
- EP2672123A1 EP2672123A1 EP12171157.6A EP12171157A EP2672123A1 EP 2672123 A1 EP2672123 A1 EP 2672123A1 EP 12171157 A EP12171157 A EP 12171157A EP 2672123 A1 EP2672123 A1 EP 2672123A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sleeve
- cellular wheel
- sealing
- sleeves
- end faces
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001413 cellular effect Effects 0.000 claims abstract description 111
- 239000002184 metal Substances 0.000 claims abstract description 5
- 238000007789 sealing Methods 0.000 claims description 123
- 241000446313 Lamella Species 0.000 claims description 19
- 230000008878 coupling Effects 0.000 claims description 14
- 238000010168 coupling process Methods 0.000 claims description 14
- 238000005859 coupling reaction Methods 0.000 claims description 14
- 125000006850 spacer group Chemical group 0.000 claims description 9
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 238000002485 combustion reaction Methods 0.000 claims description 3
- 238000003780 insertion Methods 0.000 claims description 3
- 230000037431 insertion Effects 0.000 claims description 3
- 230000000087 stabilizing effect Effects 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 43
- 239000000463 material Substances 0.000 description 9
- 230000035882 stress Effects 0.000 description 7
- 230000008602 contraction Effects 0.000 description 5
- 238000005304 joining Methods 0.000 description 5
- 210000002421 cell wall Anatomy 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 238000005336 cracking Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000013585 weight reducing agent Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 229910001026 inconel Inorganic materials 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 238000003915 air pollution Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000000887 face Anatomy 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 210000001331 nose Anatomy 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B33/00—Engines characterised by provision of pumps for charging or scavenging
- F02B33/32—Engines with pumps other than of reciprocating-piston type
- F02B33/42—Engines with pumps other than of reciprocating-piston type with driven apparatus for immediate conversion of combustion gas pressure into pressure of fresh charge, e.g. with cell-type pressure exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F13/00—Pressure exchangers
Definitions
- the present invention relates to a cellular wheel made of metal, with an outer sleeve lying coaxially to a rotation axis, an inner sleeve coaxial with the outer sleeve, at least one between the outer sleeve and inner sleeve coaxial with these intermediate sleeve arranged between successive sleeves, radially aligned with the axis of rotation, with adjacent sleeves joined lamellae, with the outer sleeve cross-over and with the outer sleeve joined outer sealing sleeves with a sealing profile for a labyrinth seal, and with a lying in the axis of rotation drive shaft.
- downsizing is the substitution of a large-volume engine with a displacement-reduced engine.
- the engine power should be kept high by charging the engine.
- the goal is to achieve the same performance with small-volume engines as with large-volume engines, as with naturally aspirated engines of the same performance.
- Recent findings in the field of downsizing have shown that the best results can be achieved, especially with very small gasoline engines with a displacement of 2 liters or less with a pressure wave charging system.
- the rotor In a pressure wave supercharger, the rotor is designed as a cellular wheel and is enclosed by an air and exhaust housing with a common jacket.
- the development of modern pressure wave chargers for charging small engines leads to cell wheels with a diameter of the order of 100 mm or less.
- cell wall thicknesses of 0.4 mm or less are desired.
- At the high exhaust gas inlet temperatures of about 1000 ° C come as materials for the feeder virtually only high-temperature alloys in question.
- the production of dimensionally stable and high-precision cellular wheels with a small cell wall thickness is today hardly possible or associated with considerable additional costs.
- a cellular wheel of the type mentioned is in WO 2010/057319 Al disclosed.
- the temperature changes occurring in rapid succession in the interior of the cell wheel in the region of the end faces of the cell wheel lead to periodically strongly fluctuating thermal expansions and contractions of the disks in the radial direction with temperature differences of 200 to 300 ° C.
- arranged between successive sleeves and joined to the sleeves slats are exposed to high load changes with a vibration frequency in the order of twice the speed of the cell wheel, which under continuous thermal stress to cracking near the joints between Slats and sleeves can lead to the end faces of the cellular wheel and in consequence to the breaking out of fin parts and the failure of the cell wheel.
- the invention is based on the object, simple and inexpensive to manufacture a cellular wheel of the type mentioned while avoiding cracking in the joining region between fins and sleeves with the required precision.
- Another object of the invention is to provide a suitable for use in a pressure wave supercharger for supercharging internal combustion engines, in particular for supercharging small gasoline engines with a displacement in the order of 2 liters or less, suitable cellular wheel.
- mechanically stable cell wheels with a cell wall thickness of 0.5 mm or less should be able to be produced under operating conditions without a tendency to crack formation in the joining region between lamellae and sleeves.
- At least the outer sleeve, the inner sleeve and / or the intermediate sleeve or, in the case of more than one intermediate sleeve, at least one of the intermediate sleeves has cut-outs extending from both end faces of the cellular wheel between adjacent lamellae.
- the incisions are preferably rotationally symmetrical.
- the outer sleeve and the inner sleeve are formed without cuts.
- an incision is present on the left and right of a lamella, or there is preferably always an incision between two adjacent lamellae.
- the incisions arranged in the intermediate sleeve thereby provide an edge strip for the corresponding lamella which is designed to be elastically movable with respect to the intermediate sleeve and other edge strips and advantageously compensates for the deformation of the lamellae resulting from temperature fluctuations by a movement of the edge strip in a substantially radial direction.
- the edge strips can also be referred to as tabs.
- two adjacent incisions form one of the corresponding sleeve associated edge strips, wherein a single edge strip is assigned in each case a single lamella.
- Such an edge strip is elastically movable relative to the corresponding sleeve and to adjacent edge strips.
- the incisions are preferably distributed uniformly over the circumference of the relevant sleeve. Another distribution depending on the arrangement of the slats is also conceivable.
- cuts are present between all adjacent lamellae.
- an incision may be provided after every second or third lamella.
- the sleeve in question in the edge region of the feeder is thus divided into edge strips, so that adjacent edge strips in the radial direction are mutually displaceable.
- the lamellae, together with the edge strips joined with the lamellae can expand and contract in the radial direction from their original position in the sleeve, so that the thermal expansions and contractions of the lamellae occurring in rapid succession in the radial direction result in less stress build-up and degradation
- fast load changes in the slats in the area of their joints with the outer, inner and / or intermediate sleeves and with this measure material damage can be avoided.
- the recess can have a round or elliptical cross-section perpendicular to the central axis in plan view.
- the extent of the recess is preferably in the range 1 to 2 mm.
- the inner sleeve is seated on a coaxially arranged to this, joined to the drive shaft flange sleeve and the outer sleeve has from both end faces of the cellular wheel outgoing incisions between adjacent lamellae.
- a remote from the end faces of the cellular wheel peripheral edge of the outer sealing sleeves extends beyond the cuts by a measure and the outer sealing sleeves are joined only in the incision projecting area with the outer sleeve.
- the sealing profile of the outer sealing sleeves has a sealing surface aligned with the end faces of the cellular wheel, and the outer sealing sleeves form, with the outer sleeve, an annular gap open at the end faces of the cellular wheel.
- the inner sleeve of both end faces of the cell wheel outgoing incisions between adjacent lamellae is hereby joined with the flange sleeve between adjacent lamellae between opposed incisions.
- the inner sleeve is joined to the drive shaft and the intermediate sleeve or, in the case of two or more intermediate sleeves, at least one of the intermediate sleeves has incisions extending between both end faces of the cellular wheel between adjacent lamellae.
- the sealing profile of the outer sealing sleeves on a flush with the end faces of the cellular wheel sealing surface and in the inner sleeve are fitted with the inner sleeve inner sealing sleeves arranged with a sealing profile with an aligned with the end faces of the cell wheel sealing surface for a labyrinth seal.
- the sealing sleeves are joined only in the region of the remote from the end faces of the cellular wheel end with the outer and inner sleeve and form with the outer and inner sleeves open at the end faces of the cellular wheel annular gap.
- the sealing surface of the sealing profile and the annular gap adjacent to the sealing surface between the sealing sleeve and outer or inner sleeve are decisive for the tightness of a labyrinth seal between the end faces of the cell wheel and the control surfaces of the gas and air housings facing one another in a pressure wave loader.
- the pressure waves acting periodically on the end faces of the cellular wheel also lead to high gas pressures in the area of the labyrinth seals.
- the annular gap adjoining the sealing surface of the sealing profile prevents, with a slight local pressure reduction when the gas flows into the annular gap, an escape of gas through the gap formed between the sealing surface and the opposing control surface and thus a pressure loss which reduces the power of the pressure wave supercharger.
- spacer elements arranged distributed over the circumference of the sealing sleeves can protrude from the side of the sealing sleeves facing the outer or inner sleeve in the region of the end faces of the cellular wheel.
- the spacer elements can be distributed over the circumference of the outer or inner sleeve on the side facing the sealing sleeve side of the outer or inner sleeve.
- the above-described embodiment of the sealing sleeves with the outer and inner sleeves forming an annular gap at the end faces of the cellular wheel also leads to smaller centrifugal forces and thus to a higher dimensional stability of the cellular wheel with a correspondingly improved seal.
- the length of the incisions in the outer sleeve, the inner sleeve or the intermediate sleeve or in more than one intermediate sleeve in at least one of the intermediate sleeves is in the range of about 10% to 30% of the length of the cellular wheel, i. the distance between the two end faces of the cellular wheel.
- the outer sleeve, the inner sleeve, the intermediate sleeve / s, the fins and the sealing sleeves are made of sheet metal with a thickness of less than 0.5 mm.
- the drive shaft has two coaxial with the drive shaft and arranged spaced-apart annular webs with a peripheral surface as bearing surfaces for the inner sleeve and at least one of the annular webs is joined to the inner sleeve.
- the remote from the end faces of the cellular wheel end of the inner sealing sleeves is joined to one of the annular webs.
- the inner sealing sleeve on the hot gas side i. be joined on the side of the exhaust housing, at the end face of the cellular wheel with a lid.
- the hot gas side near ring web can be joined with a lid.
- the drive axle can be kept at a relatively low temperature under operating conditions of a pressure wave supercharger, so that the axial play of the enclosed between gas and air housing cellular wheel to maintain a minimum clearance of about 0.03 to 0.05 mm over the entire speed range can be set smaller in the cold operating state.
- the drive shaft is designed as a hollow shaft with a tubular end part, a conical intermediate part and a tubular shaft part with a receptacle for a to be connected to a motor drive coupling.
- tubular end part and the conical intermediate part expediently have openings arranged symmetrically over the circumference, which also allow an air circulation corresponding cooling effect.
- the coupling piece preferably has a coupling axis with longitudinal ribs, which engage in insertion of the coupling piece into the receptacle of the tubular shaft part in longitudinal grooves in the receptacle.
- the inventive cellular wheel is preferably used in a pressure wave supercharger for supercharging internal combustion engines, in particular gasoline engines with a displacement of preferably 2 liters or less.
- cellular wheel 10 of a pressure wave supercharger not shown in the drawing consists of a concentric with a rotation axis y of the cellular wheel 10 outer sleeve 12, a concentric with the outer sleeve 12 inner sleeve 14 and a between the outer sleeve 12 and the inner sleeve 14 concentrically arranged to these intermediate sleeve 18th
- the outer annular space between the intermediate sleeve 18 and the outer sleeve 12 and the inner annular space between the intermediate sleeve 18 and the inner sleeve 14 are divided by radially arranged to the rotation axis y strip-shaped fins 16 into a plurality outer cells 20 and a plurality of inner cells 22.
- the outer sleeve 12, the intermediate sleeve 18, the inner sleeve 14 and the fins 16 have a uniform Wall thickness of z. B. 0.4 mm and consist of a highly heat-resistant metallic material, for. Inconel 2.4856.
- the said parts have in the direction of the rotation axis y an equal length L corresponding to the length of the cellular wheel 10 and extend between two perpendicular to the axis of rotation y end faces 11 of the cellular wheel 10.
- Fig. 1 and 4 illustrated cellular wheel 10 is according to the FIGS. 2 and 3 connected by a flange sleeve 15 with a drive shaft 13.
- the flange sleeve 15 is aligned concentrically with the drive shaft 13 and welded thereto.
- the axis of rotation of the drive shaft 13 corresponds to the axis of rotation y of the placed on the flange sleeve 15 cellular 10th
- 12 incisions 26 are arranged in the outer sleeve 12 between joints 17 of adjacent lamellae 16 with the outer sleeve. These cuts 26 extend parallel to the slats 16 and extend from each end face 11 of the cellular wheel 10 over a length e of z. B. 15 mm. The cuts 26 terminate in a circular recess 28 with a diameter f of z. B. 2 mm. In addition, the at least one intermediate sleeve 16 could also be provided with corresponding cuts.
- the arrangement of the outer sealing sleeves 24 is made of the 4 and 6 seen.
- the outer sealing sleeve 24 has a length g of z. B. 20 mm.
- the outer sealing sleeve 24 is in a perpendicular to the axis of rotation y outwardly projecting, the sealing profile 30 forming annular flange with the aligned with the end face 11 of the cellular wheel 10 sealing surface 32 having a width h of z. B. 1.5 mm over.
- the outer sealing sleeve 24 is seated substantially form-fitting manner on the outer sleeve 12 and projects with a free peripheral edge 25, the circular recesses 28 at the ends of the incisions 26 by a dimension m of eg 5 mm and is via two circumferential welds 34, 36 joined to the outer sleeve 12.
- incisions 26 are arranged in the inner sleeve 14 between joints 17 of adjacent fins 16 with the inner sleeve 14. These cuts 26 extend parallel to the slats 16 and extend from each end face 11 of the cellular wheel 10 over a length e of z. B. 15 mm. The cuts 26 terminate in a circular recess 28 with a diameter f of z. B. 2 mm.
- optional cuts 26 can be arranged in the at least one intermediate sleeve.
- the fins 16 are usually rectangular strips of constant thickness. Since the highest mechanical stresses and thus an increased cracking tendency occur in the vicinity of the joining zone, the lamellae may have a material thickening 19 in the region of their longitudinal edges ( FIGS. 7 and 8 ).
- the area of the lamellae 16 delimited by the two parallel longitudinal edges can be flat or, as viewed in the direction of the longitudinal axis of the lamellae 16, curved to increase its dimensional stability on one or both sides or be provided with a bead.
- the inner sleeve 14 whose inner diameter and length is matched to the outer diameter and the length of the flange 15, with the previously with the inner sleeve 14 with a longitudinal edge positionally joined and projecting radially outwardly with the free longitudinal edge fins 16 of both end faces 11 forth with the incisions 26 and at the ends thereof provided with the circular recesses 28. Subsequently, the thus processed inner sleeve 14 is placed with the radially outwardly projecting fins 16 in the axial direction y coaxially on the flange sleeve 15 and welded thereto by means of an NC-controlled laser beam between the fins 16 in the region between the opposing recesses 28.
- the weld can be continuous from recess to recess or only extend over a length of 3 to 5 mm after each recess 28.
- To achieve optimum tightness can also be in a short distance of z. B. 2 to 3 mm to the recess 28 a transverse to the adjacent Slats 16 extending transverse weld seam are set.
- the transverse weld seam at their ends by parallel to the slats 16 extending longitudinal welds of z. B. 3 to 5 mm are added to a U-shaped weld.
- the intermediate sleeve 18 whose inner diameter and length is matched to the formed by the free longitudinal edges of the inner sleeve 14 radially outwardly projecting fins 16 outer diameter and the length of the inner sleeve 14, with the previously with the intermediate sleeve 18 with a Longitudinal edge positioned exactly joined and with the free longitudinal edge radially outwardly projecting slats 16 in the axial direction y coaxial and accurate position on the free longitudinal edges of the inner sleeve 14 radially outwardly projecting slats 16 set.
- the intermediate sleeve 18 is welded by means of a laser beam by means of a blind seam with the free end edges of the underlying fins 16 of the inner sleeve 14 to form the inner cells 22.
- the outer sleeve 12 whose inner diameter and length is matched to the outer diameter formed by the free longitudinal edges of the radially outwardly projecting from the intermediate sleeve 18 lamella 16 and the length of the intermediate sleeve 18, in the axial direction y coaxial with the free longitudinal edges of set of the inner sleeve 14 radially outwardly projecting fins 16.
- the outer sleeve 12 is welded by means of a blind seam with the free end edges of the underlying fins 16 of the intermediate sleeve 18 to form the outer cells 20.
- the outer sleeve 12 is provided by both end faces 11 ago with the incisions 26 and at the ends thereof with the circular recesses 28.
- the outer sealing sleeves 24 are placed on the outer sleeve 12 and connected thereto.
- the above-described joints are preferably designed as welding seams produced by means of a laser or electron beam, in particular with a laser beam. However, the joints can also be soldered.
- the cutting of the cuts 26 and the recesses 28 is also preferably carried out by means of a laser or electron beam, in particular with a laser beam.
- cellular wheel 10 of a pressure wave supercharger consists of a concentric with a rotation axis y of the cellular wheel 10 outer sleeve 12, a concentric with the outer sleeve 12 inner sleeve 14 and a between the outer sleeve 12 and the inner sleeve 14 concentrically arranged to these intermediate sleeve 18th
- the outer annular space between the intermediate sleeve 18 and the outer sleeve 12 and the inner annular space between the intermediate sleeve 18 and the inner sleeve 14 are divided by radially arranged to the rotation axis y strip-shaped fins 16 into a plurality outer cells 20 and a plurality of inner cells 22.
- the outer sleeve 12, the intermediate sleeve 18, the inner sleeve 14 and the fins 16 have a uniform wall thickness of z. B. 0.4 mm and consist of a highly heat-resistant metallic material, for. Inconel 2.4856.
- the said parts have in the direction of the rotation axis y an equal length L corresponding to the length of the cellular wheel 10 and extend between two perpendicular to the axis of rotation y end faces 11 of the cellular wheel 10.
- cellular wheel 10 is the inner sleeve 14 according to Fig. 10 directly connected to a drive shaft 13.
- the drive shaft 13 is arranged as a hollow shaft with two spaced-apart from a tubular end portion 46 radially protruding ring lands 38, 40 configured. End surfaces 42, 44 of the annular webs 38, 40 are concentric with the drive shaft 13 aligned inner sleeve 14, wherein only the drive side further away annular web 38 with the inner sleeve 14 z. B. is joined by means of a circumferential laser weld seam.
- the axis of rotation of the drive shaft 13 corresponds to the axis of rotation y of the inner sleeve 14 or of the cell wheel 10 placed on the drive shaft 13.
- the tubular end part 46 of the drive shaft 13 is adjoined by a conical intermediate part 48, which merges into a substantially tubular shaft part 50 with a receptacle 52 for a coupling piece 54 to be connected to a motor drive.
- the coupling piece 54 has a coupling axis 56 with longitudinal ribs 58 which engage upon insertion of the coupling piece 54 into the receptacle 52 of the tubular shaft part 50 in corresponding longitudinal grooves 60 in the receptacle 52 ( Fig. 11 ).
- Fig. 10 are provided in the tubular end portion 46 of the drive shaft 13 between the two ring lands 38, 40 symmetrically about the circumference arranged first openings 62.
- second openings 64 are also provided symmetrically over the conical peripheral surface. The openings 62, 64 serve to reduce weight and also have an air circulation with appropriate cooling effect.
- FIGS. 15 and 16 show a further embodiment of the cellular wheel 10.
- the cellular wheel 10 for example, on the drive shaft 13 after FIG. 2 or after FIG. 10 be used.
- 18 incisions 26 are arranged in the intermediate sleeve 18 between joints 17 adjacent lamellae 16 with the intermediate sleeve.
- this is the one embodiment in which the incisions 26 are arranged exclusively in the intermediate sleeve 18 and the outer sleeve 12 and the inner sleeve 14 have no cuts.
- the following description can also be applied to the embodiment described above with the incisions in the outer sleeve 12 and / or intermediate sleeve 18 and / or inner sleeve 14.
- These cuts 26 in the intermediate sleeve 18 are parallel to the slats 16 and extend starting from each end face 11 of the cellular wheel 10 and the intermediate sleeve 18 over a length of z. B. 15 mm.
- the incisions 26 end in a circular recess 28 with a diameter of z. B. 2 mm.
- FIGS. 18 and 19 schematically show a section in the direction of the rotation axis y seen.
- Fig. 19 represents the state of the FIGS. 15 and 16 in which the fins 16 and also parts of the intermediate sleeve 18 are deformed due to the temperature changes described below.
- Fig. 18 shows an operating state in which the cellular wheel 10 is in the axial direction over its entire length at a substantially constant operating temperature. Under these conditions, there is thus no difference in the thermal expansion of the lamellae 16 in the radial direction over the entire length of the cellular wheel 10.
- Fig. 15, 16 and 19 show an operating state in which the fins 16 in a one of an end face 11 of the cellular wheel 10 to a depth of about 15 to 20 mm extending edge region of the cellular wheel 10 by 200 to 300 ° C higher temperature than in an inner region of the cell wheel 10. Under these conditions, the higher temperature of the fins 16 in the edge region in comparison to the fins in the interior of the cellular wheel 10 leads to a greater thermal expansion.
- the intermediate sleeve 18 in the edge region of the cellular wheel 10 in edge strips 18 a, 18 b divided so that adjacent edge strips 18 a, 18 b in the radial direction are mutually displaceable.
- the in the Fig. 15, 16 and 19 shown operating state results from the rapid periodic temperature increases on the hot gas side of the cellular wheel 10.
- the arrangement of the incisions 26 thus a deformation of the fins 16 in the radial direction allows, which largely prevents the stresses in the region of the fins 16.
- the lamella 16a is assigned to an edge strip 18a of the intermediate sleeve 18 formed by incisions 26 provided on the left and right of the lamella 16a.
- an edge strip 18 a protruding from the base body of the intermediate sleeve 18 is formed by the notches 26.
- the lamella 16a is firmly connected to the edge strip 18a via the joint 17. With an increase in temperature, the blade deformed 16a in the radial direction in the front region over the edge strip 18 a and this deformation can be compensated by a movement of the edge strip 18 a in the direction of the rotation axis y. In the lamella 16a itself there is no voltage or a greatly reduced voltage.
- the lamella 16b is in this case connected to an edge strip 18b, with deformation of the lamella 16b of the corresponding edge strip 18b deformed.
- the edge strip 18 b is provided by two left and right of the blade 16 b extending into the intermediate sleeve 18 cuts 26.
- Each slat 16 a, 16 b can thus together with the edge strip 18 a, 18 b contracted from its original position in the intermediate sleeve 18 in the radial direction, without causing temperature-induced, rapid load changes in rapid succession compressive stresses in the slats 16th in the region of their joints 17 with the outer and inner sleeves 12, 14 and dismantle and can lead to material damage.
- the arrangement of the outer sealing sleeves 24 is made of the Fig. 12, 14th and 15 seen.
- the cylindrical outer sealing sleeves 24 have a width of z. B. 20 mm.
- At both end faces 11 of the cellular wheel 10 have in the FIGS. 20 to 22 illustrated outer sealing sleeves 24 a radially outwardly projecting sealing profile 30 with an aligned with the end face 11 of the cellular wheel 10 sealing surface 32 having a width d3 of z. B. 1.5 mm for a labyrinth seal.
- the outer sealing sleeve 24 is seated in a substantially remote from the end face 11 of the cellular wheel 10 area on the outer sleeve 12 and is joined in this area via a circumferential weld 34 with the outer sleeve 12.
- the outer sealing sleeve 24 with a wall thickness d1 of eg 0.25 mm has a thickness-reduced area 23 with a thickness d2 of, for example, 0.13 mm and thus a radial distance to the outer sleeve 12, so that from the end faces 11 of the cellular wheel 10 to the joining region of the outer sealing sleeve 24 with the outer sleeve 12 between the sealing sleeve 24 and outer sleeve 12, an open at the end faces 11 of the cellular wheel 10 annular gap 66 results.
- the sealing sleeve 24 below the sealing profile 30 radially inwardly projecting lugs as a spacer 68 with a height d4 of, for example, 0.13 mm.
- spacer 68 six spacers 68 are arranged distributed uniformly over the circumference of the sealing profile 30 of the sealing sleeve 24.
- first inner sealing sleeve 70 is shown in the inner sleeve 14 in the FIGS. 23 to 25 shown first inner sealing sleeve 70 and a in the FIGS. 26 to 28 illustrated second inner sealing sleeve 72 is inserted.
- the first inner sealing sleeve 70 is arranged on the hot gas side, the second inner sealing sleeve 72 on the cold gas side of the cellular wheel 10.
- the inner sealing sleeves 70, 72 have a radially inwardly projecting sealing profile 74 in the form of an annular web with an aligned with the end face 11 of the cell wheel sealing surface 75 with a width of z. B. 1.5 mm. In an area extending from the end faces 11 of the cellular wheel 10 in the inner sleeve 14 of z. B.
- the inner sealing sleeves 70, 72 have a reduced thickness region 73 and thus a radial distance from the inner sleeve 14 so that starting from the end faces 11 of the cellular wheel 10, starting between inner sealing sleeve 70, 72 and inner sleeve 14 at the end faces 11 of the cellular wheel 10 open annular gap 66 results.
- the inner sealing sleeves 70, 72 of the inner sleeve 14 are substantially form-fitting, extending to the respective closer annular web 38, 40 at the tubular end portion 46 of the drive shaft 13 and are connected to the corresponding annular web 38, 40 by means of a circumferential weld seam joined.
- the annular webs 38, 40 on the tubular end portion 46 of the drive shaft 13 are joined to the inner sleeve 14 by means of a circumferential weld.
- the sealing profile 74 is welded on the drive side of the farther end face 11 of the cellular wheel 10, ie on the hot gas side, with an inner sleeve 14 closing outer cover 78.
- the annular web 38 further away from the drive side is welded to the tubular end part 46 of the drive shaft 13 with an inner cover 80 closing the inner sleeve 14 in the interior of the cellular wheel 10.
- inner sealing sleeves 70, 72 To stabilize the mutual position of inner sealing sleeve 70, 72 and inner sleeve 14, the inner sealing sleeves 70, 72 on the outside over the sealing profile 74 radially outwardly projecting lugs as spacers 68 to the inner sleeve 14.
- spacers 68 are arranged uniformly distributed over the circumference of the inner sealing sleeve 70, 72.
- outer sealing sleeves 24 indicated values for the dimensions d1, d2, d3 and d4 also apply to those in the Fig. 23 to 28 shown inner sealing sleeves 70, 72nd
- the wall thickness a1 of the outer sleeve 12 is for example 0.25 mm and the thickness a2 of the thickness-reduced portion 23, for example, 0.13 mm.
- the annular gap width between inner sealing sleeves 70, 72 and the inner sleeve 14 can be increased by reducing the inner diameter of the inner sleeve 14 while the outer diameter remains the same, with the protrusions for the outer sleeve 12 for a1 and a2 also applying to the inner sleeve 14.
- the inner sleeve 14 is provided with the slats 16, which are positioned precisely with a longitudinal edge and project radially outwardly with the free longitudinal edge.
- the intermediate sleeve 18 is then welded by means of a blind seam with the free end edges of the underlying slats 16 of the inner sleeve 14 to form the inner cells 22. Subsequently, the intermediate sleeve 18 is provided from both end faces 11 forth with the incisions 26 and at the ends thereof with the circular recesses 28.
- the outer sleeve 12 whose inner diameter and length is matched to the outer diameter formed by the free longitudinal edges of the radially outwardly projecting from the intermediate sleeve 18 lamella 16 and the length of the intermediate sleeve 18, in the axial direction y coaxial with the free longitudinal edges of of the Intermediate sleeve 14 set radially outwardly projecting fins 16.
- the outer sleeve 12 is welded by means of a blind seam with a laser beam with the free end edges of the underlying slats 16 of the intermediate sleeve 18 to form the outer cells 20.
- the outer sealing sleeves 24, whose inner diameter is matched to the outer diameter of the outer sleeve 12, are coaxially placed in the axial direction y on the outer sleeve 12 and joined with this.
- the inner sealing sleeves 70, 72, whose outer diameter is matched to the inner diameter of the inner sleeve 14, coaxially inserted in the axial direction y on the inner sleeve 14 and joined with this and with the annular webs 38, 40 at the tubular end portion 46 of the drive shaft 13.
- the inner and the outer cover 80, 78 are inserted and joined with the annular web 38 on the tubular end portion 46 and with the annular web 74 on the hot gas side sealing sleeve 70.
- the above-described joints are preferably designed as welding seams produced by means of a laser or electron beam, in particular with a laser beam. However, the joints can also be soldered.
- the cutting of the cuts 26 and the recesses 28 is also preferably carried out by means of a laser or electron beam, in particular with a laser beam, wherein a minimum cutting width of about 15 microns is achieved.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Supercharger (AREA)
- Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft ein Zellenrad aus Metall, mit einer koaxial zu einer Rotationsachse liegenden Aussenhülse, einer koaxial zur Aussenhülse liegenden Innenhülse, mindestens einer zwischen Aussenhülse und Innenhülse koaxial zu diesen angeordneten Zwischenhülse, zwischen aufeinanderfolgenden Hülsen angeordneten, radial zur Rotationsachse ausgerichteten, mit benachbarten Hülsen gefügten Lamellen, mit die Aussenhülse übergreifenden und mit der Aussenhülse gefügten äusseren Dichthülsen mit einem Dichtprofil für eine Labyrinthdichtung, und mit einer in der Rotationsachse liegenden Antriebswelle.The present invention relates to a cellular wheel made of metal, with an outer sleeve lying coaxially to a rotation axis, an inner sleeve coaxial with the outer sleeve, at least one between the outer sleeve and inner sleeve coaxial with these intermediate sleeve arranged between successive sleeves, radially aligned with the axis of rotation, with adjacent sleeves joined lamellae, with the outer sleeve cross-over and with the outer sleeve joined outer sealing sleeves with a sealing profile for a labyrinth seal, and with a lying in the axis of rotation drive shaft.
Seit einigen Jahren zählt das Verfahren des Downsizing zu den Hauptthemen bei der Konstruktion von neuen, aufgeladenen Motoren. Mit Downsizing können der Kraftstoffverbrauch und damit die Abgasemissionen eines Fahrzeugs reduziert werden. In der heutigen Zeit werden diese Ziele immer wichtiger, da der hohe Energieverbrauch durch fossile Brennstoffe stark zur Luftverschmutzung beiträgt und immer härtere Gesetzgebungsmassnahmen die Automobilhersteller zum Handeln zwingen. Unter Downsizing versteht man die Substitution eines grossvolumigen Motors durch einen hubraumverkleinerten Motor. Dabei soll die Motorleistung durch Aufladung des Motors hoch gehalten werden. Ziel ist es, mit kleinvolumigen Motoren die gleichen Leistungswerte wie bei grossvolumigen Motoren zu erreichen wie mit leistungsgleichen Saugmotoren. Neue Erkenntnisse auf dem Gebiet des Downsizing haben gezeigt, dass insbesondere bei sehr kleinen Ottomotoren mit einem Hubraum von 2 Liter oder weniger mit einer Druckwellenaufladung die besten Ergebnisse erzielt werden können.For some years, the downsizing process has been one of the main topics in the design of new supercharged engines. With downsizing, the fuel consumption and thus the exhaust emissions of a vehicle can be reduced. Today, these goals are becoming increasingly important, as the high energy consumption of fossil fuels contributes greatly to air pollution, and ever tougher legislative measures are forcing automakers to act. Downsizing is the substitution of a large-volume engine with a displacement-reduced engine. The engine power should be kept high by charging the engine. The goal is to achieve the same performance with small-volume engines as with large-volume engines, as with naturally aspirated engines of the same performance. Recent findings in the field of downsizing have shown that the best results can be achieved, especially with very small gasoline engines with a displacement of 2 liters or less with a pressure wave charging system.
Bei einem Druckwellenlader ist der Rotor als Zellenrad ausgebildet und wird von einem Luft- und Abgasgehäuse mit einem gemeinsamen Mantel umschlossen. Die Entwicklung moderner Druckwellenlader zur Aufladung kleiner Motoren führt zu Zellenrädern mit einem Durchmesser in der Grössenordnung von 100 mm oder weniger. Zur Erzielung eines maximalen Zellenvolumens und auch zur Gewichtsreduktion werden Zellenwanddicken von 0,4 mm oder weniger angestrebt. Bei den hohen Abgaseintrittstemperaturen von gegen ca. 1000 °C kommen als Werkstoffe für das Zellenrad praktisch nur hochwarmfeste Legierungen in Frage. Die Herstellung dimensionsstabiler und hochpräziser Zellenräder mit geringer Zellenwanddicke ist heute noch kaum möglich oder aber mit erheblichen Mehrkosten verbunden.In a pressure wave supercharger, the rotor is designed as a cellular wheel and is enclosed by an air and exhaust housing with a common jacket. The development of modern pressure wave chargers for charging small engines leads to cell wheels with a diameter of the order of 100 mm or less. To obtain a maximum cell volume and also for weight reduction, cell wall thicknesses of 0.4 mm or less are desired. At the high exhaust gas inlet temperatures of about 1000 ° C come as materials for the feeder virtually only high-temperature alloys in question. The production of dimensionally stable and high-precision cellular wheels with a small cell wall thickness is today hardly possible or associated with considerable additional costs.
Es ist schon vorgeschlagen worden, die Kammern eines Zellenrades aus aneinander gereihten und sich teilweise überlappenden, Z-förmigen Profilen zu bilden. Die Herstellung eines derartigen Zellenrades ist jedoch mit hohem zeitlichem Aufwand verbunden. Hinzu kommt, dass das Aneinanderreihen und positionsgenaue Fixieren von Z-Profilen kaum mit einer zur Einhaltung der geforderten Toleranzen ausreichenden Präzision durchführbar ist.It has already been proposed to form the chambers of a cellular wheel of juxtaposed and partially overlapping, Z-shaped profiles. However, the production of such a cellular wheel is associated with high expenditure of time. In addition, the juxtaposition and positionally accurate fixing of Z-profiles hardly feasible with a sufficient to comply with the required tolerances precision.
Es ist auch schon vorgeschlagen worden, ein Zellenrad aus einem Vollkörper durch Erodieren der einzelnen Zellen herzustellen. Mit diesem Verfahren ist es jedoch nur schwer möglich, Zellenwanddicken von weniger als 0,5 mm zu erreichen. Ein weiterer wesentlicher Nachteil des Erodierverfahrens sind die damit verbundenen, hohen Material- und Bearbeitungskosten.It has also been proposed to produce a cellular wheel from a solid body by eroding the individual cells. With this method, however, it is difficult to achieve cell wall thicknesses of less than 0.5 mm. Another major disadvantage of the erosion process are the associated high material and processing costs.
Ein Zellenrad der eingangs genannten Art ist in
Der Erfindung liegt die Aufgabe zu Grunde, ein Zellenrad der eingangs genannten Art unter Vermeidung einer Rissbildung im Fügebereich zwischen Lamellen und Hülsen einfach und kostengünstig mit der geforderten Präzision herzustellen. Ein weiteres Ziel der Erfindung ist die Schaffung eines für den Einsatz in einem Druckwellenlader zur Aufladung von Verbrennungsmotoren, insbesondere zur Aufladung kleiner Ottomotoren mit einem Hubraum in der Grössenordnung von 2 Liter oder weniger, geeigneten Zellenrades. Insbesondere sollen unter Betriebsbedingungen mechanisch stabile Zellenräder mit einer Zellenwanddicke von 0,5 mm oder weniger ohne Neigung zu Rissbildung im Fügebereich zwischen Lamellen und Hülsen herstellbar sein.The invention is based on the object, simple and inexpensive to manufacture a cellular wheel of the type mentioned while avoiding cracking in the joining region between fins and sleeves with the required precision. Another object of the invention is to provide a suitable for use in a pressure wave supercharger for supercharging internal combustion engines, in particular for supercharging small gasoline engines with a displacement in the order of 2 liters or less, suitable cellular wheel. In particular, mechanically stable cell wheels with a cell wall thickness of 0.5 mm or less should be able to be produced under operating conditions without a tendency to crack formation in the joining region between lamellae and sleeves.
Zur erfindungsgemässen Lösung der Aufgabe führt, dass wenigstens die Aussenhülse, die Innenhülse und/oder die Zwischenhülse bzw. bei mehr als einer Zwischenhülse wenigstens eine der Zwischenhülsen von beiden Stirnflächen des Zellenrades ausgehende Einschnitte zwischen benachbarten Lamellen aufweist. Die Einschnitte sind bevorzugt rotationssymmetrisch.For solving the problem according to the invention, at least the outer sleeve, the inner sleeve and / or the intermediate sleeve or, in the case of more than one intermediate sleeve, at least one of the intermediate sleeves has cut-outs extending from both end faces of the cellular wheel between adjacent lamellae. The incisions are preferably rotationally symmetrical.
Zur erfindungsgemässen Lösung der Aufgabe führt auch, dass ausschliesslich die mindestens eine Zwischenhülse von den beiden Stirnflächen des Zellenrades ausgehende Einschnitte aufweist. Folglich sind hier die Aussenhülse und die Innenhülse ohne Einschnitte ausgebildet. Vorzugsweise ist dabei links und rechts von einer Lamelle jeweils ein Einschnitt vorhanden bzw. es ist vorzugsweise immer ein Einschnitt zwischen zwei benachbarten Lamellen vorhanden. Die in der Zwischenhülse angeordneten Einschnitte stellen dabei für die entsprechende Lamelle einen Randstreifen bereit, welcher bezüglich der Zwischenhülse und anderen Randstreifen elastisch bewegbar ausgebildet ist und die durch Temperaturschwankungen herrührende Deformation der Lamellen durch eine Bewegung des Randstreifens in im Wesentlichen radialer Richtung vorteilhaft kompensiert. Dadurch werden die Wechselbiegespannungen in der Lamelle in einem grossen Mass reduziert. Die Randstreifen können auch als Laschen bezeichnet werden. Bevorzugterweise bilden zwei benachbarte Einschnitte einen der entsprechenden Hülse zugehörigen Randstreifen, wobei einem einzigen Randstreifen jeweils eine einzige Lamelle zugeordnet ist. Ein solcher Randstreifen ist dabei zur entsprechenden Hülse und zu benachbarten Randstreifen elastisch bewegbar.To solve the problem of the invention also leads that exclusively the at least one intermediate sleeve of the two end faces of the cell wheel outgoing incisions. Consequently, here the outer sleeve and the inner sleeve are formed without cuts. Preferably, in each case an incision is present on the left and right of a lamella, or there is preferably always an incision between two adjacent lamellae. The incisions arranged in the intermediate sleeve thereby provide an edge strip for the corresponding lamella which is designed to be elastically movable with respect to the intermediate sleeve and other edge strips and advantageously compensates for the deformation of the lamellae resulting from temperature fluctuations by a movement of the edge strip in a substantially radial direction. As a result, the alternating bending stresses in the lamella are reduced to a great extent. The edge strips can also be referred to as tabs. Preferably, two adjacent incisions form one of the corresponding sleeve associated edge strips, wherein a single edge strip is assigned in each case a single lamella. Such an edge strip is elastically movable relative to the corresponding sleeve and to adjacent edge strips.
Die Einschnitte sind im Wesentlichen über den Umfang der betreffenden Hülse vorzugsweise gleichmässig verteilt angeordnet. Eine andere Verteilung in Abhängigkeit mit der Anordnung der Lamellen ist auch denkbar.The incisions are preferably distributed uniformly over the circumference of the relevant sleeve. Another distribution depending on the arrangement of the slats is also conceivable.
Bevorzugt sind zwischen allen benachbarten Lamellen Einschnitte vorhanden. Es ist jedoch auch möglich, weniger Einschnitte über den Hülsenumfang vorzusehen. Beispielsweise kann nach jeder zweiten oder dritten Lamelle ein Einschnitt vorgesehen sein.Preferably, cuts are present between all adjacent lamellae. However, it is also possible to provide fewer cuts over the sleeve circumference. For example, an incision may be provided after every second or third lamella.
Durch die zwischen Fügestellen benachbarter Lamellen mit der Aussen-, Innen und/oder Zwischenhülse angeordneten Einschnitte ist die betreffende Hülse im Randbereich des Zellenrades also in Randstreifen aufgeteilt, so dass benachbarte Randstreifen in radialer Richtung gegeneinander verschiebbar sind. Dadurch können sich die Lamellen zusammen mit den mit den Lamellen gefügten Randstreifen aus ihrer ursprünglichen Lage in der Hülse in radialer Richtung ausdehnen und kontraktieren, so dass die in rascher Folge auftretenden Wärmedehnungen und -kontraktionen der Lamellen in radialer Richtung zu einem geringeren Spannungsaufbau und -abbau durch schnelle Lastwechsel in den Lamellen im Bereich ihrer Fügestellen mit den Aussen-, Innen und/oder Zwischenhülsen führen und mit dieser Massnahme Materialbeschädigungen vermieden werden können.By arranged between joints of adjacent lamellae with the outer, inner and / or intermediate sleeve incisions, the sleeve in question in the edge region of the feeder is thus divided into edge strips, so that adjacent edge strips in the radial direction are mutually displaceable. As a result, the lamellae, together with the edge strips joined with the lamellae, can expand and contract in the radial direction from their original position in the sleeve, so that the thermal expansions and contractions of the lamellae occurring in rapid succession in the radial direction result in less stress build-up and degradation By fast load changes in the slats in the area of their joints with the outer, inner and / or intermediate sleeves and with this measure material damage can be avoided.
Zur Vermeidung von Spannungsspitzen an den Enden der Einschnitte und einer damit verbundenen Bildung und weiteren Ausbreitung eines Risses kann an den Enden der Einschnitte eine Ausnehmung als sogenannter Rissstopper vorgesehen sein. Die Ausnehmung kann in der Draufsicht senkrecht zur Mittelachse einen runden oder einen elliptischen Querschnitt aufweisen. Die Ausdehnung der Ausnehmung liegt vorzugsweise im Bereich 1 bis 2 mm.To avoid stress peaks at the ends of the incisions and an associated formation and further propagation of a crack may be provided as a so-called tear stopper at the ends of the incisions a recess. The recess can have a round or elliptical cross-section perpendicular to the central axis in plan view. The extent of the recess is preferably in the
Bei einer ersten Ausführungsform des erfindungsgemässen Zellenrades sitzt die Innenhülse auf einer koaxial zu dieser angeordneten, mit der Antriebswelle gefügten Flanschhülse und die Aussenhülse weist von beiden Stirnflächen des Zellenrades ausgehende Einschnitte zwischen benachbarten Lamellen auf. Eine von den Stirnflächen des Zellenrades entfernt liegende Randkante der äusseren Dichthülsen überragt die Einschnitte um ein Mass und die äusseren Dichthülsen sind nur in dem die Einschnitte überragenden Bereich mit der Aussenhülse gefügt.In a first embodiment of the inventive cell wheel, the inner sleeve is seated on a coaxially arranged to this, joined to the drive shaft flange sleeve and the outer sleeve has from both end faces of the cellular wheel outgoing incisions between adjacent lamellae. A remote from the end faces of the cellular wheel peripheral edge of the outer sealing sleeves extends beyond the cuts by a measure and the outer sealing sleeves are joined only in the incision projecting area with the outer sleeve.
Bevorzugt weist das Dichtprofil der äusseren Dichthülsen eine mit den Stirnflächen des Zellenrades fluchtende Dichtfläche auf und die äusseren Dichthülsen bilden mit der Aussenhülse einen an den Stirnflächen des Zellenrades offenen Ringspalt.Preferably, the sealing profile of the outer sealing sleeves has a sealing surface aligned with the end faces of the cellular wheel, and the outer sealing sleeves form, with the outer sleeve, an annular gap open at the end faces of the cellular wheel.
Bevorzugt weist bei dieser ersten Ausführungsform auch die Innenhülse von beiden Stirnflächen des Zellenrades ausgehende Einschnitte zwischen benachbarten Lamellen auf. Die Innenhülse ist hierbei mit der Flanschhülse zwischen benachbarten Lamellen zwischen einander gegenüberliegenden Einschnitten gefügt.Preferably, in this first embodiment, the inner sleeve of both end faces of the cell wheel outgoing incisions between adjacent lamellae. The inner sleeve is hereby joined with the flange sleeve between adjacent lamellae between opposed incisions.
Bei einer zweiten, bevorzugten Ausführungsform des erfindungsgemässen Zellenrades ist die Innenhülse mit der Antriebswelle gefügt und die Zwischenhülse bzw. bei zwei oder mehr Zwischenhülsen wenigstens eine der Zwischenhülsen weist von beiden Stirnflächen des Zellenrades ausgehende Einschnitte zwischen benachbarten Lamellen auf.In a second, preferred embodiment of the cell wheel according to the invention, the inner sleeve is joined to the drive shaft and the intermediate sleeve or, in the case of two or more intermediate sleeves, at least one of the intermediate sleeves has incisions extending between both end faces of the cellular wheel between adjacent lamellae.
Bevorzugt weist bei dieser zweiten Ausführungsform das Dichtprofil der äusseren Dichthülsen eine mit den Stirnflächen des Zellenrades fluchtende Dichtfläche auf und in der Innenhülse sind mit der Innenhülse gefügte innere Dichthülsen mit einem Dichtprofil mit einer mit den Stirnflächen des Zellenrades fluchtenden Dichtfläche für eine Labyrinthdichtung angeordnet.Preferably, in this second embodiment, the sealing profile of the outer sealing sleeves on a flush with the end faces of the cellular wheel sealing surface and in the inner sleeve are fitted with the inner sleeve inner sealing sleeves arranged with a sealing profile with an aligned with the end faces of the cell wheel sealing surface for a labyrinth seal.
Bevorzugt sind auch bei der zweiten Ausführungsform die Dichthülsen nur im Bereich des von den Stirnflächen des Zellenrades entfernt liegenden Endes mit der Aussen- bzw. Innenhülse gefügt und bilden mit den Aussen- bzw. Innenhülsen einen an den Stirnflächen des Zellenrades offenen Ringspalt.Preferably, in the second embodiment, the sealing sleeves are joined only in the region of the remote from the end faces of the cellular wheel end with the outer and inner sleeve and form with the outer and inner sleeves open at the end faces of the cellular wheel annular gap.
Die Dichtfläche des Dichtprofils und der an die Dichtfläche angrenzende Ringspalt zwischen Dichthülse und Aussen- bzw. Innenhülse sind für die Dichtigkeit einer Labyrinthdichtung zwischen den Stirnflächen des Zellenrades und den in einem Druckwellenlader den Stirnflächen des Zellenrades gegenüberstehenden Steuerflächen der Gas- und Luftgehäuse bestimmend. Die periodisch auf die Stirnflächen des Zellenrades einwirkenden Druckwellen führen auch zu hohen Gasdrücken in Bereich der Labyrinthdichtungen. Der an die Dichtfläche des Dichtprofils angrenzende Ringspalt verhindert mit einen geringen lokalen Druckabbau beim Einströmen des Gases in den Ringspalt ein Entweichen von Gas durch den zwischen der Dichtfläche und der dieser gegenüberstehenden Steuerfläche gebildeten Spalt und damit einen die Leistung des Druckwellenladers vermindernden Druckverlust.The sealing surface of the sealing profile and the annular gap adjacent to the sealing surface between the sealing sleeve and outer or inner sleeve are decisive for the tightness of a labyrinth seal between the end faces of the cell wheel and the control surfaces of the gas and air housings facing one another in a pressure wave loader. The pressure waves acting periodically on the end faces of the cellular wheel also lead to high gas pressures in the area of the labyrinth seals. The annular gap adjoining the sealing surface of the sealing profile prevents, with a slight local pressure reduction when the gas flows into the annular gap, an escape of gas through the gap formed between the sealing surface and the opposing control surface and thus a pressure loss which reduces the power of the pressure wave supercharger.
Zur Stabilisierung des Ringspaltes können von der zur Aussen- bzw. Innenhülse weisenden Seite der Dichthülsen im Bereich der Stirnflächen des Zellenrades über den Umfang der Dichthülsen verteilt angeordnete Abstandselemente abragen. Alternativ können die Abstandselemente auf der zur Dichthülse weisenden Seite der Aussen- bzw. Innenhülse über den Umfang der Aussen- bzw. Innenhülse verteilt angeordnet sein.In order to stabilize the annular gap, spacer elements arranged distributed over the circumference of the sealing sleeves can protrude from the side of the sealing sleeves facing the outer or inner sleeve in the region of the end faces of the cellular wheel. Alternatively, the spacer elements can be distributed over the circumference of the outer or inner sleeve on the side facing the sealing sleeve side of the outer or inner sleeve.
Die vorstehend beschriebene Ausführung der mit den Aussen- bzw. Innenhülsen einen an den Stirnflächen des Zellenrades offenen Ringspalt bildenden Dichthülsen führt aufgrund ihrer reduzierten Masse auch zu kleineren Zentrifugalkräften und damit zu einer höheren Formstabilität des Zellenrades mit entsprechend verbesserter Dichtung.Due to their reduced mass, the above-described embodiment of the sealing sleeves with the outer and inner sleeves forming an annular gap at the end faces of the cellular wheel also leads to smaller centrifugal forces and thus to a higher dimensional stability of the cellular wheel with a correspondingly improved seal.
Die Länge der Einschnitte in der Aussenhülse, der Innenhülse oder der Zwischenhülse bzw. bei mehr als einer Zwischenhülse in wenigstens eine der Zwischenhülsen liegt im Bereich von etwa 10% bis 30% der Länge des Zellenrades, d.h. des Abstandes zwischen den beiden Stirnflächen des Zellenrades.The length of the incisions in the outer sleeve, the inner sleeve or the intermediate sleeve or in more than one intermediate sleeve in at least one of the intermediate sleeves is in the range of about 10% to 30% of the length of the cellular wheel, i. the distance between the two end faces of the cellular wheel.
Bevorzugt sind die Aussenhülse, die Innenhülse die Zwischenhülse/n, die Lamellen und die Dichthülsen aus Metallblech mit einer Dicke von weniger als 0,5 mm gefertigt.Preferably, the outer sleeve, the inner sleeve, the intermediate sleeve / s, the fins and the sealing sleeves are made of sheet metal with a thickness of less than 0.5 mm.
Bei einer besonders bevorzugten zweiten Ausführungsform des erfindungsgemässen Zellenrades weist die Antriebswelle zwei koaxial zur Antriebswelle angeordnete und voneinander beabstandete Ringstege mit einer Umfangfläche als Auflageflächen für die Innenhülse auf und wenigstens einer der Ringstege ist mit der Innenhülse gefügt.In a particularly preferred second embodiment of the inventive cell wheel, the drive shaft has two coaxial with the drive shaft and arranged spaced-apart annular webs with a peripheral surface as bearing surfaces for the inner sleeve and at least one of the annular webs is joined to the inner sleeve.
Zweckmässigerweise ist das von den Stirnflächen des Zellenrades entfernt liegende Ende der inneren Dichthülsen mit einem der Ringstege gefügt.Conveniently, the remote from the end faces of the cellular wheel end of the inner sealing sleeves is joined to one of the annular webs.
Als Hitzeschutz kann die innere Dichthülse auf der Heissgasseite, d.h. auf der Seite des Abgasgehäuses, an der Stirnfläche des Zellenrades mit einem Deckel gefügt sein. Alternativ oder zusätzlich kann der der Heissgasseite nahe Ringsteg mit einem Deckel gefügt sein.As heat protection, the inner sealing sleeve on the hot gas side, i. be joined on the side of the exhaust housing, at the end face of the cellular wheel with a lid. Alternatively or additionally, the hot gas side near ring web can be joined with a lid.
Mit diesen Massnahmen kann die Antriebsachse unter Betriebsbedingungen eines Druckwellenladers auf einer verhältnismässig tiefen Temperatur gehalten werden, so dass das axiale Spiel des zwischen Gas- und Luftgehäuse eingeschlossenen Zellenrades zur Einhaltung eines minimales Spiels von etwa 0,03 bis 0,05 mm über den gesamten Drehzahlbereich im kalten Betriebszustand kleiner eingestellt werden kann.With these measures, the drive axle can be kept at a relatively low temperature under operating conditions of a pressure wave supercharger, so that the axial play of the enclosed between gas and air housing cellular wheel to maintain a minimum clearance of about 0.03 to 0.05 mm over the entire speed range can be set smaller in the cold operating state.
Zur Gewichtsreduktion ist die Antriebswelle als Hohlwelle mit einem rohrförmigen Endteil, einem konischen Zwischenteil und einem rohrförmigen Wellenteil mit einer Aufnahme für ein mit einem motorischen Antrieb zu verbindenden Kupplungsstück ausgestaltet.For weight reduction, the drive shaft is designed as a hollow shaft with a tubular end part, a conical intermediate part and a tubular shaft part with a receptacle for a to be connected to a motor drive coupling.
Zur weiteren Gewichtsreduktion weist das rohrförmige Endteil und das konische Zwischenteil zweckmässigerweise symmetrisch über den Umfang angeordnete Öffnungen auf, welche auch eine Luftzirkulation entsprechender Kühlwirkung ermöglichen.For further weight reduction, the tubular end part and the conical intermediate part expediently have openings arranged symmetrically over the circumference, which also allow an air circulation corresponding cooling effect.
Das Kupplungsstück weist bevorzugt eine Kupplungsachse mit Längsrippen auf, welche beim Einschieben des Kupplungsstücks in die Aufnahme des rohrförmigen Wellenteils in Längsnuten in der Aufnahme eingreifen.The coupling piece preferably has a coupling axis with longitudinal ribs, which engage in insertion of the coupling piece into the receptacle of the tubular shaft part in longitudinal grooves in the receptacle.
Das erfindungsgemässe Zellenrad wird bevorzugt in einem Druckwellenlader zur Aufladung von Verbrennungsmotoren, insbesondere von Ottomotoren mit einem Hubraum von bevorzugt 2 Litern oder weniger, verwendet.The inventive cellular wheel is preferably used in a pressure wave supercharger for supercharging internal combustion engines, in particular gasoline engines with a displacement of preferably 2 liters or less.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung, die lediglich zur Erläuterung dient und nicht einschränkend auszulegen ist. Die Zeichnung zeigt schematisch in
- Fig. 1
- eine Sicht auf eine Stirnfläche des in
Fig. 4 dargestellten Zellenrades für einen Druckwellenlader; - Fig. 2
- einen Längsschnitt durch das auf eine Flanschhülse einer Antriebswelle aufgesetzte Zellenrad von
Fig. 4 nach der Linie I-I inFig. 1 ; - Fig. 3
- einen Längsschnitt durch das auf eine Flanschhülse einer Antriebswelle aufgesetzte Zellenrad von
Fig. 4 nach der Linie II-II inFig. 1 ; - Fig. 4
- eine perspektivische Ansicht einer ersten Ausführungsform eines Zellenrades für einen Druckwellenlader;
- Fig. 5
- einen Teilbereich III des Zellenrades von
Fig. 4 in vergrösserter Darstellung; - Fig. 6
- einen Teilbereich IV des Längsschnittes des Zellenrades von
Fig. 3 in vergrösserter Darstellung; - Fig. 7
- eine perspektivische Ansicht einer Lamelle des Zellenrades von
Fig. 4 ; - Fig. 8
- einen Teilbereich V der Lamelle von
Fig. 7 in vergrösserter Darstellung; - Fig. 9
- eine Sicht auf eine Stirnfläche des in
Fig. 15 dargestellten Zellenrades für einen Druckwellenlader; - Fig. 10
- einen Längsschnitt durch das auf eine Antriebswelle aufgesetzte Zellenrad von
Fig. 15 nach der Linie VI-VI inFig. 9 ; - Fig. 11
- einen Querschnitt durch die Antriebswelle nach der Linie VII-VII in
Fig. 10 ; - Fig. 12
- einen ersten Teilbereich VIII des Längsschnittes des Zellenrades von
Fig. 10 in vergrösserter Darstellung; - Fig. 13
- einen zweiten Teilbereich IX des Längsschnittes des Zellenrades von
Fig. 10 in vergrösserter Darstellung; - Fig. 14
- einen dritten Teilbereich X des Längsschnittes des Zellenrades von
Fig. 10 in vergrösserter Darstellung; - Fig. 15
- eine perspektivische Ansicht einer weiteren Ausführungsform eines Zellenrades für einen Druckwellenlader;
- Fig. 16
- einen Teilbereich des Zellenrades von
Fig. 15 in vergrösserter Darstellung; - Fig. 17
- einen vergrösserten Ausschnitt der Sicht von
Fig. 9 auf die Stirnfläche des inFig. 15 dargestellten Zellenrades für einen Druckwellenlader; - Fig. 18
- einen vergrösserten Ausschnitt aus
Fig. 17 in einem ersten Betriebszustand des Zellenrades; - Fig. 19
- einen vergrösserten Ausschnitt aus
Fig. 17 in einem zweiten Betriebszustand des Zellenrades; - Fig. 20
- eine perspektivische Ansicht einer äusseren Dichthülse des Zellenrades von
Fig. 15 ; - Fig. 21
- einen Axialschnitt durch die äussere Dichthülse von
Fig. 20 ; - Fig. 22
- einen Ausschnitt aus der Sicht auf die Stirnfläche der äussere Dichthülse von
Fig. 20 ; - Fig. 23
- eine perspektivische Ansicht einer ersten (heissgasseitigen) inneren Dichthülse des Zellenrades von
Fig. 15 ; - Fig. 24
- einen Axialschnitt durch die heissgasseitige innere Dichthülse von
Fig. 23 ; - Fig. 25
- eine Sicht auf die Stirnfläche der heissgasseitigen inneren Dichthülse von
Fig. 24 ; - Fig. 26
- eine perspektivische Ansicht einer zweiten (kaltgasseitigen) inneren Dichthülse des Zellenrades von
Fig. 15 ; - Fig. 27
- einen Axialschnitt durch die kaltgasseitige innere Dichthülse von
Fig. 26 ; - Fig. 28
- eine Sicht auf die Stirnfläche der kaltgasseitigen inneren Dichthülse von
Fig. 27 .
- Fig. 1
- a view of an end face of the in
Fig. 4 shown cell wheel for a pressure wave supercharger; - Fig. 2
- a longitudinal section through the attached to a flange sleeve of a drive shaft cell wheel of
Fig. 4 after the line II inFig. 1 ; - Fig. 3
- a longitudinal section through the attached to a flange sleeve of a drive shaft cell wheel of
Fig. 4 after the line II-II inFig. 1 ; - Fig. 4
- a perspective view of a first embodiment of a bucket for a pressure wave supercharger;
- Fig. 5
- a subregion III of the cellular wheel of
Fig. 4 in an enlarged view; - Fig. 6
- a portion IV of the longitudinal section of the cell wheel of
Fig. 3 in an enlarged view; - Fig. 7
- a perspective view of a blade of the cellular wheel of
Fig. 4 ; - Fig. 8
- a portion V of the lamella of
Fig. 7 in an enlarged view; - Fig. 9
- a view of an end face of the in
Fig. 15 shown cell wheel for a pressure wave supercharger; - Fig. 10
- a longitudinal section through the attached to a drive shaft cell wheel of
Fig. 15 after the line VI-VI inFig. 9 ; - Fig. 11
- a cross section through the drive shaft along the line VII-VII in
Fig. 10 ; - Fig. 12
- a first portion VIII of the longitudinal section of the cell wheel of
Fig. 10 in an enlarged view; - Fig. 13
- a second portion IX of the longitudinal section of the cell wheel of
Fig. 10 in an enlarged view; - Fig. 14
- a third portion X of the longitudinal section of the cell wheel of
Fig. 10 in an enlarged view; - Fig. 15
- a perspective view of another embodiment of a bucket for a pressure wave supercharger;
- Fig. 16
- a portion of the cell wheel of
Fig. 15 in an enlarged view; - Fig. 17
- an enlarged section of the view of
Fig. 9 on the face of the inFig. 15 shown cell wheel for a pressure wave supercharger; - Fig. 18
- an enlarged section
Fig. 17 in a first operating state of the cellular wheel; - Fig. 19
- an enlarged section
Fig. 17 in a second operating state of the cellular wheel; - Fig. 20
- a perspective view of an outer sealing sleeve of the cellular wheel of
Fig. 15 ; - Fig. 21
- an axial section through the outer sealing sleeve of
Fig. 20 ; - Fig. 22
- a section from the view of the end face of the outer sealing sleeve of
Fig. 20 ; - Fig. 23
- a perspective view of a first (hot gas) inner sealing sleeve of the bucket of
Fig. 15 ; - Fig. 24
- an axial section through the hot gas side inner sealing sleeve of
Fig. 23 ; - Fig. 25
- a view of the end face of the hot gas side inner sealing sleeve of
Fig. 24 ; - Fig. 26
- a perspective view of a second (cold gas) inner sealing sleeve of the bucket of
Fig. 15 ; - Fig. 27
- an axial section through the cold gas side inner sealing sleeve of
Fig. 26 ; - Fig. 28
- a view of the end face of the cold gas side inner sealing sleeve of
Fig. 27 ,
Ein in den
Das in den
Wie in den
Die Anordnung der äusseren Dichthülsen 24 ist aus den
Wie in den
Auch können in dieser Ausführungsform optionale Einschnitte 26 in der mindestens einen Zwischenhülse angeordnet sein.Also, in this embodiment,
Die Lamellen 16 sind normalerweise rechteckförmige Streifen mit einer konstanten Dicke. Da die höchste mechanische Spannungen und damit eine erhöhte Rissbildungsneigung in der Nähe der Fügezone auftritt, können die Lamellen im Bereich ihrer Längskanten eine Materialverdickung 19 aufweisen (
Zur Herstellung des Zellenrades 10 wird die Innenhülse 14, deren Innendurchmesser und Länge auf den Aussendurchmesser und die Länge der Flanschhülse 15 abgestimmt ist, mit den vorgängig mit der Innenhülse 14 mit einer Längskante positionsgenau gefügten und mit der freien Längskante radial nach aussen abragenden Lamellen 16 von beiden Stirnflächen 11 her mit den Einschnitten 26 und an deren Enden mit den kreisförmigen Ausnehmungen 28 versehen. Anschliessend wird die derart bearbeitete Innenhülse 14 mit den radial nach aussen abragenden Lamellen 16 in Achsrichtung y koaxial auf die Flanschhülse 15 aufgesetzt und mit dieser mittels eines NC-gesteuerten Laserstrahls zwischen den Lamellen 16 im Bereich zwischen den einander gegenüberliegenden Ausnehmungen 28 verschweisst. Die Schweissnaht kann von Ausnehmung zu Ausnehmung durchgehend sein oder sich nur über je eine Länge von 3 bis 5 mm nach jeder Ausnehmung 28 erstrecken. Zur Erzielung einer optimalen Dichtigkeit kann auch in einem kurzen Abstand von z. B. 2 bis 3 mm zur Ausnehmung 28 eine quer zu den benachbarten Lamellen 16 verlaufende Querschweissnaht gesetzt werden. Hierbei kann die Querschweissnaht an ihren Enden durch parallel zu den Lamellen 16 verlaufende Längsschweissnähte von z. B. 3 bis 5 mm zu einer U-förmigen Schweissnaht ergänzt werden.To produce the
In einem nächsten Schritt wird die Zwischenhülse 18, deren Innendurchmesser und Länge auf den von den freien Längskanten der von der Innenhülse 14 radial nach aussen abragenden Lamellen 16 gebildeten Aussendurchmesser und die Länge der Innenhülse 14 abgestimmt ist, mit den vorgängig mit der Zwischenhülse 18 mit einer Längskante positionsgenau gefügten und mit der freien Längskante radial nach aussen abragenden Lamellen 16 in Achsrichtung y koaxial und positionsgenau auf die freien Längskanten der von der Innenhülse 14 radial nach aussen abragenden Lamellen 16 gesetzt. Anschliessend wird die Zwischenhülse 18 mittels eines Laserstrahls mittels einer Blindnaht mit den freien Endkanten der darunterliegenden Lamellen 16 der Innenhülse 14 unter Bildung der inneren Zellen 22 verschweisst.In a next step, the
In einem weiteren Schritt wird die Aussenhülse 12, deren Innendurchmesser und Länge auf den von den freien Längskanten der von der Zwischenhülse 18 radial nach aussen abragenden Lamellen 16 gebildeten Aussendurchmesser und die Länge der Zwischenhülse 18 abgestimmt ist, in Achsrichtung y koaxial auf die freien Längskanten der von der Innenhülse 14 radial nach aussen abragenden Lamellen 16 gesetzt. Anschliessend wird die Aussenhülse 12 mittels einer Blindnaht mit den freien Endkanten der darunterliegenden Lamellen 16 der Zwischenhülse 18 unter Bildung der äusseren Zellen 20 verschweisst.In a further step, the
Nun wird die Aussenhülse 12 von beiden Stirnflächen 11 her mit den Einschnitten 26 und an deren Enden mit den kreisförmigen Ausnehmungen 28 versehen.Now, the
Sodann werden die äusseren Dichthülsen 24 auf die Aussenhülse 12 aufgesetzt und mit dieser verbunden. Hierzu wird die äussere Dichthülse 24, deren Innendurchmesser auf den Aussendurchmesser der Aussenhülse 12 abgestimmt ist, in Achsrichtung y koaxial auf die Aussenhülse 12 gesetzt und der die kreisförmigen Ausnehmungen 28 an den Enden der Einschnitte 26 überragende freie Rand der äusseren Dichthülse 24 wird mittels zwei umlaufenden Schweissnähten 34, 36 mit der Aussenhülse 12 gefügt.Then, the outer sealing
Die vorstehend beschriebenen Fügestellen sind bevorzugt als mittels eines Laser- oder Elektronenstrahls, insbesondere mit einem Laserstrahl, erzeugte Schweissnähte ausgeführt. Die Fügestellen können jedoch auch gelötet sein. Das Schneiden der Einschnitte 26 und der Ausnehmungen 28 erfolgt ebenfalls bevorzugt mittels eines Laser- oder Elektronenstrahls, insbesondere mit einem Laserstrahl.The above-described joints are preferably designed as welding seams produced by means of a laser or electron beam, in particular with a laser beam. However, the joints can also be soldered. The cutting of the
Ein in den
Bei dem in den
An das rohrförmige Endteil 46 der Antriebswelle 13 schliesst ein konisches Zwischenteil 48 an, welches in ein im Wesentlichen rohrförmiges Wellenteil 50 mit einer Aufnahme 52 für ein mit einem motorischen Antrieb zu verbindendes Kupplungsstück 54 übergeht. Das Kupplungsstück 54 weist eine Kupplungsachse 56 mit Längsrippen 58 auf, welche beim Einschieben des Kupplungsstücks 54 in die Aufnahme 52 des rohrförmigen Wellenteils 50 in entsprechende Längsnuten 60 in der Aufnahme 52 eingreifen (
Wie aus
Die
Diese Einschnitte 26 in der Zwischenhülse 18 verlaufen parallel zu den Lamellen 16 und erstrecken sich ausgehend von jeder Stirnfläche 11 des Zellenrades 10 bzw. der Zwischenhülse 18 über eine Länge von z. B. 15 mm. Die Einschnitte 26 enden in einer kreisförmigen Ausnehmung 28 mit einem Durchmesser von z. B. 2 mm.These
Die Funktion der Einschnitte 26 wird nachfolgend anhand der
Unter den in einem Druckwellenlader herrschenden Betriebsbedingungen ergeben sich sowohl auf der Heissgasseite als auch auf der Kaltgasseite in rascher Folge auftretende Temperaturwechsel, die im Inneren des Zellenrades 10 in einem Bereich von den Stirnflächen 11 ausgehend bis zu einer Tiefe von etwa 20 mm 200 bis 300°C betragen und in diesem Bereich zu periodisch stark schwankenden Wärmeausdehnungen und Wärmekontraktionen der Lamellen 16 in radialer Richtung führen. Diese Ausdehnungen bzw. Kontraktion stellen eine enorme Belastung für das Material dar und Versuche haben gezeigt, dass es im Bereich der Lamellen 16 zu Rissen kommt. Die Risse erstrecken sich entweder entlang der Fügestellen 17 oder aber in der Lamelle 16 selbst, wodurch es zu einem Bruch in der Lamelle 16 kommen kann.Under the operating conditions prevailing in a pressure wave supercharger, temperature changes occurring rapidly on both the hot gas side and the cold gas side occur in the interior of the
Unter Bezugnahme zur
Bezüglich der Lamelle 16b können die eben gemachten Ausführungen wiederholt werden, wobei die Verformung von der Rotationsachse y weg erfolgen. Die Lamelle 16b steht dabei mit einem Randstreifen 18 b in Verbindung, wobei sich bei einer Deformation der Lamelle 16b der entsprechende Randstreifen 18b verformt. Der Randstreifen 18 b wird durch zwei links und rechts von der Lamelle 16b sich in die Zwischenhülse 18 erstreckende Einschnitte 26 bereitgestellt.With respect to the
Auf der Kaltgasseite ergibt sich durch die raschen Temperaturwechsel ein Betriebszustand, in welchem sich die Lamellen 16 im Randbereich des Zellenrades 10 im Vergleich zu den Lamellen im Inneren des Zellenrades 10 auf einer um 200 bis 300 °C niedrigere Temperatur befinden. Unter diesen Bedingungen führt die niedrigere Temperatur der Lamellen 16 im Randbereich des Zellenrades 10 im Vergleich zu den Lamellen im Inneren des Zellenrades 10 zu einer stärkeren Kontraktion in radialer Richtung. Jede Lamelle 16 a, 16 b kann so zusammen mit dem mit ihr gefügten Randstreifen 18 a, 18 b aus ihrer ursprünglichen Lage in der Zwischenhülse 18 in radialer Richtung kontrahieren, ohne dass sich durch temperaturbedingte, schnelle Lastwechsel in rascher Folge Druckspannungen in den Lamellen 16 im Bereich ihrer Fügestellen 17 mit den Aussen- und Innenhülsen 12, 14 auf- und abbauen und zu Materialbeschädigungen führen können.On the cold gas side results from the rapid temperature changes an operating condition, in which the
Die Anordnung der äusseren Dichthülsen 24 ist aus den
Wie in den
An den Stirnflächen 11 des Zellenrades 10 weisen die innere Dichthülsen 70, 72 ein radial nach innen abragendes Dichtprofil 74 in Form eines Ringsteges mit einer mit der Stirnfläche 11 des Zellenrades fluchtenden Dichtfläche 75 mit einer Breite von z. B. 1,5 mm auf. In einem sich von den Stirnflächen 11 des Zellenrades 10 in die Innenhülse 14 erstreckenden Bereich von z. B. je 20 mm weisen die inneren Dichthülsen 70, 72 einen dickenreduzierten Bereich 73 und damit einen radialen Abstand zur Innenhülse 14 auf, so dass sich von den Stirnflächen 11 des Zellenrades 10 ausgehend zwischen innerer Dichthülse 70, 72 und Innenhülse 14 ein an den Stirnflächen 11 des Zellenrades 10 offener Ringspalt 66 ergibt. Im Anschluss an den Ringspalt 66 liegen die inneren Dichthülsen 70, 72 der Innenhülse 14 im Wesentlichen formschlüssig an, erstrecken sich bis zum jeweils näher liegenden Ringsteg 38, 40 am rohrförmigen Endteil 46 der Antriebswelle 13 und sind mit dem entsprechenden Ringsteg 38, 40 mittels einer umlaufenden Schweissnaht gefügt. Die Ringstege 38, 40 am rohrförmigen Endteil 46 der Antriebswelle 13 sind mit der Innenhülse 14 mittels einer umlaufende Schweissnaht gefügt. Das Dichtprofil 74 ist auf der von der Antriebsseite weiter entfernten Stirnfläche 11 des Zellenrades 10, d.h. auf der Heissgasseite, mit einem die Innenhülse 14 verschliessenden äusseren Deckel 78 verschweisst. Ebenso ist der von der Antriebsseite weiter entfernte Ringsteg 38 am rohrförmigen Endteil 46 der Antriebswelle 13 mit einem die Innenhülse 14 im Innern des Zellrades 10 verschliessenden inneren Deckel 80 verschweisst. Zur Stabilisierung der gegenseitigen Lage von innerer Dichthülse 70, 72 und Innenhülse 14 weisen die inneren Dichthülsen 70, 72 auf der Aussenseite über dem Dichtprofil 74 radial nach aussen abragende Nasen als Abstandshalter 68 zur Innenhülse 14 auf. Beispielsweise sind sechs Abstandshalter 68 gleichmässig über den Umfang der inneren Dichthülse 70, 72 verteilt angeordnet. Die vorstehend für die in den
Insbesondere aus den
Zur Herstellung des Zellenrades 10 wird die Innenhülse 14 mit den mit einer Längskante positionsgenau gefügten und mit der freien Längskante radial nach aussen abragenden Lamellen 16 versehen. Anschliessend wird die Zwischenhülse 18, deren Innendurchmesser und Länge auf den von den freien Längskanten der von der Innenhülse 14 radial nach aussen abragenden Lamellen 16 gebildeten Aussendurchmesser und die Länge der Innenhülse 14 abgestimmt ist, mit den vorgängig mit der Zwischenhülse 18 mit einer Längskante positionsgenau gefügten und mit der freien Längskante radial nach aussen abragenden Lamellen 16 in Achsrichtung y koaxial und positionsgenau auf die freien Längskanten der von der Innenhülse 14 radial nach aussen abragenden Lamellen 16 gesetzt. Die Zwischenhülse 18 wird sodann mittels einer Blindnaht mit den freien Endkanten der darunterliegenden Lamellen 16 der Innenhülse 14 unter Bildung der inneren Zellen 22 verschweisst. Anschliessend wird die Zwischenhülse 18 von beiden Stirnflächen 11 her mit den Einschnitten 26 und an deren Enden mit den kreisförmigen Ausnehmungen 28 versehen.To produce the
In einem nächsten Schritt wird die Aussenhülse 12, deren Innendurchmesser und Länge auf den von den freien Längskanten der von der Zwischenhülse 18 radial nach aussen abragenden Lamellen 16 gebildeten Aussendurchmesser und die Länge der Zwischenhülse 18 abgestimmt ist, in Achsrichtung y koaxial auf die freien Längskanten der von der Zwischenhülse 14 radial nach aussen abragenden Lamellen 16 gesetzt. Sodann wird die Aussenhülse 12 mittels einer Blindnaht mit einem Laserstrahl mit den freien Endkanten der darunterliegenden Lamellen 16 der Zwischenhülse 18 unter Bildung der äusseren Zellen 20 verschweisst.In a next step, the
In einem weiteren Schritt werden die äusseren Dichthülsen 24, deren Innendurchmesser auf den Aussendurchmesser der Aussenhülse 12 abgestimmt ist, in Achsrichtung y koaxial auf die Aussenhülse 12 gesetzt und mit dieser gefügt. Ebenso werden die inneren Dichthülsen 70, 72, deren Aussendurchmesser auf den Innendurchmesser der Innenhülse 14 abgestimmt ist, in Achsrichtung y koaxial auf die Innenhülse 14 eingesetzt und mit dieser sowie mit den Ringstegen 38, 40 am rohrförmigen Endteil 46 der Antriebswelle 13 gefügt. Anschliessend werden der innere und der äussere Deckel 80, 78 eingesetzt und mit dem Ringsteg 38 am rohrförmigen Endteil 46 bzw. mit dem Ringsteg 74 an der heissgasseitigen Dichthülse 70 gefügt.In a further step, the outer sealing
Die vorstehend beschriebenen Fügestellen sind bevorzugt als mittels eines Laser- oder Elektronenstrahls, insbesondere mit einem Laserstrahl, erzeugte Schweissnähte ausgeführt. Die Fügestellen können jedoch auch gelötet sein. Das Schneiden der Einschnitte 26 und der Ausnehmungen 28 erfolgt ebenfalls bevorzugt mittels eines Laser- oder Elektronenstrahls, insbesondere mit einem Laserstrahl, wobei eine minimale Schnittbreite von etwa 15 µm erzielt wird.The above-described joints are preferably designed as welding seams produced by means of a laser or electron beam, in particular with a laser beam. However, the joints can also be soldered. The cutting of the
- 1010
- Zellenradfeeder
- 1111
- Stirnflächenfaces
- 1212
- Aussenhülseouter sleeve
- 1313
- Antriebswelledrive shaft
- 1414
- Innenhülseinner sleeve
- 1515
- Flanschhülseflanged
- 1616
- Lamellenlamella
- 1717
-
Fügestellen 16/12, 16/14
Joints 16/12, 16/14 - 1818
- Zwischenhülseintermediate sleeve
- 1919
- Verdickung an 16Thickening at 16
- 2020
- äussere Zellenouter cells
- 2222
- innere Zelleninner cells
- 2323
- dickenreduzierter Bereichreduced thickness range
- 2424
- äussere Dichthülseouter sealing sleeve
- 2525
- Randkante von 24Border edge of 24
- 2626
- Einschnitte in 12, 14, 18Cuts in 12, 14, 18
- 2828
- Ausnehmungrecess
- 3030
- Dichtprofilsealing profile
- 3232
- Dichtfläche an 30Sealing surface at 30
- 34, 3634, 36
-
Fügestellen 24/12
Joints 24/12 - 38,4038.40
- Ringstegering lands
- 42, 4442, 44
- Endflächenend surfaces
- 4646
- rohrförmiges Endteiltubular end part
- 4848
- konisches Zwischenteilconical intermediate part
- 5050
- rohrförmiges Wellenteiltubular shaft part
- 5252
- Aufnahmeadmission
- 5454
- Kupplungsstückcoupling
- 5656
- Kupplungsachsecoupling axis
- 5858
- Längsrippenlongitudinal ribs
- 6060
- Längsnutenlongitudinal grooves
- 6262
- erste Öffnungenfirst openings
- 6464
- zweite Öffnungensecond openings
- 6666
- Ringspaltannular gap
- 6868
- Nasen /AbstandshalterNoses / spacers
- 7070
- erste innere Dichthülsefirst inner sealing sleeve
- 7272
- zweite innere Dichthülsesecond inner sealing sleeve
- 7373
- dickenreduzierter Bereichreduced thickness range
- 7474
- Dichtprofilsealing profile
- 7575
- Dichtfläche von 74Sealing surface of 74
- 7676
- Ausnehmungrecess
- 7777
- Randkante von 70, 72Border edge of 70, 72
- 7878
- äusserer Deckelouter lid
- 8080
- innerer Deckelinner lid
- yy
- Rotationsachseaxis of rotation
- a1a1
- Dicke von 12, 14, 18Thickness of 12, 14, 18
- a2a2
- Dicke von 23Thickness of 23
- d1d1
- Dicke von 24, 70, 72Thickness of 24, 70, 72
- d2d2
- Dicke von 73Thickness of 73
- d3d3
- Dicke von 74Thickness of 74
- d4d4
- Dicke von 68Thickness of 68
- ee
- Länge von 26Length of 26
- ff
- Durchmesser von 28Diameter of 28
- gG
- Breite von 24Width of 24
- hH
- Breite von 32Width of 32
- mm
- Übermass von 24Excess of 24
Claims (17)
wenigstens die Aussenhülse (12), die Innenhülse (14) und/oder die Zwischenhülse (18) bzw. wenigstens eine der Zwischenhülsen (18) von beiden Stirnflächen (11) des Zellenrades (10) ausgehende Einschnitte (26) zwischen benachbarten Lamellen (16) aufweist, oder
dass ausschliesslich die Zwischenhülse (18) bzw. wenigstens eine der Zwischenhülsen (18) von den beiden Stirnflächen (11) des Zellenrades (10) ausgehende Einschnitte (26) aufweist.Cellular wheel made of metal, having an outer sleeve (12) lying coaxially to a rotation axis (y), an inner sleeve (14) lying coaxially with the outer sleeve (12), at least one intermediate sleeve arranged coaxially with said outer sleeve (12) and inner sleeve (14). 18) arranged between successive sleeves (12, 18, 18, 14), substantially radially to the rotation axis (y) aligned with adjacent sleeves (12, 18, 18, 14) joined lamellae (16), with the outer sleeve (12 ) and with the outer sleeve (12) joined outer sealing sleeves (24) having a sealing profile (30) for a labyrinth seal, and with a in the rotation axis (y) lying drive shaft (13), characterized in that
at least the outer sleeve (12), the inner sleeve (14) and / or the intermediate sleeve (18) or at least one of the intermediate sleeves (18) from both end faces (11) of the cellular wheel (10) outgoing incisions (26) between adjacent blades (16 ), or
that only the intermediate sleeve (18) or at least one of the intermediate sleeves (18) of the two end faces (11) of the cellular wheel (10) outgoing incisions (26).
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
HUE12171157A HUE034654T2 (en) | 2012-06-07 | 2012-06-07 | Cell wheel, in particular for a pressure wave charger |
ES12171157.6T ES2647277T3 (en) | 2012-06-07 | 2012-06-07 | Cellular wheel, in particular for a pressure wave supercharger |
EP12171157.6A EP2672123B1 (en) | 2012-06-07 | 2012-06-07 | Cell wheel, in particular for a pressure wave charger |
JP2013111750A JP6154664B2 (en) | 2012-06-07 | 2013-05-28 | Cell type wheel especially for pressure wave superchargers |
US13/903,586 US9562435B2 (en) | 2012-06-07 | 2013-05-28 | Cellular wheel, in particular for a pressure wave supercharger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12171157.6A EP2672123B1 (en) | 2012-06-07 | 2012-06-07 | Cell wheel, in particular for a pressure wave charger |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2672123A1 true EP2672123A1 (en) | 2013-12-11 |
EP2672123B1 EP2672123B1 (en) | 2017-08-16 |
Family
ID=46229304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12171157.6A Active EP2672123B1 (en) | 2012-06-07 | 2012-06-07 | Cell wheel, in particular for a pressure wave charger |
Country Status (5)
Country | Link |
---|---|
US (1) | US9562435B2 (en) |
EP (1) | EP2672123B1 (en) |
JP (1) | JP6154664B2 (en) |
ES (1) | ES2647277T3 (en) |
HU (1) | HUE034654T2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009023217B4 (en) * | 2009-05-29 | 2014-08-28 | Benteler Automobiltechnik Gmbh | Built hub for a pressure wave loader |
EP2450121A1 (en) * | 2010-11-03 | 2012-05-09 | MEC Lasertec AG | Method for producing a cellular wheel |
CN108024725B (en) | 2015-09-21 | 2022-07-12 | Zoll医疗公司 | Chest compression guided by chest compliance |
CN109899485B (en) * | 2019-04-22 | 2024-05-31 | 海盐琦安瑞精密机械有限公司 | Anti-skid tensioning wheel with good effect for automobile transmission |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1004212A (en) * | 1963-04-10 | 1965-09-15 | Power Jets Res & Dev Ltd | Improvements in or relating to pressure exchanger cell rings |
US3545882A (en) * | 1968-01-17 | 1970-12-08 | Rolls Royce | Pressure exchanger rotor |
WO2010057319A1 (en) | 2008-11-21 | 2010-05-27 | Mec Lasertec Ag | Method for producing a cellular wheel |
EP2253853A1 (en) * | 2009-05-19 | 2010-11-24 | MEC Lasertec AG | Cellular wheel and method for its production |
EP2450121A1 (en) * | 2010-11-03 | 2012-05-09 | MEC Lasertec AG | Method for producing a cellular wheel |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR44585E (en) * | 1934-03-07 | 1935-03-04 | Method and apparatus for economically performing thermodynamic transformations | |
US2399394A (en) * | 1940-12-07 | 1946-04-30 | Bbc Brown Boveri & Cie | Pressure exchanger |
US2526618A (en) * | 1946-07-29 | 1950-10-24 | Bbc Brown Boveri & Cie | Pressure exchange apparatus |
US2675173A (en) * | 1948-02-28 | 1954-04-13 | Jendrasski George | Apparatus effecting pressure exchange |
GB868101A (en) * | 1958-09-24 | 1961-05-17 | Power Jets Res & Dev Ltd | Improvements in or relating to pressure exchangers |
US3109580A (en) * | 1961-01-20 | 1963-11-05 | Power Jets Res & Dev Ltd | Pressure exchangers |
GB920624A (en) * | 1961-02-21 | 1963-03-13 | Power Jets Res & Dev Ltd | Improvements in or relating to pressure exchanger cell rings |
CH633619A5 (en) * | 1978-10-02 | 1982-12-15 | Bbc Brown Boveri & Cie | MULTI-FLOW GAS DYNAMIC PRESSURE SHAFT MACHINE. |
ATE13581T1 (en) * | 1980-11-04 | 1985-06-15 | Bbc Brown Boveri & Cie | PRESSURE WAVE MACHINE FOR CHARGING COMBUSTION ENGINES. |
JPS58210302A (en) * | 1982-05-31 | 1983-12-07 | Ngk Insulators Ltd | Ceramic rotor |
EP0130331B1 (en) * | 1983-06-29 | 1986-08-13 | BBC Brown Boveri AG | Gas-dynamic turbo charger for internal-combustion engines of vehicles |
US4887942A (en) * | 1987-01-05 | 1989-12-19 | Hauge Leif J | Pressure exchanger for liquids |
IT1226929B (en) * | 1988-07-15 | 1991-02-22 | Nuovo Pignone Spa | PERFECTED SYSTEM OF DISINFERABLE COUPLING OF A ROTORIC BODY ON THE SHAFT OF ROTATING MACHINES, IN PARTICULAR GAS TURBINES AND ROTARY DOBBIES. |
JPH0338141U (en) * | 1989-08-18 | 1991-04-12 | ||
US5292385A (en) * | 1991-12-18 | 1994-03-08 | Alliedsignal Inc. | Turbine rotor having improved rim durability |
NO180599C (en) * | 1994-11-28 | 1997-05-14 | Leif J Hauge | Pressure Switches |
US6460342B1 (en) * | 1999-04-26 | 2002-10-08 | Advanced Research & Technology Institute | Wave rotor detonation engine |
US6210108B1 (en) * | 1999-08-16 | 2001-04-03 | General Electric Company | Method for making an article portion subject to tensile stress and stress relieved article |
DE10045540A1 (en) * | 2000-09-13 | 2002-03-21 | Emitec Emissionstechnologie | Honeycomb body with shortened, slotted inner jacket tube |
DE102009023217B4 (en) * | 2009-05-29 | 2014-08-28 | Benteler Automobiltechnik Gmbh | Built hub for a pressure wave loader |
-
2012
- 2012-06-07 HU HUE12171157A patent/HUE034654T2/en unknown
- 2012-06-07 EP EP12171157.6A patent/EP2672123B1/en active Active
- 2012-06-07 ES ES12171157.6T patent/ES2647277T3/en active Active
-
2013
- 2013-05-28 JP JP2013111750A patent/JP6154664B2/en active Active
- 2013-05-28 US US13/903,586 patent/US9562435B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1004212A (en) * | 1963-04-10 | 1965-09-15 | Power Jets Res & Dev Ltd | Improvements in or relating to pressure exchanger cell rings |
US3545882A (en) * | 1968-01-17 | 1970-12-08 | Rolls Royce | Pressure exchanger rotor |
WO2010057319A1 (en) | 2008-11-21 | 2010-05-27 | Mec Lasertec Ag | Method for producing a cellular wheel |
EP2253853A1 (en) * | 2009-05-19 | 2010-11-24 | MEC Lasertec AG | Cellular wheel and method for its production |
EP2450121A1 (en) * | 2010-11-03 | 2012-05-09 | MEC Lasertec AG | Method for producing a cellular wheel |
Also Published As
Publication number | Publication date |
---|---|
JP2013253596A (en) | 2013-12-19 |
HUE034654T2 (en) | 2018-02-28 |
US9562435B2 (en) | 2017-02-07 |
EP2672123B1 (en) | 2017-08-16 |
JP6154664B2 (en) | 2017-06-28 |
US20130330200A1 (en) | 2013-12-12 |
ES2647277T3 (en) | 2017-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2931766C2 (en) | Sealing device for the free blade ends of an adjustable diffuser of a gas turbine | |
EP1097325B1 (en) | Sealing system, especially for a rotary machine | |
EP1743108B1 (en) | Leaf seal, particularly for a gas turbine, and method for the production thereof | |
CH698036B1 (en) | Seal assembly. | |
EP2132414B1 (en) | Shiplap arrangement | |
DE3232925C2 (en) | ||
DE112006000603T5 (en) | Guide wheel and blade for a turbomachinery | |
EP2938869A1 (en) | Sealing element for sealing a gap | |
EP1536103A1 (en) | Turbo machine having inlet guide vanes and attachment arrangement therefor | |
EP3051068A1 (en) | Guide blade ring for a flow engine and additive manufacturing method | |
EP2672123B1 (en) | Cell wheel, in particular for a pressure wave charger | |
EP2818644A1 (en) | Sealing arrangement for a guide vane assembly of a turbomachine | |
DE102012100771A1 (en) | Method and device for a labyrinth seal packing ring | |
DE202008010025U1 (en) | Metallic seal, in particular exhaust manifold gasket | |
EP2728122B1 (en) | Blade Outer Air Seal fixing for a turbomachine | |
EP2527743B1 (en) | Segment component comprising high temperature cast material for an annular combustion chamber, annular combustion chamber for an aircraft engine, aircraft engine and method for producing an annular combustion chamber | |
EP3412875A2 (en) | Running-in structure for a turbomachine and method for producing a running-in structure | |
EP2173972A1 (en) | Rotor for an axial flow turbomachine | |
DE2449430C2 (en) | Expansion joint of pipe parts | |
DE102019218783A1 (en) | Flat gasket and its use | |
EP2349604B1 (en) | Method for producing a cellular wheel | |
EP2871418B1 (en) | Gas turbine combustion chamber and method for its manufacture | |
EP2433015B1 (en) | Method for producing a cellular wheel | |
DE102017217536B4 (en) | Bellows lamella, bellows and method for their production | |
EP2131079B1 (en) | Radial shaft sealing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20140520 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B21D 53/26 20060101ALI20170315BHEP Ipc: F02B 33/42 20060101ALI20170315BHEP Ipc: B21C 37/22 20060101ALI20170315BHEP Ipc: F04F 13/00 20090101AFI20170315BHEP |
|
INTG | Intention to grant announced |
Effective date: 20170405 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 919346 Country of ref document: AT Kind code of ref document: T Effective date: 20170915 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012011017 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ISLER AND PEDRAZZINI AG, CH |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2647277 Country of ref document: ES Kind code of ref document: T3 Effective date: 20171220 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171216 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171117 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171116 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E034654 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012011017 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180630 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180630 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 919346 Country of ref document: AT Kind code of ref document: T Effective date: 20180607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170816 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20230829 Year of fee payment: 12 Ref country code: CH Payment date: 20230702 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240620 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240619 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240619 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240530 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240628 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240619 Year of fee payment: 13 Ref country code: HU Payment date: 20240621 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240620 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240701 Year of fee payment: 13 Ref country code: ES Payment date: 20240731 Year of fee payment: 13 |