Nothing Special   »   [go: up one dir, main page]

EP2662461A1 - Iron-chromium-manganese-nickel alloy - Google Patents

Iron-chromium-manganese-nickel alloy Download PDF

Info

Publication number
EP2662461A1
EP2662461A1 EP12167011.1A EP12167011A EP2662461A1 EP 2662461 A1 EP2662461 A1 EP 2662461A1 EP 12167011 A EP12167011 A EP 12167011A EP 2662461 A1 EP2662461 A1 EP 2662461A1
Authority
EP
European Patent Office
Prior art keywords
weight
alloy
manganese
nickel
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12167011.1A
Other languages
German (de)
French (fr)
Inventor
Georg-Wilhelm Overbeck
Clemens Raabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schmidt and Clemens GmbH and Co KG
Original Assignee
Schmidt and Clemens GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schmidt and Clemens GmbH and Co KG filed Critical Schmidt and Clemens GmbH and Co KG
Priority to EP12167011.1A priority Critical patent/EP2662461A1/en
Publication of EP2662461A1 publication Critical patent/EP2662461A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the invention relates to a nickel-chromium-manganese alloy, a component, a method for producing an alloy, a method for producing a component and the use of nickel-chromium-manganese alloys.
  • Duplex steels are known from the prior art.
  • Duplex steel refers to a steel that has a two-phase structure consisting of a ferrite matrix with intercalated austenite.
  • Duplex steels have established themselves as engineering materials in many areas of engineering due to the interplay of good mechanical properties and very good corrosion properties.
  • a disadvantage of duplex steels is that they can only be machined with great effort.
  • the higher proportion of nickel and the high proportion of molybdenum are disadvantageous to duplex materials known from practice, since this makes the materials relatively expensive.
  • duplex steels are expensive, so that standard for the production of duplex steels AOD / VOD converter (argon Oxygen Decarburisation- / Vacuum Oxygen Decarburisation converter) are used with appropriate secondary metallurgical possibilities. A foundry does not usually have such converters.
  • AOD / VOD converter argon Oxygen Decarburisation- / Vacuum Oxygen Decarburisation converter
  • EP 1 327 008 B1 An alloy is known. This alloy has a relatively low nickel content and a relatively high manganese content. This has the disadvantage that the embrittlement tendency of the alloy increases due to the low nickel content and high manganese content.
  • the object of the invention was to propose a nickel-chromium-manganese alloy which has good mechanical properties, good corrosion resistance and good machinability and which can preferably be produced in a cost-efficient manner in a foundry without special melt-metallurgical treatment.
  • a further object of the invention is to propose a component, a method for producing an alloy, a method for producing a component, and a use of nickel-chromium-manganese alloys.
  • the invention is based on the idea of producing good machinability by substituting nickel with one or more of the alloying elements manganese, nitrogen and copper.
  • nickel leads to hardening of the chip, adhesion of the chips to the tool and unfavorable chip breaking behavior. It has been found that these negative properties can be reduced by the substitution of nickel with copper and / or manganese. Thus it has been shown that the hardening and the tendency to stick can be significantly reduced in this substitution. This leads advantageously to low tool wear and higher cutting values.
  • the substitution with nitrogen serves in conjunction with manganese to set a favorable ferrite-austenite ratio and to improve the chip breakage.
  • the invention proposes a nickel-chromium-manganese alloy with 0.005 to 0.07% by weight of carbon, 20.5 to 23.0% by weight of chromium, 0.05 to 1.5% by weight of silicon, 1.5 to 6, 0 wt% manganese, 1.7 to 3.0 wt% nickel, 0.15 to 0.30 wt% nitrogen, 0.1 to 0.8 wt% molybdenum, 0.05 to 4.5 wt% copper, to 0.3 wt% cobalt, up to 0.04 wt% phosphorus, up to 0.04 wt% sulfur, up to 0.2 wt% niobium, up to 0.2 wt% vanadium, up to 0.2 wt% zirconium, up to 0, 2% by weight of tungsten, up to 0.2% by weight of tantalum, up to 0.1% by weight of lead, up to 0.1% by weight of bismuth, up to 0.1% by weight of tin, up to 0.1% by weight of zinc, up to 0.
  • an alloy particularly preferred is an alloy, however, individually or side by side more than 0.005 and less than 0.07 wt% carbon, more than 20.5 and less than 23.0 wt% chromium, more than 0.05 and less than 1.5 Wt% silicon, more than 1.5 and less than 6.0 wt% manganese, more than 1.7 and less than 3.0 wt% nickel, more than 0.15 and less than 0.30 wt% nitrogen, more as 0.1 and less than 0.8% by weight of molybdenum, more than 0.05 and less than 4.5% by weight of copper.
  • the alloying elements which are not explicitly mentioned in connection with the present invention description are understood, which find their way into the alloy when the alloy is melted.
  • the invention has no such impurity-causing impurities and thus only the alloying element mentioned in connection with the present invention description; the remainder in this preferred embodiment would therefore only be iron.
  • the alloy according to the invention has as little or no constituents as possible of the following alloying elements: cobalt, phosphorus, sulfur, niobium, vanadium, zirconium, tungsten, tantalum, lead, bismuth, tin, zinc, selenium, arsenic, titanium, aluminum , Calcium, magnesium, barium, lanthanum, cerium, yttrium, rhenium, oxygen, boron. More preferably, the alloy has less than 0.1% by weight of niobium (Nb), vanadium (V), zirconium (Zr), tantalum (Ta) up.
  • the oxygen content is minimized, preferably to less than 0.04 wt%.
  • This has a toughening effect. In other manufacturing processes, this can be achieved by degassing metallurgical measures, the success of which can not be guaranteed in the casting process. Therefore, attention should be paid to the lowest possible oxygen content when adjusting the alloy.
  • only the minimum amount required used on nickel ie amounts of ⁇ 1.7 wt% Ni), thereby achieving the optimized mechanical processing and good mechanical properties.
  • the nickel-chromium-manganese alloy according to the invention has 0.005 to 0.05 wt.% Carbon. It has been found that reducing the potential carbon content from 0.07 wt.% To 0.05 wt.% Minimizes carbide formation and increases resistance to intergranular corrosion.
  • the nickel-chromium-manganese alloy has 21.2 to 22.5% by weight of chromium, particularly preferably 21.4 to 22% by weight of chromium. It has been found that by increasing the lower range limit for chromium from 20.5% by weight to 21.2% and 21.4% by weight, respectively, and decreasing the upper range limit for chromium from 23.0% by weight to 22% , 5 or 22.0 wt.% An advantageous composition of the ferrite-austenite ratio is achieved, which leads to the positive mechanical properties of the alloy.
  • the nickel-chromium-manganese alloy according to the invention has 0.25 to 1.0 wt.% Or 0.2 to 1.0 wt.% Silicon. It has been found that by increasing the lower range limit for silicon from 0.05 to 0.25, or 0.2% by weight and by decreasing the upper range limit for silicon from 1.5% by weight to 1.0 Wt.% In particular, the advantage is achieved that the oxygen still present in the melt is set by the silicon, without the ferrite-austenite ratio is adversely affected.
  • the nickel-chromium-manganese alloy according to the invention has only up to 0.03% by weight of phosphorus and / or only up to 0.015% by weight of sulfur. It has been found that by lowering the upper range limit for phosphorus from 0.04 wt% to 0.03 wt% and / or lowering the upper range limit for sulfur from 0.04 wt% to 0.015 wt%. the advantage is achieved that exude no technologically relevant embrittling phases.
  • the nickel-chromium-manganese alloy according to the invention comprises 2.0 to 2.7 wt.% Nickel. It has been found that by increasing the lower range limit for nickel from 1.7 to 2.0 wt.% And by reducing the upper range limit for nickel from 3.0 wt.% To 2.7 wt The advantage is achieved that the mechanical properties of the material with minimum nickel content can be reliably achieved without embrittlement. It is considered that embrittlement of the material occurs at nickel contents of less than 1.7% by weight. This could be demonstrated by a decreasing impact strength on materials with nickel contents of less than 1.7% by weight.
  • nickel contributes to the formation of austenite and leads to a reduction in the solubility of nitrogen in the ferrite. Therefore, a minimum content of nickel in the alloy for austenite formation is helpful. Furthermore, limiting the maximum to limit the decreasing solubility of the nitrogen in the ferrite is advisable.
  • the nickel-chromium-manganese alloy according to the invention comprises 0.2 to 0.25% by weight of nitrogen. It has been found that by increasing the lower range limit for nitrogen from 0.15 to 0.2 wt.% And reducing the upper range limit for nitrogen from 0.3 wt.% To 0.25 wt Advantage is achieved that the material has a structure of 30-50% ferrite content with optimum mechanical properties.
  • the nickel-chromium-manganese alloy according to the invention has 0.3 to 0.7% by weight of molybdenum. It has been found that by increasing the lower range limit for molybdenum from 0.1 to 0.3% by weight, and by reducing the upper range limit for molybdenum from 0.8% by weight to 0.7% by weight, in particular Advantage is achieved that a significantly increased resistance to intergranular corrosion and an increase in strength occurs without disadvantages in mechanical processing.
  • the nickel-chromium-manganese alloy according to the invention can be carried out in a preferred embodiment with relatively low copper contents.
  • the invention comprises only 0.3 to 1.0 wt% copper. This provides the advantage that the material has improved machinability with a stable ferrite-austenite ratio.
  • the alloy according to the invention may contain 3.5 to 5.0% by weight of manganese, particularly preferably 3.5 to 4.5% by weight of manganese.
  • the desired good mechanical processing and the desired high strength can be achieved by alloying copper.
  • copper contents of greater than 3 wt .-% are used to meet the casting requirements of the material. Particular preference is given to using copper contents of from 3.0 to 4.5% by weight of copper.
  • at high copper levels the manganese content is lowered, preferably to values of less than 3.0% by weight and at least 1.5% by weight.
  • the ferrite-austenite ratio with adjusted heat treatment is set at 45-70% austenite.
  • the manganese content of the alloy in weight percent is less than three times the nickel content of the alloy in weight percent.
  • the ratio of the manganese content of the alloy in weight percent to the nickel content of the alloy in weight percent is between 1.5 and 3 times, preferably between 1.5 and 2.5 times. It has been recognized that setting such a ratio results particularly well in the desired mechanical properties and improved machinability. It is assumed that a Mn content / Ni content of greater than 3 leads to embrittlement of the material. It is believed that lowering the Mn content / Ni content below 1.5 results in a decrease in strength as well as poorer machinability.
  • manganese is a weak austenite former which has the property of increasing the solubility of nitrogen in the alloy. This seems to apply to both the austenitic and ferritic phases. This entails the danger of nitrogen supersaturation of the ferrite and consequent waste of the material toughness. Therefore, it is advisable to limit the manganese content as well as to determine this depending on the nickel content.
  • the sum of the manganese content and the copper content of the alloy in weight percent is less than three times the nickel content of the alloy in weight percent. More preferably, the ratio of this sum to the nickel content of the alloy in weight percent is between 1.5 and 3.5 times, preferably between 1.8 and 3.0 times. It has been recognized that setting such a ratio results in the desired mechanical properties and improved machinability. A deviation below this ratio may result in a non-preferred ferrite content ⁇ 30% and lower strength properties. A deviation above this ratio can lead to low toughness properties.
  • the alloy has a ferrite content of the total structure of 30 to 55%, particularly preferably 35 to 55%. It has been shown that particularly good mechanical properties are achieved with such a ferrite component.
  • the remainder of the microstructure is austenite.
  • the inventive method for producing the alloy according to the invention provides that the alloy components are melted in an induction furnace and deoxidized by means of Pfannenzuchlägen. It has been shown that the alloy according to the invention can be produced particularly easily in this way.
  • the melting of the alloying constituents is carried out in a medium frequency crucible furnace without subsequent secondary metallurgy such as ladle degassing.
  • the inventive method for producing the component according to the invention provides for carrying out the inventive method for producing the alloy according to the invention, thereby to produce a casting alloy and then provides the casting of the component according to the invention from this casting alloy.
  • the casting of the component takes place under normal atmosphere, ie without a vacuum or inert gas atmosphere.
  • the method according to the invention preferably dispenses with a Forming to save this operation. It was recognized that in thick-walled areas, ie areas with a wall thickness of more than 20 mm, grain sizes of more than 1.5 mm are increasingly found, which are also retained over the entire life cycle of the component. Grain sizes of more than 1.5 mm can not be avoided with cast components, which is why the alloy should already be adjusted from the outset so that it achieves the required properties without deformation.
  • the cast component is subjected to a heat treatment at a temperature of 1,000 to 1,250 ° C with accelerated cooling. This makes it possible to set a ferrite-austenite ratio of preferably 45-55% ferrite, balance austenite.
  • the manganese, nickel and copper contents are adjusted so that the alloy remains pourable and exhibits optimum cutting values and good mechanical-technological properties after solidification. This is achieved in particular by the manganese content in the following limits: 1.5 to 6.0% by weight, the nickel content within the following limits: 1.7 to 3.0% by weight and the copper content. Content within the following limits: 0.05 to 4.5Gew% is selected.
  • the nickel-chromium-manganese alloy according to the invention is used as cast alloy.
  • a cast alloy is understood in particular to mean an alloy which is produced in a primary molding process without subsequent transformation.
  • the nickel-chromium-manganese alloy according to the invention as cast alloy, a large design spectrum is available for the production method for the component according to the invention.
  • By casting both thin-walled and thick-walled component geometries can be generated. It has been found that both thin-walled and thick-walled components can be produced by casting from the nickel-chromium-manganese alloy according to the invention.
  • the nickel-chromium-manganese alloy according to the invention is adjusted so that it already meets the mechanical requirements required for the use of the component consisting of this alloy without after-treatment, or at least alone with subsequent heat treatment.
  • the alloy according to the invention is used as a duplex material.
  • the alloy according to the invention is particularly preferably used in order to use it for components for general mechanical engineering, in particular for components in the separation technique, for example, the decanter or centrifuge or for components used in mixers, pumps, valves, valves and / or piping.
  • Table 1 below shows, as examples of the alloy according to the invention, alloys 1 to 18. Further, Table 1, which is incorporated herein by reference, shows as alloys (alloys not belonging to the invention) alloys which are similar to the alloy types 22Cr-5Ni (material number 1.4470) and 23Cr-4Ni, respectively (Material number 1.4362) were produced. The table shows the carbon (C), silicon (Si), manganese (Mn), phosphorus (P), sulfur (S), chromium (Cr), nickel (Ni), molybdenum (Mo), nitrogen (N), aluminum (Al) and copper (Cu) wt .-% of the respective alloy, the remainder were each iron and unavoidable impurities.
  • Table 1 Table 1: ⁇ / b> Ex. C Si Mn P S Cr Ni Not a word N al Cu (Mn + Cu) / Ni Mn / Ni 1 0.03 0.73 4.95 0.028 0.001 21.59 1.57 0.54 0.215 0,012 0.19 3.27 3.15 2 0,025 0.87 5.41 0,015 0,003 21.28 1.6 0.52 0.22 0,015 0.25 3.54 3.38 3 0.027 0.8 3.69 0,021 0.005 20.7 2.2 0.2 0,186 0.005 0.6 1.95 1.68 4 0.03 0.69 4.8 0,015 0,004 21.6 2.6 0.83 0.225 0,029 0.51 2.04 1.85 5 0.03 0.62 4.77 0,018 0.001 21.1 2.28 0.47 0,241 0.011 0.3 2.22 2.09 6 0.028 0.86 4.46 0.08 0.005 21.08
  • the Fig. 1 indicates the degree of compliance with the desired mechanical properties 0.2% proof stress (Rp0.2) ⁇ 420 N / mm2, tensile strength (Rm) ⁇ 620 N / mm2, elongation (A5)> 20% and notched impact strength (Charpy - V) ⁇ 60J.
  • the Fig. 2 shows the machinability of the experimental analyzes based on Mo-poor reference alloys as a function of the Mn / Ni ratio.
  • Fig. 3, 4 and 6 show typical structures of the Ni-Cr-Mn duplex alloy according to the invention according to the alloy composition defined in detail in the table above according to Example 5, 10 and 15. It can be seen the typical balanced two-phase structure of the duplex steels.
  • the Fig. 5 shows the representative gap fracture at unfavorable Mn-Ni ratio of alloy composition no. 1. The ratio is too high, a decrease in toughness can be seen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

Nickel-chromium-manganese alloy comprises 0.005-0.07 wt.% of carbon, 20.5-23 wt.% of chromium, 0.05-1.5 wt.% of silicon, 1.5-6 wt.% of manganese, 1.7-3 wt.% of nickel, 0.15-0.30 wt.% of nitrogen, 0.1-0.8 wt.% of molybdenum, 0.05-4.5 wt.% of copper, up to 0.3 wt.% of cobalt, up to 0.04 wt.% of phosphorus, up to 0.04 wt.% of sulfur, up to 0.2 wt.% of niobium, up to 0.2 wt.% of vanadium, up to 0.2 wt.% of zirconium, up to 0.2 wt.% of tungsten, up to 0.2 wt.% of tantalum, up to 0.1 wt.% of lead, up to 0.1 wt.% of bismuth, up to 0.1 wt.% of tin, and up to 0.1 wt.% of zinc. Nickel-chromium-manganese alloy comprises 0.005-0.07 wt.% of carbon, 20.5-23 wt.% of chromium, 0.05-1.5 wt.% of silicon, 1.5-6 wt.% of manganese, 1.7-3 wt.% of nickel, 0.15-0.30 wt.% of nitrogen, 0.1-0.8 wt.% of molybdenum, 0.05-4.5 wt.% of copper, up to 0.3 wt.% of cobalt, up to 0.04 wt.% of phosphorus, up to 0.04 wt.% of sulfur, up to 0.2 wt.% of niobium, up to 0.2 wt.% of vanadium, up to 0.2 wt.% of zirconium, up to 0.2 wt.% of tungsten, up to 0.2 wt.% of tantalum, up to 0.1 wt.% of lead, up to 0.1 wt.% of bismuth, up to 0.1 wt.% of tin, up to 0.1 wt.% of zinc, up to 0.1 wt.% of selenium, up to 0.1 wt.% of arsenic, up to 0.1 wt.% of titanium, up to 0.05 wt.% of % aluminum, up to 0.05 wt.% of calcium, up to 0.05 wt.% of magnesium, up to 0.05 wt.% of barium, up to 0.05 wt.% of lanthanum, up to 0.05 wt.% of cerium, up to 0.05 wt.% of yttrium, up to 0.05 wt.% of rhenium, up to 0.05 wt.% of oxygen, up to 0.05 wt.% of boron and balance iron including impurities caused by smelting. Independent claims are included for: (1) a component made from the alloy, having at least one mechanical properties at room temperature, where the mechanical properties have >= 420 N/mm 2> of proof stress (0.2%), a tensile strength of >= 620 N/mm 2>, an elongation of greater 20%, and a notched impact strength of >= 60J; (2) method-I for preparing the alloy, comprising melting the alloy constituents in an induction furnace and then deoxidizing by pan aggregates; and (3) method-II for producing the component, comprising performing the method for producing a cast alloy, and casting the component.

Description

Die Erfindung betrifft eine Nickel-Chrom-Mangan-Legierung, ein Bauteil, ein Verfahren zur Herstellung einer Legierung, ein Verfahren zur Herstellung eines Bauteils sowie die Verwendung von Nickel-Chrom- Mangan-Legierungen.The invention relates to a nickel-chromium-manganese alloy, a component, a method for producing an alloy, a method for producing a component and the use of nickel-chromium-manganese alloys.

Aus dem Stand der Technik sind Duplexstähle bekannt. Als Duplexstahl wird ein Stahl bezeichnet, der ein zweiphasiges Gefüge aufweist, das aus einer Ferrit-Matrix mit eingelagertem Austenit besteht. Duplexstähle haben sich in vielen Bereichen der Technik als Konstruktionswerkstoffe aufgrund des Zusammenspiels von guten mechanischen Eigenschaften und sehr guten Korrosionseigenschaften durchgesetzt. Nachteilig an Duplexstählen ist, dass sie nur mit erhöhtem Aufwand zerspant werden können. Ferner ist an aus der Praxis bekannten Duplexwerkstoffen der höhere Anteil an Nickel und der hohe Anteil an Molybdän nachteilig, da dies die Werkstoffe verhältnismäßig teuer werden lässt. Ferner sind die derzeit bekannten Herstellungsmethoden für Duplexstähle aufwendig, sodass für die Herstellung von Duplexstählen standardmäßig AOD-/VOD-Konverter (Argon Oxygen Decarburisation-/Vacuum Oxygen Decarburisation-Konverter) mit entsprechenden sekundärmetallurgischen Möglichkeiten genutzt werden. Eine Gießerei verfügt über derartige Konverter im Regelfall nicht.Duplex steels are known from the prior art. Duplex steel refers to a steel that has a two-phase structure consisting of a ferrite matrix with intercalated austenite. Duplex steels have established themselves as engineering materials in many areas of engineering due to the interplay of good mechanical properties and very good corrosion properties. A disadvantage of duplex steels is that they can only be machined with great effort. Furthermore, the higher proportion of nickel and the high proportion of molybdenum are disadvantageous to duplex materials known from practice, since this makes the materials relatively expensive. Furthermore, the currently known production methods for duplex steels are expensive, so that standard for the production of duplex steels AOD / VOD converter (argon Oxygen Decarburisation- / Vacuum Oxygen Decarburisation converter) are used with appropriate secondary metallurgical possibilities. A foundry does not usually have such converters.

Aus EP 1 327 008 B1 ist eine Legierung bekannt. Diese Legierung weist einen relativ niedrigen Nickel-Gehalt sowie einen verhältnismäßig hohen Mangan-Gehalt auf. Dies hat den Nachteil, dass durch den niedrigen Nickel- und hohen Mangangehalt die Versprödungsneigung der Legierung zunimmt.Out EP 1 327 008 B1 An alloy is known. This alloy has a relatively low nickel content and a relatively high manganese content. This has the disadvantage that the embrittlement tendency of the alloy increases due to the low nickel content and high manganese content.

Ferner ist aus US 6,096,441 eine Legierung bekannt, die einen sehr niedrigen Nickelgehalt und mittleren Mangangehalt aufweist. Diese Legierung ist gießtechnisch nahezu nicht abbildbar.Furthermore, it is off US 6,096,441 an alloy is known which has a very low nickel content and average manganese content. This alloy is almost impossible to image by casting.

Aus US 3,736,131 ist eine Legierung bekannt, die einen sehr niedrigen Nickelgehalt und hohen Mangangehalt aufweist. Diese Legierung weist gemäß heutigen Anforderungen einen zu geringen Austenitgehalt und eine nicht ausreichende Zähigkeit auf.Out US 3,736,131 An alloy is known which has a very low nickel content and high manganese content. According to current requirements, this alloy has too low austenite content and insufficient toughness.

Vor diesem Hintergrund lag der Erfindung die Aufgabe zugrunde, eine Nickel-Chrom-Mangan-Legierung vorzuschlagen, die gute mechanische Eigenschaften, eine gute Korrosionsbeständigkeit sowie gute Zerspanbarkeit aufweist und die vorzugsweise in kosteneffizienter Weise in einer Gießerei ohne besondere schmelzmetallurgische Behandlung hergestellt werden kann. Ferner war es Aufgabe der Erfindung, ein Bauteil, ein Verfahren zur Herstellung einer Legierung, ein Verfahren zur Herstellung eines Bauteils sowie eine Verwendung von Nickel-Chrom-Mangan-Legierungen vorzuschlagen.Against this background, the object of the invention was to propose a nickel-chromium-manganese alloy which has good mechanical properties, good corrosion resistance and good machinability and which can preferably be produced in a cost-efficient manner in a foundry without special melt-metallurgical treatment. A further object of the invention is to propose a component, a method for producing an alloy, a method for producing a component, and a use of nickel-chromium-manganese alloys.

Diese Aufgabe wird durch die Legierung gemäß Anspruch 1, das Bauteil gemäß Anspruch 8, das Verfahren zur Herstellung einer Legierung gemäß Anspruch 9, das Verfahren zur Herstellung eines Bauteils gemäß Anspruch 11 und die Verwendung gemäß Anspruch 14 gelöst. Vorteilhafte Ausführungsformen sind in den Unteransprüchen und der hiernach folgenden Beschreibung wiedergegeben.This object is achieved by the alloy according to claim 1, the component according to claim 8, the method for producing an alloy according to claim 9, the method for producing a component according to claim 11 and the use according to claim 14. Advantageous embodiments are given in the subclaims and the following description.

Die Erfindung geht von dem Grundgedanken aus, eine gute Zerspanbarkeit hervorzurufen, indem Nickel durch eines oder mehrere der Legierungselemente Mangan, Stickstoff und Kupfer substituiert wird. Es wird davon ausgegangen, dass Nickel bei der Bearbeitung zu einer Aufhärtung des Spans, einer Haftung der Späne am Werkzeug und einem ungünstigen Spanbruchverhalten führt. Es hat sich gezeigt, dass diese negativen Eigenschaften durch die Substitution von Nickel durch Kupfer und/oder Mangan verringert werden können. So hat es sich gezeigt, dass die Aufhärtung und die Klebneigung bei dieser Substitution deutlich verringert werden können. Dies führt in vorteilhafter Weise zu geringem Werkzeugverschleiß und höheren Schnittwerten. Die Substitution mit Stickstoff dient in Verbindung mit Mangan zur Einstellung eines vorteilhaften Ferrit-Austenit-Verhältnisses und zur Verbesserung des Spanbruchs.The invention is based on the idea of producing good machinability by substituting nickel with one or more of the alloying elements manganese, nitrogen and copper. During processing, it is assumed that nickel leads to hardening of the chip, adhesion of the chips to the tool and unfavorable chip breaking behavior. It has been found that these negative properties can be reduced by the substitution of nickel with copper and / or manganese. Thus it has been shown that the hardening and the tendency to stick can be significantly reduced in this substitution. This leads advantageously to low tool wear and higher cutting values. The substitution with nitrogen serves in conjunction with manganese to set a favorable ferrite-austenite ratio and to improve the chip breakage.

Die Erfindung schlägt eine Nickel-Chrom-Mangan-Legierung vor mit 0,005 bis 0,07 Gew% Kohlenstoff, 20,5 bis 23,0 Gew% Chrom, 0,05 bis 1,5 Gew% Silizium, 1,5 bis 6,0 Gew% Mangan, 1,7 bis 3,0 Gew% Nickel, 0,15 bis 0,30 Gew% Stickstoff, 0,1 bis 0,8 Gew% Molybdän, 0,05 bis 4,5 Gew% Kupfer, bis 0,3 Gew% Kobalt, bis 0,04 Gew% Phosphor, bis 0,04 Gew% Schwefel, bis 0,2 Gew% Niob, bis 0,2 Gew% Vanadium, bis 0,2 Gew% Zirkonium, bis 0,2 Gew% Wolfram, bis 0,2 Gew% Tantal, bis 0,1 Gew% Blei, bis 0,1 Gew% Bismut, bis 0,1 Gew% Zinn, bis 0,1 Gew% Zink, bis 0,1 Gew% Selen, bis 0,1 Gew% Arsen, bis 0,1 Gew% Titan, bis 0,05 Gew% Aluminium, bis 0,05 Gew% Calicum, bis 0,05 Gew% Magnesium, bis 0,05 Gew% Barium, bis 0,05 Gew% Lanthan, bis 0,05 Gew% Cer, bis 0,05 Gew% Yttrium, bis 0,05 Gew% Rhenium, bis 0,05 Gew% Sauerstoff, bis 0,05 Gew% Bor und Rest Eisen einschließlich erschmelzungsbedingter Verunreinigungen.The invention proposes a nickel-chromium-manganese alloy with 0.005 to 0.07% by weight of carbon, 20.5 to 23.0% by weight of chromium, 0.05 to 1.5% by weight of silicon, 1.5 to 6, 0 wt% manganese, 1.7 to 3.0 wt% nickel, 0.15 to 0.30 wt% nitrogen, 0.1 to 0.8 wt% molybdenum, 0.05 to 4.5 wt% copper, to 0.3 wt% cobalt, up to 0.04 wt% phosphorus, up to 0.04 wt% sulfur, up to 0.2 wt% niobium, up to 0.2 wt% vanadium, up to 0.2 wt% zirconium, up to 0, 2% by weight of tungsten, up to 0.2% by weight of tantalum, up to 0.1% by weight of lead, up to 0.1% by weight of bismuth, up to 0.1% by weight of tin, up to 0.1% by weight of zinc, up to 0.1% by weight % Selenium, up to 0.1% by weight arsenic, up to 0.1% by weight of titanium, up to 0.05% by weight of aluminum, up to 0.05% by weight of calicum, up to 0.05% by weight of magnesium, up to 0.05% by weight of barium, up to 0.05% by weight of lanthanum, up to 0 , 05% by weight of cerium, up to 0.05% by weight of yttrium, up to 0.05% by weight of rhenium, up to 0.05% by weight of oxygen, up to 0.05% by weight of boron and the remainder of iron, including impurities caused by melting.

Insbesondere bevorzugt wird eine Legierung, die jedoch einzeln oder nebeneinander mehr als 0,005 und weniger als 0,07 Gew% Kohlenstoff, mehr als 20,5 und weniger als 23,0 Gew% Chrom, mehr als 0,05 und weniger als 1,5 Gew% Silizium, mehr als 1,5 und weniger als 6,0 Gew% Mangan, mehr als 1,7 und weniger als 3,0 Gew% Nickel, mehr als 0,15 und weniger als 0,30 Gew% Stickstoff, mehr als 0,1 und weniger als 0,8 Gew% Molybdän, mehr als 0,05 und weniger als 4,5 Gew% Kupfer aufweist.Particularly preferred is an alloy, however, individually or side by side more than 0.005 and less than 0.07 wt% carbon, more than 20.5 and less than 23.0 wt% chromium, more than 0.05 and less than 1.5 Wt% silicon, more than 1.5 and less than 6.0 wt% manganese, more than 1.7 and less than 3.0 wt% nickel, more than 0.15 and less than 0.30 wt% nitrogen, more as 0.1 and less than 0.8% by weight of molybdenum, more than 0.05 and less than 4.5% by weight of copper.

Als erschmelzungsbedingte Verunreinigungen werden die im Zusammenhang mit der vorliegenden Erfindungsbeschreibung nicht ausdrücklich genannten Legierungselemente verstanden, die bei Erschmelzen der Legierung Eingang in die Legierung finden. In einer besonders bevorzugten Ausführungsform weist die Erfindung keine solchen erschmelzungsbedingten Verunreinigungen und somit nur die im Zusammenhang mit der vorliegenden Erfindungsbeschreibung genannten Legierungselement auf; der Rest wäre in dieser bevorzugten Ausführungsform also nur Eisen.As impurities caused by melting, the alloying elements which are not explicitly mentioned in connection with the present invention description are understood, which find their way into the alloy when the alloy is melted. In a particularly preferred embodiment, the invention has no such impurity-causing impurities and thus only the alloying element mentioned in connection with the present invention description; the remainder in this preferred embodiment would therefore only be iron.

In einer bevorzugten Ausführungsform weist die erfindungsgemäße Legierung möglichst geringe oder gar keine Bestandteile der folgenden Legierungselemente auf: Kobalt, Phosphor, Schwefel, Niob, Vanadium, Zirkonium, Wolfram, Tantal, Blei, Bismut, Zinn, Zink, Selen, Arsen, Titan, Aluminium, Calzium, Magnesium, Barium, Lanthan, Zer, Yttrium, Rhenium, Sauerstoff, Bor. Insbesondere bevorzugt weist die Legierung weniger als 0,1 Gew.-% von Niob (Nb), Vanadium (V), Zirkonium (Zr), Tantal (Ta) auf. Es wurde erkannt, dass die beim Gießen erzeugten Korngrößen und die durch das Gießen entstehenden Erstarrungszeiten bei stickstofflegierten Stählen eine Versprödung und somit einen starken Abfall der Kerbschlagbiegefestigkeit hervorrufen können, da anders als im Strangguss mit anschließender Warmumformung das Zulegieren der vorgenannten Mikrolegierungselemente zur Ansammlung von Nitriden und Karbonitriden in der ferritischen Matrix führen kann und es somit zu einer Versprödung des Ferrits kommt. Es wird deshalb bevorzugt, die Gehalte der vorgenannten Mikrolegierungselemente besonders gering zu halten.In a preferred embodiment, the alloy according to the invention has as little or no constituents as possible of the following alloying elements: cobalt, phosphorus, sulfur, niobium, vanadium, zirconium, tungsten, tantalum, lead, bismuth, tin, zinc, selenium, arsenic, titanium, aluminum , Calcium, magnesium, barium, lanthanum, cerium, yttrium, rhenium, oxygen, boron. More preferably, the alloy has less than 0.1% by weight of niobium (Nb), vanadium (V), zirconium (Zr), tantalum (Ta) up. It has been recognized that the grain sizes produced during casting and the resulting solidification times in nitrogen-alloyed steels can cause embrittlement and thus a significant drop in impact strength, since, unlike in continuous casting with subsequent hot working, the alloying of the abovementioned micro-alloying elements for the accumulation of nitrides and Carbonitrides can lead in the ferritic matrix and thus leads to embrittlement of the ferrite. It is therefore preferred to keep the contents of the aforementioned micro-alloying elements particularly low.

In einer bevorzugten Ausführungsform der Legierung wird der Sauerstoffgehalt minimiert, vorzugsweise auf weniger als 0,04 Gew.-%. Dies hat eine zähigkeitssteigernde Wirkung. Bei anderen Herstellungsprozessen kann dies durch entgasende metallurgische Maßnahmen erreicht werden, deren Erfolg im Gießprozess jedoch nicht garantiert werden kann. Deshalb sollte bereits bei der Einstellung der Legierung auf einen möglichst geringen Sauerstoffgehalt geachtet werden. In einer bevorzugten Ausführungsform wird nur die minimal nötige Menge an Nickel eingesetzt (also Mengen von ≥ 1,7 Gew% Ni), um dadurch die optimierte mechanische Bearbeitung und gute mechanische Eigenschaften zu erreichen.In a preferred embodiment of the alloy, the oxygen content is minimized, preferably to less than 0.04 wt%. This has a toughening effect. In other manufacturing processes, this can be achieved by degassing metallurgical measures, the success of which can not be guaranteed in the casting process. Therefore, attention should be paid to the lowest possible oxygen content when adjusting the alloy. In a preferred embodiment, only the minimum amount required used on nickel (ie amounts of ≥ 1.7 wt% Ni), thereby achieving the optimized mechanical processing and good mechanical properties.

In einer bevorzugten Ausführungsform weist die erfindungsgemäße Nickel-Chrom-Mangan-Legierung 0,005 bis 0,05 Gew.% Kohlenstoff auf. Es hat sich gezeigt, dass mit der Herabsetzung des möglichen Kohlenstoffgehalts von 0,07 Gew.% auf 0,05 Gew.% die Karbidbildung des Werkstoffs minimiert und die Beständigkeit gegen interkristalline Korrosion steigt.In a preferred embodiment, the nickel-chromium-manganese alloy according to the invention has 0.005 to 0.05 wt.% Carbon. It has been found that reducing the potential carbon content from 0.07 wt.% To 0.05 wt.% Minimizes carbide formation and increases resistance to intergranular corrosion.

In einer bevorzugten Ausführungsform weist die Nickel-Chrom-Mangan-Legierung 21,2 bis 22,5 Gew.% Chrom, insbesondere bevorzugt 21,4 bis 22 Gew.% Chrom auf. Es hat sich gezeigt, dass durch das Heraufsetzen der unteren Bereichsgrenze für Chrom von 20,5 Gew.% auf 21,2 bzw. 21,4 Gew.% und dem Herabsetzen der oberen Bereichsgrenze für Chrom von 23,0 Gew.% auf 22, 5 bzw. 22,0 Gew.% eine vorteilhafte Zusammensetzung des Ferrit-Austenit-Verhältnisses erreicht wird, die zu den positiven mechanischen Eigenschaften der Legierung führt.In a preferred embodiment, the nickel-chromium-manganese alloy has 21.2 to 22.5% by weight of chromium, particularly preferably 21.4 to 22% by weight of chromium. It has been found that by increasing the lower range limit for chromium from 20.5% by weight to 21.2% and 21.4% by weight, respectively, and decreasing the upper range limit for chromium from 23.0% by weight to 22% , 5 or 22.0 wt.% An advantageous composition of the ferrite-austenite ratio is achieved, which leads to the positive mechanical properties of the alloy.

In einer bevorzugten Ausführungsform weist die erfindungsgemäße Nickel-Chrom-Mangan-Legierung 0,25 bis 1,0 Gew.% oder 0,2 bis 1,0 Gew% Silizium auf. Es hat sich gezeigt, dass durch das Heraufsetzen der unteren Bereichsgrenze für Silizium von 0,05 auf 0,25, bzw. 0,2 Gew% und durch das Herabsetzen der oberen Bereichsgrenze für Silizium von 1,5 Gew.% auf 1,0 Gew.% insbesondere der Vorteil erzielt wird, dass der noch in der Schmelze vorhandene Sauerstoff durch das Silizium abgebunden wird, ohne dass das Ferrit-Austenit-Verhältnis negativ beeinflusst wird.In a preferred embodiment, the nickel-chromium-manganese alloy according to the invention has 0.25 to 1.0 wt.% Or 0.2 to 1.0 wt.% Silicon. It has been found that by increasing the lower range limit for silicon from 0.05 to 0.25, or 0.2% by weight and by decreasing the upper range limit for silicon from 1.5% by weight to 1.0 Wt.% In particular, the advantage is achieved that the oxygen still present in the melt is set by the silicon, without the ferrite-austenite ratio is adversely affected.

In einer bevorzugten Ausführungsform weist die erfindungsgemäße Nickel-Chrom-Mangan-Legierung nur bis 0,03 Gew.% Phosphor und/oder nur bis 0,015 Gew.% Schwefel auf. Es hat sich gezeigt, dass durch das Herabsetzen der oberen Bereichsgrenze für Phosphor von 0,04 Gew.% auf 0,03 Gew.% und/oder das Absenken der oberen Bereichsgrenze für Schwefel von 0,04 Gew.% auf 0,015 Gew.% der Vorteil erreicht wird, dass sich keine technologisch relevanten versprödenden Phasen ausscheiden.In a preferred embodiment, the nickel-chromium-manganese alloy according to the invention has only up to 0.03% by weight of phosphorus and / or only up to 0.015% by weight of sulfur. It has been found that by lowering the upper range limit for phosphorus from 0.04 wt% to 0.03 wt% and / or lowering the upper range limit for sulfur from 0.04 wt% to 0.015 wt%. the advantage is achieved that exude no technologically relevant embrittling phases.

In einer bevorzugten Ausführungsform weist die erfindungsgemäße Nickel-Chrom-Mangan-Legierung 2,0 bis 2,7 Gew.% Nickel auf. Es hat sich gezeigt, dass durch das Heraufsetzen der unteren Bereichsgrenze für Nickel von 1,7 auf 2,0 Gew.% und durch das Herabsetzen der oberen Bereichsgrenze für Nickel von 3,0 Gew.% auf 2,7 Gew.% insbesondere der Vorteil erzielt wird, dass sich die mechanischen Eigenschaften des Werkstoffs bei minimalem Nickelgehalt prozesssicher ohne Versprödung erreichen lassen. Es wird davon ausgegangen, dass eine Versprödung des Werkstoffs bei Nickel-Gehalten von weniger als 1,7 Gew.-% eintritt. Dies konnte durch eine abnehmende Kerbschlagbiegefestigkeit bei Werkstoffen mit Nickel-Gehalten von weniger als 1,7 Gew.-% nachgewiesen werden.In a preferred embodiment, the nickel-chromium-manganese alloy according to the invention comprises 2.0 to 2.7 wt.% Nickel. It has been found that by increasing the lower range limit for nickel from 1.7 to 2.0 wt.% And by reducing the upper range limit for nickel from 3.0 wt.% To 2.7 wt The advantage is achieved that the mechanical properties of the material with minimum nickel content can be reliably achieved without embrittlement. It is considered that embrittlement of the material occurs at nickel contents of less than 1.7% by weight. This could be demonstrated by a decreasing impact strength on materials with nickel contents of less than 1.7% by weight.

Es wurde ferner erkannt, dass Nickel zur Bildung des Austenits beiträgt und zur Verringerung der Löslichkeit des Stickstoffs im Ferrit führt. Daher ist ein Mindestgehalt an Nickel in der Legierung zur Austenitbildung hilfreich. Des Weiteren ist eine Beschränkung des Höchstwertes zur Begrenzung der abnehmenden Löslichkeit des Stickstoffs im Ferrit ratsam.It has also been found that nickel contributes to the formation of austenite and leads to a reduction in the solubility of nitrogen in the ferrite. Therefore, a minimum content of nickel in the alloy for austenite formation is helpful. Furthermore, limiting the maximum to limit the decreasing solubility of the nitrogen in the ferrite is advisable.

In einer bevorzugten Ausführungsform weist die erfindungsgemäße Nickel-Chrom-Mangan-Legierung 0,2 bis 0,25 Gew.% Stickstoff auf. Es hat sich gezeigt, dass durch das Heraufsetzen der unteren Bereichsgrenze für Stickstoff von 0,15 auf 0,2 Gew.% und durch das Herabsetzen der oberen Bereichsgrenze für Stickstoff von 0,3 Gew.% auf 0,25 Gew.% insbesondere der Vorteil erzielt wird, dass der Werkstoff ein Gefüge von 30-50 % Ferrit-Anteil bei optimalen mechanischen Eigenschaften besitzt.In a preferred embodiment, the nickel-chromium-manganese alloy according to the invention comprises 0.2 to 0.25% by weight of nitrogen. It has been found that by increasing the lower range limit for nitrogen from 0.15 to 0.2 wt.% And reducing the upper range limit for nitrogen from 0.3 wt.% To 0.25 wt Advantage is achieved that the material has a structure of 30-50% ferrite content with optimum mechanical properties.

In einer bevorzugten Ausführungsform weist die erfindungsgemäße Nickel-Chrom-Mangan-Legierung 0,3 bis 0,7 Gew.% Molybdän auf. Es hat sich gezeigt, dass durch das Heraufsetzen der unteren Bereichsgrenze für Molybdän von 0,1 auf 0,3 Gew.% und durch das Herabsetzen der oberen Bereichsgrenze für Molybdän von 0,8 Gew.% auf 0,7 Gew.% insbesondere der Vorteil erzielt wird, dass eine deutlich erhöhte Beständigkeit gegen interkristalline Korrosion und eine Erhöhung der Festigkeit auftritt ohne Nachteile bei der mechanischen Bearbeitung.In a preferred embodiment, the nickel-chromium-manganese alloy according to the invention has 0.3 to 0.7% by weight of molybdenum. It has been found that by increasing the lower range limit for molybdenum from 0.1 to 0.3% by weight, and by reducing the upper range limit for molybdenum from 0.8% by weight to 0.7% by weight, in particular Advantage is achieved that a significantly increased resistance to intergranular corrosion and an increase in strength occurs without disadvantages in mechanical processing.

Die erfindungsgemäße Nickel-Chrom-Mangan-Legierung kann in einer bevorzugten Ausführungsform mit relativ geringen Kupfer-Gehalten ausgeführt werden. In dieser bevorzugten Ausführungsform weist die Erfindung lediglich 0,3 bis 1,0 Gew.% Kupfer auf. Dadurch wird der Vorteil erzielt, dass der Werkstoff eine verbesserte Zerspanbarkeit bei stabilem Ferrit-Austenit-Verhältnis besitzt.The nickel-chromium-manganese alloy according to the invention can be carried out in a preferred embodiment with relatively low copper contents. In this preferred embodiment, the invention comprises only 0.3 to 1.0 wt% copper. This provides the advantage that the material has improved machinability with a stable ferrite-austenite ratio.

In Weiterführung dieser bevorzugten Ausführungsform, aber auch als eigenständige Maßnahme kann die erfindungsgemäße Legierung 3,5 bis 5,0 Gew.% Mangan, insbesondere bevorzugt 3,5 bis 4,5 Gew.% Mangan enthalten. Durch Heraufsetzen der unteren Bereichsgrenze von 1,5 Gew.% Mangan auf 3,5 Gew.% Mangan und durch Herabsetzen der oberen Bereichsgrenze von 6,0 Gew.% Mangan auf 5,0 Gew.% bzw. 4,5 Gew.% Mangan lässt sich der Vorteil erreichen, dass der Werkstoff eine optimale Zerspanbarkeit besitzt, ohne dass eine Versprödung der ferritischen Matrix auftritt.In continuation of this preferred embodiment, but also as an independent measure, the alloy according to the invention may contain 3.5 to 5.0% by weight of manganese, particularly preferably 3.5 to 4.5% by weight of manganese. By increasing the lower range limit from 1.5 wt% manganese to 3.5 wt% manganese and lowering the upper range limit from 6.0 wt% manganese to 5.0 wt% or 4.5 wt% Manganese can achieve the advantage that the material possesses optimum machinability without embrittlement of the ferritic matrix occurring.

In einer ergänzenden oder alternativen Ausführungsform kann die gewünschte gute mechanische Bearbeitung und die gewünschte hohe Festigkeit durch das Zulegieren von Kupfer erreicht werden. In einer bevorzugten Ausführungsform werden deshalb Kupfer-Gehalte von größer 3 Gew.-% verwendet, um auch die gießtechnischen Anforderungen an den Werkstoff zu erfüllen. Insbesondere bevorzugt werden Kupfer-Gehalte von 3,0 bis 4,5 Gew% Kupfer verwendet. In einer bevorzugten Ausführungsform wird bei hohen Kupfer-Gehalten der Mangan-Gehalt abgesenkt, vorzugsweise auf Werte von weniger als 3,0 Gew.% und mindestens 1,5 Gew.%. In einer bevorzugten Ausführungsform wird das Ferrit-Austenit-Verhältnis mit angepasster Wärmebehandlung auf 45 - 70% Austenit eingestellt.In a supplementary or alternative embodiment, the desired good mechanical processing and the desired high strength can be achieved by alloying copper. In a preferred embodiment, therefore, copper contents of greater than 3 wt .-% are used to meet the casting requirements of the material. Particular preference is given to using copper contents of from 3.0 to 4.5% by weight of copper. In a preferred embodiment, at high copper levels the manganese content is lowered, preferably to values of less than 3.0% by weight and at least 1.5% by weight. In a preferred embodiment, the ferrite-austenite ratio with adjusted heat treatment is set at 45-70% austenite.

In einer bevorzugten Ausführungsform ist der Mangan-Gehalt der Legierung in Gewichtsprozent geringer als der dreifache Nickel-Gehalt der Legierung in Gewichtsprozent. Insbesondere bevorzugt liegt das Verhältnis des Mangan-Gehalts der Legierung in Gewichtsprozent zu dem Nickel-Gehalt der Legierung in Gewichtsprozent zwischen dem 1,5-und 3-fachen, vorzugsweise zwischen dem 1,5 - 2,5fachen. Es wurde erkannt, dass das Einstellen eines solchen Verhältnisses besonders gut zu den gewünschten mechanischen Eigenschaften und zu einer verbesserten Zerspanbarkeit führt. Es wird davon ausgegangen, dass ein Mn-Gehalt/Ni-Gehalt von größer 3 zu einer Versprödung des Werkstoffs führt. Es wird davon ausgegangen, dass eine Verringerung des Mn-Gehalts/Ni-Gehalts kleiner 1,5 zu einer Abnahme der Festigkeit sowie zu einer schlechteren Zerspanbarkeit führt.In a preferred embodiment, the manganese content of the alloy in weight percent is less than three times the nickel content of the alloy in weight percent. Most preferably, the ratio of the manganese content of the alloy in weight percent to the nickel content of the alloy in weight percent is between 1.5 and 3 times, preferably between 1.5 and 2.5 times. It has been recognized that setting such a ratio results particularly well in the desired mechanical properties and improved machinability. It is assumed that a Mn content / Ni content of greater than 3 leads to embrittlement of the material. It is believed that lowering the Mn content / Ni content below 1.5 results in a decrease in strength as well as poorer machinability.

Es wurde erkannt, dass Mangan ein schwacher Austenit-Bildner ist, der die Eigenschaft hat, die Löslichkeit des Stickstoffs in der Legierung zu erhöhen. Dies scheint sowohl für die austenitische als auch für die ferritische Phase zu gelten. Dies birgt die Gefahr der Stickstoffübersättigung des Ferrits und einem daraus folgenden Abfall der Werkstoffzähigkeit. Daher ist es ratsam den Mangangehalt zu begrenzen sowie diesen in Abhängigkeit des Nickelgehaltes festzulegen.It has been recognized that manganese is a weak austenite former which has the property of increasing the solubility of nitrogen in the alloy. This seems to apply to both the austenitic and ferritic phases. This entails the danger of nitrogen supersaturation of the ferrite and consequent waste of the material toughness. Therefore, it is advisable to limit the manganese content as well as to determine this depending on the nickel content.

In einer alternativen bevorzugten Ausführungsform ist die Summe aus dem Mangan-Anteil und dem Kupfer-Anteil der Legierung in Gewichtsprozent geringer als der dreifache Nickel-Gehalt der Legierung in Gewichtsprozent. Insbesondere bevorzugt liegt das Verhältnis dieser Summe zu dem Nickel-Gehalt der Legierung in Gewichtsprozent zwischen dem 1,5- und 3,5-fachen, vorzugsweise zwischen dem 1,8 und 3,0fachen. Es wurde erkannt, dass das Einstellen eines solchen Verhältnisses zu den gewünschten mechanischen Eigenschaften und zu einer verbesserten Zerspanbarkeit führt. Eine Abweichung unter dieses Verhältnisses kann zu einem nicht bevorzugten Ferritgehalt < 30% und geringeren Festigkeitseigenschaften führen. Eine Abweichung über dieses Verhältnisses kann zu geringen Zähigkeitseigenschaften führen.In an alternative preferred embodiment, the sum of the manganese content and the copper content of the alloy in weight percent is less than three times the nickel content of the alloy in weight percent. More preferably, the ratio of this sum to the nickel content of the alloy in weight percent is between 1.5 and 3.5 times, preferably between 1.8 and 3.0 times. It has been recognized that setting such a ratio results in the desired mechanical properties and improved machinability. A deviation below this ratio may result in a non-preferred ferrite content <30% and lower strength properties. A deviation above this ratio can lead to low toughness properties.

Es wurde erkannt, dass ein erhöhter Gehalt an Kupfer in Kombination mit Mangan zur Substitution von Nickel eingesetzt werden kann. Kupfer führt in geringen Gehalten (bis 1 Gew.%) zu einer Erhöhung der Festigkeit der Legierung ohne erkennbaren Effekt auf das Ferrit-Austenit-Verhältnis. In höheren Gehalten von größer gleich 3 Gew.% wirkt der Kupfer schwach austenitbildend. Im mittleren Legierungsbereich zwischen 1 und 3 Gew.% Kupfer heben sich diese Effekte gegenseitig auf, was zu einer unnötigen Verteuerung der Legierung führt. Der Kupfergehalt der Legierung sollte daher mit dem Mangan und Nickelgehalt abgestimmt werden.It has been recognized that an increased level of copper in combination with manganese can be used to substitute nickel. At low levels (up to 1% by weight), copper leads to an increase in the strength of the alloy without any noticeable effect on the ferrite-austenite ratio. In higher contents of greater than or equal to 3% by weight, the copper has a weak austenite-forming effect. In the middle alloy range between 1 and 3 wt.% Copper, these effects cancel each other out, which leads to an unnecessary increase in the cost of the alloy. The copper content of the alloy should therefore be tuned with the manganese and nickel content.

In einer bevorzugten Ausführungsform weist die Legierung einen Ferrit-Anteil am Gesamtgefüge von 30 bis 55 %, insbesondere bevorzugt von 35 bis 55 % auf. Es hat sich gezeigt, dass mit einem solchen Ferrit-Anteil besonders gute mechanische Eigenschaften erreicht werden. In einer bevorzugten Ausführungsform ist der Rest des Gefüges Austenit.In a preferred embodiment, the alloy has a ferrite content of the total structure of 30 to 55%, particularly preferably 35 to 55%. It has been shown that particularly good mechanical properties are achieved with such a ferrite component. In a preferred embodiment, the remainder of the microstructure is austenite.

Das erfindungsgemäße Bauteil besteht zumindest zum Teil, vorzugsweise vollständig, aus der erfindungsgemäßen Legierung. In einer bevorzugten Ausführungsform weist dieses Bauteil zumindest eine, vorzugsweise alle der nachfolgend aufgezählten mechanischen Eigenschaften bei Raumtemperatur auf:

  • 0,2% - Dehngrenze (Rp0,2) ≥ 420 N/mm2,
  • Zugfestigkeit (Rm) ≥ 620 N/mm2,
  • Dehnung (A5) ≥ 20% und
  • Kerbschlagzähigkeit (Charpy - V) ≥ 60J,
    wobei die Dehnung (Bruchdehnung) durch das in DIN EN ISO 6892-1 beschriebene Verfahren "Zugversuch" ermittelt wird und die Kerbschlagzähigkeit (Charpy - V) die in DIN EN ISO 148-1 genannten "verbrauchte Schlagenergie" ist.
The component according to the invention consists at least in part, preferably completely, of the alloy according to the invention. In a preferred embodiment, this component has at least one, preferably all of the mechanical properties listed below at room temperature:
  • 0.2% - yield strength (Rp0.2) ≥ 420 N / mm2,
  • Tensile strength (Rm) ≥ 620 N / mm 2,
  • Elongation (A5) ≥ 20% and
  • Notched impact strength (Charpy - V) ≥ 60J,
    wherein the elongation (elongation at break) is determined by the method "tensile test" described in DIN EN ISO 6892-1 and the notched impact strength (Charpy - V) is the "consumed impact energy" specified in DIN EN ISO 148-1.

Das erfindungsgemäße Verfahren zum Herstellen der erfindungsgemäßen Legierung sieht vor, dass die Legierungsbestandteile in einem Induktionsofen erschmolzen und mittels Pfannenzuschlägen desoxidiert werden. Es hat sich gezeigt, dass die erfindungsgemäße Legierung auf diesem Wege besonders einfach hergestellt werden kann.The inventive method for producing the alloy according to the invention provides that the alloy components are melted in an induction furnace and deoxidized by means of Pfannenzuchlägen. It has been shown that the alloy according to the invention can be produced particularly easily in this way.

In einer bevorzugten Ausführungsform wird das Erschmelzen der Legierungsbestandteile in einem Mittelfrequenztiegelofen ohne nachfolgende Sekundärmetallurgie, wie beispielsweise einer Pfannenentgasung durchgeführt.In a preferred embodiment, the melting of the alloying constituents is carried out in a medium frequency crucible furnace without subsequent secondary metallurgy such as ladle degassing.

Das erfindungsgemäße Verfahren zum Herstellen des erfindungsgemäßen Bauteils sieht die Durchführung des erfindungsgemäßen Verfahrens zum Herstellen der erfindungsgemäßen Legierung vor, um dadurch eine Gusslegierung zu erzeugen und sieht dann den Abguss des erfindungsgemäßen Bauteils aus dieser Gusslegierung vor.The inventive method for producing the component according to the invention provides for carrying out the inventive method for producing the alloy according to the invention, thereby to produce a casting alloy and then provides the casting of the component according to the invention from this casting alloy.

In einer bevorzugten Ausführungsform erfolgt das Gießen des Bauteils unter Normalatmosphäre, also ohne Vakuum- oder Schutzgasatmosphäre.In a preferred embodiment, the casting of the component takes place under normal atmosphere, ie without a vacuum or inert gas atmosphere.

In einer bevorzugten Ausführungsform erfolgt nach dem Gießen des Bauteils vorzugsweise kein nachträgliches Umformen. In einer bevorzugten Ausführungsform findet zumindest kein Walzen und/oder kein Schmieden statt. Eine Umformung führt zu einer Verringerung der Korngröße. Dies führt zwar vielfach zu einer Verbesserung der mechanischen Eigenschaften. Das erfindungsgemäße Verfahren verzichtet aber bevorzugt auf ein Umformen, um diesen Arbeitsgang einzusparen. Es wurde erkannt, dass in dickwandigen Bereichen, also Bereichen mit einer Wandstärke von mehr als 20 mm, Korngrößen von mehr als 1,5 mm vermehrt vorzufinden sind, die auch über den gesamten Lebenszyklus des Bauteils erhalten bleiben. Korngrößen von mehr als 1,5 mm sind bei Gussbauteilen nicht zu vermeiden, weshalb die Legierung bereits von vornherein so eingestellt werden sollte, dass diese ohne Umformung die geforderten Eigenschaften erreicht.In a preferred embodiment, preferably no subsequent forming takes place after the casting of the component. In a preferred embodiment, at least no rolling and / or forging takes place. A transformation leads to a reduction of the grain size. Although this often leads to an improvement of the mechanical properties. However, the method according to the invention preferably dispenses with a Forming to save this operation. It was recognized that in thick-walled areas, ie areas with a wall thickness of more than 20 mm, grain sizes of more than 1.5 mm are increasingly found, which are also retained over the entire life cycle of the component. Grain sizes of more than 1.5 mm can not be avoided with cast components, which is why the alloy should already be adjusted from the outset so that it achieves the required properties without deformation.

In einer bevorzugten Ausführungsform wird das gegossene Bauteil einer Wärmebehandlung bei einer Temperatur von 1.000 bis 1.250°C mit beschleunigter Abkühlung unterzogen. Dies ermöglicht es, ein Ferrit-Austenit-Verhältnis von vorzugsweise 45 - 55% Ferrit, Rest Austenit einzustellen.In a preferred embodiment, the cast component is subjected to a heat treatment at a temperature of 1,000 to 1,250 ° C with accelerated cooling. This makes it possible to set a ferrite-austenite ratio of preferably 45-55% ferrite, balance austenite.

In einer besonders bevorzugten Ausführungsform werden bei der Durchführung des erfindungsgemäßen Verfahrens der Mangan-, Nickel- und Kupfer-Gehalt so eingestellt, dass die Legierung gießbar bleibt und nach dem Erstarren optimale Schnittwerte und gute mechanisch-technologische Eigenschaften aufweist. Dies wird insbesondere dadurch erreicht, dass der Mangan-Gehalt in den folgenden Grenzen: 1,5 bis 6,0 Gew.%, der Nickel-Gehalt innerhalb der folgenden Grenzen: 1,7 bis 3,0 Gew.% und der Kupfer-Gehalt innerhalb der folgenden Grenzen: 0,05 bis 4,5Gew% gewählt wird.In a particularly preferred embodiment, when carrying out the process according to the invention, the manganese, nickel and copper contents are adjusted so that the alloy remains pourable and exhibits optimum cutting values and good mechanical-technological properties after solidification. This is achieved in particular by the manganese content in the following limits: 1.5 to 6.0% by weight, the nickel content within the following limits: 1.7 to 3.0% by weight and the copper content. Content within the following limits: 0.05 to 4.5Gew% is selected.

In einer bevorzugten Ausführungsform wird die erfindungsgemäße Nickel-Chrom-Mangan-Legierung als Gusslegierung verwendet. Dabei wird unter einer Gusslegierung insbesondere eine Legierung verstanden, die in einem Urformverfahren ohne nachträgliche Umformung hergestellt wird. Durch die Verwendung der erfindungsgemäßen Nickel-Chrom- Mangan-Legierung als Gusslegierung steht für das erfindungsgemäße Herstellungsverfahren für das Bauteil ein großes Gestaltungsspektrum bereit. Durch das Gießen können sowohl dünnwandige als auch dickwandige Bauteilgeometrien erzeugt werden. Es hat sich gezeigt, dass sowohl dünnwandige als auch dickwandige Bauteile durch Gießen aus der erfindungsgemäßen Nickel-Chrom-Mangan-Legierung hergestellt werden können.In a preferred embodiment, the nickel-chromium-manganese alloy according to the invention is used as cast alloy. Here, a cast alloy is understood in particular to mean an alloy which is produced in a primary molding process without subsequent transformation. By using the nickel-chromium-manganese alloy according to the invention as cast alloy, a large design spectrum is available for the production method for the component according to the invention. By casting both thin-walled and thick-walled component geometries can be generated. It has been found that both thin-walled and thick-walled components can be produced by casting from the nickel-chromium-manganese alloy according to the invention.

In einer bevorzugten Ausführungsform wird die erfindungsgemäße Nickel-Chrom- Mangan-Legierung so eingestellt, dass sie ohne Nachbehandlung, zumindest aber allein mit nachfolgender Wärmebehandlung die für den Einsatz des aus dieser Legierung bestehenden Bauteils gewünschten mechanischen Anforderungen bereits erfüllt.In a preferred embodiment, the nickel-chromium-manganese alloy according to the invention is adjusted so that it already meets the mechanical requirements required for the use of the component consisting of this alloy without after-treatment, or at least alone with subsequent heat treatment.

Des Weiteren ist eine Beschränkung des Höchstwertes zur Begrenzung der abnehmenden Löslichkeit des Stickstoffs im Ferrit ratsam.Furthermore, limiting the maximum to limit the decreasing solubility of the nitrogen in the ferrite is advisable.

Insbesondere bevorzugt wird die erfindungsgemäße Legierung als Duplex-Werkstoff verwendet. Insbesondere bevorzugt wird die erfindungsgemäße Legierung verwendet, um daraus Bauteile für den allgemeinen Maschinenbau, insbesondere bevorzugt für Bauteile in der Trenntechnik, beispielsweise dem Dekanter- oder Zentrifugenbau oder aber für Bauteile in Mischern, Pumpen, Armaturen, Ventilen und/oder Rohrleitungen angewendet.Particularly preferably, the alloy according to the invention is used as a duplex material. The alloy according to the invention is particularly preferably used in order to use it for components for general mechanical engineering, in particular for components in the separation technique, for example, the decanter or centrifuge or for components used in mixers, pumps, valves, valves and / or piping.

Die nachfolgende Tabelle 1 zeigt als Beispiele der erfindungsgemäßen Legierung die Legierungen 1 - 18. Ferner zeigt die nachstehend einkopierte Tabelle 1 als Referenzlegierungen (nicht zur Erfindung gehörige Legierungen) Legierungen, die ähnlich der Legierungstypen 22Cr-5Ni (Werkstoffnummer 1.4470) bzw. 23Cr-4Ni (Werkstoffnummer 1.4362) hergestellt wurden. Die Tabelle zeigt die Kohlenstoff (C), Silizium (Si), Mangan (Mn), Phosphor (P), Schwefel (S), Chrom (Cr), Nickel (Ni), Molybdän (Mo), Stickstoff (N), Aluminium (Al) und Kupfer (Cu) Gew.-% der jeweiligen Legierung, wobei der Rest jeweils Eisen und unvermeidbare Verunreinigungen waren. Ferner zeigt die Tabelle das Verhältnis des Mn-Gehalts zum Ni-Gehalt und das Verhältnis der Summe Mangan- und Kupfer-Gehalte zu Nickel-Gehalt (* = Referenzlegierungen). Tabelle 1: Bsp. C Si Mn P S Cr Ni Mo N Al Cu (Mn+Cu) /Ni Mn/Ni 1 0,03 0,73 4,95 0,028 0,001 21,59 1,57 0,54 0,215 0,012 0,19 3,27 3,15 2 0,025 0,87 5,41 0,015 0,003 21,28 1,6 0,52 0,22 0,015 0,25 3,54 3,38 3 0,027 0,8 3,69 0,021 0,005 20,7 2,2 0,2 0,186 0,005 0,6 1,95 1,68 4 0,03 0,69 4,8 0,015 0,004 21,6 2,6 0,83 0,225 0,029 0,51 2,04 1,85 5 0,03 0,62 4,77 0,018 0,001 21,1 2,28 0,47 0,241 0,011 0,3 2,22 2,09 6 0,028 0,86 4,46 0,08 0,005 21,08 1,74 0,53 0,228 0,014 0,23 2,70 2,56 7 0,035 0,4 4,2 0,02 0,003 21,5 2,3 0,4 0,23 0,01 0,6 2,09 1,83 8 0,025 0,6 3,8 0,02 0,003 21,76 2,34 0,7 0,24 0,011 0,4 1,79 1,62 9 0,03 0,56 4,13 0,019 0,004 21,62 2,21 0,34 0,21 0,018 0,63 2,15 1,87 10 0,028 0,72 4,18 0,022 0,006 21,43 2,17 0,45 0,23 0,02 0,38 2,10 1,93 11 0,035 0,8 3,68 0,017 0,003 21,4 2,03 0,52 0,228 0,009 0,59 2,10 1,81 12 0,027 0,47 4,26 0,025 0,003 22,01 2,48 0,39 0,236 0,014 0,57 1,95 1,72 13 0,035 0,34 4,42 0,02 0,002 22,41 2,46 0,33 0,207 0,014 0,81 2,13 1,80 14 0,035 0,31 2,8 0,02 0,002 21,2 2,85 0,41 0,179 0,016 0,15 1,04 0,98 15 0,035 0,23 2,3 0,012 0,003 21,25 2,57 0,39 0,221 0,001 3,34 2,19 0,89 16 0,015 0,33 1,83 0,006 0,04 21,63 2,12 0,4 0,226 0,01 3,31 2,42 0,86 17 0,025 0,53 3,87 0,019 0,003 21,51 2,21 0,41 0,25 0,034 0,79 2,1 1,75 18 0,035 0,5 2 0,02 0,003 22 2,3 0,5 0,22 0,01 3,5 2,39 0,87 19* 0,023 0,68 0,98 0,019 0,001 23,54 4,64 0,47 0,22 0,019 0,27 0,27 0,21 20* 0,023 0,68 0,89 0,02 0,001 23,27 4,79 0,49 0,205 0,017 0,25 0,24 0,19 21* 0,02 0,62 1,18 0,018 0,001 23,47 4,61 0,45 0,23 0,02 0,29 0,32 0,26 22* 0,022 0,67 1,11 0,02 0,002 23,45 4,37 0,54 0,213 0,018 0,23 0,31 0,25 23* 0,028 0,74 1,12 0,023 0,006 22,67 6 2,59 0,16 0,016 0,1 0,20 0,19 Table 1 below shows, as examples of the alloy according to the invention, alloys 1 to 18. Further, Table 1, which is incorporated herein by reference, shows as alloys (alloys not belonging to the invention) alloys which are similar to the alloy types 22Cr-5Ni (material number 1.4470) and 23Cr-4Ni, respectively (Material number 1.4362) were produced. The table shows the carbon (C), silicon (Si), manganese (Mn), phosphorus (P), sulfur (S), chromium (Cr), nickel (Ni), molybdenum (Mo), nitrogen (N), aluminum (Al) and copper (Cu) wt .-% of the respective alloy, the remainder were each iron and unavoidable impurities. Further, the table shows the ratio of the Mn content to the Ni content and the ratio of the sum of manganese and copper contents to nickel content (* = reference alloys). <b> Table 1: </ b> Ex. C Si Mn P S Cr Ni Not a word N al Cu (Mn + Cu) / Ni Mn / Ni 1 0.03 0.73 4.95 0.028 0.001 21.59 1.57 0.54 0.215 0,012 0.19 3.27 3.15 2 0,025 0.87 5.41 0,015 0,003 21.28 1.6 0.52 0.22 0,015 0.25 3.54 3.38 3 0.027 0.8 3.69 0,021 0.005 20.7 2.2 0.2 0,186 0.005 0.6 1.95 1.68 4 0.03 0.69 4.8 0,015 0,004 21.6 2.6 0.83 0.225 0,029 0.51 2.04 1.85 5 0.03 0.62 4.77 0,018 0.001 21.1 2.28 0.47 0,241 0.011 0.3 2.22 2.09 6 0.028 0.86 4.46 0.08 0.005 21.08 1.74 0.53 0,228 0,014 0.23 2.70 2.56 7 0,035 0.4 4.2 0.02 0,003 21.5 2.3 0.4 0.23 0.01 0.6 2.09 1.83 8th 0,025 0.6 3.8 0.02 0,003 21.76 2.34 0.7 0.24 0.011 0.4 1.79 1.62 9 0.03 0.56 4.13 0.019 0,004 21.62 2.21 0.34 0.21 0,018 0.63 2.15 1.87 10 0.028 0.72 4.18 0,022 0,006 21.43 2.17 0.45 0.23 0.02 0.38 2.10 1.93 11 0,035 0.8 3.68 0,017 0,003 21.4 2.03 0.52 0,228 0.009 0.59 2.10 1.81 12 0.027 0.47 4.26 0,025 0,003 22,01 2.48 0.39 0.236 0,014 0.57 1.95 1.72 13 0,035 0.34 4.42 0.02 0,002 22.41 2.46 0.33 0.207 0,014 0.81 2.13 1.80 14 0,035 0.31 2.8 0.02 0,002 21.2 2.85 0.41 0,179 0.016 0.15 1.04 0.98 15 0,035 0.23 2.3 0,012 0,003 21,25 2.57 0.39 0.221 0.001 3.34 2.19 0.89 16 0,015 0.33 1.83 0,006 0.04 21.63 2.12 0.4 0.226 0.01 3.31 2.42 0.86 17 0,025 0.53 3.87 0.019 0,003 21.51 2.21 0.41 0.25 0.034 0.79 2.1 1.75 18 0,035 0.5 2 0.02 0,003 22 2.3 0.5 0.22 0.01 3.5 2.39 0.87 19 * 0.023 0.68 0.98 0.019 0.001 23.54 4.64 0.47 0.22 0.019 0.27 0.27 0.21 20 * 0.023 0.68 0.89 0.02 0.001 23.27 4.79 0.49 0,205 0,017 0.25 0.24 0.19 21 * 0.02 0.62 1.18 0,018 0.001 23.47 4.61 0.45 0.23 0.02 0.29 0.32 0.26 22 * 0,022 0.67 1.11 0.02 0,002 23.45 4.37 0.54 0.213 0,018 0.23 0.31 0.25 23 * 0.028 0.74 1.12 0.023 0,006 22.67 6 2.59 0.16 0.016 0.1 0.20 0.19

Die nachstehende Tabelle 2 zeigt die zu den vorgenannten Legierungen ermittelten mechanisch-technologischen Kennwerte. Tabelle 2: Bsp. Rp0,2 Rm A ISO-V (RT) Tooling Werte erfüllt (Mn+Cu) /Ni Mn/Ni 1 477 636 36,4 46,2 133 1 3,27 3,15 2 459,7 638 42,8 49,5 132 1 3,54 3,38 3 445 625,5 42,4 180,5 130 2 1,95 1,68 4 441,3 639 42,2 148 n.b. 2 2,04 1,85 5 450 649 44,7 205 128 2 2,22 2,09 6 457,5 641 43,3 93,7 125 2 2,70 2,56 7 448 641 40,3 185 130 2 2,09 1,83 8 457 648 39,3 170,6 127 2 1,79 1,62 9 445 643 38,6 156 n.b. 2 2,15 1,87 10 451 637 43,2 192,3 135 2 2,10 1,93 11 462 642 41,2 173 130 2 2,10 1,81 12 473 660 44,6 201,3 131 2 1,95 1,72 13 468 653 43,7 178,5 131 2 2,13 1,80 14 438 597 48,7 180 118 1 1,04 0,98 15 425 650 42 218 n.b. 2 2,19 0,89 16 441 635 40 154 124 2 2,42 0,86 17 441 640 43,8 189 n.b. 2 2,11 1,75 18 475 665 35,7 125 n.b. 2 2,39 0,87 19* 465,3 660 42,1 197 100 2 0,27 0,21 20* 455,7 647,3 41,3 196,3 100 2 0,24 0,19 21* 458,3 668 42,6 179 102 2 0,32 0,26 22* 513 653 39 209 99 2 0,31 0,25 23* 484 681 38,3 239 89 2 0,20 0,19 Table 2 below shows the mechanical-technological parameters determined for the abovementioned alloys. <b> Table 2: </ b> Ex. Rp0.2 rm A ISO-V (RT) Tooling Values fulfilled (Mn + Cu) / Ni Mn / Ni 1 477 636 36.4 46.2 133 1 3.27 3.15 2 459.7 638 42.8 49.5 132 1 3.54 3.38 3 445 625.5 42.4 180.5 130 2 1.95 1.68 4 441.3 639 42.2 148 nb 2 2.04 1.85 5 450 649 44.7 205 128 2 2.22 2.09 6 457.5 641 43.3 93.7 125 2 2.70 2.56 7 448 641 40.3 185 130 2 2.09 1.83 8th 457 648 39.3 170.6 127 2 1.79 1.62 9 445 643 38.6 156 nb 2 2.15 1.87 10 451 637 43.2 192.3 135 2 2.10 1.93 11 462 642 41.2 173 130 2 2.10 1.81 12 473 660 44.6 201.3 131 2 1.95 1.72 13 468 653 43.7 178.5 131 2 2.13 1.80 14 438 597 48.7 180 118 1 1.04 0.98 15 425 650 42 218 nb 2 2.19 0.89 16 441 635 40 154 124 2 2.42 0.86 17 441 640 43.8 189 nb 2 2.11 1.75 18 475 665 35.7 125 nb 2 2.39 0.87 19 * 465.3 660 42.1 197 100 2 0.27 0.21 20 * 455.7 647.3 41.3 196.3 100 2 0.24 0.19 21 * 458.3 668 42.6 179 102 2 0.32 0.26 22 * 513 653 39 209 99 2 0.31 0.25 23 * 484 681 38.3 239 89 2 0.20 0.19

Die Fig. 1 zeigt den Erfüllungsgrad an die gewünschten mechanischen Eigenschaften 0,2%-Dehngrenze (Rp0,2) ≥ 420 N/mm2, Zugfestigkeit (Rm) ≥ 620 N/mm2, Dehnung (A5) > 20% und Kerbschlagzähigkeit (Charpy - V) ≥ 60J.The Fig. 1 indicates the degree of compliance with the desired mechanical properties 0.2% proof stress (Rp0.2) ≥ 420 N / mm2, tensile strength (Rm) ≥ 620 N / mm2, elongation (A5)> 20% and notched impact strength (Charpy - V) ≥ 60J.

Man erkennt, dass durch die Einstellung des Mn/Ni - Gehaltes ein Werkstoff entsteht, der das gesamte Anforderungsprofil abdeckt und zusätzlich eine bessere Zerspanbarkeit besitzt (Fig. 2). Während beim Unter- und Überschreiten dieses Verhältnisses ein Nichterreichen der mechanisch-technologischen Werte (Festigkeit oder Zähigkeit) bzw. bei Unterschreiten eine schlechtere Zerspanbarkeit zu erkennen ist.It can be seen that setting the Mn / Ni content results in a material which covers the entire requirement profile and additionally has better machinability ( Fig. 2 ). While falling below this ratio, a failure to achieve the mechanical-technological values (strength or toughness) or when it falls below a lower machinability can be seen.

Die Fig. 2 zeigt die Bearbeitbarkeit der Versuchsanalysen bezogen auf Mo-arme Referenzlegierungen in Abhängigkeit vom Mn-/Ni-Verhältnis. Man erkennt die verbesserte Zerspanbarkeit bei höheren Mn/Ni-Verhältnissen.The Fig. 2 shows the machinability of the experimental analyzes based on Mo-poor reference alloys as a function of the Mn / Ni ratio. One recognizes the improved machinability at higher Mn / Ni ratios.

Die Fig. 3, 4 und 6 zeigen typische Gefüge der erfindungsgemäßen Ni-Cr-Mn-Duplexlegierung gemäß der in der vorstehend aufgeführten Tabelle näher definierten Legierungszusammensetzung gemäß Beispiel 5, 10 und 15. Man erkennt das typische ausgewogene Zweiphasengefüge der Duplexstähle.The Fig. 3, 4 and 6 show typical structures of the Ni-Cr-Mn duplex alloy according to the invention according to the alloy composition defined in detail in the table above according to Example 5, 10 and 15. It can be seen the typical balanced two-phase structure of the duplex steels.

Die Fig. 5 zeigt den repräsentativen Spaltbruch bei ungünstigem Mn-Ni-Verhältnis aus Legierungszusammensetzung Nr. 1. Durch das zu hohe Verhältnis lässt sich ein Abfall der Zähigkeit erkennen.The Fig. 5 shows the representative gap fracture at unfavorable Mn-Ni ratio of alloy composition no. 1. The ratio is too high, a decrease in toughness can be seen.

Claims (15)

Nickel-Chrom-Mangan-Legierung mit 0,005 bis 0,07 Gew% Kohlenstoff 20,5 bis 23,0 Gew% Chrom 0,05 bis 1,5 Gew% Silizium 1,5 bis 6,0 Gew% Mangan 1,7 bis 3,0 Gew% Nickel 0,15 bis 0,30 Gew% Stickstoff 0,1 bis 0,8 Gew% Molybdän 0,05 bis 4,5 Gew% Kupfer bis 0,3 Gew% Kobalt bis 0,04 Gew% Phosphor bis 0,04 Gew% Schwefel bis 0,2 Gew% Niob bis 0,2 Gew% Vanadium bis 0,2 Gew% Zirkonium bis 0,2 Gew% Wolfram bis 0,2 Gew% Tantal bis 0,1 Gew% Blei bis 0,1 Gew% Bismut bis 0,1 Gew% Zinn bis 0,1 Gew% Zink bis 0,1 Gew% Selen bis 0,1 Gew% Arsen bis 0,1 Gew% Titan bis 0,05 Gew% Aluminium bis 0,05 Gew% Calicum bis 0,05 Gew% Magnesium bis 0,05 Gew% Barium bis 0,05 Gew% Lanthan bis 0,05 Gew% Cer bis 0,05 Gew% Yttrium bis 0,05 Gew% Rhenium bis 0,05 Gew% Sauerstoff bis 0,05 Gew% Bor Rest Eisen einschließlich erschmelzungsbedingter Verunreinigungen. Nickel-chromium-manganese alloy with 0.005 to 0.07 wt% carbon 20.5 to 23.0% by weight of chromium 0.05 to 1.5% by weight of silicon 1.5 to 6.0% by weight manganese 1.7 to 3.0% by weight nickel 0.15 to 0.30 wt% nitrogen 0.1 to 0.8% by weight of molybdenum 0.05 to 4.5% by weight of copper to 0.3% by weight of cobalt to 0.04 wt% phosphorus to 0.04 wt% sulfur to 0.2% by weight of niobium to 0.2% by weight of vanadium to 0.2% by weight zirconium to 0.2% by weight tungsten up to 0.2% by weight tantalum up to 0.1% by weight of lead to 0.1% by weight of bismuth to 0.1% by weight of tin to 0.1% by weight of zinc to 0.1% by weight of selenium up to 0.1% by weight of arsenic to 0.1% by weight of titanium to 0.05% by weight of aluminum to 0.05% by weight of calicum up to 0.05% by weight of magnesium to 0.05% by weight of barium to 0.05% by weight of lanthanum to 0.05% by weight of cerium to 0.05% by weight of yttrium up to 0.05% by weight of rhenium to 0.05% by weight of oxygen to 0.05% by weight boron Remaining iron, including impurities caused by melting. Legierung nach Anspruch 1, die jedoch einzeln oder nebeneinander 0,005 bis 0,05 Gew% Kohlenstoff 21,2 bis 22,5 Gew% Chrom 0,25 bis 1,0 Gew% Silizium 3,5 bis 5,0 Gew% Mangan 0,3 bis 1,0 Gew% Kupfer bis 0,03 Gew% Phosphor bis 0,015 Gew% Schwefel enthält. An alloy according to claim 1, but individually or side by side 0.005 to 0.05% by weight of carbon 21.2 to 22.5 wt% chromium 0.25 to 1.0% by weight of silicon 3.5 to 5.0% by weight of manganese 0.3 to 1.0% by weight of copper up to 0.03% by weight phosphorus to 0.015% by weight of sulfur contains. Legierung nach Anspruch 2, die jedoch einzeln oder nebeneinander 21,4 bis 22,0 Gew% Chrom 3,5 bis 4,5 Gew% Mangan 2,0 bis 2,7 Gew% Nickel 0,2 bis 0,25 Gew% Stickstoff 0,3 bis 0,7 Gew% Molybdän enthält. An alloy according to claim 2, but which individually or side by side 21.4 to 22.0 wt% chromium 3.5 to 4.5% by weight of manganese 2.0 to 2.7% by weight nickel 0.2 to 0.25% by weight of nitrogen 0.3 to 0.7% by weight of molybdenum contains. Legierung nach Anspruch 1, die jedoch einzeln oder nebeneinander 0,005 bis 0,05 Gew% Kohlenstoff 21,2 bis 22,5 Gew% Chrom 0,2 bis 1,0 Gew% Silizium 1,5 bis 3,0 Gew% Mangan 3,0 bis 4,5 Gew% Kupfer bis 0,03 Gew% Phosphor bis 0,015 Gew% Schwefel enthält. An alloy according to claim 1, but individually or side by side 0.005 to 0.05% by weight of carbon 21.2 to 22.5 wt% chromium 0.2 to 1.0% by weight of silicon 1.5 to 3.0% by weight of manganese 3.0 to 4.5% by weight copper up to 0.03% by weight phosphorus to 0.015% by weight of sulfur contains. Legierung nach Anspruch 4, gekennzeichnet durch 21,4 bis 22,0 Gew% Chrom 2,0 bis 2,7 Gew% Nickel 0,2 bis 0,25 Gew% Stickstoff 0,3 bis 0,7 Gew% Molybdän enthält. Alloy according to claim 4, characterized by 21.4 to 22.0% by weight of chromium 2.0 to 2.7% by weight nickel 0.2 to 0.25% by weight of nitrogen 0.3 to 0.7% by weight of molybdenum contains. Legierung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Mangan-Gehalt der Legierung in Gew.% geringer ist, als der 3fache Nickel-Gehalt der Legierung in Gew.% und höher als 1,5fache Nickelgehalt der Legierung in Gew.%.Alloy according to one of claims 1 to 5, characterized in that the manganese content of the alloy in wt.% Is less than three times the nickel content of the alloy in wt.% And higher than 1.5 times the nickel content of the alloy in wt. %. Legierung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Verhältnis der Summe des Kupfer-Anteils und des Mangan-Anteils in Gew.% zum Nickelgehalt der Legierung in Gew.% zwischen 1,5 zu 3,5 liegt.Alloy according to one of claims 1 to 6, characterized in that the ratio of the sum of the copper content and the manganese content in% by weight to the nickel content of the alloy in% by weight is between 1.5 and 3.5. Legierung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Legierung einen Ferrit-Anteil von 30 bis 55 % am Gesamtgefüge hat.Alloy according to one of claims 1 to 7, characterized in that the alloy has a ferrite content of 30 to 55% of the total structure. Bauteil aus einer Legierung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Bauteil zumindest eine der nachfolgenden mechanischen Eigenschaften bei Raumtemperatur aufweist: 0,2%-Dehngrenze (Rp0,2) ≥ 420 N/mm2, Zugfestigkeit (Rm) ≥ 620 N/mm2, Dehnung (A5) > 20% und Kerbschlagzähigkeit (Charpy - V) ≥ 60J. Component of an alloy according to one of claims 1 to 8, characterized in that the component has at least one of the following mechanical properties at room temperature: 0.2% proof stress (Rp0.2) ≥420 N / mm2, Tensile strength (Rm) ≥ 620 N / mm 2, Elongation (A5)> 20% and Impact strength (Charpy - V) ≥ 60J. Verfahren zum Herstellen einer Legierung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Legierungsbestandteile in einem Induktionsofen erschmolzen werden und mittels Pfannenzuschlägen desoxidiert werden.A process for producing an alloy according to any one of claims 1 to 8, characterized in that the alloy components are melted in an induction furnace and deoxidized by means of Pfannenzuchlägen. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Legierungsbestandteile in einem Mittelfrequenztiegelofen erschmolzen werden ohne weitere Sekundärmetallurgie.A method according to claim 10, characterized in that the alloying components are melted in a medium frequency crucible furnace without further secondary metallurgy. Verfahren zum Herstellen des Bauteils nach Anspruch 9, gekennzeichnet durch die Durchführung des Verfahrens nach einem der Ansprüche 8 oder 9 zum Erzeugen einer Gusslegierung und Gießen des Bauteils.Method for producing the component according to Claim 9, characterized by carrying out the method according to one of Claims 8 or 9 for producing a cast alloy and casting the component. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass das Bauteil nach dem Gießen nicht gewalzt oder geschmiedet wird.A method according to claim 12, characterized in that the component is not rolled or forged after casting. Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass eine Wärmebehandlung des gegossenen Bauteils bei einer Temperatur von 1000 bis 1250 °C erfolgt.A method according to claim 12 or 13, characterized in that a heat treatment of the cast component takes place at a temperature of 1000 to 1250 ° C. Verwendung der Legierung nach einem der Ansprüche 1 bis 8 als Duplexstahl.Use of the alloy according to one of claims 1 to 8 as duplex steel.
EP12167011.1A 2012-05-07 2012-05-07 Iron-chromium-manganese-nickel alloy Withdrawn EP2662461A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12167011.1A EP2662461A1 (en) 2012-05-07 2012-05-07 Iron-chromium-manganese-nickel alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12167011.1A EP2662461A1 (en) 2012-05-07 2012-05-07 Iron-chromium-manganese-nickel alloy

Publications (1)

Publication Number Publication Date
EP2662461A1 true EP2662461A1 (en) 2013-11-13

Family

ID=46049279

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12167011.1A Withdrawn EP2662461A1 (en) 2012-05-07 2012-05-07 Iron-chromium-manganese-nickel alloy

Country Status (1)

Country Link
EP (1) EP2662461A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087767A (en) * 2014-07-08 2014-10-08 张家港市飞浪泵阀有限公司 Method for smelting nickel-based alloy by adopting non-vacuum induction furnace
EP3556879A4 (en) * 2017-01-23 2020-01-15 JFE Steel Corporation Ferritic/austenitic duplex stainless steel plate
WO2021046929A1 (en) * 2019-09-12 2021-03-18 南京达迈科技实业有限公司 Large-diameter ni-cr rotating target containing trace elements and preparation method therefor
CN113462988A (en) * 2021-06-18 2021-10-01 浙江瓯赛汽车部件铸造有限公司 Valve body casting and casting process thereof
CN115925405A (en) * 2022-12-29 2023-04-07 西安锐磁电子科技有限公司 NiCuZn soft magnetic ferrite material with high magnetic permeability and high Curie temperature and preparation method thereof
PL442755A1 (en) * 2022-11-07 2024-05-13 Sieć Badawcza Łukasiewicz - Instytut Metalurgii Żelaza Im. Stanisława Staszica W Gliwicach Heat-resistant martensitic steel and method of thermoplastic and heat treatment of heat-resistant martensitic steel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2624670A (en) * 1952-08-15 1953-01-06 Union Carbide & Carbon Corp Chromium steels
FR2119612A5 (en) * 1970-12-23 1972-08-04 Armco Steel Corp
US6096441A (en) 1997-06-30 2000-08-01 Usinor Austenoferritic stainless steel having a very low nickel content and a high tensile elongation
EP1327008B1 (en) 2000-09-27 2006-02-15 Outokumpu Stainless AB Ferritic-austenitic stainless steel
EP2258885A1 (en) * 2008-03-26 2010-12-08 Nippon Steel & Sumikin Stainless Steel Corporation Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness
US20110064601A1 (en) * 2008-05-16 2011-03-17 Outokumpu Oyj Stainless steel product, use of the product and method of its manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2624670A (en) * 1952-08-15 1953-01-06 Union Carbide & Carbon Corp Chromium steels
FR2119612A5 (en) * 1970-12-23 1972-08-04 Armco Steel Corp
US3736131A (en) 1970-12-23 1973-05-29 Armco Steel Corp Ferritic-austenitic stainless steel
US6096441A (en) 1997-06-30 2000-08-01 Usinor Austenoferritic stainless steel having a very low nickel content and a high tensile elongation
EP1327008B1 (en) 2000-09-27 2006-02-15 Outokumpu Stainless AB Ferritic-austenitic stainless steel
EP2258885A1 (en) * 2008-03-26 2010-12-08 Nippon Steel & Sumikin Stainless Steel Corporation Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness
US20110064601A1 (en) * 2008-05-16 2011-03-17 Outokumpu Oyj Stainless steel product, use of the product and method of its manufacture

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SCHRAMM BERND ET AL: "Lean Duplex stainless steels for pump applications", STAINLESS STEEL WORLD 2007 : SSW 2007 ; [CONFERENCE AND EXHIBITION ; MAASTRICHT, THE NETHERLANDS, 6 - 8 NOVEMBER 2007] ; CONFERENCE PA, KCI PUBL, NL; MAASTRICHT, NETHERLANDS, 1 January 2007 (2007-01-01), pages 1 - 10, XP008163766 *
WESSMAN S M ET AL: "On the effect of nickel substitution in duplex stainless steel", MATERIALS SCIENCE AND TECHNOLOGY, MANEY PUBLISHING, GB, vol. 24, no. 3, 1 March 2008 (2008-03-01), pages 348 - 355, XP008154661, ISSN: 0267-0836, DOI: 10.1179/174328408X276116 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087767A (en) * 2014-07-08 2014-10-08 张家港市飞浪泵阀有限公司 Method for smelting nickel-based alloy by adopting non-vacuum induction furnace
CN104087767B (en) * 2014-07-08 2016-08-24 张家港市飞浪泵阀有限公司 The method of non-vacuum induction furnace melting nickel-base alloy
EP3556879A4 (en) * 2017-01-23 2020-01-15 JFE Steel Corporation Ferritic/austenitic duplex stainless steel plate
US11142814B2 (en) 2017-01-23 2021-10-12 Jfe Steel Corporation Ferritic-austenitic duplex stainless steel sheet
WO2021046929A1 (en) * 2019-09-12 2021-03-18 南京达迈科技实业有限公司 Large-diameter ni-cr rotating target containing trace elements and preparation method therefor
CN113462988A (en) * 2021-06-18 2021-10-01 浙江瓯赛汽车部件铸造有限公司 Valve body casting and casting process thereof
PL442755A1 (en) * 2022-11-07 2024-05-13 Sieć Badawcza Łukasiewicz - Instytut Metalurgii Żelaza Im. Stanisława Staszica W Gliwicach Heat-resistant martensitic steel and method of thermoplastic and heat treatment of heat-resistant martensitic steel
CN115925405A (en) * 2022-12-29 2023-04-07 西安锐磁电子科技有限公司 NiCuZn soft magnetic ferrite material with high magnetic permeability and high Curie temperature and preparation method thereof

Similar Documents

Publication Publication Date Title
EP3332047B1 (en) Production method of a flexibly-rolled steel sheet product and its use
DE69429610T2 (en) High strength martensitic stainless steel and process for its manufacture
EP2163659B1 (en) Stainless steel, cold strip made of same and method for producing cold strip from same
EP2662461A1 (en) Iron-chromium-manganese-nickel alloy
EP3325678B1 (en) Formable lightweight steel with improved mechanical properties and method for producing semi-finished products from said steel
DE69610544T2 (en) HIGH-STRENGTH, HIGH-DUCTILE TITANIUM ALLOY AND METHOD FOR THE PRODUCTION THEREOF
WO2017021459A1 (en) High-tensile manganese steel containing aluminium, method for producing a sheet-steel product from said steel and sheet-steel product produced according to this method
EP2767601A1 (en) Cold rolled steel flat product for deep drawing applications and method for its production
DE102006058066B3 (en) Powder metallurgically produced steel sheet
DE2447137A1 (en) STEEL ALLOY RESISTANT AGAINST PITCH CORROSION
EP3899063B1 (en) Super austenitic material
DE19955386A1 (en) High pressure resistant drive shaft and method of manufacturing the same
EP2103704B1 (en) Hot-rolled long product and method for its manufacture
DE112006003553B4 (en) Thick steel plate for a welded construction having excellent strength and toughness in a central region of thickness and small property changes by its thickness and production process therefor
EP3551776B1 (en) Method for producing a hot or cold strip and/or a flexibly rolled flat steel product made of a high-strength manganese steel and flat steel product produced by said method
EP3853389A1 (en) Steel for surface hardening with high edge hardness and with a fine ductile core structure
EP2255021B1 (en) Steel alloy for a low alloy steel for producing high-tensile seamless steel tubing
DE60201984T2 (en) TOOL STEEL OF HIGH TENSILE, METHOD FOR PRODUCING PARTS FROM THIS STEEL AND PARTS MANUFACTURED THEREOF
EP3847284B1 (en) Hot-rolled flat steel product and method for the production thereof
DE19909810A1 (en) Steel composition for hot working
DE102016115618A1 (en) Process for producing a high-strength steel strip with improved properties during further processing and such a steel strip
DE2937908A1 (en) TE-S AUTOMATIC STEEL WITH LOW ANISOTROPY AND METHOD FOR THE PRODUCTION THEREOF
EP3405593B1 (en) Flat steel product and method for manufacturing
EP3458623B1 (en) Method for producing a steel material, and steel material
DE3225614C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140512

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20180105

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200603