EP2657360B1 - Pressure cast alloy on an Al-Si basis, comprising secondary aluminium - Google Patents
Pressure cast alloy on an Al-Si basis, comprising secondary aluminium Download PDFInfo
- Publication number
- EP2657360B1 EP2657360B1 EP12165829.8A EP12165829A EP2657360B1 EP 2657360 B1 EP2657360 B1 EP 2657360B1 EP 12165829 A EP12165829 A EP 12165829A EP 2657360 B1 EP2657360 B1 EP 2657360B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- die
- casting alloy
- alloy
- weight
- casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 89
- 239000000956 alloy Substances 0.000 title claims description 89
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims description 17
- 229910052782 aluminium Inorganic materials 0.000 title claims description 17
- 229910018125 Al-Si Inorganic materials 0.000 title claims description 7
- 229910018520 Al—Si Inorganic materials 0.000 title claims description 7
- 239000004411 aluminium Substances 0.000 title claims 3
- 238000004512 die casting Methods 0.000 claims description 56
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 51
- 239000011572 manganese Substances 0.000 claims description 40
- 239000010949 copper Substances 0.000 claims description 39
- 239000011777 magnesium Substances 0.000 claims description 36
- 229910052748 manganese Inorganic materials 0.000 claims description 28
- 229910052742 iron Inorganic materials 0.000 claims description 26
- 229910052749 magnesium Inorganic materials 0.000 claims description 25
- 229910052802 copper Inorganic materials 0.000 claims description 24
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 11
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 239000011734 sodium Substances 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 4
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 claims description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 239000011701 zinc Substances 0.000 description 16
- 229910052725 zinc Inorganic materials 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 6
- 238000005266 casting Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910000838 Al alloy Chemical group 0.000 description 1
- 229910018191 Al—Fe—Si Inorganic materials 0.000 description 1
- 229910015136 FeMn Inorganic materials 0.000 description 1
- 229910005347 FeSi Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- VRAIHTAYLFXSJJ-UHFFFAOYSA-N alumane Chemical group [AlH3].[AlH3] VRAIHTAYLFXSJJ-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/002—Castings of light metals
- B22D21/007—Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
- C22C21/04—Modified aluminium-silicon alloys
Definitions
- the invention relates to a die-casting alloy based on Al-Si, comprising in particular secondary aluminum.
- Inexpensive die-cast alloys can be obtained, for example, from aluminum scrap, but as a rule they disadvantageously contain undesirably high impurities, in the form of iron, copper and zinc alloy fractions (US Pat. EP1111077A1 ). This not only leads to a reduced ductility potential but can also have negative effects on the strength and quench sensitivity of the diecasting alloy.
- Various measures for mutual weighting of the alloying elements, as well as various proposals for alloys are known from the prior art - in particular in order to compensate for the negative influences of the impurities.
- the DE102004013777B4 proposes a casting alloy with 5 to 18 wt .-% Si, with 0.15 to 0.45 wt .-% Mn, with 0.2 to 0.6 wt .-% Fe, with 0.3 to 0.5 wt % Mg, with possibly 0.1 to 0.5% by weight of Cu and with 4 to 5% by weight of Zn.
- the content of a maximum of 0.5% by weight of magnesium should avoid the formation of Mg-Fe-'pi 'phases in order to obtain the ductility.
- Cu is said to improve the heat resistance of the alloy, with the content of zinc being limited to 4 to 5% by weight so as to adjust the strength and quenching sensitivity of the alloy.
- the DE102009012073A1 with secondary aluminum - due to the comparatively low lower limits of permissible Cu and Zn contents, the range of usable secondary aluminum is comparatively limited.
- such a composition can not provide comparatively high strength, ductility and castability, especially since Zn as an impurity should be limited to a small extent.
- Zn content in the diecasting alloy is to be kept below 0.05% by weight.
- this die-casting alloy should be able to ensure both die casting and complex demoulding as well as excellent mold release, as well as offering excellent processability in the components produced from it.
- the invention solves the task by the fact that the die-cast alloy 6 to 12 % By weight of silicon (Si), at least 0.3 % By weight of iron (Fe), at least 0.25 Wt .-% manganese (Mn), at least 0.1 Wt.% Copper (Cu), 0.24 to 0.8 Wt .-% magnesium (Mg) and 0.40 to 1.5 Wt .-% zinc (Zn) has and that the die-cast alloy 50 to 300 ppm strontium (Sr) and / or 20 to 250 ppm sodium (Na) and / or 20 to 350 ppm antimony (Sb), and at least one of the following components maximum 0.2 % By weight of titanium (Ti); maximum 0.3 % By weight zirconium; maximum 0.3 % By weight of vanadium (V); and the remainder being aluminum and having unavoidable impurities due to production, the total proportion of Fe and Mn in the die-cast alloy together being a maximum of 1.5% by weight, the quotient of the percentages by
- a low-cost die-casting alloy can be provided on Al-Si basis, because essentially reduces the proportion of primary aluminum or . even refrained from it or that secondary aluminum can be used increased for the production of castings.
- the alloy constituents of the casting alloy are forced into specific content limits in order to approximate the parameters known from primary aluminum (eg strength values, ductility values, chemical reaction stability, processability and / or castability).
- ⁇ -phase eg: Al 5 FeSilAl 8.9 Fe 2 Si 2
- the ⁇ -phase eg: Al 5 FeSilAl 8.9 Fe 2 Si 2
- the ⁇ -phase may be present as Al 15 (FeMn) 3 Si 2 due to the manganese content of at least 0.25 wt .-% according to the invention.
- This ⁇ -phase crystallizes in globulitic form and, due to its compact structure, can have a significantly more favorable influence on the ductility than is known from the acicular ⁇ -phases.
- a diecasting alloy with a comparatively high ductility can thus be ensured.
- the total content of Fe and Mn on the die casting alloy is limited to a maximum of 1.5% by weight, the formation of coarse ⁇ phases can be further reduced, even if the high cooling rates usually used in die casting processes are used.
- the concentration requirements for Fe and Mn can therefore be particularly beneficial to the ductility of the diecasting alloy.
- the existing copper in the preferably forming Q phase (Al 5 Cu 2 Mg 8 Si 6 ) are bound.
- This concentration rule can therefore prevent the formation of corrosion-prone phases, such as the Tao phase (Al 5 Cu 4 Zn) or the theta phase (Al 2 Cu) in the microstructure, so that despite comparatively high weight percent of Cu, which according to the invention is used to improve the hot curing of the diecasting alloy, also a high corrosion resistance can be maintained.
- this excess magnesium can improve the curing mechanism of the alloy because part of the Mg is bound in the Q phase (Al 5 Cu 2 M 98 Si 6 ) and thus overcome known limitations due to excessive precipitation of Set Mg 2 Si pre-phases.
- the concentration requirements for Cu and Mg can therefore satisfy particularly high demands of the diecasting alloy in terms of strength and chemical reaction resistance.
- the proposed concentration ratio of Cu and Mg improved the processability, for example with regard to the weldability and rivability of components made from this diecasting alloy.
- the introduction and / or adjustment of the aforementioned magnesium excess over Cu can also be used to bind the increased Fe content of the diecasting alloy in a pi phase (Al 8 FeMg 3 Si 6 ).
- the ductility affecting ⁇ -phase eg: Al 5 FeSi / Al 8.9 Fe 2 Si 2
- the Mn content in the diecasting alloy can also be reduced because the pi phase (eg: Al 8 FeMg 3 Si 6 ) can be used to take up Fe.
- Die casting problems usually to be accepted due to an increased Mn content to compensate for Fe effects, can thus be reduced. A complex deformation as well as an excellent releasability can be ensured by the special content limits of Mg, Fe, Mn in connection with their concentration requirements.
- the strength of the alloy for example coined by an interaction of the pre-phases Mg 2 Si and Q-phase (Al 5 Cu 2 Mg 8 Si 6 ), can be determined by solid-solution hardening be further improved with the help of a zinc deposit.
- zinc should be adjusted in the content limits of 0.40 to 1.5 wt .-%.
- this may be beneficial to the ductility of the diecasting alloy.
- the content limits of Zn according to the invention may be distinguished in improving the castability of the die-cast alloy, whereby adverse effects due to the proposed content limits of Mn in the diecasting alloy can be largely compensated.
- the Al-Si-based die-casting alloy balanced in the alloy components Fe, Mn, Cu, Mg and Zn can combine a comparatively high ductility, corrosion resistance, strength, castability and processability, thus overcoming parameter boundaries known from the prior art even if the die-cast alloy has secondary aluminum and / or is added to it or thereby leads to comparatively high levels of impurities.
- the die casting alloy may have 50 to 300 ppm strontium (Sr) and / or 20 to 250 ppm sodium (Na) and / or 20 to 350 ppm antimony (Sb).
- Sr strontium
- Na sodium
- SB antimony
- at most 0.2% by weight of titanium (Ti) and / or at most 0.3% by weight of zirconium and / or at most 0.3% by weight of vanadium (V) may prove to be advantageous.
- the die-cast alloy can be supplemented in each case to 100% by weight with Al, and this die-casting alloy can also lead to unavoidable impurities due to its production.
- the die-cast alloy can have impurities of not more than 0.1% by weight and not more than 1% by weight in total.
- Strength, ductility, processability, and chemical reaction resistance of the die-cast alloy can be further improved when they contain 0.3 to 1.0 wt% Fe (Fe), 0.25 to 1.0 wt% Manganese (Mn), and 0 , 1 to 0.6 wt .-% copper (Cu).
- the diecast alloy meets the order relation in its composition weight , - % mg > 0 . 2 + 0 . 12 ⁇ weight , - % Fe / weight , - % Mn a simple procedure for increasing the proportion of pi-phase (eg: Al 8 FeMg 3 Si 6 ) in the structure of the die-cast alloy can be given. Increased Fe contents can thus be compensated, whereby the best castability of the die-cast alloy can be maintained with a reduced Mn content.
- this pi-phase can be converted with a solution annealing into a harmless for the required properties of the die-cast alloy ⁇ -phase.
- the die cast alloy can be further improved in terms of achievable ductility, strength and corrosion resistance, if the total content of Fe and Mn together on the die-cast alloy together maximally 1.2 wt .-%, the quotient of the weight percentages of Fe and Mn 0.5 to 1 , 25 and the quotient of the weight percent of Cu and Mg is 0.2 to 0.5.
- the die casting alloy has 9.5 to 11.5 wt.% Silicon (Si) and / or 0.35 to 0.6 wt.% Iron (Fe) and / or 0.3 to 0.75 wt.
- Manganese (Mn) and / or 0.1 to 0.4% by weight of copper (Cu) and / or 0.24 to 0.5% by weight of magnesium (Mg) and / or 0.40 to 1.0 Zinc (Zn) results in narrower limits for an improved Al-Si based through-casting alloy in its mechanical and / or chemical resistance.
- the proposed content of Si improves the flow properties of the melt and that brittle primary silicon phases can be avoided. This also makes it possible to pressure-mold even comparatively thin-walled components. 9.5 to 11.5% by weight of silicon (Si) may prove to be particularly advantageous for this purpose.
- Alloy 1 is a die cast alloy of low contamination primary aluminum.
- Alloy 2 shows a considerable degree of impurities in iron and copper alloy fractions, which can be introduced, for example, by secondary aluminum.
- concentration ratios for a diecasting alloy proposed according to the invention make it possible to ensure comparatively high ductility, corrosion resistance, strength, castability and processability.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mounting, Exchange, And Manufacturing Of Dies (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Extrusion Of Metal (AREA)
- Conductive Materials (AREA)
Description
Die Erfindung betrifft eine Druckgusslegierung auf Al-Si-Basis, aufweisend insbesondere Sekundäraluminium.The invention relates to a die-casting alloy based on Al-Si, comprising in particular secondary aluminum.
Preiswerte Druckgusslegierungen können beispielsweise aus Aluminium-Schrotten gewonnen werden, enthalten in der Regel jedoch nachteilig unerwünscht hohe Verunreinigungen, in Form von Eisen-, Kupfer- und Zink-Legierungsanteilen (
So ist aus der
Die
Des Weitern ist aus der
Es ist daher die Aufgabe der Erfindung, ausgehend vom eingangs geschilderten Stand der Technik, eine Druckgusslegierung auf Al-Si-Basis zu schaffen, die trotz Verwendung von Sekundäraluminium Druckgussteile mit hohen Ansprüchen hinsichtlich Festigkeit, Duktilität und chemischer Reaktionsbeständigkeit, insbesondere Korrosionsbeständigkeit, ermöglichen kann. Außerdem soll diese Druckgusslegierung druckgusstechnisch sowohl komplexes Verformen, als auch exzellente Entformbarkeit sicherstellen können sowie bei den daraus hergestellten Bauteilen exzellente Verarbeitbarkeit bieten.It is therefore an object of the invention, starting from the above-described prior art, to provide a die-casting alloy based on Al-Si, despite the use of secondary aluminum die castings with high demands in terms of strength, ductility and chemical reaction resistance, especially corrosion resistance. In addition, this die-casting alloy should be able to ensure both die casting and complex demoulding as well as excellent mold release, as well as offering excellent processability in the components produced from it.
Die Erfindung löst die gestellte Aufgabe dadurch, dass die Druckgusslegierung
wobei der Gesamtanteil von Fe und Mn an der Druckgusslegierung zusammen maximal 1,5 Gew.-%, der Quotient der Gewichtsprozente von Fe und Mn 0,35 bis 1,5 und der Quotient der Gewichtsprozente von Cu und Mg 0,2 bis 0,8 betragen.The invention solves the task by the fact that the die-cast alloy
the total proportion of Fe and Mn in the die-cast alloy together being a maximum of 1.5% by weight, the quotient of the percentages by weight of Fe and Mn 0.35 to 1.5 and the quotient of the percentages by weight of Cu and Mg 0.2 to 0, 8 amount.
Durch ein Zulassen von vergleichsweise hohen Gew.-% an Verunreinigungen, wie dies erfindungsgemäß für Eisen, Kupfer und Zink auch vorgeschlagen wird, kann eine kostengünstige Druckgusslegierung auf Al-Si-Basis zur Verfügung gestellt werden, weil im Wesentlichen der Anteil an Primäraluminium reduziert bzw. sogar darauf verzichtet bzw. damit Sekundäraluminium zur Erzeugung von Gussteilen erhöht eingesetzt werden kann. Dies wird allerdings erst möglich, indem die Legierungsbestandteile der Gusslegierung erfindungsgemäß in besondere Gehaltsgrenzen gezwungen werden, um sich damit den von Primäraluminium bekannte Parametern (z.B.: Festigkeitswerte, Duktilitätswerte, chemische Reaktionsbeständigkeit, Verarbeitbarkeit und/oder Gießbarkeit) anzunähern.By allowing relatively high wt .-% of impurities, as proposed for iron, copper and zinc according to the invention also, a low-cost die-casting alloy can be provided on Al-Si basis, because essentially reduces the proportion of primary aluminum or . even refrained from it or that secondary aluminum can be used increased for the production of castings. However, this becomes possible only when the alloy constituents of the casting alloy are forced into specific content limits in order to approximate the parameters known from primary aluminum (eg strength values, ductility values, chemical reaction stability, processability and / or castability).
So kann ein Quotient der Gewichtsprozente von Fe und Mn 0,35 bis 1,5 dazu führen, dass trotz eines vergleichsweise hohen Eisengehaltes die Bildung der β-Phase (z.B.: Al5FeSilAl8.9Fe2Si2) im Gefüge, welche sich in Form feiner Nadeln ausscheidet, deutlich verringert werden kann. Mit einem vermehrten Auftreten der α-Phase kann gerechnet werden, die aufgrund des erfindungsgemäßen Mangangehalts von mindestens 0,25 Gew.-% als Al15(FeMn)3Si2 vorliegen kann. Diese α-Phase kristallisiert in globulitischer Form und kann durch ihre kompakte Struktur einen deutlich günstigeren Einfluss auf die Duktilität nehmen, als dies von den nadelförmigen β-Phasen bekannt ist. Eine Druckgusslegierung mit einer vergleichsweise hohen Duktilität kann so sichergestellt werden. Im Allgemeinen wird noch erwähnt, dass durch dieses Verhältnis von Fe/Mn in Kombination mit hohen Abkühlgeschwindigkeiten (z.B.: durch eine beschleunigte Kühlung) deren Phasen und damit deren Einfluss auf das Gefüge vergleichsweise gering gehalten werden kann. Wird zusätzlich der Gesamtanteil von Fe und Mn an der Druckgusslegierung auf maximal 1,5 Gew.-% beschränkt, kann auch die Ausbildung grober α-Phasen weiter reduziert werden, selbst wenn die bei Druckgussverfahren üblicherweise durchgeführten hohen Abkühlgeschwindigkeiten angewendet werden. Die Konzentrationsvorschriften zu Fe und Mn können daher besonders der Duktilität der Druckgusslegierung förderlich sein.Thus, a quotient of the weight percentages of Fe and Mn 0.35 to 1.5 can lead to the formation of the β-phase (eg: Al 5 FeSilAl 8.9 Fe 2 Si 2 ) in the microstructure, which results in a comparatively high iron content Form of fine needles excretes, can be significantly reduced. With an increased occurrence of the α-phase can be expected, which may be present as Al 15 (FeMn) 3 Si 2 due to the manganese content of at least 0.25 wt .-% according to the invention. This α-phase crystallizes in globulitic form and, due to its compact structure, can have a significantly more favorable influence on the ductility than is known from the acicular β-phases. A diecasting alloy with a comparatively high ductility can thus be ensured. In general, it is also mentioned that through this ratio of Fe / Mn in combination with high cooling rates (eg: by accelerated cooling), their phases and thus their influence on the microstructure can be kept comparatively low. In addition, if the total content of Fe and Mn on the die casting alloy is limited to a maximum of 1.5% by weight, the formation of coarse α phases can be further reduced, even if the high cooling rates usually used in die casting processes are used. The concentration requirements for Fe and Mn can therefore be particularly beneficial to the ductility of the diecasting alloy.
Durch ein Einbringen und/oder Einstellen eines Magnesiumüberschusses, indem der Quotient der Gewichtsprozente von Cu und Mg 0,2 bis 0,8 beträgt, und unter Berücksichtigung, dass mindestens 0,1 Gew.-% Cu und 0,24 bis 0,8 Gew.-% Mg vorgesehen werden, kann im Wesentlichen das vorhandene Kupfer in der sich bevorzugt bildenden Q-Phase (Al5Cu2Mg8Si6) gebunden werden. Diese Konzentrationsvorschrift kann daher die Bildung korrosionsanfälliger Phasen, wie beispielsweise die Tao-Phase (Al5Cu4Zn) oder die Theta-Phase (Al2Cu), im Gefüge verhindern, so dass trotz vergleichsweise hoher Gewichtsprozente an Cu, was erfindungsgemäß zur Verbesserung der Warmaushärtung der Druckgusslegierung genützt wird, auch eine hohe Korrosionsbeständigkeit beibehalten werden kann. Außerdem kann durch diesen Magnesiumüberschuss der Aushärtemechanismus der Legierung verbessert werden, weil ein Teil des Mg in der Q-Phase (Al5Cu2M98Si6) gebunden wird und damit diesbezüglich bekannte Grenzen überwunden werden können, die sich durch eine übermäßige Ausscheidung von Mg2Si Vorphasen einstellen. Die Konzentrationsvorschriften zu Cu und Mg können daher besonders hohen Ansprüchen der Druckgusslegierung hinsichtlich Festigkeit und chemischer Reaktionsbeständigkeit genügen. Zudem konnte durch das vorgeschlagene Konzentrationsverhältnis von Cu und Mg eine verbesserte Verarbeitbarkeit, beispielsweise hinsichtlich Schweiß- und Nietbarkeit von Bauteilen aus dieser Druckgusslegierung, erreicht werden.By introducing and / or adjusting an excess of magnesium in that the quotient of the weight percent of Cu and Mg is 0.2 to 0.8, and taking into account that at least 0.1 wt .-% Cu and 0.24 to 0.8 Wt .-% Mg can be substantially, the existing copper in the preferably forming Q phase (Al 5 Cu 2 Mg 8 Si 6 ) are bound. This concentration rule can therefore prevent the formation of corrosion-prone phases, such as the Tao phase (Al 5 Cu 4 Zn) or the theta phase (Al 2 Cu) in the microstructure, so that despite comparatively high weight percent of Cu, which according to the invention is used to improve the hot curing of the diecasting alloy, also a high corrosion resistance can be maintained. In addition, this excess magnesium can improve the curing mechanism of the alloy because part of the Mg is bound in the Q phase (Al 5 Cu 2 M 98 Si 6 ) and thus overcome known limitations due to excessive precipitation of Set Mg 2 Si pre-phases. The concentration requirements for Cu and Mg can therefore satisfy particularly high demands of the diecasting alloy in terms of strength and chemical reaction resistance. In addition, the proposed concentration ratio of Cu and Mg improved the processability, for example with regard to the weldability and rivability of components made from this diecasting alloy.
Zudem konnte festgestellt werden, dass das Einbringen und/oder Einstellen des vorgenannten Magnesiumüberschusses gegenüber Cu auch dazu genützt werden kann, den erhöhten Fe-Gehalt der Druckgusslegierung in einer pi-Phase (Al8FeMg3Si6) zu binden. Damit kann auf der einen Seite die, die Duktilität beeinträchtigende β-Phase (z.B.: Al5FeSi/Al8.9Fe2Si2) reduziert werden, weil weniger Fe zur Bildung dieser β-Phase zur Verfügung steht, insbesondere aber konnte damit auf der anderen Seite auch der Mn-Gehalt in der Druckgusslegierung reduziert werden, weil die pi-Phase (z.B.: Al8FeMg3Si6) zur Aufnahme von Fe herangezogen werden kann. Druckgießprobleme, meist in Kauf zu nehmen aufgrund eines erhöhten Mn-Gehalts zur Kompensation von Fe Effekten, können so reduziert werden. Ein komplexes Verformen und auch eine exzellente Entformbarkeit können durch die besonderen Gehaltsgrenzen von Mg, Fe, Mn in Verbindung mit deren Konzentrationsvorschriften sichergestellt werden.In addition, it has been found that the introduction and / or adjustment of the aforementioned magnesium excess over Cu can also be used to bind the increased Fe content of the diecasting alloy in a pi phase (Al 8 FeMg 3 Si 6 ). Thus, on the one hand, the ductility affecting β-phase (eg: Al 5 FeSi / Al 8.9 Fe 2 Si 2 ) can be reduced because less Fe is available for the formation of this β-phase, but in particular could on the On the other hand, the Mn content in the diecasting alloy can also be reduced because the pi phase (eg: Al 8 FeMg 3 Si 6 ) can be used to take up Fe. Die casting problems, usually to be accepted due to an increased Mn content to compensate for Fe effects, can thus be reduced. A complex deformation as well as an excellent releasability can be ensured by the special content limits of Mg, Fe, Mn in connection with their concentration requirements.
Die Festigkeit der Legierung, zum Beispiel durch ein Zusammenwirken der Vorphasen Mg2Si und Q-Phase (Al5Cu2Mg8Si6) geprägt, kann durch Mischkristallhärtung mit Hilfe einer Zinkeinlagerung noch weiter verbessert werden. Hierfür ist Zink in den Gehaltsgrenzen von 0,40 bis 1,5 Gew.-% einzustellen. Zudem kann dies der Duktilität der Druckgusslegierung förderlich sein. Bei der Druckgusslegierung kann damit ein eventueller negativer Einfluss eines vergleichsweise hohen Mg-Gehalts auf ihre Duktilität verringert werden. Außerdem können sich die erfindungsgemäßen Gehaltsgrenzen an Zn bei der Verbesserung der Gießbarkeit der Druckgusslegierung auszeichnen, wodurch diesbezügliche Beeinträchtigungen aufgrund der vorgeschlagenen Gehaltsgrenzen an Mn in der Druckgusslegierung weitgehend kompensiert werden können.The strength of the alloy, for example coined by an interaction of the pre-phases Mg 2 Si and Q-phase (Al 5 Cu 2 Mg 8 Si 6 ), can be determined by solid-solution hardening be further improved with the help of a zinc deposit. For this purpose, zinc should be adjusted in the content limits of 0.40 to 1.5 wt .-%. In addition, this may be beneficial to the ductility of the diecasting alloy. In the case of the diecasting alloy, it is thus possible to reduce a possible negative influence of a comparatively high Mg content on its ductility. In addition, the content limits of Zn according to the invention may be distinguished in improving the castability of the die-cast alloy, whereby adverse effects due to the proposed content limits of Mn in the diecasting alloy can be largely compensated.
Die in den Legierungsbestandteilen Fe, Mn, Cu, Mg und Zn ausgewogene Druckgusslegierung auf Al-Si-Basis kann daher eine vergleichsweise hohe Duktilität, Korrosionsbeständigkeit, Festigkeit, Gießbarkeit und Verarbeitbarkeit miteinander kombinieren und so aus dem Stand der Technik bekannte Parametergrenzen überwinden, selbst wenn die Druckgusslegierung Sekundäraluminium aufweist und/oder dieser zugefügt wird bzw. dadurch vergleichsweise hohe Gehalte an Verunreinigungen führt.Therefore, the Al-Si-based die-casting alloy balanced in the alloy components Fe, Mn, Cu, Mg and Zn can combine a comparatively high ductility, corrosion resistance, strength, castability and processability, thus overcoming parameter boundaries known from the prior art even if the die-cast alloy has secondary aluminum and / or is added to it or thereby leads to comparatively high levels of impurities.
Zu Zwecken der Dauerveredelung kann die Druckgusslegierung 50 bis 300 ppm Strontium (Sr) und/oder 20 bis 250 ppm Natrium (Na) und/oder 20 bis 350 ppm Antimon (Sb) aufweisen. Optional zur Kornfeinung der Druckgusslegierung können sich maximal 0,2 Gew.-% Titan (Ti) und/oder maximal 0,3 Gew.-% Zirkon und/oder maximal 0,3 Gew.-% Vanadium (V) als vorteilhaft herausstellen. Die Druckgusslegierung kann jeweils auf 100 Gew.-% mit Al ergänzt werden, wobei diese Druckgusslegierung auch herstellungsbedingt unvermeidbare Verunreinigungen führen kann. Im Allgemeinen wird erwähnt, dass die Druckgusslegierung Verunreinigungen mit jeweils maximal 0,1 Gew.-% und gesamt höchstens 1 Gew.-% aufweisen kann.For duration refinement purposes, the die casting alloy may have 50 to 300 ppm strontium (Sr) and / or 20 to 250 ppm sodium (Na) and / or 20 to 350 ppm antimony (Sb). Optionally, for grain refining of the diecasting alloy, at most 0.2% by weight of titanium (Ti) and / or at most 0.3% by weight of zirconium and / or at most 0.3% by weight of vanadium (V) may prove to be advantageous. The die-cast alloy can be supplemented in each case to 100% by weight with Al, and this die-casting alloy can also lead to unavoidable impurities due to its production. In general, it is mentioned that the die-cast alloy can have impurities of not more than 0.1% by weight and not more than 1% by weight in total.
Der Vollständigkeit halber wird erwähnt, dass als Sekundäraluminium Aluminium bzw. eine Aluminiumlegierung, gewonnen aus Aluminiumschrott, verstanden werden kann.For the sake of completeness, it is mentioned that as secondary aluminum aluminum or an aluminum alloy, obtained from aluminum scrap, can be understood.
Festigkeit, Duktilität, Verarbeitbarkeit und chemischer Reaktionsbeständigkeit der Druckgusslegierung können weiter verbessert werden, wenn diese 0,3 bis 1,0 Gew.-% Eisen (Fe), 0,25 bis 1,0 Gew.-% Mangan (Mn) und 0,1 bis 0,6 Gew.-% Kupfer (Cu) aufweist.Strength, ductility, processability, and chemical reaction resistance of the die-cast alloy can be further improved when they contain 0.3 to 1.0 wt% Fe (Fe), 0.25 to 1.0 wt% Manganese (Mn), and 0 , 1 to 0.6 wt .-% copper (Cu).
Erfüllt die Druckgusslegierung in ihrer Zusammensetzung die Ordnungsrelation
kann eine einfache Verfahrensvorschrift zur Erhöhung des Anteils an pi-Phase (z.B.: Al8FeMg3Si6) im Gefüge der Druckgusslegierung gegeben werden. Erhöhte Fe-Anteile können so kompensiert werden, wodurch mit vermindertem Mn-Anteil beste Gießbarkeit der Druckgusslegierung gewahrt bleiben kann. Außerdem kann diese pi-Phase mit einem Lösungsglühen in eine für die geforderten Eigenschaften der Druckgusslegierung harmlose α-Phase umgewandelt werden.If the diecast alloy meets the order relation in its composition
a simple procedure for increasing the proportion of pi-phase (eg: Al 8 FeMg 3 Si 6 ) in the structure of the die-cast alloy can be given. Increased Fe contents can thus be compensated, whereby the best castability of the die-cast alloy can be maintained with a reduced Mn content. In addition, this pi-phase can be converted with a solution annealing into a harmless for the required properties of the die-cast alloy α-phase.
Die Druckgusslegierung kann hinsichtlich ihrer erreichbaren Duktilitäts-, Festigkeits- und Korrosionsbeständigkeit weiter verbessert werden, wenn der Gesamtanteil von Fe und Mn an der Druckgusslegierung zusammen maximal 1,2 Gew.-%, der Quotient der Gewichtsprozente von Fe und Mn 0,5 bis 1,25 und der Quotient der Gewichtsprozente von Cu und Mg 0,2 bis 0,5 betragen.The die cast alloy can be further improved in terms of achievable ductility, strength and corrosion resistance, if the total content of Fe and Mn together on the die-cast alloy together maximally 1.2 wt .-%, the quotient of the weight percentages of Fe and Mn 0.5 to 1 , 25 and the quotient of the weight percent of Cu and Mg is 0.2 to 0.5.
Weist die Druckgusslegierung 9,5 bis 11,5 Gew.-% Silizium (Si) und/oder 0,35 bis 0,6 Gew.-% Eisen (Fe) und/oder 0,3 bis 0,75 Gew.-% Mangan (Mn) und/oder 0,1 bis 0,4 Gew.-% Kupfer (Cu) und/oder 0,24 bis 0,5 Gew.-% Magnesium (Mg) und/oder 0,40 bis 1,0 Zink (Zn) auf, ergeben sich engere Grenzbereiche für eine in ihrer mechanischen und/oder chemischen Beständigkeit verbesserten Durchgusslegierung auf Al-Si Basis. Im Allgemeinen wird erwähnt, dass durch den vorgeschlagenen Gehalt an Si die Fließeigenschaften der Schmelze verbessert und spröde Primärsiliziumphasen vermieden werden können. Dadurch kann es auch möglich werden, selbst vergleichsweise dünnwandige Bauteile druckzugießen. Hierzu kann sich 9,5 bis 11,5 Gew.-% Silizium (Si) besonders vorteilhaft herausstellen.If the die casting alloy has 9.5 to 11.5 wt.% Silicon (Si) and / or 0.35 to 0.6 wt.% Iron (Fe) and / or 0.3 to 0.75 wt. Manganese (Mn) and / or 0.1 to 0.4% by weight of copper (Cu) and / or 0.24 to 0.5% by weight of magnesium (Mg) and / or 0.40 to 1.0 Zinc (Zn) results in narrower limits for an improved Al-Si based through-casting alloy in its mechanical and / or chemical resistance. In general, it is mentioned that the proposed content of Si improves the flow properties of the melt and that brittle primary silicon phases can be avoided. This also makes it possible to pressure-mold even comparatively thin-walled components. 9.5 to 11.5% by weight of silicon (Si) may prove to be particularly advantageous for this purpose.
Im Folgenden wird die Erfindung beispielsweise anhand von Ausführungsbeispielen näher erläutert:
- Zum Nachweis der erzielten Effekte wurden aus verschiedenen Druckgusslegierungen dünnwandige Gussbauteile im Druckgussverfahren hergestellt. Die Zusammensetzungen der untersuchten Legierungen sind in der Tabelle 1 angeführt.
- To demonstrate the effects achieved, thin-walled cast components were produced by die casting from various die cast alloys. The compositions of the alloys studied are listed in Table 1.
Bei der Legierung 1 handelt es sich um eine Druckgusslegierung aus Primäraluminium mit geringem Verunreinigungsgrad. Legierung 2 hingegen zeigt einen erheblichen Grad an Verunreinigungen an Eisen- und Kupfer-Legierungsanteilen, welche beispielsweise durch Sekundäraluminium eingetragen werden können.Alloy 1 is a die cast alloy of low contamination primary aluminum. Alloy 2, on the other hand, shows a considerable degree of impurities in iron and copper alloy fractions, which can be introduced, for example, by secondary aluminum.
Die Legierungen bzw. die daraus hergestellten Druckgussteile bzw. Prüfkörper wurde einer T7-Wärmebehandlung mit einer Stunde bei 460°C Lösungsglühen, einem Abschrecken mit Wasser und einer zweistündigen Warmauslagerung bei 220°C unterworfen. Die fertigen Prüfkörper wurden schließlich auf ihre mechanischen Eigenschaften hin untersucht. Hierzu wurden die Zugfestigkeit Rm, die Streckgrenze Rp0,2 und die Bruchdehnung A5 im Zugversuch bestimmt. Die erhaltenen Messwerte sind in der Tabelle 2 zusammengefasst.
Untersuchungen an der Druckgusslegierung Nr. 2 zeigten, dass durch den eingestellten Eisenanteil und Mangangehalt die Bildung einer unerwünschten Betaphase bei der Erstarrung vermieden werden kann. Auch der Kupferanteil kann durch einen Magnesiumanteil vollständig in der Q-Phase gebunden werden, wodurch vergleichsweise hohe Korrosionsbeständigkeit erreicht wird. Aufgrund dieser Elementkombinationen können trotz eines Eisengehaltes von 0,5 Gew.-% eine erhöhte Festigkeit und Bruchdehnung von 13,8% erreicht werden. Der vergleichsweise hohe Zinkgehalt führt zu einer Festigkeitssteigerung, ohne die mechanischen Eigenschaften negativ zu beeinflussen.Investigations on die casting alloy no. 2 showed that the formation of an undesirable beta phase during solidification can be avoided by the iron content and manganese content set. The proportion of copper can be completely bound by a magnesium content in the Q phase, whereby comparatively high corrosion resistance is achieved. Due to these element combinations, an increased strength and elongation at break of 13.8% can be achieved despite an iron content of 0.5 wt .-%. The comparatively high zinc content leads to an increase in strength without negatively influencing the mechanical properties.
Wie nun im Vergleich der beiden Druckgusslegierungen 1 und 2 nach Tabelle 2 erkannt werden kann, zeigen diese beiden Legierungen ähnliche mechanische Eigenschaften, obwohl Legierung 2 einen deutlich höheren Eisen- und Kupfergehalt gegenüber Legierung 1 aufweist.As can now be seen in the comparison of the two die-cast alloys 1 and 2 according to Table 2, these two alloys show similar mechanical properties, although Alloy 2 has a significantly higher iron and copper content compared to Alloy 1.
Es ist somit gezeigt, dass die erfindungsgemäß vorgeschlagenen Konzentrationsverhältnisse für eine Druckgusslegierung es zulassen, vergleichsweise hohe Duktilität, Korrosionsbeständigkeit, Festigkeit, Gießbarkeit und Verarbeitbarkeit sicherzustellen. It is thus shown that the concentration ratios for a diecasting alloy proposed according to the invention make it possible to ensure comparatively high ductility, corrosion resistance, strength, castability and processability.
Claims (10)
- Al-Si based die-casting alloy comprising in particular secondary aluminium, characterized in that
the die-casting alloy comprises6 to 12 wt. % silicon (Si), at least 0.3 wt. % iron (Fe), at least 0.25 wt. % manganese (Mn), at least 0.1 wt. % copper (Cu), 0.24 to 0.8 wt. % magnesium (Mg) and 0.40 to 1.5 wt. % zinc (Zn) and that 50 to 300 ppm strontium (Sr) and/or 20 to 250 ppm sodium (Na) and/or 20 to 350 ppm antimony (Sb), maximum 0.2 wt. % titanium (Ti); maximum 0.3 wt. % zirconium; maximum 0.3 wt. % vanadium (V);
wherein the total fraction of Fe and Mn in the die-casting alloy together is a maximum of 1.5 wt.%, the quotient of the percentage weights of Fe and Mn is 0.35 to 1.5 and the quotient of the percentage weights of Cu and Mg is 0.2 to 0.8. - Die-casting alloy according to claim 1, characterized in that the die-casting alloy comprises
0.3 to 1.0 wt. % iron (Fe), 0.25 to 1.0 wt. % manganese (Mn) and 0.1 to 0.6 wt. % copper (Cu). - Die-casting alloy according to claim 1, 2 or 3 characterized in that the total fraction of Fe and Mn in the die-casting alloy together is a maximum of 1.2 wt. %, the quotient of the percentage weights of Fe and Mn is 0.5 to 1.25 and the quotient of the percentage weights of Cu and Mg is 0.2 to 0.5.
- Die-casting alloy according to one of claims 1 to 4, characterized in that the die-casting alloy comprises 9.5 to 11.5 wt. % silicon (Si).
- Die-casting alloy according to one of claims 1 to 5, characterized in that the die-casting alloy comprises 0.35 to 0.6 wt. % iron (Fe).
- Die-casting alloy according to one of claims 1 to 6, characterized in that the die-casting alloy comprises 0.3 to 0.75 wt. % manganese (Mn).
- Die-casting alloy according to one of claims 1 to 7, characterized in that the die-casting alloy comprises 0.1 to 0.4 wt. % copper (Cu).
- Die-casting alloy according to one of claims 1 to 8, characterized in that the die-casting alloy comprises 0.24 to 0.5 wt. % magnesium (Mg).
- Die-casting alloy according to one of claims 1 to 9, characterized in that the die-casting alloy comprises 0.40 to 1.0 wt. % zinc (Zn).
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL12165829T PL2657360T3 (en) | 2012-04-26 | 2012-04-26 | Pressure cast alloy on an Al-Si basis, comprising secondary aluminium |
EP12165829.8A EP2657360B1 (en) | 2012-04-26 | 2012-04-26 | Pressure cast alloy on an Al-Si basis, comprising secondary aluminium |
SI201230032T SI2657360T1 (en) | 2012-04-26 | 2012-04-26 | Pressure cast alloy on an Al-Si basis, comprising secondary aluminium |
ES12165829.8T ES2466345T3 (en) | 2012-04-26 | 2012-04-26 | Al-Si-based pressure casting alloy which has, in particular, secondary aluminum |
CA2871260A CA2871260C (en) | 2012-04-26 | 2013-04-10 | Diecasting alloy based on al-si, comprising particularly secondary aluminium |
PCT/EP2013/057521 WO2013160108A2 (en) | 2012-04-26 | 2013-04-10 | Diecasting alloy based on al-si, comprising particularly secondary aluminium |
US14/396,810 US20150098859A1 (en) | 2012-04-26 | 2013-04-10 | Diecasting alloy based on al-si, comprising particularly secondary aluminum |
CN201380022231.6A CN104350165B (en) | 2012-04-26 | 2013-04-10 | With the particularly secondary aluminium, diecasting alloys based on aluminium silicon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12165829.8A EP2657360B1 (en) | 2012-04-26 | 2012-04-26 | Pressure cast alloy on an Al-Si basis, comprising secondary aluminium |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2657360A1 EP2657360A1 (en) | 2013-10-30 |
EP2657360B1 true EP2657360B1 (en) | 2014-02-26 |
Family
ID=48170438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12165829.8A Active EP2657360B1 (en) | 2012-04-26 | 2012-04-26 | Pressure cast alloy on an Al-Si basis, comprising secondary aluminium |
Country Status (8)
Country | Link |
---|---|
US (1) | US20150098859A1 (en) |
EP (1) | EP2657360B1 (en) |
CN (1) | CN104350165B (en) |
CA (1) | CA2871260C (en) |
ES (1) | ES2466345T3 (en) |
PL (1) | PL2657360T3 (en) |
SI (1) | SI2657360T1 (en) |
WO (1) | WO2013160108A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3342890A1 (en) | 2016-12-28 | 2018-07-04 | Befesa Aluminio, S.L. | Aluminium casting alloy |
EP3342889A1 (en) | 2016-12-28 | 2018-07-04 | Befesa Aluminio, S.L. | Aluminium casting alloy |
EP3342888A1 (en) | 2016-12-28 | 2018-07-04 | Befesa Aluminio, S.L. | Aluminium casting alloy |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170107599A1 (en) | 2015-10-19 | 2017-04-20 | GM Global Technology Operations LLC | New high pressure die casting aluminum alloy for high temperature and corrosive applications |
CN105624479B (en) * | 2015-11-26 | 2017-10-03 | 新疆众和股份有限公司 | One kind welding Alar bar and its production method |
EP3235916B1 (en) | 2016-04-19 | 2018-08-15 | Rheinfelden Alloys GmbH & Co. KG | Cast alloy |
EP3235917B1 (en) | 2016-04-19 | 2018-08-15 | Rheinfelden Alloys GmbH & Co. KG | Alloy for pressure die casting |
US20180010214A1 (en) * | 2016-07-05 | 2018-01-11 | GM Global Technology Operations LLC | High strength high creep-resistant cast aluminum alloys and hpdc engine blocks |
WO2018185259A1 (en) * | 2017-04-05 | 2018-10-11 | Amag Casting Gmbh | Starting material, use thereof, and additive manufacturing process using said starting material |
CN107858565A (en) * | 2017-12-13 | 2018-03-30 | 浙江诺达信汽车配件有限公司 | A kind of aluminium diecasting alloy material of high-strength and high-ductility |
US12163206B2 (en) * | 2018-10-29 | 2024-12-10 | Fna Group, Inc. | Aluminum alloy |
CN111139371A (en) * | 2018-11-06 | 2020-05-12 | 临沂利信铝业有限公司 | Preparation method and equipment of green low-cost regenerated aluminum alloy |
CN110106458B (en) * | 2019-04-30 | 2020-06-19 | 中国科学院合肥物质科学研究院 | Heat treatment method of forged manganese-copper vibration damping alloy |
CN110541094A (en) * | 2019-09-30 | 2019-12-06 | 中信戴卡股份有限公司 | Die-casting aluminum alloy and automobile part |
WO2021064865A1 (en) * | 2019-10-01 | 2021-04-08 | 株式会社アーレスティ | Aluminum alloy diecast, diecast unit and method for producing same |
HUE061156T4 (en) * | 2019-11-25 | 2023-08-28 | Amag Casting Gmbh | Die cast component and method for producing a die cast component |
CN111004947B (en) * | 2019-11-25 | 2020-12-22 | 连云港星耀材料科技有限公司 | Preparation method of aluminum alloy hub |
DE102020100688A1 (en) * | 2020-01-14 | 2021-07-15 | Audi Aktiengesellschaft | Method for producing a motor vehicle rim from an aluminum alloy for a wheel of a motor vehicle and corresponding motor vehicle rim |
US20230002863A1 (en) * | 2021-07-02 | 2023-01-05 | Magna International Inc. | Low cost high ductility cast aluminum alloy |
CN116555637A (en) * | 2022-01-28 | 2023-08-08 | 通用汽车环球科技运作有限责任公司 | Components with customized mechanical and corrosion properties |
CN115161521B (en) * | 2022-07-14 | 2023-09-08 | 山西瑞格金属新材料有限公司 | Heat treatment-free die-casting aluminum-silicon-zinc alloy |
DE102023114500A1 (en) | 2023-06-02 | 2024-12-05 | Audi Aktiengesellschaft | Method for producing an aluminum die-casting alloy with secondary aluminum content, aluminum die-casting alloy with secondary aluminum content and structural component for a motor vehicle |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH093610A (en) | 1995-06-15 | 1997-01-07 | Nippon Light Metal Co Ltd | Thin-walled aluminum die-cast product excellent in dimensional accuracy and ductility and manufacturing method |
EP1111077A1 (en) | 1999-12-24 | 2001-06-27 | ALUMINIUM RHEINFELDEN GmbH | Aluminium alloy produced from scrap metal and casting alloy so produced |
DE60231046D1 (en) * | 2001-07-25 | 2009-03-19 | Showa Denko Kk | ALUMINUM ALLOY WITH EXCELLENT FRAGRANCE AND ALUMINUM ALLOY MATERIAL AND METHOD OF MANUFACTURING THEREOF |
DE102004013777B4 (en) | 2004-03-20 | 2005-12-29 | Hydro Aluminium Deutschland Gmbh | Method for producing a cast part from an AL / Si casting alloy |
JP2006183122A (en) | 2004-12-28 | 2006-07-13 | Denso Corp | Aluminum alloy for die casting and method for producing aluminum alloy casting |
US9353429B2 (en) * | 2007-02-27 | 2016-05-31 | Nippon Light Metal Company, Ltd. | Aluminum alloy material for use in thermal conduction application |
CN101363091B (en) * | 2008-09-08 | 2010-06-02 | 营口华润有色金属制造有限公司 | High-silicon aluminum alloy and method for preparing same |
DE102009012073B4 (en) | 2009-03-06 | 2019-08-14 | Andreas Barth | Use of an aluminum casting alloy |
JP2011208253A (en) * | 2010-03-30 | 2011-10-20 | Honda Motor Co Ltd | Aluminum die-cast alloy for vehicle material |
US20120027639A1 (en) * | 2010-07-29 | 2012-02-02 | Gibbs Die Casting Corporation | Aluminum alloy for die casting |
-
2012
- 2012-04-26 EP EP12165829.8A patent/EP2657360B1/en active Active
- 2012-04-26 ES ES12165829.8T patent/ES2466345T3/en active Active
- 2012-04-26 SI SI201230032T patent/SI2657360T1/en unknown
- 2012-04-26 PL PL12165829T patent/PL2657360T3/en unknown
-
2013
- 2013-04-10 CA CA2871260A patent/CA2871260C/en active Active
- 2013-04-10 CN CN201380022231.6A patent/CN104350165B/en active Active
- 2013-04-10 WO PCT/EP2013/057521 patent/WO2013160108A2/en active Application Filing
- 2013-04-10 US US14/396,810 patent/US20150098859A1/en not_active Abandoned
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3342890A1 (en) | 2016-12-28 | 2018-07-04 | Befesa Aluminio, S.L. | Aluminium casting alloy |
EP3342889A1 (en) | 2016-12-28 | 2018-07-04 | Befesa Aluminio, S.L. | Aluminium casting alloy |
EP3342888A1 (en) | 2016-12-28 | 2018-07-04 | Befesa Aluminio, S.L. | Aluminium casting alloy |
Also Published As
Publication number | Publication date |
---|---|
SI2657360T1 (en) | 2014-07-31 |
US20150098859A1 (en) | 2015-04-09 |
PL2657360T3 (en) | 2014-09-30 |
EP2657360A1 (en) | 2013-10-30 |
ES2466345T3 (en) | 2014-06-10 |
WO2013160108A2 (en) | 2013-10-31 |
CA2871260A1 (en) | 2013-10-31 |
CA2871260C (en) | 2020-09-22 |
WO2013160108A3 (en) | 2013-12-19 |
CN104350165B (en) | 2017-06-16 |
CN104350165A (en) | 2015-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2657360B1 (en) | Pressure cast alloy on an Al-Si basis, comprising secondary aluminium | |
EP3235916B1 (en) | Cast alloy | |
EP2735621B1 (en) | Aluminium die casting alloy | |
EP3235917B1 (en) | Alloy for pressure die casting | |
DE69801133T2 (en) | Magnesium alloy with high high temperature properties and with good castability | |
AT413035B (en) | ALUMINUM ALLOY | |
DE202006006518U1 (en) | Aluminum casting alloy, useful in production of safety components, contains silicon | |
EP1682688A1 (en) | Al/mg/si cast aluminium alloy containing scandium | |
DE102016219711B4 (en) | Aluminum alloy for die casting and process for its heat treatment | |
EP3176275B2 (en) | Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component | |
DE102019205267B3 (en) | Die-cast aluminum alloy | |
DE112011101836T5 (en) | Aluminum alloy and aluminum alloy casting | |
EP3196324B1 (en) | Curable aluminium alloy on an al-mg-si-basis | |
EP1718778B1 (en) | Material based on an aluminum alloy, method for the production thereof and its use | |
AT412726B (en) | ALUMINUM ALLOY, COMPONENT FROM THIS AND METHOD FOR PRODUCING THE COMPONENT | |
EP2705171B1 (en) | Method for the refining and structure modification of al-mg-si alloys | |
DE60310316T2 (en) | Sulfuric acid and wet process phosphoric acid resistant Ni-Cr-Mo-Cu alloys | |
DE602005005509T2 (en) | HIGH-TREATMENT ALUMINUM PLATE AND METHOD FOR PRODUCING THIS PLATE | |
EP2455505A1 (en) | Cylinder head for combustion engines made of an aluminium alloy | |
DE102011112005A1 (en) | Alloy, preferably aluminum casting alloy, useful e.g. as a sand or die casting alloy, comprises a specified range of silicon, zinc, iron, copper, magnesium, strontium, sodium, antimony and aluminum | |
DE2023446A1 (en) | Cast aluminum alloy of high strength | |
EP3072985A1 (en) | Ag-free al-cu-mg-li alloy | |
DE202015100698U1 (en) | cast alloy | |
WO2000043560A1 (en) | Aluminum-magnesium-silicon alloy | |
EP3670691B1 (en) | Magnesium alloy and its process of manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130227 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
INTG | Intention to grant announced |
Effective date: 20131210 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: FRAGNER, WERNER Inventor name: BOETTCHER, HOLM Inventor name: UGGOWITZER, PETER, PROF. DR. Inventor name: HUMMEL, MARC Inventor name: BOESCH, DOMINIK Inventor name: HOEPPEL, HEINZ WERNER Inventor name: SUPPAN, HELMUT Inventor name: HAUCK, JAN |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AMAG CASTING GMBH Owner name: AUDI AG |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 653661 Country of ref document: AT Kind code of ref document: T Effective date: 20140315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012000387 Country of ref document: DE Effective date: 20140410 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2466345 Country of ref document: ES Kind code of ref document: T3 Effective date: 20140610 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ISLER AND PEDRAZZINI AG, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20140226 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140526 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140626 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140226 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140226 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140626 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140226 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140226 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 16590 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140226 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140226 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140226 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140226 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140226 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012000387 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140226 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140426 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
26N | No opposition filed |
Effective date: 20141127 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E021732 Country of ref document: HU |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012000387 Country of ref document: DE Effective date: 20141127 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140226 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140527 Ref country code: RS Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140226 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140226 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190426 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20230517 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20230417 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240423 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240418 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240501 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240417 Year of fee payment: 13 Ref country code: CZ Payment date: 20240416 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20240422 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240430 Year of fee payment: 13 Ref country code: FR Payment date: 20240422 Year of fee payment: 13 Ref country code: SI Payment date: 20240418 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240415 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20240524 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20240430 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20241205 AND 20241211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240430 |