Nothing Special   »   [go: up one dir, main page]

EP2534757A1 - Dispositif de déconnexion pour un disjoncteur - Google Patents

Dispositif de déconnexion pour un disjoncteur

Info

Publication number
EP2534757A1
EP2534757A1 EP11702617A EP11702617A EP2534757A1 EP 2534757 A1 EP2534757 A1 EP 2534757A1 EP 11702617 A EP11702617 A EP 11702617A EP 11702617 A EP11702617 A EP 11702617A EP 2534757 A1 EP2534757 A1 EP 2534757A1
Authority
EP
European Patent Office
Prior art keywords
switch
semiconductor switch
circuit
battery
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11702617A
Other languages
German (de)
English (en)
Inventor
Thomas Komma
Kai Kriegel
Jürgen RACKLES
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2534757A1 publication Critical patent/EP2534757A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0814Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/548Electromechanical and static switch connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off

Definitions

  • the invention relates to an arrangement for switching discharge of a circuit breaker for galvanic isolation of an electrical connection and an associated method for switching discharge.
  • Travel drives for electrically powered vehicles usually have a battery and an inverter for the operation of the electric motor or motors.
  • the battery provides the electrical power and the inverter converts the DC voltage of the battery into a suitable alternating voltage or three-phase current. For security reasons, the
  • the dependent claims relate to advantageous Ausges ⁇ taltungen the invention.
  • the inventive arrangement for switching discharge of a circuit breaker for the electrical isolation of an electrical connection has at least one semiconductor switch. It is further configured to allow the separation of the electrical connection to let the current to be disconnected via the semiconductor switch, so that a reduced voltage build-up is effected via the circuit breaker at its shutdown.
  • There are various setups or reduction ⁇ hens have, in which the current to be disconnected before or after the switching off of the circuit breaker flows through the semiconductor switch.
  • the semiconductor switch is electrically connected to the circuit breaker.
  • the disconnecting switch can be switched off in such a way that it either remains completely free of voltage and current or at least provides an escape path for the current, which reduces or prevents arcing. This ensures that the
  • the current through the semiconductor switch is turned off by the semiconductor switch is non-conducting maral ⁇ tet when the current to be disconnected flows through the semiconductor switch. This can be done before the disconnect switch is turned off or after the disconnect switch is turned off.
  • the circuit breaker corresponds to the necessarily existing battery disconnector for galvanic isolation of the battery from the DC link.
  • the arrangement is used for switching the battery disconnect switch.
  • problems arise there especially since, in contrast to conventionally operated vehicles, significantly higher voltages are used for electrically operated vehicles, in particular those above 24V. Typical voltages can be more than 400V.
  • a series circuit of a mechanical discharge switch and the semiconductor switch is arranged parallel to the circuit breaker. It is expedient that for the separation of the electrical connection only the mechanical switch, then the semiconductor switch are turned on and then the circuit breaker is switched non-conductive. This ensures that the mechanical discharge switch is switched on withoutponsbelas ⁇ tion, and can switch over when switching off the separation scarf ⁇ ters the current to the semiconductor switch and the mechanical discharge switch. Furthermore, it is expedient if after the circuit breaker first the semiconductor switch is turned off, that is placed in the non-conductive state. Finally, the mechanical discharge switch is expediently reopened. According to a further embodiment of the invention, the current to be disconnected already flows through the semiconductor switch before the disconnector is switched off. For this purpose, the semiconductor switch is arranged in particular in series with the circuit breaker. In this structure, it is expedient that for the separation of the electrical connection of the semiconductor switch is first switched non-conductive and then the circuit breaker is switched till ⁇ .
  • an overvoltage protection device for the semiconductor switch is provided parallel to the semiconductor switch. This serves to limit the voltage across the semiconductor switch and absorbs, for example, overvoltages caused by Lead inductances occur when switching off the battery current.
  • the disconnecting switch is used to disconnect a voltage source from, for example, a converter
  • the arrangement comprises a precharge circuit.
  • the precharge circuit has a series circuit of a mechanical precharge switch and a precharge resistor for current limiting. It is arranged parallel to the disconnector.
  • the semiconductor switch takes over the function of a current limiting by a pulsed on and off.
  • the semiconductor switch can effectively take over the function of a Vorladescnies in addition to the function of the switching discharge.
  • a second overvoltage protection device may be provided in series with the circuit breaker. In electric vehicles, this serves to the battery against over-voltages from the direction of the electric motor to Schütting ⁇ zen. These can occur during field weakening operation, for example, if the inverter fails.
  • the semiconductor switch takes over in addition to the switching discharge and the function of the second overvoltage protection device. It is expedient if, for example, a reverse blocking IGBT is used as a semiconductor switch. This has sufficient blocking capability in both directions.
  • FIG. 1 shows a circuit with a battery disconnect switch, a parallel discharge circuit and a precharge circuit
  • FIG. 2 shows a circuit with a battery disconnect switch and a parallel discharge circuit
  • Figure 3 is a circuit with battery disconnector, serially arranged discharge circuit and circuit for pre-charging, the semiconductor switch of the discharge circuit is protected against overvoltages
  • Figure 4 shows a circuit with battery disconnector, serially arranged discharge circuit and circuit for pre-charging, wherein the semiconductor switch of the discharge circuit by means of an RC circuit protected against overvoltages
  • Figure 5 shows another circuit with battery disconnector and serially arranged discharge circuit
  • Figure 6 shows a circuit with battery disconnector and serially arranged semiconductor device acting as a discharge circuit and battery protection switch.
  • FIG. 1 shows a highly schematic of the structure of a drive ⁇ system 10 according to a first embodiment of an electrically powered vehicle. It is known that in electrically powered vehicles instead of a conventional engine, often more electric motors are used, for example, to drive the wheels of the vehicle separately.
  • the electric motor 1 is represented in the figures as representative of the one or more electric motors 1 that are used in the electrically operated vehicle. In the example shown, the electric motor 1 is a permanent magnetically excited synchronous motor.
  • an inverter 2 is seen easily.
  • the converter 2 is constructed per se in a known manner and connected on the output side in a suitable manner to the electric motor 1.
  • the inverter 2 On the input side, the inverter 2 is indirectly connected to a battery 3.
  • the battery provides a DC voltage. Therefore, in rectifier 2 expediently no rectifier is provided. This in turn means that typically the battery 3 is connected to the intermediate circuit of the converter 2 via intermediate components, which are described below.
  • a mechanical battery disconnector 4 is provided between the positive terminal of the battery 3 and the intermediate circuit of the inverter 2.
  • the battery disconnect switch 4 is designed to be able to carry the rated current and to ensure galvanic isolation in the opened state.
  • the drive system 10 according to figure 1 parallel to the Batte ⁇ advised gas circuit breaker 4 has a precharge circuit.
  • the precharge circuit consists of a series connection of a mechanical pre-charge switch 14 and a precharge resistor 13.
  • the precharge circuit is used at the time of turning on the battery disconnect switch 4. At this time, the discharged DC link capacity acts as a short circuit. To limit the current flowing, therefore, the precharge circuit is first used to turn on until the intermediate circuit is sufficiently precharged. Only then is the battery disconnect switch 4 closed and the mechanical precharge switch 14 reopened. Also in parallel with the battery disconnect switch 4, and also in parallel to the precharge, components for switching the battery disconnect switch 4 are provided in the circuit of Figure 1. These are ⁇ a series circuit of a mechanical relief switch 15 and an IGBT 11. Parallel to the IGBT 11, a protection circuit is provided against overvoltages for the IGBT 11, which includes a suppressor diode 12.
  • an overvoltage protection module 5 is provided between the battery breaker 4 and the other components connected in parallel therewith. This consists of an IGBT 6 and a diode from the inverter 2 to the battery 3 arranged blocking 7. If in the circuit of Figure 1, the battery current, possibly the maximum battery current, are turned off, the following switching operations are performed. It is assumed that the battery disconnect switch 4 is turned on, the mechanical discharge switch 15 and the semiconductor switch 11 are turned off and the me ⁇ chanische precharge switch 14 is also off. The current thus flows through the battery disconnect switch 4.
  • the mechanical discharge switch 15 is turned on first. This causes due to the switched-off semicon terschalter 11 still no change.
  • the semiconductor switch 11 is turned on.
  • the battery disconnector 4 is opened. Since the current can now take the detour via the discharge circuit, the voltage across the battery disconnect switch 4 remains low. Therefore, the shutdown of the battery disconnect switch 4 is problematic . In other words, the battery disconnect switch 4 does not have to be designed to shut off the high maximum battery current in its design.
  • the semiconductor switch 11 is turned off. The intermediate circuit voltage therefore builds up on the semiconductor switch 11. This can still be increased by the line inductances, for example, the battery ⁇ cable. Possible overvoltages are limited in this example by the suppressor diode 12.
  • the mechanical discharge switch 15 is de-energized
  • the battery disconnect switch 4 is not switched off without current.
  • a low-impedance path for the flow of current is offered.
  • the mechanical discharge switch 15 as well as the battery disconnector 4 for a galvanic isolation of the battery 3 and the intermediate circuit of the inverter 2 as well as that the current can only take over the semiconductor switch 11 for the shutdown.
  • the mechanical relief switch 15 itself is switched off after switching off the semiconductor switch 11 de-energized ⁇ .
  • the problematic shutdown is thus shifted from Batte ⁇ rietrennschalter 4 on the semiconductor switch 11. There, the shutdown is not a problem.
  • the semiconductor switch 11 is in the current path only for a short time.
  • control device In order to control the operations in the structure according to the Fi gur ⁇ 1 as well as the other embodiments, is a control device present. In the first exemplary embodiment, this controls the mechanical pre-charge switch 14, the mechanical release switch 15 and the battery disconnector 4. It also controls the semiconductor switch 11. Furthermore, the control device controls the IGBT 6, which is responsible for the overvoltage protection of the battery 3. For this it is expedient if a constant monitoring of the func ⁇ onsttle the IGBT 6 is provided. This is also operated by the controller.
  • a second embodiment of the invention will be described with reference to FIG.
  • the second embodiment is constructed similar to the first embodiment.
  • no precharge circuit is provided in the second embodiment. That is, in the second embodiment, the mechanical precharge switch 14 and the precharge resistor 13 are omitted.
  • the discharge ⁇ circuit takes from the semiconductor switch 11 and the mechanical Relief switch 15 the task of Vorladescnies.
  • the semiconductor switch 11 is capable of high
  • the discharge circuit is used until the intermediate circuit is sufficiently preloaded.
  • the mechanical ⁇ cal discharge switch 15 is turned on and the semiconductor switch 11 off at a high frequency, for example, a frequency of 5 kHz and off. If the intermediate circuit is sufficiently precharged, the battery disconnector 4 is closed, the semiconductor switch 11 is turned off and the mechanical release switch 15 is opened again.
  • the Entlas ⁇ processing circuit at the same time a precharge circuit.
  • FIG. 3 shows a structure 30 according to a third exemplary embodiment of the invention.
  • the elements electric motor 1, inverter 2, battery 3 and battery disconnector 4 and the overvoltage protection 5 for the battery 3 are realized and arranged in an analogous manner to the first and second embodiments.
  • the Ent ⁇ lastungsscnies composed of the IGBT 11 and the parallel to the IGBT 11 provided suppressor diode 12.
  • the Entlas ⁇ processing circuit is in the third embodiment in series with the battery disconnect switch 4 between it and the surge protector 5 is provided.
  • a precharge circuit is provided ⁇ analogous to that of the first embodiment in the third embodiment.
  • the precharge circuit consists of a mechanical precharge switch 14 in series with a precharge resistor 13. Both elements are in parallel with the battery disconnect switch 4 arranged.
  • the function of the precharge circuit is analogous to that in the first embodiment.
  • the semiconductor switch 11 is first turned off to turn off the power. This ent ⁇ standing surges are limited as already described by the suppressor diode 12. As in the first or second embodiment, the switching off of the current from the battery disconnector 4 to the semiconductor switch 11 is thus relocated. After switching off the semiconductor switch 11, the battery disconnector 4 can be opened in the de-energized state.
  • the semiconductor switch 11 is constantly in the circuit of battery 3 and Umrich ⁇ ter 2. In other words, it always leads the current flowing through the battery disconnector 4.
  • semiconductor switches 11 have a higher electrical resistance than mechanical switches 4, 14, 15. Therefore, fall in the circuit according to the third embodiment higher elec ⁇ cal losses than in the circuits according to the first and second embodiments. For this Switching Power ⁇ control and control technical expenditure is reduced because, in contrast to the three mechanical switches off the first two me ⁇ chanical switches provide leadership example in the third embodiment.
  • a fourth exemplary embodiment according to FIG. 4 shows how the overvoltage protection for the semiconductor switch 11 can be constructed as an alternative to the use of the suppressor diode 12.
  • a circuit is parallel to the semiconductor switch 11 is provided consisting of a parallel to the semiconducting ⁇ terschalter 11 disposed resistor 41 and, disposed parallel to both aforementioned elements capacitor 42nd
  • the possibilities used for the overvoltage protection that is to say suppressor diode 12 and RC circuit, can also be used in combination with one another.
  • a further simplification of the structure and thus of the tax-technical effort results when a circuit according to the fifth embodiment, shown in Figure 5 is used.
  • the elements electric motor 1, inverter 2, battery 3 and battery disconnect switch 4 and the overvoltage protection 5 for the battery 3 are in the fifth embodiment ⁇ example again realized and arranged in an analogous manner to the first and second embodiments.
  • the discharge circuit of the semiconductor switch 11 and its overvoltage protection in this case formed by a suppressor diode 12, is provided.
  • the semiconductor switch 11 is arranged as in the third and fifth embodiments in series with the battery disconnector 4 between this and the overvoltage protection 5 for the battery 3.
  • the discharge ⁇ circuit next to the switching relief for the battery disconnector 4 again assumes the function of the precharge.
  • the function of the switching relief for the battery disconnect switch 4 works analogously to the third and fourth adoptedsbei- game. Again, the shutdown process is performed by the semiconductor switch 11 and the battery disconnector 4 is turned off in the de-energized state.
  • Figure 6 shows a final, sixth embodiment of the invention.
  • the elements of electric motor 1, the inverter 2, battery 3 and battery disconnect switch 4 are in turn implemented in the sixth embodiment in a manner analogous to the first and th two ⁇ embodiment and arranged.
  • the overvoltage protection 5 for the battery 3 and the discharge circuit are combined into a single circuit.
  • a so-called reverse blocking IGBT 61 is provided in series with the battery isolating switch 4. Parallel to the reverse blocking IGBT 61, an overvoltage protection is provided for this. This consists in the sixth embodiment of two anti-serially connected suppressor diodes 62, 63rd
  • the reverse blocking IGBT 61 takes over the switching discharge for the battery disconnector 4, by the shutdown of
  • the reverse blocking IGBT 61 still assumes the function of Sprintwoodsschut ⁇ zes 5 for the battery 3. It is expedient that the reverse blocking IGBT 61 is turned on to allow current flow from the battery 3 to the inverter 2, but can be switched off at any time to block any overvoltages from the direction of the electric motor 1. For this purpose, it is expedient ⁇ SSGIs, a permanent function monitoring for the reverse Bio- Cking IGBT 61 to provide, as it is already the case for the overvoltage protection 5 from the first to fifth embodiments. It is understood that certain components of the here ge Service ⁇ th circuits must be provided repeatedly in an electrically powered vehicle under certain circumstances.
  • a converter 2 is provided for each of the electric motors 1, a converter 2 is provided.
  • several batteries can be provided in the vehicle 3 ⁇ en.
  • the number of other components presented in the figures can be easily adapted to the number of electric motors 1, converters 2 or batteries 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

L'invention concerne un dispositif de déconnexion pour un disjoncteur (4) destiné à des applications dans le domaine des véhicules électriques, le disjoncteur (4) devant réaliser une séparation galvanique entre une batterie et un circuit intermédiaire. Pour cela, on emploie au moins un commutateur statique (11). Pour la séparation de la liaison électrique, on fait passer le courant à couper par le commutateur statique (11). Avant ou après cela, le disjoncteur (4) est désexcité avec une élévation de tension réduite.
EP11702617A 2010-02-10 2011-02-01 Dispositif de déconnexion pour un disjoncteur Withdrawn EP2534757A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010007452A DE102010007452A1 (de) 2010-02-10 2010-02-10 Schaltentlastung für einen Trennschalter
PCT/EP2011/051387 WO2011098374A1 (fr) 2010-02-10 2011-02-01 Dispositif de déconnexion pour un disjoncteur

Publications (1)

Publication Number Publication Date
EP2534757A1 true EP2534757A1 (fr) 2012-12-19

Family

ID=43799597

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11702617A Withdrawn EP2534757A1 (fr) 2010-02-10 2011-02-01 Dispositif de déconnexion pour un disjoncteur

Country Status (5)

Country Link
US (1) US20120306264A1 (fr)
EP (1) EP2534757A1 (fr)
CN (1) CN102754346A (fr)
DE (1) DE102010007452A1 (fr)
WO (1) WO2011098374A1 (fr)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011012171A1 (fr) 2009-07-31 2011-02-03 Areva T&D Uk Limited Circuit pour convertisseur hybride configurable
CN102792544B (zh) 2010-03-15 2016-01-20 阿尔斯通技术有限公司 具有多级转换器的静止无功补偿器
WO2011157300A1 (fr) 2010-06-18 2011-12-22 Areva T&D Uk Limited Convertisseur pour transmission de ccht et compensation de puissance réactive
AU2011370308A1 (en) 2011-06-08 2013-12-19 Alstom Technology Ltd High voltage DC/DC converter with cascaded resonant tanks
FR2977738B1 (fr) * 2011-07-04 2015-01-16 Mersen France Sb Sas Systeme d'interruption de courant continu apte a ouvrir une ligne de courant continu a comportement inductif
CN103891121B (zh) 2011-08-01 2016-11-23 阿尔斯通技术有限公司 直流-直流转换器组件
EP2777127B1 (fr) 2011-11-07 2016-03-09 Alstom Technology Ltd Circuit de commande
DE102011118716B4 (de) * 2011-11-16 2017-07-20 Audi Ag Speichersystem für elektrische Energie
CN103959634B (zh) 2011-11-17 2017-09-01 通用电气技术有限公司 用于hvdc应用的混合ac/dc转换器
KR102005104B1 (ko) 2012-03-01 2019-07-30 제네럴 일렉트릭 테크놀러지 게엠베하 제어회로
EP2820663A1 (fr) * 2012-03-01 2015-01-07 Alstom Technology Ltd Disjoncteur composite pour courant continu haute tension
DE102012210600B4 (de) 2012-06-22 2023-03-02 Robert Bosch Gmbh Lade- und/oder Trenneinrichtung für ein Batteriesystem
DE102012215755A1 (de) * 2012-09-05 2014-03-06 Robert Bosch Gmbh Niedervoltnetz mit Gleichspannungswandler und Verfahren zum Testen einer Niedervoltbatterie
EP2904625B1 (fr) * 2012-12-07 2018-03-21 Siemens Aktiengesellschaft Disjoncteur de courant continu
DE102013110240B4 (de) 2013-09-17 2017-09-07 Sma Solar Technology Ag Schaltungsanordnung für einen Photovoltaikwechselrichter zur Ausschaltentlastung mit Kurzschlussschaltern und Verwendungen der Schaltungsanordnung
DE102014202504A1 (de) * 2014-02-12 2015-08-13 Robert Bosch Gmbh Trenneinheit zur galvanischen Trennung des Leistungsstromkreises zwischen einer Spannungsquelle und einer Verbrauchereinrichtung sowie Batteriesystem mit einer solchen Trenneinheit
DE102014210648A1 (de) * 2014-06-04 2015-12-17 Robert Bosch Gmbh Batteriesystem
DE102014220017A1 (de) 2014-10-02 2016-04-07 Robert Bosch Gmbh Batteriesystem mit einer zum Versorgen eines Hochvoltnetzes mit elektrischer Energie ausgebildeten Batterie und einer Messeinrichtung zum Messen mindestens eines Isolationswiderstandes der Batterie
DE102015010323A1 (de) 2014-12-23 2016-06-23 Daimler Ag Energiequellenanordnung mit zweipoliger Abschaltung für ein Kraftfahrzeug
DE102015000576B4 (de) * 2015-01-16 2021-07-29 Audi Ag Kraftfahrzeug mit Schaltvorrichtung für eine bordnetzbetriebene Komponente
EP4012738A1 (fr) * 2015-05-05 2022-06-15 Siemens Aktiengesellschaft Dispositif de commutation
EP3300237B1 (fr) * 2015-05-20 2022-01-12 Nissan Motor Co., Ltd. Dispositif de commande d'alimentation électrique et procédé de commande d'alimentation électrique
US10199843B2 (en) * 2015-05-26 2019-02-05 Infineon Technologies Americas Corp. Connect/disconnect module for use with a battery pack
CN109075581B (zh) 2016-05-12 2022-10-21 罗伯特·博世有限公司 电池断连电路和用于控制电池断连电路的方法
EP3276775B1 (fr) 2016-07-27 2018-11-28 Samsung SDI Co., Ltd. Système de batterie pour véhicule hybride
DE102016216341A1 (de) * 2016-08-30 2018-03-01 Robert Bosch Gmbh Stromunterbrechungsanordnung, Batteriesystem, Controller und Verfahren zum Trennen eines Stromflusses zwischen einer Batterie und einem Verbraucher der Batterie
DE102016216331B3 (de) 2016-08-30 2018-01-18 Ellenberger & Poensgen Gmbh Trennvorrichtung zur Stromunterbrechung, Schutzschalter mit einem Sensor und einer Trennvorrichtung sowie Verfahren zum Betrieb einer Trennvorrichtung
US10168372B2 (en) 2016-12-14 2019-01-01 General Electric Company System and method for leakage current and fault location detection in electric vehicle DC power circuits
US10203363B2 (en) 2016-12-14 2019-02-12 General Electric Company DC leakage current detector and method of operation thereof for leakage current detection in DC power circuits
DE102017201657A1 (de) 2017-02-02 2018-08-02 Volkswagen Aktiengesellschaft Schaltungsanordnung, Bordnetz und Fortbewegungsmittel mit verbesserter Zwischenkreisaufladung
DE102017205403A1 (de) * 2017-03-30 2018-10-04 Audi Ag System mit einer Hochvoltbatterie und einer Kopplungsvorrichtung, Kraftfahrzeug sowie Verfahren zum Betreiben einer Kopplungsvorrichtung
DE102017213017A1 (de) * 2017-07-28 2018-07-12 Continental Automotive Gmbh Verfahren zum Betrieb eines Bordnetzes mit mehreren Bordnetzzweigen und Fahrzeugbordnetz
CN107585058A (zh) * 2017-09-29 2018-01-16 北京新能源汽车股份有限公司 一种充电装置及电动汽车
CN107819457A (zh) * 2017-12-06 2018-03-20 昆山安平电气有限公司 一种机械与半导体复合式开关及其使用方法
DE102018203499A1 (de) 2018-03-08 2019-09-12 Continental Automotive Gmbh Wechselstromladevorrichtung für ein Kraftfahrzeug und Verfahren zum Betreiben einer Wechselstromladevorrichtung für ein Kraftfahrzeug
DE102018203489B4 (de) 2018-03-08 2022-05-19 Vitesco Technologies GmbH Wechselstromladevorrichtung für ein Kraftfahrzeug und Verfahren zum Betreiben einer Wechselstromladevorrichtung für ein Kraftfahrzeug
WO2019170476A1 (fr) 2018-03-08 2019-09-12 Cpt Group Gmbh Dispositif de charge à courant alternatif pour un véhicule à moteur, procédé pour faire fonctionner un dispositif de charge à courant alternatif pour un véhicule à moteur et véhicule à moteur
DE102018215881B3 (de) * 2018-09-19 2020-02-06 Siemens Aktiengesellschaft Vorrichtung und Verfahren zum Koppeln zweier Gleichstromnetze
EP3651336A1 (fr) * 2018-11-08 2020-05-13 Siemens Aktiengesellschaft Commutateur à courant continu
EP3654477A1 (fr) * 2018-11-15 2020-05-20 Siemens Aktiengesellschaft Commutateur électronique à protection contre les surtensions
DE102019107112B3 (de) 2019-03-20 2020-07-09 Lisa Dräxlmaier GmbH Schaltvorrichtung, Spannungsversorgungssystem, Verfahren zum Betreiben einer Schaltvorrichtung und Herstellverfahren
JP7561309B2 (ja) 2020-08-06 2024-10-04 株式会社オートネットワーク技術研究所 回路構成体
EP4084035A1 (fr) 2021-04-29 2022-11-02 Volvo Truck Corporation Agencement de commutation
EP4084265A1 (fr) 2021-04-29 2022-11-02 Volvo Truck Corporation Procédé de fonctionnement d'un agencement de commutation d'un système de stockage d'énergie
GB2611826A (en) * 2021-10-18 2023-04-19 Eaton Intelligent Power Ltd Solid-state DC device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105226A (ja) * 1982-12-09 1984-06-18 株式会社日立製作所 しゃ断器
JPS60117518A (ja) * 1983-11-28 1985-06-25 オムロン株式会社 リレ−装置
US4636907A (en) * 1985-07-11 1987-01-13 General Electric Company Arcless circuit interrupter
CN2030386U (zh) * 1988-02-03 1989-01-04 广西平果县科委 三相负荷限制器
US6078491A (en) * 1996-05-07 2000-06-20 Siemens Aktiengesellschaft Hybrid relay
EP1014403A1 (fr) * 1998-12-21 2000-06-28 Asea Brown Boveri AG Interrupteur limiteur de courant
CN1112750C (zh) * 1999-07-15 2003-06-25 裴迪生 无触点开关无功功率补偿装置
DE10225259B3 (de) * 2002-06-07 2004-01-22 Sma Regelsysteme Gmbh Elektrischer Steckverbinder
US7538990B2 (en) * 2006-12-14 2009-05-26 Hamilton Sundstrand Corporation High voltage DC contactor hybrid without a DC arc break
ATE463829T1 (de) * 2007-10-12 2010-04-15 Sma Solar Technology Ag Lasttrenner-anordnung
JP5038884B2 (ja) * 2007-12-28 2012-10-03 パナソニック株式会社 直流開閉器
US8248738B2 (en) * 2008-07-29 2012-08-21 Infineon Technologies Ag Switching device, high power supply system and methods for switching high power

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011098374A1 *

Also Published As

Publication number Publication date
WO2011098374A1 (fr) 2011-08-18
CN102754346A (zh) 2012-10-24
DE102010007452A1 (de) 2011-08-11
US20120306264A1 (en) 2012-12-06

Similar Documents

Publication Publication Date Title
EP2534757A1 (fr) Dispositif de déconnexion pour un disjoncteur
EP3072143B1 (fr) Dispositif de commutation d'un courant continu
DE102011083693B3 (de) Gleichspannungs-Leitungsschutzschalter
EP2732521B1 (fr) Disjoncteur de protection de circuit à tension continue
DE102012109012B4 (de) Schaltungsanordnung für ein Solarkraftwerk mit einer Gleichspannungsquelle für eine Offsetspannung
EP3379725A1 (fr) Procédé de commande d'un commutateur à courant continu, commutateur à courant continu et système de tension continue
EP2639916A2 (fr) Circuit pour convertisseur de courant avec circuit intermédiaire, ainsi que procédé de fonctionnement d'un convertisseur de courant
DE102018119916A1 (de) Elektrische AC/DC-Umwandlungs-Anordnung
DE102014209729A1 (de) Vorrichtung zur kontaktlosen Übertragung von Energie
EP3036823A1 (fr) Mutateur multi-niveaux
EP3915127B1 (fr) Disjoncteur à courant continu
WO2020099103A1 (fr) Commutateur électronique comprenant une protection contre la surtension
EP2707888B1 (fr) Dispositif de commutation
DE102011005905B4 (de) Schalter für eine Übertragungsstrecke für Hochspannungs-Gleichstrom
DE102013017091A1 (de) Energiespeichereinrichtung für einen Kraftwagen
EP2845214B1 (fr) Dispositif destiné à la commutation dans un réseau de tension continue
DE102016202661A1 (de) Vorrichtung zum Schalten eines Gleichstroms in einem Pol eines Gleichspannungsnetzes
EP3575127B1 (fr) Système d'entraînement pour un véhicule ferroviaire doté d'un dispositif de protection contre les courts-circuits côté secondaire du transformateur
DE102012217280A1 (de) Trennanordnung für ein Hochspannungsgleichstromnetz
DE102009046616A1 (de) Wechselrichter
DE102018101309A1 (de) Gleichstrom-Schutzschaltgerät
DE102017202208A1 (de) Versorgungseinrichtung für ein elektrisches Modul mit Sicherungselement
DE102019005123A1 (de) Energiewandler zum galvanischen Koppeln eines ersten Gleichspannungszwischenkreises mit einem zweiten Gleichspannungszwischenkreis
DE102015220820A1 (de) Spannungswandler
EP1553686B1 (fr) Alimentation de courant continu à haute tension et méthode d'opération de telle alimentation de courant continu à haute tension

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120731

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130712

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131123