EP2534757A1 - Dispositif de déconnexion pour un disjoncteur - Google Patents
Dispositif de déconnexion pour un disjoncteurInfo
- Publication number
- EP2534757A1 EP2534757A1 EP11702617A EP11702617A EP2534757A1 EP 2534757 A1 EP2534757 A1 EP 2534757A1 EP 11702617 A EP11702617 A EP 11702617A EP 11702617 A EP11702617 A EP 11702617A EP 2534757 A1 EP2534757 A1 EP 2534757A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- switch
- semiconductor switch
- circuit
- battery
- arrangement according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/08—Modifications for protecting switching circuit against overcurrent or overvoltage
- H03K17/081—Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
- H03K17/0814—Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R25/00—Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/54—Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
- H01H9/541—Contacts shunted by semiconductor devices
- H01H9/542—Contacts shunted by static switch means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/54—Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
- H01H9/548—Electromechanical and static switch connected in series
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/001—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
Definitions
- the invention relates to an arrangement for switching discharge of a circuit breaker for galvanic isolation of an electrical connection and an associated method for switching discharge.
- Travel drives for electrically powered vehicles usually have a battery and an inverter for the operation of the electric motor or motors.
- the battery provides the electrical power and the inverter converts the DC voltage of the battery into a suitable alternating voltage or three-phase current. For security reasons, the
- the dependent claims relate to advantageous Ausges ⁇ taltungen the invention.
- the inventive arrangement for switching discharge of a circuit breaker for the electrical isolation of an electrical connection has at least one semiconductor switch. It is further configured to allow the separation of the electrical connection to let the current to be disconnected via the semiconductor switch, so that a reduced voltage build-up is effected via the circuit breaker at its shutdown.
- There are various setups or reduction ⁇ hens have, in which the current to be disconnected before or after the switching off of the circuit breaker flows through the semiconductor switch.
- the semiconductor switch is electrically connected to the circuit breaker.
- the disconnecting switch can be switched off in such a way that it either remains completely free of voltage and current or at least provides an escape path for the current, which reduces or prevents arcing. This ensures that the
- the current through the semiconductor switch is turned off by the semiconductor switch is non-conducting maral ⁇ tet when the current to be disconnected flows through the semiconductor switch. This can be done before the disconnect switch is turned off or after the disconnect switch is turned off.
- the circuit breaker corresponds to the necessarily existing battery disconnector for galvanic isolation of the battery from the DC link.
- the arrangement is used for switching the battery disconnect switch.
- problems arise there especially since, in contrast to conventionally operated vehicles, significantly higher voltages are used for electrically operated vehicles, in particular those above 24V. Typical voltages can be more than 400V.
- a series circuit of a mechanical discharge switch and the semiconductor switch is arranged parallel to the circuit breaker. It is expedient that for the separation of the electrical connection only the mechanical switch, then the semiconductor switch are turned on and then the circuit breaker is switched non-conductive. This ensures that the mechanical discharge switch is switched on withoutponsbelas ⁇ tion, and can switch over when switching off the separation scarf ⁇ ters the current to the semiconductor switch and the mechanical discharge switch. Furthermore, it is expedient if after the circuit breaker first the semiconductor switch is turned off, that is placed in the non-conductive state. Finally, the mechanical discharge switch is expediently reopened. According to a further embodiment of the invention, the current to be disconnected already flows through the semiconductor switch before the disconnector is switched off. For this purpose, the semiconductor switch is arranged in particular in series with the circuit breaker. In this structure, it is expedient that for the separation of the electrical connection of the semiconductor switch is first switched non-conductive and then the circuit breaker is switched till ⁇ .
- an overvoltage protection device for the semiconductor switch is provided parallel to the semiconductor switch. This serves to limit the voltage across the semiconductor switch and absorbs, for example, overvoltages caused by Lead inductances occur when switching off the battery current.
- the disconnecting switch is used to disconnect a voltage source from, for example, a converter
- the arrangement comprises a precharge circuit.
- the precharge circuit has a series circuit of a mechanical precharge switch and a precharge resistor for current limiting. It is arranged parallel to the disconnector.
- the semiconductor switch takes over the function of a current limiting by a pulsed on and off.
- the semiconductor switch can effectively take over the function of a Vorladescnies in addition to the function of the switching discharge.
- a second overvoltage protection device may be provided in series with the circuit breaker. In electric vehicles, this serves to the battery against over-voltages from the direction of the electric motor to Schütting ⁇ zen. These can occur during field weakening operation, for example, if the inverter fails.
- the semiconductor switch takes over in addition to the switching discharge and the function of the second overvoltage protection device. It is expedient if, for example, a reverse blocking IGBT is used as a semiconductor switch. This has sufficient blocking capability in both directions.
- FIG. 1 shows a circuit with a battery disconnect switch, a parallel discharge circuit and a precharge circuit
- FIG. 2 shows a circuit with a battery disconnect switch and a parallel discharge circuit
- Figure 3 is a circuit with battery disconnector, serially arranged discharge circuit and circuit for pre-charging, the semiconductor switch of the discharge circuit is protected against overvoltages
- Figure 4 shows a circuit with battery disconnector, serially arranged discharge circuit and circuit for pre-charging, wherein the semiconductor switch of the discharge circuit by means of an RC circuit protected against overvoltages
- Figure 5 shows another circuit with battery disconnector and serially arranged discharge circuit
- Figure 6 shows a circuit with battery disconnector and serially arranged semiconductor device acting as a discharge circuit and battery protection switch.
- FIG. 1 shows a highly schematic of the structure of a drive ⁇ system 10 according to a first embodiment of an electrically powered vehicle. It is known that in electrically powered vehicles instead of a conventional engine, often more electric motors are used, for example, to drive the wheels of the vehicle separately.
- the electric motor 1 is represented in the figures as representative of the one or more electric motors 1 that are used in the electrically operated vehicle. In the example shown, the electric motor 1 is a permanent magnetically excited synchronous motor.
- an inverter 2 is seen easily.
- the converter 2 is constructed per se in a known manner and connected on the output side in a suitable manner to the electric motor 1.
- the inverter 2 On the input side, the inverter 2 is indirectly connected to a battery 3.
- the battery provides a DC voltage. Therefore, in rectifier 2 expediently no rectifier is provided. This in turn means that typically the battery 3 is connected to the intermediate circuit of the converter 2 via intermediate components, which are described below.
- a mechanical battery disconnector 4 is provided between the positive terminal of the battery 3 and the intermediate circuit of the inverter 2.
- the battery disconnect switch 4 is designed to be able to carry the rated current and to ensure galvanic isolation in the opened state.
- the drive system 10 according to figure 1 parallel to the Batte ⁇ advised gas circuit breaker 4 has a precharge circuit.
- the precharge circuit consists of a series connection of a mechanical pre-charge switch 14 and a precharge resistor 13.
- the precharge circuit is used at the time of turning on the battery disconnect switch 4. At this time, the discharged DC link capacity acts as a short circuit. To limit the current flowing, therefore, the precharge circuit is first used to turn on until the intermediate circuit is sufficiently precharged. Only then is the battery disconnect switch 4 closed and the mechanical precharge switch 14 reopened. Also in parallel with the battery disconnect switch 4, and also in parallel to the precharge, components for switching the battery disconnect switch 4 are provided in the circuit of Figure 1. These are ⁇ a series circuit of a mechanical relief switch 15 and an IGBT 11. Parallel to the IGBT 11, a protection circuit is provided against overvoltages for the IGBT 11, which includes a suppressor diode 12.
- an overvoltage protection module 5 is provided between the battery breaker 4 and the other components connected in parallel therewith. This consists of an IGBT 6 and a diode from the inverter 2 to the battery 3 arranged blocking 7. If in the circuit of Figure 1, the battery current, possibly the maximum battery current, are turned off, the following switching operations are performed. It is assumed that the battery disconnect switch 4 is turned on, the mechanical discharge switch 15 and the semiconductor switch 11 are turned off and the me ⁇ chanische precharge switch 14 is also off. The current thus flows through the battery disconnect switch 4.
- the mechanical discharge switch 15 is turned on first. This causes due to the switched-off semicon terschalter 11 still no change.
- the semiconductor switch 11 is turned on.
- the battery disconnector 4 is opened. Since the current can now take the detour via the discharge circuit, the voltage across the battery disconnect switch 4 remains low. Therefore, the shutdown of the battery disconnect switch 4 is problematic . In other words, the battery disconnect switch 4 does not have to be designed to shut off the high maximum battery current in its design.
- the semiconductor switch 11 is turned off. The intermediate circuit voltage therefore builds up on the semiconductor switch 11. This can still be increased by the line inductances, for example, the battery ⁇ cable. Possible overvoltages are limited in this example by the suppressor diode 12.
- the mechanical discharge switch 15 is de-energized
- the battery disconnect switch 4 is not switched off without current.
- a low-impedance path for the flow of current is offered.
- the mechanical discharge switch 15 as well as the battery disconnector 4 for a galvanic isolation of the battery 3 and the intermediate circuit of the inverter 2 as well as that the current can only take over the semiconductor switch 11 for the shutdown.
- the mechanical relief switch 15 itself is switched off after switching off the semiconductor switch 11 de-energized ⁇ .
- the problematic shutdown is thus shifted from Batte ⁇ rietrennschalter 4 on the semiconductor switch 11. There, the shutdown is not a problem.
- the semiconductor switch 11 is in the current path only for a short time.
- control device In order to control the operations in the structure according to the Fi gur ⁇ 1 as well as the other embodiments, is a control device present. In the first exemplary embodiment, this controls the mechanical pre-charge switch 14, the mechanical release switch 15 and the battery disconnector 4. It also controls the semiconductor switch 11. Furthermore, the control device controls the IGBT 6, which is responsible for the overvoltage protection of the battery 3. For this it is expedient if a constant monitoring of the func ⁇ onsttle the IGBT 6 is provided. This is also operated by the controller.
- a second embodiment of the invention will be described with reference to FIG.
- the second embodiment is constructed similar to the first embodiment.
- no precharge circuit is provided in the second embodiment. That is, in the second embodiment, the mechanical precharge switch 14 and the precharge resistor 13 are omitted.
- the discharge ⁇ circuit takes from the semiconductor switch 11 and the mechanical Relief switch 15 the task of Vorladescnies.
- the semiconductor switch 11 is capable of high
- the discharge circuit is used until the intermediate circuit is sufficiently preloaded.
- the mechanical ⁇ cal discharge switch 15 is turned on and the semiconductor switch 11 off at a high frequency, for example, a frequency of 5 kHz and off. If the intermediate circuit is sufficiently precharged, the battery disconnector 4 is closed, the semiconductor switch 11 is turned off and the mechanical release switch 15 is opened again.
- the Entlas ⁇ processing circuit at the same time a precharge circuit.
- FIG. 3 shows a structure 30 according to a third exemplary embodiment of the invention.
- the elements electric motor 1, inverter 2, battery 3 and battery disconnector 4 and the overvoltage protection 5 for the battery 3 are realized and arranged in an analogous manner to the first and second embodiments.
- the Ent ⁇ lastungsscnies composed of the IGBT 11 and the parallel to the IGBT 11 provided suppressor diode 12.
- the Entlas ⁇ processing circuit is in the third embodiment in series with the battery disconnect switch 4 between it and the surge protector 5 is provided.
- a precharge circuit is provided ⁇ analogous to that of the first embodiment in the third embodiment.
- the precharge circuit consists of a mechanical precharge switch 14 in series with a precharge resistor 13. Both elements are in parallel with the battery disconnect switch 4 arranged.
- the function of the precharge circuit is analogous to that in the first embodiment.
- the semiconductor switch 11 is first turned off to turn off the power. This ent ⁇ standing surges are limited as already described by the suppressor diode 12. As in the first or second embodiment, the switching off of the current from the battery disconnector 4 to the semiconductor switch 11 is thus relocated. After switching off the semiconductor switch 11, the battery disconnector 4 can be opened in the de-energized state.
- the semiconductor switch 11 is constantly in the circuit of battery 3 and Umrich ⁇ ter 2. In other words, it always leads the current flowing through the battery disconnector 4.
- semiconductor switches 11 have a higher electrical resistance than mechanical switches 4, 14, 15. Therefore, fall in the circuit according to the third embodiment higher elec ⁇ cal losses than in the circuits according to the first and second embodiments. For this Switching Power ⁇ control and control technical expenditure is reduced because, in contrast to the three mechanical switches off the first two me ⁇ chanical switches provide leadership example in the third embodiment.
- a fourth exemplary embodiment according to FIG. 4 shows how the overvoltage protection for the semiconductor switch 11 can be constructed as an alternative to the use of the suppressor diode 12.
- a circuit is parallel to the semiconductor switch 11 is provided consisting of a parallel to the semiconducting ⁇ terschalter 11 disposed resistor 41 and, disposed parallel to both aforementioned elements capacitor 42nd
- the possibilities used for the overvoltage protection that is to say suppressor diode 12 and RC circuit, can also be used in combination with one another.
- a further simplification of the structure and thus of the tax-technical effort results when a circuit according to the fifth embodiment, shown in Figure 5 is used.
- the elements electric motor 1, inverter 2, battery 3 and battery disconnect switch 4 and the overvoltage protection 5 for the battery 3 are in the fifth embodiment ⁇ example again realized and arranged in an analogous manner to the first and second embodiments.
- the discharge circuit of the semiconductor switch 11 and its overvoltage protection in this case formed by a suppressor diode 12, is provided.
- the semiconductor switch 11 is arranged as in the third and fifth embodiments in series with the battery disconnector 4 between this and the overvoltage protection 5 for the battery 3.
- the discharge ⁇ circuit next to the switching relief for the battery disconnector 4 again assumes the function of the precharge.
- the function of the switching relief for the battery disconnect switch 4 works analogously to the third and fourth adoptedsbei- game. Again, the shutdown process is performed by the semiconductor switch 11 and the battery disconnector 4 is turned off in the de-energized state.
- Figure 6 shows a final, sixth embodiment of the invention.
- the elements of electric motor 1, the inverter 2, battery 3 and battery disconnect switch 4 are in turn implemented in the sixth embodiment in a manner analogous to the first and th two ⁇ embodiment and arranged.
- the overvoltage protection 5 for the battery 3 and the discharge circuit are combined into a single circuit.
- a so-called reverse blocking IGBT 61 is provided in series with the battery isolating switch 4. Parallel to the reverse blocking IGBT 61, an overvoltage protection is provided for this. This consists in the sixth embodiment of two anti-serially connected suppressor diodes 62, 63rd
- the reverse blocking IGBT 61 takes over the switching discharge for the battery disconnector 4, by the shutdown of
- the reverse blocking IGBT 61 still assumes the function of Sprintwoodsschut ⁇ zes 5 for the battery 3. It is expedient that the reverse blocking IGBT 61 is turned on to allow current flow from the battery 3 to the inverter 2, but can be switched off at any time to block any overvoltages from the direction of the electric motor 1. For this purpose, it is expedient ⁇ SSGIs, a permanent function monitoring for the reverse Bio- Cking IGBT 61 to provide, as it is already the case for the overvoltage protection 5 from the first to fifth embodiments. It is understood that certain components of the here ge Service ⁇ th circuits must be provided repeatedly in an electrically powered vehicle under certain circumstances.
- a converter 2 is provided for each of the electric motors 1, a converter 2 is provided.
- several batteries can be provided in the vehicle 3 ⁇ en.
- the number of other components presented in the figures can be easily adapted to the number of electric motors 1, converters 2 or batteries 3.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
L'invention concerne un dispositif de déconnexion pour un disjoncteur (4) destiné à des applications dans le domaine des véhicules électriques, le disjoncteur (4) devant réaliser une séparation galvanique entre une batterie et un circuit intermédiaire. Pour cela, on emploie au moins un commutateur statique (11). Pour la séparation de la liaison électrique, on fait passer le courant à couper par le commutateur statique (11). Avant ou après cela, le disjoncteur (4) est désexcité avec une élévation de tension réduite.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010007452A DE102010007452A1 (de) | 2010-02-10 | 2010-02-10 | Schaltentlastung für einen Trennschalter |
PCT/EP2011/051387 WO2011098374A1 (fr) | 2010-02-10 | 2011-02-01 | Dispositif de déconnexion pour un disjoncteur |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2534757A1 true EP2534757A1 (fr) | 2012-12-19 |
Family
ID=43799597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11702617A Withdrawn EP2534757A1 (fr) | 2010-02-10 | 2011-02-01 | Dispositif de déconnexion pour un disjoncteur |
Country Status (5)
Country | Link |
---|---|
US (1) | US20120306264A1 (fr) |
EP (1) | EP2534757A1 (fr) |
CN (1) | CN102754346A (fr) |
DE (1) | DE102010007452A1 (fr) |
WO (1) | WO2011098374A1 (fr) |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011012171A1 (fr) | 2009-07-31 | 2011-02-03 | Areva T&D Uk Limited | Circuit pour convertisseur hybride configurable |
CN102792544B (zh) | 2010-03-15 | 2016-01-20 | 阿尔斯通技术有限公司 | 具有多级转换器的静止无功补偿器 |
WO2011157300A1 (fr) | 2010-06-18 | 2011-12-22 | Areva T&D Uk Limited | Convertisseur pour transmission de ccht et compensation de puissance réactive |
AU2011370308A1 (en) | 2011-06-08 | 2013-12-19 | Alstom Technology Ltd | High voltage DC/DC converter with cascaded resonant tanks |
FR2977738B1 (fr) * | 2011-07-04 | 2015-01-16 | Mersen France Sb Sas | Systeme d'interruption de courant continu apte a ouvrir une ligne de courant continu a comportement inductif |
CN103891121B (zh) | 2011-08-01 | 2016-11-23 | 阿尔斯通技术有限公司 | 直流-直流转换器组件 |
EP2777127B1 (fr) | 2011-11-07 | 2016-03-09 | Alstom Technology Ltd | Circuit de commande |
DE102011118716B4 (de) * | 2011-11-16 | 2017-07-20 | Audi Ag | Speichersystem für elektrische Energie |
CN103959634B (zh) | 2011-11-17 | 2017-09-01 | 通用电气技术有限公司 | 用于hvdc应用的混合ac/dc转换器 |
KR102005104B1 (ko) | 2012-03-01 | 2019-07-30 | 제네럴 일렉트릭 테크놀러지 게엠베하 | 제어회로 |
EP2820663A1 (fr) * | 2012-03-01 | 2015-01-07 | Alstom Technology Ltd | Disjoncteur composite pour courant continu haute tension |
DE102012210600B4 (de) | 2012-06-22 | 2023-03-02 | Robert Bosch Gmbh | Lade- und/oder Trenneinrichtung für ein Batteriesystem |
DE102012215755A1 (de) * | 2012-09-05 | 2014-03-06 | Robert Bosch Gmbh | Niedervoltnetz mit Gleichspannungswandler und Verfahren zum Testen einer Niedervoltbatterie |
EP2904625B1 (fr) * | 2012-12-07 | 2018-03-21 | Siemens Aktiengesellschaft | Disjoncteur de courant continu |
DE102013110240B4 (de) | 2013-09-17 | 2017-09-07 | Sma Solar Technology Ag | Schaltungsanordnung für einen Photovoltaikwechselrichter zur Ausschaltentlastung mit Kurzschlussschaltern und Verwendungen der Schaltungsanordnung |
DE102014202504A1 (de) * | 2014-02-12 | 2015-08-13 | Robert Bosch Gmbh | Trenneinheit zur galvanischen Trennung des Leistungsstromkreises zwischen einer Spannungsquelle und einer Verbrauchereinrichtung sowie Batteriesystem mit einer solchen Trenneinheit |
DE102014210648A1 (de) * | 2014-06-04 | 2015-12-17 | Robert Bosch Gmbh | Batteriesystem |
DE102014220017A1 (de) | 2014-10-02 | 2016-04-07 | Robert Bosch Gmbh | Batteriesystem mit einer zum Versorgen eines Hochvoltnetzes mit elektrischer Energie ausgebildeten Batterie und einer Messeinrichtung zum Messen mindestens eines Isolationswiderstandes der Batterie |
DE102015010323A1 (de) | 2014-12-23 | 2016-06-23 | Daimler Ag | Energiequellenanordnung mit zweipoliger Abschaltung für ein Kraftfahrzeug |
DE102015000576B4 (de) * | 2015-01-16 | 2021-07-29 | Audi Ag | Kraftfahrzeug mit Schaltvorrichtung für eine bordnetzbetriebene Komponente |
EP4012738A1 (fr) * | 2015-05-05 | 2022-06-15 | Siemens Aktiengesellschaft | Dispositif de commutation |
EP3300237B1 (fr) * | 2015-05-20 | 2022-01-12 | Nissan Motor Co., Ltd. | Dispositif de commande d'alimentation électrique et procédé de commande d'alimentation électrique |
US10199843B2 (en) * | 2015-05-26 | 2019-02-05 | Infineon Technologies Americas Corp. | Connect/disconnect module for use with a battery pack |
CN109075581B (zh) | 2016-05-12 | 2022-10-21 | 罗伯特·博世有限公司 | 电池断连电路和用于控制电池断连电路的方法 |
EP3276775B1 (fr) | 2016-07-27 | 2018-11-28 | Samsung SDI Co., Ltd. | Système de batterie pour véhicule hybride |
DE102016216341A1 (de) * | 2016-08-30 | 2018-03-01 | Robert Bosch Gmbh | Stromunterbrechungsanordnung, Batteriesystem, Controller und Verfahren zum Trennen eines Stromflusses zwischen einer Batterie und einem Verbraucher der Batterie |
DE102016216331B3 (de) | 2016-08-30 | 2018-01-18 | Ellenberger & Poensgen Gmbh | Trennvorrichtung zur Stromunterbrechung, Schutzschalter mit einem Sensor und einer Trennvorrichtung sowie Verfahren zum Betrieb einer Trennvorrichtung |
US10168372B2 (en) | 2016-12-14 | 2019-01-01 | General Electric Company | System and method for leakage current and fault location detection in electric vehicle DC power circuits |
US10203363B2 (en) | 2016-12-14 | 2019-02-12 | General Electric Company | DC leakage current detector and method of operation thereof for leakage current detection in DC power circuits |
DE102017201657A1 (de) | 2017-02-02 | 2018-08-02 | Volkswagen Aktiengesellschaft | Schaltungsanordnung, Bordnetz und Fortbewegungsmittel mit verbesserter Zwischenkreisaufladung |
DE102017205403A1 (de) * | 2017-03-30 | 2018-10-04 | Audi Ag | System mit einer Hochvoltbatterie und einer Kopplungsvorrichtung, Kraftfahrzeug sowie Verfahren zum Betreiben einer Kopplungsvorrichtung |
DE102017213017A1 (de) * | 2017-07-28 | 2018-07-12 | Continental Automotive Gmbh | Verfahren zum Betrieb eines Bordnetzes mit mehreren Bordnetzzweigen und Fahrzeugbordnetz |
CN107585058A (zh) * | 2017-09-29 | 2018-01-16 | 北京新能源汽车股份有限公司 | 一种充电装置及电动汽车 |
CN107819457A (zh) * | 2017-12-06 | 2018-03-20 | 昆山安平电气有限公司 | 一种机械与半导体复合式开关及其使用方法 |
DE102018203499A1 (de) | 2018-03-08 | 2019-09-12 | Continental Automotive Gmbh | Wechselstromladevorrichtung für ein Kraftfahrzeug und Verfahren zum Betreiben einer Wechselstromladevorrichtung für ein Kraftfahrzeug |
DE102018203489B4 (de) | 2018-03-08 | 2022-05-19 | Vitesco Technologies GmbH | Wechselstromladevorrichtung für ein Kraftfahrzeug und Verfahren zum Betreiben einer Wechselstromladevorrichtung für ein Kraftfahrzeug |
WO2019170476A1 (fr) | 2018-03-08 | 2019-09-12 | Cpt Group Gmbh | Dispositif de charge à courant alternatif pour un véhicule à moteur, procédé pour faire fonctionner un dispositif de charge à courant alternatif pour un véhicule à moteur et véhicule à moteur |
DE102018215881B3 (de) * | 2018-09-19 | 2020-02-06 | Siemens Aktiengesellschaft | Vorrichtung und Verfahren zum Koppeln zweier Gleichstromnetze |
EP3651336A1 (fr) * | 2018-11-08 | 2020-05-13 | Siemens Aktiengesellschaft | Commutateur à courant continu |
EP3654477A1 (fr) * | 2018-11-15 | 2020-05-20 | Siemens Aktiengesellschaft | Commutateur électronique à protection contre les surtensions |
DE102019107112B3 (de) | 2019-03-20 | 2020-07-09 | Lisa Dräxlmaier GmbH | Schaltvorrichtung, Spannungsversorgungssystem, Verfahren zum Betreiben einer Schaltvorrichtung und Herstellverfahren |
JP7561309B2 (ja) | 2020-08-06 | 2024-10-04 | 株式会社オートネットワーク技術研究所 | 回路構成体 |
EP4084035A1 (fr) | 2021-04-29 | 2022-11-02 | Volvo Truck Corporation | Agencement de commutation |
EP4084265A1 (fr) | 2021-04-29 | 2022-11-02 | Volvo Truck Corporation | Procédé de fonctionnement d'un agencement de commutation d'un système de stockage d'énergie |
GB2611826A (en) * | 2021-10-18 | 2023-04-19 | Eaton Intelligent Power Ltd | Solid-state DC device |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59105226A (ja) * | 1982-12-09 | 1984-06-18 | 株式会社日立製作所 | しゃ断器 |
JPS60117518A (ja) * | 1983-11-28 | 1985-06-25 | オムロン株式会社 | リレ−装置 |
US4636907A (en) * | 1985-07-11 | 1987-01-13 | General Electric Company | Arcless circuit interrupter |
CN2030386U (zh) * | 1988-02-03 | 1989-01-04 | 广西平果县科委 | 三相负荷限制器 |
US6078491A (en) * | 1996-05-07 | 2000-06-20 | Siemens Aktiengesellschaft | Hybrid relay |
EP1014403A1 (fr) * | 1998-12-21 | 2000-06-28 | Asea Brown Boveri AG | Interrupteur limiteur de courant |
CN1112750C (zh) * | 1999-07-15 | 2003-06-25 | 裴迪生 | 无触点开关无功功率补偿装置 |
DE10225259B3 (de) * | 2002-06-07 | 2004-01-22 | Sma Regelsysteme Gmbh | Elektrischer Steckverbinder |
US7538990B2 (en) * | 2006-12-14 | 2009-05-26 | Hamilton Sundstrand Corporation | High voltage DC contactor hybrid without a DC arc break |
ATE463829T1 (de) * | 2007-10-12 | 2010-04-15 | Sma Solar Technology Ag | Lasttrenner-anordnung |
JP5038884B2 (ja) * | 2007-12-28 | 2012-10-03 | パナソニック株式会社 | 直流開閉器 |
US8248738B2 (en) * | 2008-07-29 | 2012-08-21 | Infineon Technologies Ag | Switching device, high power supply system and methods for switching high power |
-
2010
- 2010-02-10 DE DE102010007452A patent/DE102010007452A1/de not_active Ceased
-
2011
- 2011-02-01 CN CN2011800089842A patent/CN102754346A/zh active Pending
- 2011-02-01 EP EP11702617A patent/EP2534757A1/fr not_active Withdrawn
- 2011-02-01 US US13/578,153 patent/US20120306264A1/en not_active Abandoned
- 2011-02-01 WO PCT/EP2011/051387 patent/WO2011098374A1/fr active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2011098374A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2011098374A1 (fr) | 2011-08-18 |
CN102754346A (zh) | 2012-10-24 |
DE102010007452A1 (de) | 2011-08-11 |
US20120306264A1 (en) | 2012-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2534757A1 (fr) | Dispositif de déconnexion pour un disjoncteur | |
EP3072143B1 (fr) | Dispositif de commutation d'un courant continu | |
DE102011083693B3 (de) | Gleichspannungs-Leitungsschutzschalter | |
EP2732521B1 (fr) | Disjoncteur de protection de circuit à tension continue | |
DE102012109012B4 (de) | Schaltungsanordnung für ein Solarkraftwerk mit einer Gleichspannungsquelle für eine Offsetspannung | |
EP3379725A1 (fr) | Procédé de commande d'un commutateur à courant continu, commutateur à courant continu et système de tension continue | |
EP2639916A2 (fr) | Circuit pour convertisseur de courant avec circuit intermédiaire, ainsi que procédé de fonctionnement d'un convertisseur de courant | |
DE102018119916A1 (de) | Elektrische AC/DC-Umwandlungs-Anordnung | |
DE102014209729A1 (de) | Vorrichtung zur kontaktlosen Übertragung von Energie | |
EP3036823A1 (fr) | Mutateur multi-niveaux | |
EP3915127B1 (fr) | Disjoncteur à courant continu | |
WO2020099103A1 (fr) | Commutateur électronique comprenant une protection contre la surtension | |
EP2707888B1 (fr) | Dispositif de commutation | |
DE102011005905B4 (de) | Schalter für eine Übertragungsstrecke für Hochspannungs-Gleichstrom | |
DE102013017091A1 (de) | Energiespeichereinrichtung für einen Kraftwagen | |
EP2845214B1 (fr) | Dispositif destiné à la commutation dans un réseau de tension continue | |
DE102016202661A1 (de) | Vorrichtung zum Schalten eines Gleichstroms in einem Pol eines Gleichspannungsnetzes | |
EP3575127B1 (fr) | Système d'entraînement pour un véhicule ferroviaire doté d'un dispositif de protection contre les courts-circuits côté secondaire du transformateur | |
DE102012217280A1 (de) | Trennanordnung für ein Hochspannungsgleichstromnetz | |
DE102009046616A1 (de) | Wechselrichter | |
DE102018101309A1 (de) | Gleichstrom-Schutzschaltgerät | |
DE102017202208A1 (de) | Versorgungseinrichtung für ein elektrisches Modul mit Sicherungselement | |
DE102019005123A1 (de) | Energiewandler zum galvanischen Koppeln eines ersten Gleichspannungszwischenkreises mit einem zweiten Gleichspannungszwischenkreis | |
DE102015220820A1 (de) | Spannungswandler | |
EP1553686B1 (fr) | Alimentation de courant continu à haute tension et méthode d'opération de telle alimentation de courant continu à haute tension |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120731 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20130712 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20131123 |