Nothing Special   »   [go: up one dir, main page]

EP2513933B1 - Electromagnetic actuator having magnetic coupling, and cutoff device comprising such actuator - Google Patents

Electromagnetic actuator having magnetic coupling, and cutoff device comprising such actuator Download PDF

Info

Publication number
EP2513933B1
EP2513933B1 EP10790459.1A EP10790459A EP2513933B1 EP 2513933 B1 EP2513933 B1 EP 2513933B1 EP 10790459 A EP10790459 A EP 10790459A EP 2513933 B1 EP2513933 B1 EP 2513933B1
Authority
EP
European Patent Office
Prior art keywords
electromagnetic actuator
magnetic
moving core
core
open position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10790459.1A
Other languages
German (de)
French (fr)
Other versions
EP2513933A1 (en
Inventor
Michel Lauraire
Jean-Pierre Kersusan
Bernard Loiacono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Industries SAS
Original Assignee
Schneider Electric Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0906168A external-priority patent/FR2954577B1/en
Priority claimed from FR1003875A external-priority patent/FR2965656B1/en
Application filed by Schneider Electric Industries SAS filed Critical Schneider Electric Industries SAS
Publication of EP2513933A1 publication Critical patent/EP2513933A1/en
Application granted granted Critical
Publication of EP2513933B1 publication Critical patent/EP2513933B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/28Power arrangements internal to the switch for operating the driving mechanism using electromagnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/28Power arrangements internal to the switch for operating the driving mechanism
    • H01H33/38Power arrangements internal to the switch for operating the driving mechanism using electromagnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6662Operating arrangements using bistable electromagnetic actuators, e.g. linear polarised electromagnetic actuators

Definitions

  • the invention relates to an electromagnetic actuator with magnetic attachment comprising a movable core mounted to slide axially along a longitudinal axis inside a magnetic yoke between a latching position and an open position.
  • the actuator further comprises a permanent magnet and a coil extending axially along the longitudinal axis of the cylinder head.
  • the coil is intended to generate a first magnetic control flux for moving the movable core from an open position to a latching position and a second magnetic control flux opposing a bias flux of the permanent magnet. and allowing movement of the movable core from the latching position to the open position.
  • the invention relates to a cut-off device comprising at least one fixed contact cooperating with at least one movable contact for switching the supply of an electric charge.
  • the invention therefore aims to overcome the disadvantages of the state of the art, so as to provide an electromagnetic actuator with high energy efficiency.
  • the permanent magnet of the electromagnetic actuator according to the invention is positioned on the mobile core so as to be at least partly outside the fixed magnetic circuit in which the first control magnetic flux flows when the mobile core is in a position opening hours, and to be less in part within the fixed magnetic circuit used for the circulation of the bias magnetic flux generated by the magnet when the movable core is in a latching position.
  • the permanent magnet is radially magnetized perpendicular to the longitudinal axis of the cylinder head.
  • the yoke comprises an inner sleeve extending around the movable core, the permanent magnet being positioned on the movable core so as to be at least partly opposite the inner sleeve of the magnetic yoke when the core mobile is in a hooking position.
  • the inner sleeve extends over an overlapping distance placed in facing relation with the permanent magnet in the hooking position.
  • the inner sleeve is separated from the movable core by a radial sliding air gap remaining uniform during the translational movement of the movable core.
  • the permanent magnet is axially magnetized aligned along the longitudinal axis of the cylinder head.
  • the permanent magnet is positioned on the movable core so as to be entirely outside the magnetic yoke when the movable core is in an open position.
  • the permanent magnet is positioned on the movable core so as to be entirely inside the magnetic yoke when the movable core is in an open position.
  • the actuator comprises a cover of non-ferromagnetic material at an outer face of the magnetic yoke so as to cover the entire movable core in the open position.
  • the movable core has a radial surface intended to stick against the magnetic yoke in the attachment position, said surface being less than an average section of said core.
  • the electromagnetic actuator comprises at least one return spring opposing the displacement of said core from its open position to its attachment position.
  • the magnetic mobile core is coupled to a non-magnetic actuating member extending along the longitudinal axis.
  • the electromagnetic actuator comprises a movable sleeve that can be actuated manually or via an electromechanical actuator.
  • the breaking device according to the invention comprises at least one electromagnetic actuator as defined above for actuating said at least one moving contact.
  • the electromagnetic actuator 1 with magnetic hooking comprises a fixed magnetic circuit of ferromagnetic material.
  • the fixed magnetic circuit comprises a yoke 20 extending along a longitudinal axis Y.
  • the yoke 20 of the magnetic circuit has at its opposite ends a first and a second flange 22, 24 parallel.
  • the flanges 22, 24 extend perpendicularly to the longitudinal axis Y of the yoke 20.
  • the yoke 20 is composed of two plates of ferromagnetic material elongate and positioned relative to each other so as to release an internal volume.
  • the two plates are kept parallel by the first and second flanges 22, 24 placed respectively at the ends of said plates.
  • Said flanges are made of ferromagnetic material.
  • the cylinder head 20 of parallelepiped shape has at least two open faces on the internal volume.
  • the two plates and the first flange 22 may be a single piece obtained by folding, machining or sintering.
  • said flanges could be made by a stack of laminated sheets to reduce the induced currents and associated losses. This set may be parallelepipedal or axisymmetric.
  • the electromagnetic actuator comprises at least one fixed control coil 30 mounted preferably on an insulating sleeve 32 inside the yoke 20. Said at least one coil extends axially between the first flange 22 and the second flange 24.
  • the electromagnetic actuator comprises a mobile core 16 mounted to slide axially in the direction of a longitudinal axis of the cylinder head 20.
  • the mobile core 16 is positioned inside the coil.
  • the displacement of the movable core 16 is thus carried out inside the control coil 30, between two operating positions, hereinafter called the attachment position PA and the open position PO.
  • Said at least one coil 30 is intended to generate in the magnetic circuit in the open position PO a first magnetic control flux ⁇ C1 so as to move the movable core 16 from the open position PO to the hooking position PA.
  • said at least one coil 30 is intended to generate in the magnetic circuit in the attachment position PA, a second control magnetic flux ⁇ C2 capable of facilitating the displacement of the mobile core 16 from its attachment position PA to its position. PO opening.
  • the mobile core 16 is composed of a cylinder of ferromagnetic material.
  • a first radial face of the cylinder is intended to be in contact with the first flange 22 when the core is in the operating position said PA hooking.
  • a first axial gap e1 corresponds to the gap between the first flange 22 and the mobile core 16. This gap is maximum when the movable core is in OP open position as shown on the Figure 1A . This air gap is zero or very weak when the mobile core is in the attachment position PA as represented on the Figure 1B .
  • a second radial face of the cylinder is preferably intended to be positioned substantially outside the volume formed by the yoke and the flanges when the core is in the operating position OP said opening.
  • the movable core 16 comprises a permanent magnet 14.
  • This permanent magnet may be unique and / or annular and / or formed of several parallelepiped magnets placed side by side on the periphery of the core.
  • the thickness of the magnet is calibrated to optimize its magnetic operation knowing that its effectiveness is related to the ratio between its thickness and the gap lengths present in the magnetic circuit in the position for which its maximum efficiency is sought.
  • the permanent magnet 14 is intended to generate a polarization flux ⁇ U giving rise to a magnetic coupling force FA now adhering the mobile core 16 against the first flange 22 when said core is in the attachment position PA.
  • the movable core 16 When the movable core 16 is in the attachment position PA, the latter is held pressed against the first flange 22 by the magnetic gripping force FA due to a polarization flux ⁇ U generated by the permanent magnet 14.
  • the movable core 16 is intended to be biased in the open position PO by at least one return spring 36.
  • the restoring force FR of the return spring 36 tends to oppose the magnetic catching force FA generated by the Permanent magnet 14.
  • the intensity at the magnetic gripping force FA is of greater intensity than the biasing force of said at least one return spring 36.
  • the magnetic catching force FA is generally calculated so as to oppose not only the return force FR but also the release forces related to shocks and / or accelerations experienced by the actuator in the closed position. These release forces, which depend on the target shock resistance level and the moving masses, are added to that of the return force FR.
  • the magnetic mobile core 16 is coupled to a non-magnetic actuating member 18 axially through an opening 17 formed in the first flange 22.
  • the core 16 and the actuating member 18 forming the movable element of the actuator 1.
  • the non-magnetic actuating member 18 is intended to drive a vacuum bulb.
  • the axial position of the magnet 14 on the movable core 16 is such that in the open position PO, said magnet is positioned, in whole or in part, outside. of the fixed magnetic circuit used for the circulation of the first control magnetic flux ⁇ C1 generated by the coil 30.
  • the magnetization magnetic flux ⁇ U of the magnet does not intervene or very little in the closure of the actuator, particularly in the displacement of the core 16 of the open position PO after the attachment position PA.
  • the axial position of the magnet 14 on the movable core 16 is also realized in such a way that in the hooking position PA, said magnet is positioned, all or part, inside the fixed magnetic circuit used for the circulation of the polarization magnetic flux ⁇ U generated by the magnet 14.
  • the magnetization polarizing flux ⁇ U of the magnet then intervenes effectively to maintain the core 16 in the position PA hanging.
  • the permanent magnet 14 is magnetized perpendicular to the direction of movement of said core.
  • the magnet is preferably entirely represented outside the magnetic circuit used for the circulation of the first control magnetic flux ⁇ C1.
  • said magnet is placed outside the internal volume of the magnetic yoke.
  • the inner face of the second flange 24 comprises an inner sleeve 46 extending partially in an annular space arranged coaxially around the mobile core 16.
  • the movable core 16 is then separated from said sleeve 46 by a second radial air gap e2 remaining substantially uniform during the translational movement of the mobile core 16.
  • the sleeve 46 in the attachment position PA, covers the movable core 16 over a covering distance L.
  • the sleeve 46 is preferably tubular in ferromagnetic material. It can be an integral part of the flange or be fixed thereto by fastening means.
  • the sliding air gap e2 and the overlap distance L between the movable core 16 and the sleeve 46 are adjusted so that the reluctance of the entire magnetic circuit 20 is as low as possible and this, over the entire race of the core. mobile 16 between the two operating positions.
  • the return spring 36 is preferably positioned outside the yoke 20. It comprises a first bearing surface on a first external support such as a frame 100 and comprises a second bearing surface on a stop 19 placed on the actuating member 18. In the open position PO, said stop 19 is supported on the second outer support.
  • the second external support may in particular be part of the outer face of the first flange 22.
  • Said at least one coil 30 is intended to generate in the magnetic circuit in the open position PO, a first control magnetic flux ⁇ C1 which tends to oppose the action of the return spring 36 so as to move the core 16 mobile from its open position PO to its hooking position PA.
  • the Figures 1A and 1B respectively represent the actuator firstly at the beginning of the closing phase and secondly at the end of the closing phase.
  • Said at least one coil 30 is also intended to generate in the magnetic circuit in the attachment position PA, a second control magnetic flux ⁇ C2 which opposes the polarization flux ⁇ U of the permanent magnet 14 so as to release the core 16 movable and allow its movement from the hooking position PA to the open position PO.
  • the Figures 2A and 2B respectively represent the actuator on the one hand at the beginning of the opening phase and secondly at the end of the opening phase. The displacement of the movable core 16 from the attachment position PA to the open position PO is under the action of said at least one return spring 36.
  • the magnet 14 with radial magnetization is positioned outside the fixed magnetic circuit used for the circulation of the first control magnetic flux ⁇ C1 while being placed inside the internal volume of the magnetic yoke.
  • the polarization magnetic flux ⁇ U of the magnet does not intervene or very little in the closing of the actuator, in particular in the displacement of the core 16 from the open position PO to the following attachment position PA.
  • said magnet is always inside the internal volume of the yoke 20 of the actuator whatever the operating position of the core. In the latching position and in the open position, the magnet is thus protected from external events.
  • the section of the core that comes into contact with the magnetic circuit in the closed position is reduced relative to the section of said core.
  • the reluctance of the magnetic circuit in the closed position is thus reduced which improves the efficiency of the actuator by decreasing the opening and closing energies.
  • a value of the contact surface between the core and the first flange is thus adaptable as needed.
  • a minority part of the magnet is partially positioned in the magnetic circuit used for the circulation of the control magnetic flux ⁇ C1.
  • a minority part of the magnet is placed inside the internal volume of the magnetic yoke.
  • the magnet is preferably partially represented in the magnetic circuit in such a way that the polarization flux ⁇ U of the magnet circulates in the magnetic circuit and thus participates in the closing of the electromagnetic actuator 1.
  • the magnet 14 is positioned in the hooking position PA so that part of the second control flow ⁇ C2 of the coil opposes the polarization flux ⁇ U of the magnet 14 without passing through the latter.
  • the efficiency of the control coil 30 increases.
  • a minority part of the magnet is positioned in the magnetic circuit used for the circulation of the second control magnetic flux ⁇ C2.
  • a portion of the sleeve 46 extends beyond the magnet. This variant, however, facilitates a local re-closure of the polarization flux ⁇ U of the magnet 14 thus reducing its efficiency.
  • the portion of the sleeve 46 extending beyond the magnet is separated from the core by a sliding gap adjustable thickness.
  • This adjustable air gap makes it possible in particular to avoid a short circuit of the flux of the magnet when the core is in the attachment position PA.
  • the permanent magnet 14 is magnetized in alignment with the direction of movement of said core.
  • Said magnet is represented entirely outside the magnetic circuit used for the circulation of the first control magnetic flux ⁇ C1.
  • said magnet is preferably placed outside the internal volume of the magnetic yoke.
  • the inner face of the second flange 24 comprises an inner sleeve 46 extending partially in an annular space arranged coaxially around the mobile core 16. The movable core 16 is then separated from said sleeve 46 by a second radial air gap e2 remaining substantially uniform during the translational movement of the mobile core 16.
  • the sleeve 46 in the attachment position PA, covers the movable core 16 over a covering distance L.
  • the sleeve 46 is preferably tubular in ferromagnetic material. It can be an integral part of the flange or be fixed thereto by fastening means.
  • the sliding air gap e2 and the overlap distance L between the movable core 16 and the sleeve 46 are adjusted so that the first control magnetic flux ⁇ C1 generated by the coil does not pass through the magnet during the entire closing phase. that is to say when the core goes from the open position PO to the attachment position PA.
  • the magnet 14 with axial magnetization is positioned outside the fixed magnetic circuit used for the circulation of the first control magnetic flux ⁇ C1 while being placed inside the internal volume of the magnetic yoke.
  • the polarization magnetic flux ⁇ U of the magnet does not intervene or very little in the closure of the actuator, in particular in the displacement of the core 16 from the open position PO to the attachment position PA.
  • said magnet is always inside the internal volume of the yoke 20 of the actuator whatever the operating position of the core. In the attachment position PA and in the open position PO, the magnet is thus protected from external events.
  • the section of the core that comes into contact with the magnetic circuit in the closed position is reduced relative to the section of said core.
  • said core comprises a magnetic shunt.
  • the magnet is constituted a ring or a disc of section inferior to that of the nucleus.
  • the fact of the presence of the magnetic shunt the risk of demagnetization of the magnet are greatly reduced.
  • the magnet is then preferably replaced by a portion of magnetizable material such as hard steel type ALNICO.
  • the invention relates to a cutoff device 22 comprising an electromagnetic actuator 1 as defined above.
  • the cut-off device 22 is a circuit breaker comprising in particular at least one bulb 2.
  • This bulb 2 can be a vacuum interrupter or a conventional circuit breaker breaking chamber.
  • a first opening force FR applied by the return spring 36 to the movable core 16 via a non-magnetic actuating member 18 tends to keep the movable core 16 in an open position, the contacts being in open position.
  • the coil 30 is supplied with power, the latter generates a first control flux. ⁇ C1 then producing an electromagnetic closing force.
  • this closing force FFE is greater than the first opening force FR
  • the movable core 16 moves from its open position PO to its hooking position PA.
  • this core encounters a second opening force FP corresponding to the pressure force applied to the contacts of the at least one bulb 2.
  • the core will then have to compress these springs. contact pressure 37 on the remaining travel to go to get the PA hooking position and corresponding to the contact wear guard.
  • the work stored by the core during its displacement from the open position to the impact position of the poles must then be sufficient to guarantee a free closure (without stop) of the contacts in order to avoid the risk of welding of these contacts. this. That is why the respective values of the second opening force FR, the opening stroke and the power injected into the coil must be optimized so as to obtain this clear closure of the core.
  • the magnetic gripping force FA is generally calculated in order firstly to oppose the first and second opening forces FR and FP and secondly to oppose the shear stresses related to the shocks to the actuator in closed position.
  • the release forces in addition to those of the first and second opening forces FR and FP.
  • Electromagnetic actuation 1 To move from a closed position to an open position of the contacts of said at least one bulb 2, in other words from the attachment position PA to the open position PO of the mobile core 16, the operation of the device Electromagnetic actuation 1 is as follows. Two opposing forces apply on the mobile core 16; a magnetic coupling force FA due to the polarization flux ⁇ U of the magnet 14 and to the sum of the opening forces FR, FP resulting from the forces applied by the return springs 36 and the pole pressures 37. The magnetic force FA is then of greater intensity than the opening forces FR + FP.
  • the control coil 30 is then energized to generate a second control flow.
  • This second control flow flows in a direction opposite to the polarization flux ⁇ U of the magnet 14 to thereby reduce the magnetic coupling force FA.
  • the movable core 16 moves from its hooking position PA to its open position PO thus causing the opening of the contact.
  • This opening is frank and continuous because of the geometry of the actuator having no stable intermediate position.
  • the electromagnetic actuator comprises a movable sleeve 47 of material ferromagnetic.
  • the longitudinal axis of said sleeve is coincident with that of the movable core 16.
  • said sleeve is positioned in a first operating position so as not to be part of the magnetic circuit and that the polarization flux ⁇ U of the magnet 14 does not flow through the sleeve when the actuator is in its position PO opening.
  • said sleeve can be positioned in a second operating position so as to be part of the magnetic circuit when the actuator is in its hooking position PA.
  • the movable sleeve 47 is in this second position, bearing against the outer face of the second flange 24. In this second position, the sleeve allows to deflect part of the flow of the magnet 14 reducing and its effectiveness in the maintenance of the movable core 16 in PA hooking position, and thus allowing the displacement of the movable core 16 from its attachment position PA to its open position PO.
  • the displacement of the movable sleeve 47 can be actuated via a manually controlled mechanism when the energy required to reopen the actuator has failed.
  • the displacement of the movable sleeve 47 could also be achieved using an electromagnetic actuator.
  • the coil of said actuator can be controlled instead of the coil 30 to achieve the opening of the core.
  • the second actuator allowing the displacement of the sleeve can also be controlled in the event of an overload fault. or short circuit in the electrical installation protected by the at least one bulb or circuit breaker.
  • a non-magnetic cover is positioned at the outer surface of the second flange 24 so as to protect the magnet from metal dust or not.
  • the section of the movable core 16 at its end placed on the side of the first flange 22 can be reduced to a small height in order to increase the retaining force from to magnet 14.
  • This reduction can be performed in the axis of the core or at its periphery.
  • the particular location of this section reduction of the core makes it possible to increase the bonding force of the core 16 without impairing its efficiency during its closing movement from the open position PO to the gripping position PA.
  • the electromagnetic actuator comprises a fixed core 67 placed inside the internal volume of the magnetic yoke against the inner face of the first flange 22.
  • the fixed core 67 of ferromagnetic material, may or may not integral with said flange.
  • the fixed core 67 concentrating the flow of the control coil increases its efficiency.
  • the core may have a parallelepiped shape.
  • the electromagnetic actuator may comprise geometries having asymmetrical shapes.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electromagnets (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

DOMAINE TECHNIQUE DE L'INVENTIONTECHNICAL FIELD OF THE INVENTION

L'invention est relative à un actionneur électromagnétique à accrochage magnétique comprenant un noyau mobile monté à coulissement axial selon un axe longitudinal à l'intérieur d'une culasse magnétique entre une position d'accrochage et une position d'ouverture. L'actionneur comprend en outre un aimant permanent et une bobine s'étendant axialement selon l'axe longitudinal de la culasse. La bobine est destinée à engendrer un premier flux magnétique de commande pour déplacer le noyau mobile d'une position d'ouverture à une position d'accrochage et un second flux magnétique de commande s'opposant à un flux de polarisation de l'aimant permanent et autorisant le déplacement du noyau mobile de la position d'accrochage vers la position d'ouverture.The invention relates to an electromagnetic actuator with magnetic attachment comprising a movable core mounted to slide axially along a longitudinal axis inside a magnetic yoke between a latching position and an open position. The actuator further comprises a permanent magnet and a coil extending axially along the longitudinal axis of the cylinder head. The coil is intended to generate a first magnetic control flux for moving the movable core from an open position to a latching position and a second magnetic control flux opposing a bias flux of the permanent magnet. and allowing movement of the movable core from the latching position to the open position.

L'invention est relative à un dispositif de coupure comportant au moins un contact fixe coopérant avec au moins un contact mobile destiné à commuter l'alimentation d'une charge électrique.The invention relates to a cut-off device comprising at least one fixed contact cooperating with at least one movable contact for switching the supply of an electric charge.

ETAT DE LA TECHNIQUE ANTERIEURESTATE OF THE PRIOR ART

L'utilisation d'actionneurs électromagnétiques à accrochage magnétique pour les commandes d'ouverture et de fermeture d'un dispositif de coupure, notamment d'ampoule à vide, est connue et décrite notamment dans des brevets ( EP0867903B1 , US6373675B1 ).The use of electromagnetic actuators with magnetic latching for the opening and closing commands of a cut-off device, in particular of a vacuum interrupter, is known and described in particular in patents ( EP0867903B1 , US6373675B1 ).

Compte tenu de la géométrie du circuit magnétique des différents actionneurs connus, l'obtention des efforts utiles au déplacement des mécanismes de commande nécessite généralement d'utiliser des bobinages de commande de taille importante ou délivrant une puissance électrique de commande (nombre d'ampères tours) très importante du fait de faible rendement de l'actionneur électromagnétique.Given the geometry of the magnetic circuit of the various known actuators, obtaining forces useful for the displacement of the control mechanisms generally requires the use of large control coils or delivering a control electric power (number of ampere turns ) very important because of low efficiency of the electromagnetic actuator.

En outre, compte tenu du positionnement du ou des aimants dans le circuit magnétique, il est possible d'observer des risques de démagnétisation desdits aimants. En effet, comme représenté dans la demande de brevet WO95/07542 , lorsque les aimants sont placés en série dans le circuit magnétique, le flux magnétique généré par la bobine de commande peut s'opposer à celui de l'aimant et provoquer à terme la démagnétisation desdits aimants, notamment lors de l'ouverture des contacts.In addition, given the positioning of the magnet or magnets in the magnetic circuit, it is possible to observe the risk of demagnetization of said magnets. Indeed, as represented in the patent application WO95 / 07542 when the magnets are placed in series in the magnetic circuit, the magnetic flux generated by the control coil can oppose that of the magnet and eventually cause the demagnetization of said magnets, especially when opening the contacts.

D'autres solutions telles que notamment décrites dans la demande de brevet WO2008/135670 nécessitent des volumes d'aimants très importants pour garantir le maintien de la position de fermeture même lors de chocs mécaniques importants. Ces aimants sont donc couteux.Other solutions such as in particular described in the patent application WO2008 / 135670 require very large volumes of magnets to ensure the maintenance of the closed position even during major mechanical shocks. These magnets are expensive.

Des solutions telles que décrites dans la demande de brevet WO95/07542 présentent des risques de position intermédiaire stable en l'absence d'un ressort de rappel suffisant. Or, il n'est pas souhaitable d'avoir de positions stables de l'actionneur autres que les positions ouverte et fermé. Pour remédier à ce problème, des ressorts de rappel surdimensionnés sont utilisés pour l'ouverture des actionneurs ce qui implique un besoin d'énergie supplémentaire pour la fermeture desdits actionneurs (phase d'appel).Solutions as described in the patent application WO95 / 07542 present risks of stable intermediate position in the absence of a sufficient return spring. However, it is not desirable to have stable positions of the actuator other than the open and closed positions. To remedy this problem, oversize return springs are used to open the actuators which implies a need for additional energy for closing said actuators (call phase).

Enfin, des solutions telles que décrites dans le brevet EP1012856B1 impose l'utilisation de 2 bobines distinctes l'une pour la fermeture et l'autre pour l'ouverture imposant ainsi un coût supplémentaire.Finally, solutions as described in the patent EP1012856B1 imposes the use of 2 separate coils one for the closure and the other for the opening thus imposing an additional cost.

EXPOSE DE L'INVENTIONSUMMARY OF THE INVENTION

L'invention vise donc à remédier aux inconvénients de l'état de la technique, de manière à proposer un actionneur électromagnétique à haut rendement énergétique.The invention therefore aims to overcome the disadvantages of the state of the art, so as to provide an electromagnetic actuator with high energy efficiency.

L'aimant permanent de l'actionneur électromagnétique selon l'invention est positionné sur le noyau mobile de manière à être au moins en partie en dehors du circuit magnétique fixe dans lequel circule le premier flux magnétique de commande lorsque le noyau mobile est dans une position d'ouverture, et à être au moins en partie à l'intérieur du circuit magnétique fixe utilisé pour la circulation du flux magnétique de polarisation généré par l'aimant lorsque le noyau mobile est dans une position d'accrochage.The permanent magnet of the electromagnetic actuator according to the invention is positioned on the mobile core so as to be at least partly outside the fixed magnetic circuit in which the first control magnetic flux flows when the mobile core is in a position opening hours, and to be less in part within the fixed magnetic circuit used for the circulation of the bias magnetic flux generated by the magnet when the movable core is in a latching position.

Selon un premier mode de développement de l'invention, l'aimant permanent est à aimantation radiale perpendiculaire à l'axe longitudinal de la culasse.According to a first embodiment of the invention, the permanent magnet is radially magnetized perpendicular to the longitudinal axis of the cylinder head.

Avantageusement, la culasse comprend un manchon interne s'étendant autour du noyau mobile, l'aimant permanent étant positionné sur le noyau mobile de manière à être au moins en partie en vis-à-vis du manchon interne de la culasse magnétique lorsque le noyau mobile est dans une position d'accrochage.Advantageously, the yoke comprises an inner sleeve extending around the movable core, the permanent magnet being positioned on the movable core so as to be at least partly opposite the inner sleeve of the magnetic yoke when the core mobile is in a hooking position.

De préférence, le manchon interne s'étend sur une distance de recouvrement placée en vis-à-vis avec l'aimant permanent en position d'accrochage.Preferably, the inner sleeve extends over an overlapping distance placed in facing relation with the permanent magnet in the hooking position.

De préférence, le manchon interne est séparé du noyau mobile par un entrefer glissant radial restant uniforme durant le déplacement en translation du noyau mobile.Preferably, the inner sleeve is separated from the movable core by a radial sliding air gap remaining uniform during the translational movement of the movable core.

Selon un second mode de développement de l'invention, l'aimant permanent est à aimantation axiale aligné selon l'axe longitudinal de la culasse.According to a second embodiment of the invention, the permanent magnet is axially magnetized aligned along the longitudinal axis of the cylinder head.

Selon un mode particulier de réalisation, l'aimant permanent est positionné sur le noyau mobile de manière à être entièrement à l'extérieur de la culasse magnétique lorsque le noyau mobile est dans une position d'ouverture.According to a particular embodiment, the permanent magnet is positioned on the movable core so as to be entirely outside the magnetic yoke when the movable core is in an open position.

Selon un mode particulier de réalisation, l'aimant permanent est positionné sur le noyau mobile de manière à être entièrement à l'intérieur de la culasse magnétique lorsque le noyau mobile est dans une position d'ouverture.According to a particular embodiment, the permanent magnet is positioned on the movable core so as to be entirely inside the magnetic yoke when the movable core is in an open position.

Selon une variante de réalisation, l'actionneur comporte un capot en matériau non ferromagnétique au niveau d'une face externe de la culasse magnétique de manière à recouvrir tout le noyau mobile en position d'ouverture.According to an alternative embodiment, the actuator comprises a cover of non-ferromagnetic material at an outer face of the magnetic yoke so as to cover the entire movable core in the open position.

Selon une variante de réalisation, le noyau mobile comporte une surface radiale destinée à se coller contre la culasse magnétique en position d'accrochage, ladite surface étant inférieure à une section moyenne dudit noyau.According to an alternative embodiment, the movable core has a radial surface intended to stick against the magnetic yoke in the attachment position, said surface being less than an average section of said core.

De préférence, l'actionneur électromagnétique comporte au moins un ressort de - rappel s'opposant au déplacement dudit noyau de sa position d'ouverture vers sa position d'accrochage.Preferably, the electromagnetic actuator comprises at least one return spring opposing the displacement of said core from its open position to its attachment position.

Selon un mode particulier de réalisation, le noyau mobile magnétique est couplé à un organe d'actionnement non magnétique s'étendant selon l'axe longitudinal.According to a particular embodiment, the magnetic mobile core is coupled to a non-magnetic actuating member extending along the longitudinal axis.

Avantageusement, l'actionneur électromagnétique comporte un manchon mobile pouvant être actionné manuellement ou par l'intermédiaire d'un actionneur électromécanique.Advantageously, the electromagnetic actuator comprises a movable sleeve that can be actuated manually or via an electromechanical actuator.

Lé dispositif de coupure selon l'invention comprend au moins un actionneur électromagnétique tel que défini ci-dessus pour actionner ledit au moins contact mobile.The breaking device according to the invention comprises at least one electromagnetic actuator as defined above for actuating said at least one moving contact.

BREVE DESCRIPTION DES FIGURESBRIEF DESCRIPTION OF THE FIGURES

D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention, donnés à titre d'exemples non limitatifs, et représentés aux dessins annexés sur lesquels :

  • les figures 1A et 1B représentent des vues en coupe de l'actionneur électromagnétique en phase de fermeture dans deux positions de fonctionnement selon un premier mode de réalisation de l'invention ;
  • les figures 2A et 2B représentent des vues en coupe de l'actionneur électromagnétique en phase d'ouverture dans deux positions de fonctionnement selon un premier mode de réalisation de l'invention ;
  • les figures 3A et 3B représentent des vues en coupe de l'actionneur électromagnétique en phase de fermeture dans deux positions de fonctionnement selon une variante de réalisation selon les figures 1A et 1B ;
  • les figures 4A et 4B représentent des vues en coupe de l'actionneur électromagnétique en phase de fermeture dans deux positions de fonctionnement selon un second mode de réalisation de l'invention ;
  • les figures 5A et 5B représentent des vues en coupe de l'actionneur électromagnétique en phase de fermeture dans deux positions de fonctionnement selon une variante de réalisation selon les figures 1A et 1B ;
  • les figures 6 et 7 représentent des vues en coupe de variantes de réalisation de l'actionneur électromagnétique selon les figures 1A et 2A ;
  • les figures 8, 9 et 10 représentent des vues en coupe de variantes de réalisation de l'actionneur électromagnétique selon les modes de réalisation de l'invention ;
  • les figures 11A et 11B représentent des vues en coupe d'une variante de réalisation de l'actionneur électromagnétique en position fermée selon la figure 1A;
  • la figure 12 représente une vue d'un schéma synoptique de l'actionneur électromagnétique couplé à un dispositif de coupure.
Other advantages and features will emerge more clearly from the following description of particular embodiments of the invention, given by way of non-limiting examples, and represented in the accompanying drawings in which:
  • the Figures 1A and 1B represent sectional views of the electromagnetic actuator in the closing phase in two operating positions according to a first embodiment of the invention;
  • the Figures 2A and 2B represent sectional views of the electromagnetic actuator in the opening phase in two operating positions according to a first embodiment of the invention;
  • the Figures 3A and 3B represent sectional views of the electromagnetic actuator in the closing phase in two operating positions according to an embodiment variant according to the Figures 1A and 1B ;
  • the Figures 4A and 4B represent sectional views of the electromagnetic actuator in the closing phase in two operating positions according to a second embodiment of the invention;
  • the Figures 5A and 5B represent sectional views of the electromagnetic actuator in the closing phase in two operating positions according to an embodiment variant according to the Figures 1A and 1B ;
  • the Figures 6 and 7 represent sectional views of alternative embodiments of the electromagnetic actuator according to the Figures 1A and 2A ;
  • the Figures 8, 9 and 10 are cross-sectional views of alternative embodiments of the electromagnetic actuator according to the embodiments of the invention;
  • the Figures 11A and 11B represent sectional views of an alternative embodiment of the electromagnetic actuator in the closed position according to the Figure 1A ;
  • the figure 12 represents a view of a block diagram of the electromagnetic actuator coupled to a cut-off device.

DESCRIPTION DETAILLEE D'UN MODE DE REALISATIONDETAILED DESCRIPTION OF AN EMBODIMENT

Selon un premier mode de réalisation tel que présenté sur les figures 1A à 1B, l'actionneur électromagnétique 1 à accrochage magnétique comprend un circuit magnétique fixe en matériau ferromagnétique.According to a first embodiment as presented on the Figures 1A to 1B , the electromagnetic actuator 1 with magnetic hooking comprises a fixed magnetic circuit of ferromagnetic material.

Le circuit magnétique fixe comprend une culasse 20 s'étendant selon un axe longitudinal Y. La culasse 20 du circuit magnétique comporte à ses extrémités opposées un premier et un deuxième flasque 22, 24 parallèles. Les flasques 22, 24 s'étendent perpendiculairement à l'axe longitudinal Y de la culasse 20.The fixed magnetic circuit comprises a yoke 20 extending along a longitudinal axis Y. The yoke 20 of the magnetic circuit has at its opposite ends a first and a second flange 22, 24 parallel. The flanges 22, 24 extend perpendicularly to the longitudinal axis Y of the yoke 20.

De préférence, la culasse 20 est composée de deux plaques en matériau ferromagnétique allongées et positionnées l'une par rapport à l'autre de telle sorte à libérer un volume interne. Les deux plaques sont maintenues parallèles par le premier et second flasque 22, 24 placés respectivement aux extrémités desdites plaques. Lesdits flasques sont réalisés en matériau ferromagnétique. Selon un mode particulier de réalisation, la culasse 20 de forme parallélépipédique comporte au moins deux faces ouvertes sur le volume interne.Preferably, the yoke 20 is composed of two plates of ferromagnetic material elongate and positioned relative to each other so as to release an internal volume. The two plates are kept parallel by the first and second flanges 22, 24 placed respectively at the ends of said plates. Said flanges are made of ferromagnetic material. According to a particular embodiment, the cylinder head 20 of parallelepiped shape has at least two open faces on the internal volume.

Selon un autre exemple de réalisation, les deux plaques et le premier flasque 22 peuvent être une seule et même pièce obtenue par pliage, usinage ou frittage. En outre, lesdits flasques pourraient être réalisés par un empilement de tôles feuilletées afin de diminuer les courants induits et les pertes associées. Cet ensemble peut être parallélépipédique ou axisymétrique.According to another embodiment, the two plates and the first flange 22 may be a single piece obtained by folding, machining or sintering. In addition, said flanges could be made by a stack of laminated sheets to reduce the induced currents and associated losses. This set may be parallelepipedal or axisymmetric.

L'actionneur électromagnétique comprend au moins une bobine de commande 30 fixe montée de préférence sur un fourreau 32 isolant à l'intérieur de la culasse 20. Ladite au moins une bobine s'étend axialement entre le premier flasque 22 et le deuxième flasque 24.The electromagnetic actuator comprises at least one fixed control coil 30 mounted preferably on an insulating sleeve 32 inside the yoke 20. Said at least one coil extends axially between the first flange 22 and the second flange 24.

L'actionneur électromagnétique comprend un noyau 16 mobile monté à coulissement axial selon la direction d'un axe longitudinal de la culasse 20.The electromagnetic actuator comprises a mobile core 16 mounted to slide axially in the direction of a longitudinal axis of the cylinder head 20.

Le noyau 16 mobile est positionné à l'intérieur de la bobine. Le déplacement du noyau mobile 16 s'effectue ainsi à l'intérieur de la bobine de commande 30, entre deux positions de fonctionnement appelées par la suite position d'accrochage PA et position d'ouverture PO.The mobile core 16 is positioned inside the coil. The displacement of the movable core 16 is thus carried out inside the control coil 30, between two operating positions, hereinafter called the attachment position PA and the open position PO.

Ladite au moins une bobine 30 est destinée à engendrer dans le circuit magnétique en position d'ouverture PO un premier flux magnétique de commande φC1 de manière à déplacer le noyau 16 mobile de la position d'ouverture PO à la position d'accrochage PA. En outre, ladite au moins une bobine 30 est destinée à engendrer dans le circuit magnétique en position d'accrochage PA, un second flux magnétique de commande φC2 apte à faciliter le déplacement le noyau 16 mobile de sa position d'accrochage PA à sa position d'ouverture PO.Said at least one coil 30 is intended to generate in the magnetic circuit in the open position PO a first magnetic control flux φC1 so as to move the movable core 16 from the open position PO to the hooking position PA. In addition, said at least one coil 30 is intended to generate in the magnetic circuit in the attachment position PA, a second control magnetic flux φC2 capable of facilitating the displacement of the mobile core 16 from its attachment position PA to its position. PO opening.

De préférence, le noyau 16 mobile est composé d'un cylindre en matériau ferromagnétique.Preferably, the mobile core 16 is composed of a cylinder of ferromagnetic material.

Une première face radiale du cylindre est destinée à être en contact avec le premier flasque 22 lorsque le noyau est dans la position de fonctionnement dit d'accrochage PA. Un premier entrefer e1 axial correspond à l'intervalle entre le premier flasque 22 et le noyau 16 mobile. Cet entrefer est maximal lorsque le noyau mobile est en position d'ouverture PO tel que représenté sur la figure 1A. Cet entrefer est nul ou très faible lorsque le noyau mobile est en position d'accrochage PA tel que représenté sur la figure 1B.A first radial face of the cylinder is intended to be in contact with the first flange 22 when the core is in the operating position said PA hooking. A first axial gap e1 corresponds to the gap between the first flange 22 and the mobile core 16. This gap is maximum when the movable core is in OP open position as shown on the Figure 1A . This air gap is zero or very weak when the mobile core is in the attachment position PA as represented on the Figure 1B .

Une seconde face radiale du cylindre est destinée de préférence à être positionnée sensiblement à l'extérieur du volume formé par la culasse et les flasques lorsque le noyau est dans la position de fonctionnement dit d'ouverture PO.A second radial face of the cylinder is preferably intended to be positioned substantially outside the volume formed by the yoke and the flanges when the core is in the operating position OP said opening.

Le noyau mobile 16 comporte un aimant 14 permanent. Cet aimant 14 permanent peut-être unique et/ou annulaire et/ou formé de plusieurs aimants parallélépipédiques placés cote à cote en périphérie du noyau. L'épaisseur de l'aimant est calibrée pour optimiser son fonctionnement magnétique sachant que son efficacité est liée au rapport entre son épaisseur et les longueurs d'entrefer présentes dans le circuit magnétique dans la position pour laquelle on recherche son efficacité maximale.The movable core 16 comprises a permanent magnet 14. This permanent magnet may be unique and / or annular and / or formed of several parallelepiped magnets placed side by side on the periphery of the core. The thickness of the magnet is calibrated to optimize its magnetic operation knowing that its effectiveness is related to the ratio between its thickness and the gap lengths present in the magnetic circuit in the position for which its maximum efficiency is sought.

L'aimant 14 permanent est destiné à générer un flux de polarisation φU donnant naissance à une force magnétique d'accrochage FA maintenant collé le noyau 16 mobile contre le premier flasque 22 lorsque ledit noyau est en position d'accrochage PA.The permanent magnet 14 is intended to generate a polarization flux φU giving rise to a magnetic coupling force FA now adhering the mobile core 16 against the first flange 22 when said core is in the attachment position PA.

Lorsque le noyau 16 mobile est en position d'accrochage PA, ce dernier est maintenu collé contre le premier flasque 22 par la force magnétique d'accrochage FA due à un flux de polarisation φU généré par l'aimant 14 permanent. Le noyau 16 mobile est destiné à être sollicité en position d'ouverture PO par au moins un ressort de rappel 36. La force de rappel FR du ressort de rappel 36 tend à s'opposer à la force magnétique d'accrochage FA générée par l'aimant permanent 14. En position d'accrochage PA, l'intensité à la force magnétique d'accrochage FA est d'intensité supérieure à la force de rappel antagoniste dudit au moins un ressort de rappel 36.When the movable core 16 is in the attachment position PA, the latter is held pressed against the first flange 22 by the magnetic gripping force FA due to a polarization flux φU generated by the permanent magnet 14. The movable core 16 is intended to be biased in the open position PO by at least one return spring 36. The restoring force FR of the return spring 36 tends to oppose the magnetic catching force FA generated by the Permanent magnet 14. In the attachment position PA, the intensity at the magnetic gripping force FA is of greater intensity than the biasing force of said at least one return spring 36.

Afin de garantir un certain niveau de tenue aux chocs sans une ouverture du circuit magnétique, la force magnétique d'accrochage FA est généralement calculée de manière à s'opposer non seulement à la force de rappel FR mais aussi aux efforts de décollement liés aux chocs et/ou aux accélérations subis par l'actionneur en position fermée. Ces efforts de décollement qui dépendent du niveau de tenue aux chocs visée et des masses en mouvement, viennent s'ajouter à celui de la force de rappel FR.In order to guarantee a certain level of impact resistance without an opening of the magnetic circuit, the magnetic catching force FA is generally calculated so as to oppose not only the return force FR but also the release forces related to shocks and / or accelerations experienced by the actuator in the closed position. These release forces, which depend on the target shock resistance level and the moving masses, are added to that of the return force FR.

Le noyau 16 mobile magnétique est couplé à un organe d'actionnement non magnétique 18 traversant axialement une ouverture 17 pratiquée dans le premier flasque 22. Le noyau 16 et l'organe d'actionnement 18 formant l'équipage mobile de l'actionneur 1. A titre d'exemple, l'organe d'actionnement non magnétique 18 est destiné à piloter une ampoule à vide.The magnetic mobile core 16 is coupled to a non-magnetic actuating member 18 axially through an opening 17 formed in the first flange 22. The core 16 and the actuating member 18 forming the movable element of the actuator 1. By way of example, the non-magnetic actuating member 18 is intended to drive a vacuum bulb.

Selon tous les modes de réalisation de l'invention, la position axiale de l'aimant 14 sur le noyau 16 mobile est réalisée de telle manière qu'en position d'ouverture PO, ledit aimant soit positionné, tout ou en partie, en dehors du circuit magnétique fixe utilisé pour la circulation du premier flux magnétique de commande ΦC1 généré par la bobine 30. Le flux magnétique de polarisation φU de l'aimant n'intervient pas ou très peu dans la fermeture de l'actionneur, notamment dans le déplacement du noyau 16 de la position d'ouverture PO à la suite position d'accrochage PA.According to all the embodiments of the invention, the axial position of the magnet 14 on the movable core 16 is such that in the open position PO, said magnet is positioned, in whole or in part, outside. of the fixed magnetic circuit used for the circulation of the first control magnetic flux ΦC1 generated by the coil 30. The magnetization magnetic flux φU of the magnet does not intervene or very little in the closure of the actuator, particularly in the displacement of the core 16 of the open position PO after the attachment position PA.

En outre, selon tous les modes de réalisation de l'invention, la position axiale de l'aimant 14 sur le noyau 16 mobile est aussi réalisée de telle manière qu'en position d'accrochage PA, ledit aimant soit positionné, tout ou en partie, à l'intérieur du circuit magnétique fixe utilisé pour la circulation du flux magnétique de polarisation φU généré par l'aimant 14. Le flux magnétique de polarisation φU de l'aimant intervient alors de manière efficace pour maintenir le noyau 16 dans la position d'accrochage PA.In addition, according to all the embodiments of the invention, the axial position of the magnet 14 on the movable core 16 is also realized in such a way that in the hooking position PA, said magnet is positioned, all or part, inside the fixed magnetic circuit used for the circulation of the polarization magnetic flux φU generated by the magnet 14. The magnetization polarizing flux φU of the magnet then intervenes effectively to maintain the core 16 in the position PA hanging.

Selon un premier mode de réalisation présenté sur les figures 1A-1B et 2A-2B, l'aimant permanent 14 est à aimantation perpendiculaire au sens de déplacement dudit noyau. Tel que présenté sur la figure 1A, l'aimant est de préférence représenté en totalité en dehors du circuit magnétique utilisé pour la circulation du premier flux magnétique de commande ΦC1. Selon ce mode de réalisation, ledit aimant est placé à l'extérieur du volume interne de la culasse magnétique. Ce positionnement relatif de l'aimant 14 par rapport à la face externe du second flasque 24 offre une possibilité de dosage de l'apport du flux magnétique de l'aimant dans la phase de fermeture de l'actionneur. Selon ce mode de réalisation, la face interne du deuxième flasque 24 comprend un manchon 46 interne s'étendant partiellement dans un espace annulaire ménagé coaxialement autour du noyau 16 mobile. Le noyau 16 mobile est alors séparé dudit manchon 46 par un deuxième entrefer glissant e2 radial restant sensiblement uniforme durant le déplacement en translation du noyau 16 mobile. De préférence, le manchon 46, en position d'accrochage PA, recouvre le noyau 16 mobile sur une distance de recouvrement L. Le manchon 46 est de préférence de forme tubulaire en matériau ferromagnétique. Il peut faire partie intégrante du flasque ou être fixé à ce dernier par des moyens de fixation. L'entrefer glissant e2 et la distance de recouvrement L entre noyau 16 mobile et le manchon 46 sont réglés de sorte à ce que la réluctance de l'ensemble du circuit magnétique 20 soit la plus faible possible et ce, sur toute la course du noyau mobile 16 entre les deux positions de fonctionnement. De plus, pour optimiser le fonctionnement de l'aimant en position d'accrochage PA cette distance L doit permettre un recouvrement total de l'aimant dans cette position. Selon ce mode de réalisation de l'invention, le ressort de rappel 36 est de préférence positionné à l'extérieur de la culasse 20. Il comprend une première face d'appui sur un premier support externe tel qu'un bâti 100 et comprend une seconde face d'appui sur une butée 19 placée sur l'organe d'actionnement 18. En position d'ouverture PO, ladite butée 19 est en appui sur le second support externe. A titre d'exemple, le second support externe peut notamment faire partie de la face externe du premier flasque 22. Ce positionnement longitudinal de la butée 19 sur l'organe d'actionnement 18 permet de contrôler la longueur du déplacement l'équipage mobile de l'actionneur 1. Le maintien en position d'ouverture est garanti par le ressort de rappel.According to a first embodiment presented on the Figures 1A-1B and 2A-2B the permanent magnet 14 is magnetized perpendicular to the direction of movement of said core. As presented on the Figure 1A the magnet is preferably entirely represented outside the magnetic circuit used for the circulation of the first control magnetic flux ΦC1. According to this embodiment, said magnet is placed outside the internal volume of the magnetic yoke. This relative positioning of the magnet 14 relative to the outer face of the second flange 24 provides a possibility of dosing the contribution of the magnetic flux of the magnet in the closing phase of the actuator. According to this embodiment, the inner face of the second flange 24 comprises an inner sleeve 46 extending partially in an annular space arranged coaxially around the mobile core 16. The movable core 16 is then separated from said sleeve 46 by a second radial air gap e2 remaining substantially uniform during the translational movement of the mobile core 16. Preferably, the sleeve 46, in the attachment position PA, covers the movable core 16 over a covering distance L. The sleeve 46 is preferably tubular in ferromagnetic material. It can be an integral part of the flange or be fixed thereto by fastening means. The sliding air gap e2 and the overlap distance L between the movable core 16 and the sleeve 46 are adjusted so that the reluctance of the entire magnetic circuit 20 is as low as possible and this, over the entire race of the core. mobile 16 between the two operating positions. In addition, to optimize the operation of the magnet in the PA hooking position this distance L must allow a total recovery of the magnet in this position. According to this embodiment of the invention, the return spring 36 is preferably positioned outside the yoke 20. It comprises a first bearing surface on a first external support such as a frame 100 and comprises a second bearing surface on a stop 19 placed on the actuating member 18. In the open position PO, said stop 19 is supported on the second outer support. By way of example, the second external support may in particular be part of the outer face of the first flange 22. This longitudinal positioning of the stop 19 on the actuating member 18 makes it possible to control the length of the displacement of the movable member. the actuator 1. The holding in the open position is guaranteed by the return spring.

Ladite au moins une bobine 30 est destinée à engendrer dans le circuit magnétique en position d'ouverture PO, un premier flux magnétique de commande φC1 qui tend à s'opposer à l'action du ressort de rappel 36 de manière à déplacer le noyau 16 mobile de sa position d'ouverture PO à sa position d'accrochage PA. Les figures 1A et 1B représentent respectivement l'actionneur d'une part au début de la phase de fermeture et d'autre part à la fin de la phase de fermeture.Said at least one coil 30 is intended to generate in the magnetic circuit in the open position PO, a first control magnetic flux φC1 which tends to oppose the action of the return spring 36 so as to move the core 16 mobile from its open position PO to its hooking position PA. The Figures 1A and 1B respectively represent the actuator firstly at the beginning of the closing phase and secondly at the end of the closing phase.

Ladite au moins une bobine 30 est destinée aussi à engendrer dans le circuit magnétique en position d'accrochage PA, un second flux magnétique de commande φC2 qui s'oppose au flux de polarisation φU de l'aimant permanent 14 de manière à libérer le noyau 16 mobile et à autoriser son déplacement de la position d'accrochage PA vers la position d'ouverture PO. Les figures 2A et 2B représentent respectivement l'actionneur d'une part au début de la phase d'ouverture et d'autre part à la fin de la phase de d'ouverture. Le déplacement du noyau mobile 16 de la position d'accrochage PA vers la position d'ouverture PO se fait sous l'action dudit au moins un ressort de rappel 36.Said at least one coil 30 is also intended to generate in the magnetic circuit in the attachment position PA, a second control magnetic flux φC2 which opposes the polarization flux φU of the permanent magnet 14 so as to release the core 16 movable and allow its movement from the hooking position PA to the open position PO. The Figures 2A and 2B respectively represent the actuator on the one hand at the beginning of the opening phase and secondly at the end of the opening phase. The displacement of the movable core 16 from the attachment position PA to the open position PO is under the action of said at least one return spring 36.

Selon une variante du premier mode de réalisation tel que présenté sur les figures 3A et 3B, l'aimant 14 à aimantation radiale est positionné en dehors du circuit magnétique fixe utilisé pour la circulation du premier flux magnétique de commande ΦC1 tout en étant placé à l'intérieur du volume interne de la culasse magnétique. Le flux magnétique de polarisation φU de l'aimant n'intervient pas ou très peu dans la fermeture de l'actionneur, notamment dans le déplacement du noyau 16 de la position d'ouverture PO à la suite position d'accrochage PA. Selon ce mode de réalisation, ledit aimant est toujours à l'intérieur du volume interne de la culasse 20 de l'actionneur quelque soit la position de fonctionnement du noyau. En position d'accrochage et en position d'ouverture, l'aimant se trouve ainsi protéger des manifestations extérieures. La section du noyau qui rentre en contact avec le circuit magnétique en position de fermeture est réduite par rapport à la section dudit noyau. La reluctance du circuit magnétique en position de fermeture est ainsi réduite ce qui permet d'améliorer l'efficacité de l'actionneur en diminuant les énergies d'ouverture et de fermeture. Une valeur de la surface de contact entre le noyau et le premier flasque est ainsi adaptable en fonction du besoin.According to a variant of the first embodiment as presented on the Figures 3A and 3B , the magnet 14 with radial magnetization is positioned outside the fixed magnetic circuit used for the circulation of the first control magnetic flux ΦC1 while being placed inside the internal volume of the magnetic yoke. The polarization magnetic flux φU of the magnet does not intervene or very little in the closing of the actuator, in particular in the displacement of the core 16 from the open position PO to the following attachment position PA. According to this embodiment, said magnet is always inside the internal volume of the yoke 20 of the actuator whatever the operating position of the core. In the latching position and in the open position, the magnet is thus protected from external events. The section of the core that comes into contact with the magnetic circuit in the closed position is reduced relative to the section of said core. The reluctance of the magnetic circuit in the closed position is thus reduced which improves the efficiency of the actuator by decreasing the opening and closing energies. A value of the contact surface between the core and the first flange is thus adaptable as needed.

Selon une deuxième variante du premier mode de réalisation telle que représentée sur la figure 6, en position d'ouverture PO, une partie minoritaire de l'aimant est positionné partiellement dans le circuit magnétique utilisé pour la circulation du flux magnétique de commande ΦC1. Une partie minoritaire de l'aimant est placée à l'intérieur du volume interne de la culasse magnétique. En outre, l'aimant est de préférence représenté partiellement dans le circuit magnétique de telle manière à ce que le flux de polarisation φU de l'aimant circule dans le circuit magnétique et participe ainsi à la fermeture de l'actionneur électromagnétique 1.According to a second variant of the first embodiment as represented on the figure 6 in the open position PO, a minority part of the magnet is partially positioned in the magnetic circuit used for the circulation of the control magnetic flux ΦC1. A minority part of the magnet is placed inside the internal volume of the magnetic yoke. In addition, the magnet is preferably partially represented in the magnetic circuit in such a way that the polarization flux φU of the magnet circulates in the magnetic circuit and thus participates in the closing of the electromagnetic actuator 1.

Selon une autre variante du premier mode de réalisation telle que représentée sur la figure 7, l'aimant 14 est positionné en position d'accrochage PA de telle manière qu'une partie du second flux de commande φC2 de la bobine s'oppose au flux de polarisation φU de l'aimant 14 sans traverser ce dernier. L'efficacité de la bobine de commande 30 augmente. Une partie minoritaire de l'aimant n'est positionné dans le circuit magnétique utilisé pour la circulation du second flux magnétique de commande ΦC2. Comme représenté, en position d'accrochage PA, une partie du manchon 46 s'étend au-delà de l'aimant. Cette variante facilite cependant une re-fermeture locale du flux de polarisation φU de l'aimant 14 réduisant ainsi son efficacité. En outre, selon un mode de réalisation particulier non représenté de cette variante, la partie du manchon 46 s'étendant au-delà de l'aimant est séparé du noyau par un entrefer glissant d'épaisseur ajustable. Cet entrefer ajustable permet notamment d'éviter un court-circuit du flux de l'aimant lorsque le noyau est en position d'accrochage PA.According to another variant of the first embodiment as represented on the figure 7 the magnet 14 is positioned in the hooking position PA so that part of the second control flow φC2 of the coil opposes the polarization flux φU of the magnet 14 without passing through the latter. The efficiency of the control coil 30 increases. A minority part of the magnet is positioned in the magnetic circuit used for the circulation of the second control magnetic flux ΦC2. As shown, in the attachment position PA, a portion of the sleeve 46 extends beyond the magnet. This variant, however, facilitates a local re-closure of the polarization flux φU of the magnet 14 thus reducing its efficiency. In addition, according to a particular embodiment not shown of this variant, the portion of the sleeve 46 extending beyond the magnet is separated from the core by a sliding gap adjustable thickness. This adjustable air gap makes it possible in particular to avoid a short circuit of the flux of the magnet when the core is in the attachment position PA.

Toutes les variantes décrites ci-dessus peuvent être développées de manière indépendante ou simultanément.All the variants described above can be developed independently or simultaneously.

Selon un second mode de réalisation de l'invention tel que présenté sur les figures 4A et 4B, l'aimant permanent 14 est à aimantation alignée suivant le sens de déplacement dudit noyau. Ledit aimant est représenté en totalité en dehors du circuit magnétique utilisé pour la circulation du premier flux magnétique de commande ΦC1. Selon ce mode de réalisation, ledit aimant est de préférence placé à l'extérieur du volume interne de la culasse magnétique. Ce positionnement relatif de l'aimant 14 par rapport à la face externe du second flasque 24 offre une possibilité de dosage de l'apport du flux magnétique de l'aimant dans la phase de fermeture de l'actionneur. Selon ce mode de réalisation, la face interne du deuxième flasque 24 comprend un manchon 46 interne s'étendant partiellement dans un espace annulaire ménagé coaxialement autour du noyau 16 mobile. Le noyau 16 mobile est alors séparé dudit manchon 46 par un deuxième entrefer glissant e2 radial restant sensiblement uniforme durant le déplacement en translation du noyau 16 mobile.According to a second embodiment of the invention as presented on the Figures 4A and 4B the permanent magnet 14 is magnetized in alignment with the direction of movement of said core. Said magnet is represented entirely outside the magnetic circuit used for the circulation of the first control magnetic flux ΦC1. According to this embodiment, said magnet is preferably placed outside the internal volume of the magnetic yoke. This relative positioning of the magnet 14 with respect to the external face of the second flange 24 offers a possibility of dosing the contribution of the magnetic flux of the magnet in the closing phase of the actuator. According to this embodiment, the inner face of the second flange 24 comprises an inner sleeve 46 extending partially in an annular space arranged coaxially around the mobile core 16. The movable core 16 is then separated from said sleeve 46 by a second radial air gap e2 remaining substantially uniform during the translational movement of the mobile core 16.

De préférence, comme représenté sur la figure 4B, le manchon 46, en position d'accrochage PA, recouvre le noyau 16 mobile sur une distance de recouvrement L. Le manchon 46 est de préférence de forme tubulaire en matériau ferromagnétique. Il peut faire partie intégrante du flasque ou être fixé à ce dernier par des moyens de fixation. L'entrefer glissant e2 et la distance de recouvrement L entre noyau 16 mobile et le manchon 46 sont réglés de sorte à ce que le premier flux magnétique de commande ΦC1 généré par la bobine ne traverse pas l'aimant pendant toute la phase de fermeture, c'est dire lorsque le noyau passe de la position d'ouverture PO à la position d'accrochage PA.Preferably, as shown on the Figure 4B the sleeve 46, in the attachment position PA, covers the movable core 16 over a covering distance L. The sleeve 46 is preferably tubular in ferromagnetic material. It can be an integral part of the flange or be fixed thereto by fastening means. The sliding air gap e2 and the overlap distance L between the movable core 16 and the sleeve 46 are adjusted so that the first control magnetic flux ΦC1 generated by the coil does not pass through the magnet during the entire closing phase. that is to say when the core goes from the open position PO to the attachment position PA.

Selon une variante de réalisation du second mode de réalisation tel que présenté sur les figures 5A et 5B, l'aimant 14 à aimantation axiale est positionné en dehors du circuit magnétique fixe utilisé pour la circulation du premier flux magnétique de commande ΦC1 tout en étant placé à l'intérieur du volume interne de la culasse magnétique. Le flux magnétique de polarisation φU de l'aimant n'intervient pas ou très peu dans la fermeture de l'actionneur, notamment dans le déplacement du noyau 16 de la position d'ouverture PO à la position d'accrochage PA. Selon ce mode de réalisation, ledit aimant est toujours à l'intérieur du volume interne de la culasse 20 de l'actionneur quelque soit la position de fonctionnement du noyau. En position d'accrochage PA et en position d'ouverture PO, l'aimant se trouve ainsi protégé des manifestations extérieures. La section du noyau qui rentre en contact avec le circuit magnétique en position de fermeture est réduite par rapport à la section dudit noyau. La reluctance du circuit magnétique en position de fermeture est ainsi réduite ce qui permet d'améliorer l'efficacité de l'actionneur en diminuant les énergies d'ouverture et de fermeture. Une valeur de la surface de contact entre le noyau et le premier flasque est ainsi adaptable en fonction du besoin. Afin de ne pas augmenter la reluctance du noyau mobile 16 et réduire l'efficacité énergétique de l'actionneur, ledit noyau comporte un shunt magnétique. Autrement dit, l'aimant est constitué d'un anneau ou d'un disque de section inférieure à celle du noyau. En outre, le fait de la présence du shunt magnétique, les risques de démagnétisation de l'aimant sont fortement réduits.According to an alternative embodiment of the second embodiment as presented on the Figures 5A and 5B the magnet 14 with axial magnetization is positioned outside the fixed magnetic circuit used for the circulation of the first control magnetic flux ΦC1 while being placed inside the internal volume of the magnetic yoke. The polarization magnetic flux φU of the magnet does not intervene or very little in the closure of the actuator, in particular in the displacement of the core 16 from the open position PO to the attachment position PA. According to this embodiment, said magnet is always inside the internal volume of the yoke 20 of the actuator whatever the operating position of the core. In the attachment position PA and in the open position PO, the magnet is thus protected from external events. The section of the core that comes into contact with the magnetic circuit in the closed position is reduced relative to the section of said core. The reluctance of the magnetic circuit in the closed position is thus reduced which improves the efficiency of the actuator by decreasing the opening and closing energies. A value of the contact surface between the core and the first flange is thus adaptable as needed. In order not to increase the reluctance of the mobile core 16 and reduce the energy efficiency of the actuator, said core comprises a magnetic shunt. In other words, the magnet is constituted a ring or a disc of section inferior to that of the nucleus. In addition, the fact of the presence of the magnetic shunt, the risk of demagnetization of the magnet are greatly reduced.

Selon une variante non représentée des premier et second modes de réalisation, l'aimant est alors de préférence remplacé par une portion de matériau aimantable tel que de l'acier dur de type ALNICO.According to a not shown variant of the first and second embodiments, the magnet is then preferably replaced by a portion of magnetizable material such as hard steel type ALNICO.

L'invention concerne un dispositif de coupure 22 comportant un l'actionneur électromagnétique 1 tel que défini ci-dessus. Tel que représenté sur la figure 12 et à titre d'exemple de réalisation, le dispositif de coupure 22 est un disjoncteur comprenant notamment au moins une ampoule 2. Cette ampoule 2 peut être une ampoule à vide ou une chambre de coupure classique de disjoncteur. Pour passer d'une position d'ouverture à une position de fermeture des contacts de ladite au moins une ampoule 2, le fonctionnement du dispositif d'actionnement électromagnétique 1 est le suivant. Une première force d'ouverture FR appliquée par le ressort de rappel 36 sur le noyau mobile 16 par l'intermédiaire d'un organe d'actionnement non magnétique 18 tend à maintenir le noyau mobile 16 dans une position d'ouverture, les contacts étant en position ouverte. Lorsque l'on alimente la bobine 30, celle-ci génère un premier flux de commande.φC1 produisant alors une force de fermeture électromagnétique. Dès que cette force de fermeture FFE est supérieure à la première force d'ouverture FR, le noyau mobile 16 se déplace de sa position d'ouverture PO vers sa position d'accrochage PA. Au bout d'une certaine course correspondant à l'ouverture des contacts, ce noyau rencontre une seconde force d'ouverture FP correspondant à la force de pression appliquée sur les contacts de ladite au moins une ampoule 2. Le noyau devra alors comprimer ces ressorts de pression de contact 37 sur la course restante à parcourir pour obtenir la position d'accrochage PA et correspondant à la garde d'usure des contacts. Le travail emmagasiné par le noyau lors de son déplacement de la position d'ouverture à la position d'impact des pôles doit alors être suffisant pour garantir une fermeture franche (sans arrêt) des contacts afin d'éviter les risques de soudure de ceux-ci. C'est pourquoi, les valeurs respectives de la seconde force d'ouverture FR, de la course d'ouverture et de la puissance injectée dans la bobine doivent être optimisées de façon à obtenir cette fermeture franche du noyau.The invention relates to a cutoff device 22 comprising an electromagnetic actuator 1 as defined above. As shown on the figure 12 and as an exemplary embodiment, the cut-off device 22 is a circuit breaker comprising in particular at least one bulb 2. This bulb 2 can be a vacuum interrupter or a conventional circuit breaker breaking chamber. To move from an open position to a closed position of the contacts of said at least one bulb 2, the operation of the electromagnetic actuator 1 is as follows. A first opening force FR applied by the return spring 36 to the movable core 16 via a non-magnetic actuating member 18 tends to keep the movable core 16 in an open position, the contacts being in open position. When the coil 30 is supplied with power, the latter generates a first control flux.φC1 then producing an electromagnetic closing force. As soon as this closing force FFE is greater than the first opening force FR, the movable core 16 moves from its open position PO to its hooking position PA. At the end of a certain stroke corresponding to the opening of the contacts, this core encounters a second opening force FP corresponding to the pressure force applied to the contacts of the at least one bulb 2. The core will then have to compress these springs. contact pressure 37 on the remaining travel to go to get the PA hooking position and corresponding to the contact wear guard. The work stored by the core during its displacement from the open position to the impact position of the poles must then be sufficient to guarantee a free closure (without stop) of the contacts in order to avoid the risk of welding of these contacts. this. That is why the respective values of the second opening force FR, the opening stroke and the power injected into the coil must be optimized so as to obtain this clear closure of the core.

Lorsque le noyau mobile 16 est en position d'accrochage PA telle que représentée par exemple sur la figure 1B, l'alimentation de la bobine est coupée. La force magnétique d'accrochage FA due au flux de polarisation φU de l'aimant 14 est alors d'intensité supérieure à la somme des efforts de rappel liés aux première et seconde forces d'ouverture FR et FPWhen the movable core 16 is in the attachment position PA as represented for example on the Figure 1B , the power supply of the coil is cut off. The magnetic catching force FA due to the polarization flux φU of the magnet 14 is then of greater intensity than the sum of the return forces associated with the first and second opening forces FR and FP

La force magnétique d'accrochage FA est généralement calculée afin d'une part de s'opposer aux première et seconde forces d'ouverture FR et FP et d'autre part s'opposer aux efforts de décollement liées aux chocs subis par l'actionneur en position fermée. Les efforts de décollement venant s'ajouter à ceux des première et seconde forces d'ouverture FR et FP.The magnetic gripping force FA is generally calculated in order firstly to oppose the first and second opening forces FR and FP and secondly to oppose the shear stresses related to the shocks to the actuator in closed position. The release forces in addition to those of the first and second opening forces FR and FP.

Pour passer d'une position de fermeture à une position d'ouverture des contacts de ladite au moins une ampoule 2, autrement dit de la position d'accrochage PA à la position d'ouverture PO du noyau mobile 16, le fonctionnement du dispositif d'actionnement électromagnétique 1 est le suivant. Deux forces antagonistes s'appliquent sur le noyau mobile 16 ; une force magnétique d'accrochage FA due au flux de polarisation φU de l'aimant 14 et à la somme des forces d'ouverture FR, FP résultant des efforts appliqués par les ressorts de rappel 36 et des pressions de pôles 37. La force magnétique d'accrochage FA est alors d'intensité supérieure aux forces d'ouverture FR + FP.To move from a closed position to an open position of the contacts of said at least one bulb 2, in other words from the attachment position PA to the open position PO of the mobile core 16, the operation of the device Electromagnetic actuation 1 is as follows. Two opposing forces apply on the mobile core 16; a magnetic coupling force FA due to the polarization flux φU of the magnet 14 and to the sum of the opening forces FR, FP resulting from the forces applied by the return springs 36 and the pole pressures 37. The magnetic force FA is then of greater intensity than the opening forces FR + FP.

La bobine de commande 30 est alors alimentée pour générer un second flux de commande. Ce second flux de commande circule dans un sens opposé au flux de polarisation φU de l'aimant 14.pour réduire ainsi la force magnétique d'accrochage FA. Dès que la force d'ouverture résultante (FR + FP) devient supérieure à la force magnétique d'accrochage FA, le noyau mobile 16 se déplace de sa position d'accrochage PA vers sa position d'ouverture PO entrainant ainsi l'ouverture des contacts. Cette ouverture se fait de manière franche et continue du fait même de la géométrie de l'actionneur ne présentant aucune position intermédiaire stable.The control coil 30 is then energized to generate a second control flow. This second control flow flows in a direction opposite to the polarization flux φU of the magnet 14 to thereby reduce the magnetic coupling force FA. As soon as the resulting opening force (FR + FP) becomes greater than the magnetic catching force FA, the movable core 16 moves from its hooking position PA to its open position PO thus causing the opening of the contact. This opening is frank and continuous because of the geometry of the actuator having no stable intermediate position.

Selon une variante de réalisation telle que représentée sur les figures 11A et 11B, l'actionneur électromagnétique comporte un manchon mobile 47 en matériau ferromagnétique. L'axe longitudinal dudit manchon est confondu avec celui du noyau mobile 16. Comme représenté sur la figure 11A, ledit manchon est positionné dans une première position de fonctionnement de manière à ne pas faire partie du circuit magnétique et à ce que le flux de polarisation φU de l'aimant 14 ne circule pas au travers du manchon lorsque l'actionneur est dans sa position d'ouverture PO. Comme représenté sur la figure 11B, ledit manchon peut être positionné dans une seconde position de fonctionnement de manière à faire partie du circuit magnétique lorsque l'actionneur est dans sa position d'accrochage PA. A titre d'exemple de réalisation, le manchon mobile 47 est dans cette seconde position, en appui contre la face externe du second le flasque 24. Dans cette seconde position, le manchon permet de dévier une partie du flux de l'aimant 14 réduisant ainsi son efficacité au niveau du maintien du noyau mobile 16 en position d'accrochage PA, et permettant ainsi le déplacement du noyau mobile 16 de sa position d'accrochage PA vers sa position d'ouverture PO. Le déplacement du manchon mobile 47 peut être actionné par l'intermédiaire d'un mécanisme commandé manuellement lorsque l'énergie nécessaire à la réouverture de l'actionneur vient à faire défaut. Le déplacement du manchon mobile 47 pourrait aussi être réalisé à l'aide d'un actionneur électromagnétique. La bobine dudit actionneur peut être commandée en lieu et place de la bobine 30 pour réaliser l'ouverture du noyau.According to an embodiment variant as represented on the Figures 11A and 11B the electromagnetic actuator comprises a movable sleeve 47 of material ferromagnetic. The longitudinal axis of said sleeve is coincident with that of the movable core 16. As shown in FIG. figure 11A , said sleeve is positioned in a first operating position so as not to be part of the magnetic circuit and that the polarization flux φU of the magnet 14 does not flow through the sleeve when the actuator is in its position PO opening. As shown on the Figure 11B , said sleeve can be positioned in a second operating position so as to be part of the magnetic circuit when the actuator is in its hooking position PA. As an exemplary embodiment, the movable sleeve 47 is in this second position, bearing against the outer face of the second flange 24. In this second position, the sleeve allows to deflect part of the flow of the magnet 14 reducing and its effectiveness in the maintenance of the movable core 16 in PA hooking position, and thus allowing the displacement of the movable core 16 from its attachment position PA to its open position PO. The displacement of the movable sleeve 47 can be actuated via a manually controlled mechanism when the energy required to reopen the actuator has failed. The displacement of the movable sleeve 47 could also be achieved using an electromagnetic actuator. The coil of said actuator can be controlled instead of the coil 30 to achieve the opening of the core.

Dans le cas de la commande d'au moins une ampoule à vide ou d'un disjoncteur par l'actionneur principal faisant l'objet de ce brevet, le second actionneur permettant le déplacement du manchon peut aussi être commandé en cas de défaut de surcharge ou de court-circuit dans l'installation électrique protégée par la au moins une ampoule ou le disjoncteur.In the case of the control of at least one vacuum interrupter or circuit breaker by the main actuator which is the subject of this patent, the second actuator allowing the displacement of the sleeve can also be controlled in the event of an overload fault. or short circuit in the electrical installation protected by the at least one bulb or circuit breaker.

Selon une autre variante de réalisation telle que représentée sur la figure 9, un capot non magnétique est positionné au niveau de la surface externe du second flasque 24 de manière à protéger l'aimant des poussières métalliques ou non.According to another embodiment variant as represented on the figure 9 , a non-magnetic cover is positioned at the outer surface of the second flange 24 so as to protect the magnet from metal dust or not.

Selon une variante de réalisation telle que présentée en figure 8, la section du noyau mobile 16 à son extrémité placée du coté du premier flasque 22 peut être réduite sur une faible hauteur dans le but d'augmenter l'effort de retenue du à l'aimant 14. Cette réduction peut être effectuée dans l'axe du noyau ou à sa périphérie. La localisation particulière de cette réduction de section du noyau permet d'augmenter l'effort de collage du noyau 16 sans altérer son efficacité lors de son mouvement de fermeture de la position d'ouverture PO vers la position d'accrochage PA.According to an alternative embodiment as presented in figure 8 the section of the movable core 16 at its end placed on the side of the first flange 22 can be reduced to a small height in order to increase the retaining force from to magnet 14. This reduction can be performed in the axis of the core or at its periphery. The particular location of this section reduction of the core makes it possible to increase the bonding force of the core 16 without impairing its efficiency during its closing movement from the open position PO to the gripping position PA.

Selon une variante de réalisation telle que présentée en figure 10, l'actionneur électromagnétique comporte un noyau fixe 67 placé à l'intérieur du volume interne de la culasse magnétique contre la face interne du premier flasque 22. Le noyau fixe 67, en matériau ferromagnétique, peut faire ou non partie intégrante dudit flasque. Le noyau fixe 67 en concentrant le flux de la bobine de commande augmente son efficacité.According to an alternative embodiment as presented in figure 10 , the electromagnetic actuator comprises a fixed core 67 placed inside the internal volume of the magnetic yoke against the inner face of the first flange 22. The fixed core 67, of ferromagnetic material, may or may not integral with said flange. The fixed core 67 concentrating the flow of the control coil increases its efficiency.

Selon tous les modes de réalisation, le noyau peut présenter une forme parallélépipédique. En outre, l'actionneur électromagnétique peut comporter des géométries ayant des formes asymétriques.In all embodiments, the core may have a parallelepiped shape. In addition, the electromagnetic actuator may comprise geometries having asymmetrical shapes.

Claims (14)

  1. An electromagnetic actuator with magnetic latching comprising:
    - a moving core (16) mounted with axial sliding along a longitudinal axis (Y) inside a magnetic yoke (20) between a latched position (PA) and an open position (PO),
    - at least one permanent magnet (14),
    - at least one coil (30) extending axially in the direction of the longitudinal axis (Y) of the yoke (20) and being designed to generate:
    - a first magnetic control flux (φC1) to move the moving core (16) from an open position (PO) to a latched position (PA),
    - and a second magnetic control flux (φC2) opposing a polarization flux (φU) of the permanent magnet (14) and enabling movement of the moving core (16) from the latched position (PA) to the open position (PO),
    characterized in that the permanent magnet (14) is positioned on the moving core (16) in such a way as:
    - to be at least partly outside the fixed magnetic circuit in which the first magnetic control flux (φC1) flows when the moving core (16) is in the open position (PO), and
    - to be at least partly inside the fixed magnetic circuit used for flow of the magnetic polarization flux (φU) generated by the magnet (14) when the moving core (16) is in the latched position (PA).
  2. The electromagnetic actuator according to claim 1, characterized in that the permanent magnet (14) is magnetized in radial manner perpendicular to the longitudinal axis (Y) of the yoke (20).
  3. The electromagnetic actuator according to claims 1 or 2, characterized in that the yoke (20) comprises an internal sleeve (46) extending around the moving core (16), the permanent magnet (14) being positioned on the moving core (16) in such a way as to be at least partially facing the internal sleeve (46) of the magnetic yoke when the moving core (16) is in the latched position (PA).
  4. The electromagnetic actuator according to claim 3, characterized in that the internal sleeve (46) extends over an overlap distance (L) placed facing the permanent magnet (14) in the latched position (PA).
  5. The electromagnetic actuator according to claims 3 and 4, characterized in that the internal sleeve (46) is separated from the moving core (16) by a sliding radial air-gap (e2) remaining uniform during translational movement of the moving core (16).
  6. The electromagnetic actuator according to claim 1, characterized in that the permanent magnet (14) is magnetized in axial manner aligned along the longitudinal axis (Y) of the yoke (20).
  7. The electromagnetic actuator according to any one of the foregoing claims, characterized in that the permanent magnet (14) is positioned on the moving core (16) in such a way as to be completely outside the magnetic yoke (20) when the moving core (16) is in the open position (PO).
  8. The electromagnetic actuator according to claim 7, characterized in that it comprises a movable sleeve (47) being able to be actuated manually or by means of an electromechanical actuator.
  9. The electromagnetic actuator according to any one of claims 1 to 6, characterized in that the permanent magnet (14) is positioned on the moving core (16) in such a way as to be completely inside the magnetic yoke (20) when the moving core (16) is in the open position (PO).
  10. The electromagnetic actuator according to any one of the foregoing claims, characterized in that it comprises a cover (57) made from non-ferromagnetic material at the level of an outer surface of the magnetic yoke (20) so as to cover the whole of the moving core (16) in the open position (PO).
  11. The electromagnetic actuator according to any one of the foregoing claims, characterized in that the moving core (16) comprises a radial surface designed to stick against the magnetic yoke (20) in the latched position (PA), said surface being smaller than a mean cross-section of said core.
  12. The electromagnetic actuator according to any one of the foregoing claims, characterized in that it comprises at least one bias spring (36) opposing movement of said core from its open position (PO) to its latched position (PA).
  13. The electromagnetic actuator according to any one of the foregoing claims, characterized in that the magnetic moving core (16) is coupled to a nonmagnetic actuating member (18) extending in the direction of the longitudinal axis (Y).
  14. A switching device (22) comprising at least one stationary contact collaborating with at least one movable contact designed to switch the power supply of an electric load, characterized in that it comprises at least one electromagnetic actuator (1) according to any one of the foregoing claims to actuate said at least one movable contact.
EP10790459.1A 2009-12-18 2010-11-15 Electromagnetic actuator having magnetic coupling, and cutoff device comprising such actuator Not-in-force EP2513933B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0906168A FR2954577B1 (en) 2009-12-18 2009-12-18 ELECTROMAGNETIC ACTUATOR WITH MAGNETIC ATTACHMENT
FR1003875A FR2965656B1 (en) 2010-09-30 2010-09-30 ELECTROMAGNETIC ACTUATOR WITH MAGNETIC ATTACHMENT AND CUTTING DEVICE COMPRISING SUCH ACTUATOR
PCT/FR2010/000760 WO2011073539A1 (en) 2009-12-18 2010-11-15 Electromagnetic actuator having magnetic coupling, and cutoff device comprising such actuator

Publications (2)

Publication Number Publication Date
EP2513933A1 EP2513933A1 (en) 2012-10-24
EP2513933B1 true EP2513933B1 (en) 2014-03-12

Family

ID=43626987

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10790459.1A Not-in-force EP2513933B1 (en) 2009-12-18 2010-11-15 Electromagnetic actuator having magnetic coupling, and cutoff device comprising such actuator

Country Status (7)

Country Link
US (1) US8912871B2 (en)
EP (1) EP2513933B1 (en)
CN (1) CN102770928B (en)
AU (1) AU2010332675B2 (en)
ES (1) ES2457549T3 (en)
RU (1) RU2529884C2 (en)
WO (1) WO2011073539A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101422394B1 (en) * 2013-02-18 2014-07-22 엘에스산전 주식회사 Electro magnetic switching device
CN103236775B (en) * 2013-04-25 2015-07-15 南京工程学院 Permanent-magnet slip transmission mechanism
DE102013013585B4 (en) * 2013-06-20 2020-09-17 Rhefor Gbr Self-holding magnet with particularly low electrical tripping power
FR3008542B1 (en) * 2013-07-09 2015-10-02 Schneider Electric Ind Sas CIRCUIT BREAKER RESET DETECTION DEVICE, ACTUATOR FOR CIRCUIT BREAKER CONTACTS SEPARATION MECHANISM, ELECTRIC CIRCUIT BREAKER AND USE OF INDUCED CURRENT FOR GENERATING REARMING INDICATION SIGNAL
KR101841859B1 (en) * 2013-10-25 2018-03-23 지멘스 악티엔게젤샤프트 A circuit breaker unit with electromagnetic drive
GB2522696A (en) * 2014-02-03 2015-08-05 Gen Electric Improvements in or relating to vacuum switching devices
JP6235374B2 (en) * 2014-02-27 2017-11-22 株式会社東芝 Switch operating mechanism
KR101592271B1 (en) * 2014-06-30 2016-02-11 현대중공업 주식회사 Magnetic contactor
WO2016089354A1 (en) * 2014-12-01 2016-06-09 Kongsberg Driveline Systems I. Inc. Shifter assembly for an automatic vehicle transmission system
EP3270398B1 (en) * 2016-07-12 2021-04-07 ABB Schweiz AG Actuator for a medium voltage circuit breaker
EP3301700B1 (en) * 2016-09-29 2023-03-29 ABB Schweiz AG A medium voltage contactor
EP3454456B1 (en) * 2017-09-08 2021-03-10 Hamilton Sundstrand Corporation Pole piece for a torque motor
US11231123B2 (en) * 2017-12-22 2022-01-25 Delphi Technologies Ip Limited Control valve assembly with solenoid with two magnets for latching
CN108342844A (en) * 2018-03-30 2018-07-31 苏州胜璟电磁科技有限公司 A kind of use in sewing machine adjustable solenoid
CN108360166A (en) * 2018-04-08 2018-08-03 苏州胜璟电磁科技有限公司 A kind of adjustable electromagnet
CN110504131B (en) * 2018-05-17 2024-04-16 王静洋 Dual-power automatic switching device
US11448103B2 (en) * 2018-06-28 2022-09-20 Board Of Regents, The University Of Texas System Electromagnetic soft actuators
US10580599B1 (en) * 2018-08-21 2020-03-03 Eaton Intelligent Power Limited Vacuum circuit interrupter with actuation having active damping
US10856429B2 (en) * 2018-09-27 2020-12-01 International Business Machines Corporation Magnetic server latching system
EP3671795B1 (en) * 2018-12-20 2024-06-19 ABB Schweiz AG Actuator for a medium voltage circuit breaker
MX2021002123A (en) * 2019-01-31 2021-09-14 S & C Electric Co Manual close assist control mechanism.
US11152174B2 (en) 2019-06-19 2021-10-19 Eaton Intelligent Power Limited Dual thomson coil-actuated, double-bellows vacuum circuit interrupter
US11107653B2 (en) 2019-06-26 2021-08-31 Eaton Intelligent Power Limited Dual-action switching mechanism and pole unit for circuit breaker
EP3825496A1 (en) * 2019-11-20 2021-05-26 iLOQ Oy Electromechanical lock and method
US11183348B1 (en) * 2020-07-21 2021-11-23 Eaton Intelligent Power Limited Vacuum circuit interrupter with decelerator with integrated latch assembly
US11227729B1 (en) * 2020-11-03 2022-01-18 Eaton Intelligent Power Limited Magnetorheological fluid damping with variable viscosity for circuit interrupter actuator
US20230349195A1 (en) * 2022-04-29 2023-11-02 Iloq Oy Electromechanical lock cylinder

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3218523A (en) * 1963-07-29 1965-11-16 Benson Hector Eugene Electromagnetic device having a permanent magnet armature
US3470504A (en) * 1967-09-15 1969-09-30 Henry Rogers Mallory Polarized electrical relay
US4533890A (en) * 1984-12-24 1985-08-06 General Motors Corporation Permanent magnet bistable solenoid actuator
US4829947A (en) * 1987-08-12 1989-05-16 General Motors Corporation Variable lift operation of bistable electromechanical poppet valve actuator
US5013223A (en) * 1987-08-20 1991-05-07 Takatsuki Electric Mfg. Co., Ltd. Diaphragm-type air pump
DE3913239C2 (en) * 1989-04-21 1995-02-02 Rexroth Mannesmann Gmbh Control motor, in particular for a servo valve
GB9318876D0 (en) 1993-09-11 1993-10-27 Mckean Brian A bistable permanent magnet actuator for operation of circuit breakers
BR9708819A (en) 1996-04-26 1999-08-03 Asea Brown Bover Ab Varistor block
RU6941U1 (en) * 1996-08-06 1998-06-16 Научно-производственное предприятие "Элвест" SWITCH DRIVE
JP3441360B2 (en) * 1997-03-25 2003-09-02 株式会社東芝 Circuit breaker operating device
US6040752A (en) * 1997-04-22 2000-03-21 Fisher; Jack E. Fail-safe actuator with two permanent magnets
DE19720858A1 (en) * 1997-05-17 1998-11-19 Smb Schwede Maschinenbau Gmbh Electromagnetic actuator
US5883557A (en) * 1997-10-31 1999-03-16 General Motors Corporation Magnetically latching solenoid apparatus
US5896076A (en) * 1997-12-29 1999-04-20 Motran Ind Inc Force actuator with dual magnetic operation
JP2000268683A (en) 1999-01-14 2000-09-29 Toshiba Corp Operating device for switch
JP3492228B2 (en) * 1999-02-09 2004-02-03 株式会社テクノ高槻 Iron core and electromagnetic drive mechanism using the iron core
US6512435B2 (en) * 2001-04-25 2003-01-28 Charles Willard Bistable electro-magnetic mechanical actuator
US6870454B1 (en) * 2003-09-08 2005-03-22 Com Dev Ltd. Linear switch actuator
US7719394B2 (en) * 2004-10-06 2010-05-18 Victor Nelson Latching linear solenoid
JP2007227766A (en) * 2006-02-24 2007-09-06 Toshiba Corp Electromagnetic actuator
WO2008135670A1 (en) 2007-03-27 2008-11-13 Schneider Electric Industries Sas Bistable electromagnetic actuator, control circuit for a dual coil electromagnetic actuator, and dual coil electromagnetic actuator including such control circuit
FR2921199B1 (en) * 2007-09-17 2014-03-14 Schneider Electric Ind Sas ELECTROMAGNETIC ACTUATOR AND SWITCHING APPARATUS EQUIPPED WITH SUCH ELECTROMAGNETIC ACTUATOR

Also Published As

Publication number Publication date
US20120293287A1 (en) 2012-11-22
EP2513933A1 (en) 2012-10-24
AU2010332675B2 (en) 2014-05-15
WO2011073539A1 (en) 2011-06-23
CN102770928B (en) 2015-09-30
ES2457549T3 (en) 2014-04-28
US8912871B2 (en) 2014-12-16
AU2010332675A1 (en) 2012-07-05
CN102770928A (en) 2012-11-07
RU2012130426A (en) 2014-01-27
RU2529884C2 (en) 2014-10-10

Similar Documents

Publication Publication Date Title
EP2513933B1 (en) Electromagnetic actuator having magnetic coupling, and cutoff device comprising such actuator
WO2012042124A1 (en) Electromagnetic actuator comprising a magnetic latch and cut-off device comprising such an actuator.
EP1811536B1 (en) Magnetic actuator with permanent, reduced-volume magnet
EP2559040B1 (en) Electrical switching device having an ultrafast actuation mechanism and hybrid switch comprising such a device
WO2008135670A9 (en) Bistable electromagnetic actuator, control circuit for a dual coil electromagnetic actuator, and dual coil electromagnetic actuator including such control circuit
EP0086121B1 (en) Monostably functioning electromagnet having a permanent magnet armature
EP3488517B1 (en) Electromagnetic energy converter
FR2573570A1 (en) POLARIZED ELECTROMAGNETIC RELAY WITH MAGNETIC ATTACHMENT FOR A TRIGGER OF AN ELECTRIC CIRCUIT BREAKER
FR2815461A1 (en) Switching device for electric circuit control, has coil stiffener comprising case for moving coil accommodation, in operating mechanism of shaft connected to switch
EP1185995B1 (en) On/off control device especially for a disconnection device such as a circuit breaker and circuit breaker fitter with said device.
EP2792057A1 (en) Electromagnetic actuator
EP2126951B1 (en) Hybrid electromagnetic actuator
FR2914484A1 (en) Bistable electromagnetic actuator for vacuum tube of switchgear, has mobile magnetic core separated from surface of yoke by air gap, when core is in released position, such that magnetic shunt is separated from core by axial air gap
FR2954577A1 (en) Electromagnetic actuator for electric switching unit to control opening and closing of circuit breaker, has permanent magnet positioned on core so as to be partly against sleeve of magnetic cylinder head when core is in fixation position
FR2940500A1 (en) ELECTROMAGNETIC ACTUATOR WITH DOUBLE CONTROL CIRCUITS
EP0027404A1 (en) Miniature electric circuit breaker in moulded case
EP0348584B1 (en) High speed circuit breaker actuated by a control device
FR2893445A1 (en) Polarized electromagnetic relay for actuating circuit-breaker, has elastic unit exerting maintaining force on outer trip switch and mobile armature to maintain armature with respect to switch in extension position
EP1774143B1 (en) Electromagnet-equipped control device for an internal combustion engine valve
CH668498A5 (en) DIRECT CURRENT ELECTROMAGNET WITH TRANSLATION MOTION.
FR2977067A1 (en) Arc guide device for ultra terminal type low-voltage circuit breaker, has arc guiding magnet to channel flux lines present during separation of contacts of circuit breaker so as to guide arc in separation of contacts
FR2923936A1 (en) Magnetic hooking type bistable electromagnetic actuator for vacuum bulb of switchgear, has mobile core separated from yoke surface by radial airgap in unhooking position, and shunt separated from core by axial airgap
EP1376639B1 (en) Electromagnetic trip device with a linear plunger movement
EP3218915A1 (en) Electromagnetic actuator and circuit breaker including such an actuator
WO2024134049A1 (en) Normally closed power contactor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120529

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131028

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 656775

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010014293

Country of ref document: DE

Effective date: 20140424

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2457549

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140428

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140612

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 656775

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140312

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140712

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140612

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010014293

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140714

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

26N No opposition filed

Effective date: 20141215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010014293

Country of ref document: DE

Effective date: 20141215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141115

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101115

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161115

Year of fee payment: 7

Ref country code: GB

Payment date: 20161109

Year of fee payment: 7

Ref country code: DE

Payment date: 20161115

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20161122

Year of fee payment: 7

Ref country code: ES

Payment date: 20161011

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010014293

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171115

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171115

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171115

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171116