EP2540850B1 - Conducteur en alliage d'aluminium - Google Patents
Conducteur en alliage d'aluminium Download PDFInfo
- Publication number
- EP2540850B1 EP2540850B1 EP11747542.6A EP11747542A EP2540850B1 EP 2540850 B1 EP2540850 B1 EP 2540850B1 EP 11747542 A EP11747542 A EP 11747542A EP 2540850 B1 EP2540850 B1 EP 2540850B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- aluminum alloy
- conductor
- wire
- intermetallic compound
- breakage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004020 conductor Substances 0.000 title claims description 82
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 46
- 229910000765 intermetallic Inorganic materials 0.000 claims description 70
- 238000010438 heat treatment Methods 0.000 claims description 25
- 238000005491 wire drawing Methods 0.000 claims description 25
- 239000002245 particle Substances 0.000 claims description 23
- 229940126062 Compound A Drugs 0.000 claims description 16
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 claims description 16
- 239000012535 impurity Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000010791 quenching Methods 0.000 claims description 5
- 230000000171 quenching effect Effects 0.000 claims description 5
- 238000000137 annealing Methods 0.000 description 58
- 238000005452 bending Methods 0.000 description 33
- 238000005266 casting Methods 0.000 description 24
- 229910052782 aluminium Inorganic materials 0.000 description 23
- 230000000052 comparative effect Effects 0.000 description 23
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 18
- 238000001816 cooling Methods 0.000 description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 10
- 239000010949 copper Substances 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 238000009429 electrical wiring Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 229910018084 Al-Fe Inorganic materials 0.000 description 6
- 229910018192 Al—Fe Inorganic materials 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 229910018191 Al—Fe—Si Inorganic materials 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910018580 Al—Zr Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910017076 Fe Zr Inorganic materials 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000009661 fatigue test Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- CYJRNFFLTBEQSQ-UHFFFAOYSA-N 8-(3-methyl-1-benzothiophen-5-yl)-N-(4-methylsulfonylpyridin-3-yl)quinoxalin-6-amine Chemical compound CS(=O)(=O)C1=C(C=NC=C1)NC=1C=C2N=CC=NC2=C(C=1)C=1C=CC2=C(C(=CS2)C)C=1 CYJRNFFLTBEQSQ-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- -1 aluminum iron cobalt silicon Chemical compound 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- LEMQFBIYMVUIIG-UHFFFAOYSA-N trifluoroborane;hydrofluoride Chemical compound F.FB(F)F LEMQFBIYMVUIIG-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
- H01B1/023—Alloys based on aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C1/00—Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
- B21C1/003—Drawing materials of special alloys so far as the composition of the alloy requires or permits special drawing methods or sequences
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
Definitions
- the present invention relates to an aluminum alloy conductor that is used as a conductor of an electrical wiring.
- a member in which a terminal (connector) made of copper or a copper alloy (for example, brass) is attached to electrical wires composed of conductors of copper or a copper alloy, which is called a wire harness, has been used as an electrical wiring for movable bodies, such as automobiles, trains, and aircrafts.
- a wire harness a member in which a terminal (connector) made of copper or a copper alloy (for example, brass) is attached to electrical wires composed of conductors of copper or a copper alloy, which is called a wire harness
- the specific gravity of aluminum is about one-third of that of copper, and the electrical conductivity of aluminum is about two-thirds of that of copper (when pure copper is considered as a criterion of 100%IACS, pure aluminum has about 66%IACS). Therefore, in order to pass a current through a conductor of pure aluminum, in which the intensity of the current is identical to that through a conductor of pure copper, it is necessary to adjust the cross-sectional area of the conductor of pure aluminum to about 1.5 times larger than that of the conductor of pure copper, but aluminum conductor is still more advantageous than copper conductor in that the former has an about half weight of the latter.
- %IACS represents an electrical conductivity when the resistivity 1.7241 ⁇ 10 -8 ⁇ m of International Annealed Copper Standard is defined as 100%IACS.
- an aluminum conductor that is used in an electrical wiring of a movable body a material is required, which is excellent in mechanical strength and flexibility that are required in handling and attaching, and which is excellent in electrical conductivity that is required for passing much electricity, as well as which is excellent in resistance to bending fatigue.
- Typical aluminum conductors used in electrical wirings of movable bodies include those described in Patent Literatures 1 to 4. However, as mentioned below, the inventions described in the patent literatures each have a further problem to be solved.
- Patent Literature 1 Since the invention described in Patent Literature 1 does not conduct finish annealing, flexibility that is required for operations of attaching in a vehicle body cannot be ensured.
- Patent Literature 2 discloses finish annealing, but the condition therefor is different from a condition by which intermetallic compounds can be controlled so as to improve resistance to bending fatigue, electrical conductivity and the like while keeping excellent flexibility.
- Patent Literature 4 contains antimony (Sb) as an additive element, and thus is a technique that is being substituted by an alternate product in view of environmental load.
- Sb antimony
- US 3,958,987 discloses an aluminum iron cobalt silicon alloy and a method of preparation thereof.
- GB 1 469 334 discloses an aluminum alloy which is used for electrical conductors and a process for preparing same.
- the present invention is contemplated for providing an aluminum alloy conductor, which has sufficient electrical conductivity and tensile strength, and which is excellent in resistance to bending fatigue, flexibility, and the like.
- the inventors of the present invention having studied keenly, found that an aluminum alloy conductor, which has excellent resistance to bending fatigue, mechanical strength, flexibility, and electrical conductivity, can be produced, by controlling the particle sizes and area ratios of two kinds of intermetallic compounds in an aluminum alloy to which specific additive elements are added, by controlling production conditions, such as a cooling speed in casting, and those in an intermediate annealing and a finish annealing.
- the present invention is attained based on those findings.
- the aluminum alloy conductor of the present invention is excellent in the mechanical strength, the flexibility, and the electrical conductivity, and is useful as a conductor for a battery cable, a harness, or a motor, each of which is mounted on a movable body, and thus can also be preferably used for a door, a trunk, a hood (or a bonnet), and the like, for which an excellent resistance to bending fatigue is required.
- Fig. 1 is an explanatory view of the test for measuring the number of times of repeated breakage, which was conducted in the Examples.
- a preferable first embodiment of the present invention is an aluminum alloy conductor, which consists of 0.4 to 0.9 mass% of Fe, with the balance being Al and inevitable impurities, wherein the conductor contains two kinds of intermetallic compounds A and B, in which the intermetallic compound A has a particle size within the range of 0.1 ⁇ m or more but 2 ⁇ m or less, the intermetallic compound B has a particle size within the range of 0.03 ⁇ m or more but less than 0.1 ⁇ m, and the area ratio a of the intermetallic compound A, and the area ratio b of the intermetallic compound B, in an arbitrary region in the conductor, satisfy the relationships of 1% ⁇ a ⁇ 6%, and 1% ⁇ b ⁇ 5%, respectively.
- the reason why the content of Fe is set to 0.4 to 0.9 mass% is to utilize various effects by mainly Al-Fe-based intermetallic compounds.
- Fe is made into a solid solution in aluminum in an amount of only 0.05 mass% at 655°C, and is made into a solid solution lesser at room temperature.
- the remainder of Fe is crystallized or precipitated as intermetallic compounds, such as Al-Fe, and Al-Fe-Si.
- the crystallized or precipitated product acts as a refiner for grains to make the grain size fine, and enhances the mechanical strength and resistance to bending fatigue.
- the content of Fe is preferably 0.4 to 0.8 mass%, more preferably 0.5 to 0.7 mass%.
- a preferable second embodiment of the present invention is an aluminum alloy conductor, which consists of 0.4 to 0.9 mass% of Fe, and 0.01 to 0.4 mass% of Zr, with the balance being Al and inevitable impurities.
- the conductor contains two kinds of intermetallic compounds A and B, in which the intermetallic compound A has a particle size within the range of 0.1 ⁇ m or more but 2 ⁇ m or less, the intermetallic compound B has a particle size within the range of 0.03 ⁇ m or more but less than 0.1 ⁇ m, and the area ratio a of the intermetallic compound A, and the area ratio b of the intermetallic compound B, in an arbitrary region in the conductor, satisfy the relationships of 1% ⁇ a ⁇ 6%, and 1% ⁇ b ⁇ 7.5%, respectively.
- the alloy composition is that 0.01 to 0.4 mass% of Zn is further contained, in addition to the alloy composition of the above-mentioned first embodiment.
- Zr forms an intermetallic compound with Al, and is made into a solid solution in Al, thereby to contribute to enhancement in mechanical strength and improvement in heat resistance of the aluminum alloy conductor.
- the content of Zr is preferably 0.1 to 0.35 mass%, more preferably 0.15 to 0.3 mass%.
- an aluminum alloy conductor of the present invention by defining the sizes (particle sizes) and area ratios of the intermetallic compounds, besides the above-mentioned alloying elements, an aluminum alloy conductor can be obtained, which has the desired excellent resistance to bending fatigue, mechanical strength, flexibility, and electrical conductivity.
- the present invention contains two kinds of intermetallic compounds different in particle size each other at the respective predetermined area ratios.
- the intermetallic compounds are particles of crystallized products, precipitated products, and the like, which are present inside the grains.
- the crystallized products are formed upon melt-casting, and the precipitated products are formed in intermediate annealing and finish annealing, such as particles of Al-Fe, Al-Fe-Si, and Al-Zr.
- the area ratio refers to the ratio of the intermetallic compound contained in the present alloy as represented in terms of area, and can be calculated as mentioned in detail below, based on a picture observed by TEM.
- the intermetallic compound A is mainly constituted by Al-Fe, and is partially composed of Al-Fe-Si, Al-Zr, and the like. These intermetallic compounds act as refiners for grains, and enhance the mechanical strength and resistance to bending fatigue.
- the reason why the area ratio a of the intermetallic compound A is set to 1% ⁇ a ⁇ 6% is that, when the area ratio is too small, these effects are insufficient. When the area ratio is too large, wire breaking is apt to occur due to the intermetallic compound. Furthermore, the intended resistance to bending fatigue cannot be obtained, and the flexibility is also lowered.
- the intermetallic compound B is mainly constituted by Al-Fe-Si, Al-Zr, and the like. These intermetallic compounds enhance the mechanical strength and improve resistance to bending fatigue, through precipitation.
- the reason why the area ratio b of the intermetallic compound B is set to 1% ⁇ b ⁇ 5% in the first embodiment and 1% ⁇ b ⁇ 7.5% in the second embodiment is that, when the area ratio is too small, these effects are insufficient, and when the area ratio is too large, it becomes a cause of wire breakage due to excess precipitation. Furthermore, the flexibility is also lowered.
- the area ratios of the intermetallic compounds A and B of two kinds of sizes to the above-mentioned values, it is necessary to set the respective alloy compositions to the above-mentioned ranges.
- the area ratios can be realized by suitably controlling the cooling speed in casting, the intermediate annealing temperature, the conditions in finish annealing, and the like.
- the cooling speed in casting refers to an average cooling speed from the initiation of solidification of an aluminum alloy ingot to 200°C.
- the following three methods may be exemplified. Namely, (1) changing the size (wall thickness) of an iron casting mold, (2) forcedly-cooling by disposing a water-cooling mold on the bottom face of a casting mold (the cooling speed is changed also by changing the amount of water), and (3) changing the casting amount of a molten metal.
- the cooling speed in casting is too slow, the crystallized product of the Al-Fe system is coarsened and thus the intended microstructure cannot be obtained, which results in being apt to occur cracking.
- the cooling speed in casting is preferably 1 to 20°C/sec, more preferably 5 to 15°C/sec.
- the intermediate annealing temperature refers to a temperature when a heat treatment is conducted in the mid way of wire drawing.
- the intermediate annealing is mainly conducted for recovering the flexibility of a wire that has been hardened by wire drawing.
- the intermediate annealing temperature is too low, recrystallization is insufficient and thus the yield strength is excessive and the flexibility cannot be ensured, which result in a high possibility that wire breakage may occur in the later wire drawing and a wire cannot be obtained.
- the resultant wire is in an excessively annealed state, and the recrystallized grains become coarse and thus the flexibility is significantly lowered, which result in a high possibility that wire breakage may occur in the later wire drawing and a wire cannot be obtained.
- the intermediate annealing temperature is generally 300 to 450°C, preferably 350 to 450°C.
- the time period for intermediate annealing is generally 30 min or more. If the time period is less than 30 min, the time period required for the formation and growth of recrystallized grains is insufficient, and thus the flexibility of the wire cannot be recovered.
- the time period is preferably 1 to 6 hours.
- the average cooling speed from the heat treatment temperature in the intermediate annealing to 100°C is not particularly defined, it is desirably 0.1 to 10°C/min.
- the finish annealing is conducted, for example, by a continuous electric heat treatment in which annealing is conducted by the Joule heat generated from the wire in interest itself that is running continuously through two electrode rings, by passing an electrical current through the wire.
- the continuous electric heat treatment has the steps of: rapid heating and quenching, and can conduct annealing of the wire, by controlling the temperature of the wire and the time period.
- the cooling is conducted, after the rapid heating, by continuously passing the wire through water. In one of or both of the case where the wire temperature in annealing is too low or too high and the case where the annealing time period is too short or too long, an intended microstructure cannot be obtained.
- the flexibility that is required for attaching the resultant wire to vehicle to mount thereon cannot be obtained; and in one of or both of the case where the wire temperature in annealing is too high and in the case where the annealing time period is too long, the mechanical strength is lowered and the resistance to bending fatigue also becomes worse.
- the wire temperature represents the highest temperature of the wire at immediately before passing through water.
- the finish annealing may be, for example, a continuous annealing in which annealing is conducted by continuously passing the wire in an annealing furnace kept at a high temperature, or an induction heating in which annealing is conducted by continuously passing the wire in a magnetic field, each of which has the steps of rapid heating and quenching.
- the annealing conditions are not identical with the conditions in the continuous electric heat treatment, since the atmospheres and heat-transfer coefficients are different from each other, even in the cases of these continuous annealing and induction heating each of which has the steps of rapid heating and quenching, the aluminum alloy conductor of the present invention can be prepared, by suitably controlling the finish-annealing conditions (thermal history) by referring to the annealing conditions in the continuous electric heat treatment as a typical example, so that the aluminum alloy conductor of the present invention having a prescribed precipitation state of the intermetallic compounds can be obtained.
- the aluminum alloy conductor of the present invention has a grain size of 1 to 15 ⁇ m in a vertical cross-section in the wire-drawing direction. This is because, when the grain size is too small, a partial recrystallized microstructure remains and the tensile elongation at breakage is lowered conspicuously, and on the other hand, when too large, a coarse microstructure is formed and deformation behavior becomes uneven, and the tensile elongation at breakage is lowered similar to the above, and further the strength is lowered conspicuously.
- the grain size is more preferably 1 to 10 ⁇ m.
- the aluminum alloy conductor of the present invention preferably has a tensile strength (TS) of 80 MPa or more and an electrical conductivity of 60%IACS or more, preferably has a tensile strength of 80 to 150 MPa and an electrical conductivity of 60 to 65%IACS, more preferably has a tensile strength of 100 to 140 MPa and an electrical conductivity of 61 to 64%IACS.
- TS tensile strength
- the tensile strength and the electrical conductivity are conflicting properties, and the higher the tensile strength is, the lower the electrical conductivity is, whereas pure aluminum low in tensile strength is high in electrical conductivity. Therefore, in the case where an aluminum alloy conductor has a tensile strength of less than 80 MPa, the mechanical strength, including that in handling thereof, is low, and thus the conductor is difficult to be used as an industrial conductor. It is preferable that the electrical conductivity is 60%IACS or more, since a high current of dozens of amperes (A) is to pass through it when the conductor is used as a power line.
- the aluminum alloy conductor of the present invention has sufficient flexibility. This can be obtained by conducting the above-mentioned finish annealing.
- a tensile elongation at breakage is used as an index of flexibility of the aluminum alloy conductor, and is preferably 10% or more. This is because if the tensile elongation at breakage is too small, wire-running (i.e. an operation of attaching of it to a vehicle body) in installation of an electrical wiring becomes difficult as mentioned above. Furthermore, if the tensile elongation at breakage is too high, the mechanical strength becomes insufficient and the resultant conductor is weak in wire-running, which may results in wire breakage.
- the tensile elongation at breakage is more preferably 20% to 50%, further preferably 25 to 45%.
- the aluminum alloy conductor of the present invention can be produced via steps of: [1] melting, [2] casting, [3] hot- or cold-working (e.g. caliber rolling with grooved rolls), [4] wire drawing, [5] heat treatment (intermediate annealing), [6] wire drawing, and [7] heat treatment (finish annealing).
- Fe and Al, or Fe, Zr, and Al are melted at amounts that provide the desired contents.
- a molten metal is rolled while the molten metal is continuously cast in a water-cooled casting mold; by using a Properzi-type continuous cast-rolling machine which has a casting ring and a belt in combination, to give a rod of about 10 mm in diameter.
- the cooling speed in casting at this time is generally 1 to 20°C/sec as mentioned above.
- the casting and hot rolling may be conducted by billet casting at a cooling speed in casting of 1 to 20°C/sec, extrusion, or the like.
- a working degree represented by ⁇ In(A 0 /A 1 ) is preferably 1 or more but 6 or less. If the working degree is less than 1, the recrystallized grains are coarsened and the mechanical strength and tensile elongation at breakage are conspicuously lowered in the heat treatment in the subsequent step, which may be a cause of wire breakage.
- the wire drawing becomes difficult due to excess work-hardening, which is problematic in the quality in that, for example, wire breakage occurs upon the wire drawing.
- the surface of the wire is cleaned up by conducting peeling of the surface thereof, the peeling may be omitted.
- the thus-worked product that has undergone cold drawing i.e. a roughly-drawn wire
- the conditions for the intermediate annealing are generally 300 to 450°C and 30 minutes or more.
- the thus-annealed roughly-drawn wire is further subjected to wire drawing.
- the working degree is desirably 1 or more but 6 or less for the above-mentioned reasons.
- the thus-cold-drawn wire is subjected to finish annealing by the continuous electric heat treatment. It is preferable that the conditions for the annealing satisfy: 26x -0.6 + 377 ⁇ y ⁇ 19x -0.6 + 477, in the range of 0.03 ⁇ x ⁇ 0.55, when the numerical formula represented by the wire temperature y (°C) and the annealing time period x (sec) are used as mentioned above.
- the aluminum alloy conductor of the present invention that is prepared by the heat treatment as mentioned above has a recrystallized microstructure.
- the recrystallized microstructure refers to a state of a microstructure that is constituted by grains that have little lattice defects, such as dislocation, introduced by plastic working. Since the conductor has a recrystallized microstructure, the tensile elongation at breakage and electrical conductivity are recovered, and a sufficient flexibility can be obtained.
- Fe and Al, or Fe, Zr, and Al in the amounts shown in Table 1-1 and Table 2-1 (mass%) were rolled by using a Properzi-type continuous cast-rolling machine while the molten metal was continuously cast in a water-cooled casting mold, to give respective rod materials with diameter about 10 mm. At that time, the cooling speed in casting was 1 to 20°C/sec (in Comparative Examples, the cases of 0.2°C/sec or 50°C/sec were also included).
- a continuous electric heat treatment as the finish annealing was conducted at a temperature of 461 to 621°C (in Comparative Examples, the cases of 432°C, 435°C, 450°C, 460°C, or 623°C were also included) for a time period of 0.03 to 0.54 second.
- the temperature was measured at immediately above the water surface where the temperature of the wire would be the highest, with a fiber-type radiation thermometer (manufactured by Japan Sensor Corporation).
- the conditions of the electrolytic polishing were as follows: polish liquid, a 20% ethanol solution of perchloric acid; liquid temperature, 0 to 5°C; voltage, 10 V; current, 10 mA; and time period, 30 to 60 seconds. Then, in order to obtain a contrast of grains, the resultant sample was subjected to anodizing finishing, with 2% hydrofluoroboric acid, under conditions of voltage 20 V, electrical current 20 mA, and time period 2 to 3 min.
- the resultant microstructure was observed by an optical microscope with a magnification of 200X to 400X and photographed, and the grain size was measured by an intersection method. Specifically, a straight line was drawn arbitrarily on a microscopic picture taken, and the number of intersection points at which the length of the straight line intersected with the grain boundaries was measured, to determine an average grain size. The grain size was evaluated by changing the length and the number of straight lines so that 50 to 100 grains would be counted.
- the wires of Examples and Comparative Examples were each formed into a thin film by an electropolishing thin-film method (twin-jet polishing), and an arbitrary region was observed with a magnification of 6,000X to 30,000X, by using a transmission electron microscope (TEM). Then, electron beam was focused on the intermetallic compounds by using an energy-dispersive X-ray detector (EDX), thereby to detect intermetallic compounds of an Al-Fe-based, an Al-Fe-Si-based, and an Al-Zr-based.
- EDX energy-dispersive X-ray detector
- the sizes of the intermetallic compounds were each judged from the scale of the picture taken, which were calculated by converting the shape of the individual particle to the sphere which was equal to the volume of the individual particle.
- the area ratios a and b of the intermetallic compounds were obtained, based on the picture taken, by setting a region in which about 5 to 10 particles would be counted for the intermetallic compound A, and a region in which 20 to 50 particles would be counted for the intermetallic compound B, calculating the areas of the intermetallic compounds from the sizes and the numbers of respective intermetallic compounds, and dividing the areas of the respective intermetallic compounds by the areas of the regions for the counting.
- the area ratios were each calculated, by using a reference thickness of 0.15 ⁇ m for the thickness of a slice of the respective sample.
- the area ratio was able to be calculated, by converting the sample thickness to the reference thickness, i.e. by multiplying the area ratio calculated based on the picture taken by (reference thickness/sample thickness).
- the sample thickness was calculated by observing the interval of equal thickness fringes observed on the picture, and was approximately 0.15 ⁇ m in all of the samples.
- a strain amplitude at an ordinary temperature was set to ⁇ 0.17%.
- the resistance to bending fatigue varies depending on the strain amplitude.
- the strain amplitude can be determined by the wire diameter of a wire 1 and the curvature radii of bending jigs 2 and 3 as shown in Fig. 1 , a bending fatigue test can be conducted by arbitrarily setting the wire diameter of the wire 1 and the curvature radii of the bending jigs 2 and 3.
- One end of the wire was fixed on a holding jig 5 so that bending can be conducted repeatedly, and a weight 4 of about 10 g was hanged from the other end. Since the holding jig 5 moves in the test, the wire 1 fixed thereon also moves, thereby repeating bending can be conducted. The repeating was conducted under the condition of 1.5 Hz (1.5 times of reciprocation in 1 second), and the test machine has a mechanism in which the weight 4 falls to stop counting when the test piece of the wire 1 is broken.
- the number of openings and closings is 36,500 (calculated by regarding 1 year to be 365 days). Since an electrical wire which is actually used is not a single wire but in a twisted wire structure, and is subjected to a coating treatment, the load on the electrical wire conductor becomes as less as one severalth.
- the number of repeating times at breakage is preferably 50,000 or more, more preferably 70,000 or more, by which sufficient resistance to bending fatigue can be ensured as an evaluation value in a single wire. (Table 1-1) (Examples) No. Fe Zr Al Cooling speed in casting Intermediate annealing Finish annealing (mass%) (°C/s) Temp.
- Comparative Examples 101 to 103 the alloying elements added to the aluminum alloy were outside of the ranges according to the present invention.
- Comparative Example 101 since the content of Fe was too low, the ratios of the intermetallic compounds A and B were too low, and the tensile strength and the number of repeating times at breakage were poor.
- Comparative Example 102 since the content of Fe was too large, the ratios of the intermetallic compounds A and B were too large, and the number of repeating times at breakage and the electrical conductivity were poor.
- Comparative Example 103 since the content of Zr was too large, the ratio of the intermetallic compound B was too large, and the number of repeating times at breakage and the electrical conductivity were poor.
- Comparative Examples 104 to 110, and 201 show the cases where the area ratios of the intermetallic compounds in the respective aluminum alloy conductor were outside of the ranges according to the present invention, or the cases where the conductors were broken in the course of production. Those Comparative Examples show that no aluminum alloy conductor as defined in the present invention was able to be obtained, depending on the conditions for the production of the aluminum alloy.
- Comparative Example 104 since the cooling speed in casting was too slow, the target conductor wire was broken in the wire drawing step.
- Comparative Example 105 since the cooling speed in casting was too fast, the ratio of the intermetallic compound A was too low and the ratio of the intermetallic compound B was too large, and the number of repeating times at breakage and the electrical conductivity were poor.
- Comparative Examples 106 to 108 since the temperature for the intermediate annealing was too high or low or the time period for the intermediate annealing was too short, the target conductor wires were broken in the wire drawing step.
- Comparative Example 109 since the resultant alloy was in an unannealed state due to insufficient softening in the finish-annealing step and no intermetallic compound was observed, the tensile elongation at breakage was poor.
- Comparative Example 110 since the ratio of the intermetallic compound B was too low due to a too high temperature for the finish annealing, the tensile strength, the electrical conductivity, the tensile elongation at breakage, and the number of repeating times at breakage were poor.
- Comparative Example 201 in which the finish annealing was conducted by using a batch-type annealing furnace, since the ratio of the intermetallic compound B was too low, the number of repeating times at breakage was poor.
- the aluminum alloy conductors were able to be obtained, which were excellent in the tensile strength, the electrical conductivity, the tensile elongation at breakage (the flexibility), and the number of repeating times at breakage (the resistance to bending fatigue).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
- Insulated Conductors (AREA)
Claims (9)
- Conducteur en alliage d'aluminium, constitué par :de 0,4 à 0,9 % en masses de Fe, le reste étant de l'Al et des impuretés inévitables,le conducteur contenant deux types de composés intermétalliques A et B, dans lequelle composé intermétallique A a une taille de particules comprise dans la plage allant de 0,1 µm ou plus à 2 µm ou moins,le composé intermétallique B a une taille de particules comprise dans la plage allant de 0,03 µm ou plus à moins de 0,1 µm, etun rapport de surface a du composé intermétallique A et un rapport de surface b du composé intermétallique B, dans une zone arbitraire du conducteur, satisfaisant respectivement aux relations de 1 % ≤ a ≤ 6 % et 1 % ≤ b ≤ 5%.
- Conducteur en alliage d'aluminium, constitué par :de 0,4 à 0,9 % en masses de Fe, de 0,01 à 0,4 % en masse de Zr, le reste étant de l'Al et des impuretés inévitables,le conducteur contenant deux types de composés intermétalliques A et B, dans lequelle composé intermétallique A a une taille de particules comprise dans la plage allant de 0,1 µm ou plus à 2 µm ou moins,le composé intermétallique B a une taille de particules comprise dans la plage allant de 0,03 µm ou plus à moins de 0,1 µm, etun rapport de surface a du composé intermétallique A et un rapport de surface b du composé intermétallique B, dans une zone arbitraire du conducteur, satisfaisant respectivement aux relations de 1 % ≤ a ≤ 6 % et 1 % ≤ b ≤ 7,5 %.
- Conducteur en alliage d'aluminium selon la revendication 1 ou 2, qui a une taille de grain transversalement dans la direction de tréfilage de 1 à 15 µm, en le soumettant à un traitement thermique électrique continu, qui comprend les étapes de chauffage rapide et de trempe à la fin du procédé de production du conducteur.
- Conducteur en alliage d'aluminium selon l'une quelconque des revendications 1 à 3, qui a une résistance à la traction de 80 MPa ou plus et une conductivité électrique de 60 % IACS ou plus.
- Conducteur en alliage d'aluminium selon l'une quelconque des revendications 1 à 4, qui a un allongement en traction à la rupture de 10 % ou plus.
- Conducteur en alliage d'aluminium selon l'une quelconque des revendications 1 à 5, qui a le nombre de périodes répétées à la rupture de 50 000 ou plus.
- Conducteur en alliage d'aluminium selon l'une quelconque des revendications 1 à 6, qui a une microstructure recristallisée.
- Utilisation du conducteur en alliage d'aluminium selon l'une quelconque des revendications 1 à 7, en tant qu'installation électrique pour un câble de batterie, un faisceau ou un moteur, dans un corps mobile.
- Utilisation selon la revendication 8, dans laquelle le corps mobile est un véhicule, un train ou un avion.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010043489 | 2010-02-26 | ||
PCT/JP2011/054399 WO2011105586A1 (fr) | 2010-02-26 | 2011-02-25 | Conducteur en alliage d'aluminium |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2540850A1 EP2540850A1 (fr) | 2013-01-02 |
EP2540850A4 EP2540850A4 (fr) | 2013-11-06 |
EP2540850B1 true EP2540850B1 (fr) | 2017-11-15 |
Family
ID=44506983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11747542.6A Active EP2540850B1 (fr) | 2010-02-26 | 2011-02-25 | Conducteur en alliage d'aluminium |
Country Status (5)
Country | Link |
---|---|
US (1) | US20120321507A1 (fr) |
EP (1) | EP2540850B1 (fr) |
JP (1) | JP4986253B2 (fr) |
CN (1) | CN102803531B (fr) |
WO (1) | WO2011105586A1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2597168B1 (fr) * | 2010-07-15 | 2019-09-11 | Furukawa Electric Co., Ltd. | Conducteur en alliage d'aluminium |
WO2013035699A1 (fr) * | 2011-09-05 | 2013-03-14 | 大電株式会社 | Matière électroconductrice à base d'aluminium et fil électrique et câble obtenus à l'aide de cette matière |
WO2013146762A1 (fr) * | 2012-03-29 | 2013-10-03 | 大電株式会社 | Conducteur métallique microcristallin et son procédé de fabrication |
KR101716645B1 (ko) * | 2014-07-03 | 2017-03-15 | 엘에스전선 주식회사 | 알루미늄 합금 도체 전선 및 이의 제조방법 |
JP6927685B2 (ja) * | 2016-10-25 | 2021-09-01 | 矢崎総業株式会社 | アルミニウム素線、並びにそれを用いたアルミニウム電線及びワイヤーハーネス |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH524225A (fr) * | 1968-05-21 | 1972-06-15 | Southwire Co | Fil ou barre en alliage d'aluminium |
US3958987A (en) * | 1975-03-17 | 1976-05-25 | Southwire Company | Aluminum iron cobalt silicon alloy and method of preparation thereof |
GB1469334A (en) * | 1974-04-16 | 1977-04-06 | Southwire Co | Aluminiuj alloy used for electrical conductors and process for preparing same |
JPS5132409A (ja) * | 1974-09-13 | 1976-03-19 | Hitachi Cable | Dodenyoaruminiumugokin oyobi dodenyoaruminiumugokinsennarabinisonoseizohoho |
FR2286886A1 (fr) * | 1974-10-04 | 1976-04-30 | Pechiney Aluminium | Conducteurs electriques en alliages d'aluminium et procedes d'obtention |
US4028141A (en) * | 1975-03-12 | 1977-06-07 | Southwire Company | Aluminum iron silicon alloy |
FR2311391A1 (fr) * | 1975-05-14 | 1976-12-10 | Pechiney Aluminium | Conducteurs electriques en alliages al fe obtenus par filage de grenaille |
JPS5380312A (en) | 1976-12-27 | 1978-07-15 | Fuji Electric Co Ltd | Preparation of conductor of aluminium alloy for winding |
JPS5810465B2 (ja) * | 1978-12-06 | 1983-02-25 | 関西電力株式会社 | 導電用高耐熱性アルミニウム合金の製造方法 |
BR8103057A (pt) * | 1981-05-18 | 1982-12-21 | Pirelli Sa | Liga de aluminio para condutores eletricos e processo para a sua obtencao |
JPS5827948A (ja) * | 1981-08-13 | 1983-02-18 | Tokyo Electric Power Co Inc:The | 導電用耐熱アルミニウム合金線の製造方法 |
JP2004311102A (ja) * | 2003-04-03 | 2004-11-04 | Hitachi Cable Ltd | アルミ合金配線材料及びその製造方法 |
JP4667770B2 (ja) * | 2004-06-17 | 2011-04-13 | 古河電気工業株式会社 | 自動車配線用アルミ導電線および自動車配線用電線 |
JP4728603B2 (ja) | 2004-07-02 | 2011-07-20 | 古河電気工業株式会社 | 自動車配線用アルミ導電線及び自動車配線用電線 |
JP4927366B2 (ja) | 2005-02-08 | 2012-05-09 | 古河電気工業株式会社 | アルミニウム導電線 |
JP5128109B2 (ja) | 2006-10-30 | 2013-01-23 | 株式会社オートネットワーク技術研究所 | 電線導体およびその製造方法 |
JP4787885B2 (ja) * | 2008-08-11 | 2011-10-05 | 住友電気工業株式会社 | ワイヤーハーネス用電線、及び自動車用ワイヤーハーネス |
JP5256927B2 (ja) | 2008-08-18 | 2013-08-07 | 株式会社トッパン・コスモ | 表面材用成形品 |
-
2011
- 2011-02-25 EP EP11747542.6A patent/EP2540850B1/fr active Active
- 2011-02-25 CN CN201180010674.4A patent/CN102803531B/zh active Active
- 2011-02-25 WO PCT/JP2011/054399 patent/WO2011105586A1/fr active Application Filing
- 2011-02-25 JP JP2011528135A patent/JP4986253B2/ja active Active
-
2012
- 2012-08-24 US US13/594,480 patent/US20120321507A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN102803531B (zh) | 2015-11-25 |
US20120321507A1 (en) | 2012-12-20 |
EP2540850A1 (fr) | 2013-01-02 |
EP2540850A4 (fr) | 2013-11-06 |
WO2011105586A1 (fr) | 2011-09-01 |
JPWO2011105586A1 (ja) | 2013-06-20 |
CN102803531A (zh) | 2012-11-28 |
JP4986253B2 (ja) | 2012-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2540848B1 (fr) | Conducteur en alliage d'aluminium | |
EP2540849B1 (fr) | Conducteur en alliage d'aluminium | |
US9580784B2 (en) | Aluminum alloy wire and method of producing the same | |
EP2381001B1 (fr) | Fil en alliage d'aluminium | |
EP2383357B1 (fr) | Fil en alliage d'aluminium | |
EP2597168B1 (fr) | Conducteur en alliage d'aluminium | |
JP5193374B2 (ja) | アルミニウム合金導体及びその製造方法 | |
KR101419145B1 (ko) | 구리합금 판재, 이를 이용한 커넥터, 및 이를 제조하는 구리합금 판재의 제조방법 | |
EP2692880B1 (fr) | Conducteur en alliage d'aluminium | |
WO2016088887A1 (fr) | Matériau de fil en alliage d'aluminium, fil toronné en alliage d'aluminium, fil électrique gainé, faisceau électrique et procédé permettant de produire un matériau de fil en alliage d'aluminium | |
JP2013044038A (ja) | アルミニウム合金導体 | |
JP5939530B2 (ja) | アルミニウム合金導体 | |
EP2540850B1 (fr) | Conducteur en alliage d'aluminium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120903 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20131007 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22F 1/04 20060101ALI20130930BHEP Ipc: B21C 1/00 20060101ALI20130930BHEP Ipc: C22C 21/00 20060101AFI20130930BHEP Ipc: H01B 5/02 20060101ALI20130930BHEP Ipc: C22F 1/00 20060101ALI20130930BHEP Ipc: H01B 1/02 20060101ALI20130930BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20161129 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20170608 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Ref country code: AT Ref legal event code: REF Ref document number: 946360 Country of ref document: AT Kind code of ref document: T Effective date: 20171115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011043376 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20171115 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 946360 Country of ref document: AT Kind code of ref document: T Effective date: 20171115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180216 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180215 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011043376 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 |
|
26N | No opposition filed |
Effective date: 20180817 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180225 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180225 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180225 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110225 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180315 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230512 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231229 Year of fee payment: 14 |