EP2448063A1 - Satellite-dish positioner - Google Patents
Satellite-dish positioner Download PDFInfo
- Publication number
- EP2448063A1 EP2448063A1 EP11306378A EP11306378A EP2448063A1 EP 2448063 A1 EP2448063 A1 EP 2448063A1 EP 11306378 A EP11306378 A EP 11306378A EP 11306378 A EP11306378 A EP 11306378A EP 2448063 A1 EP2448063 A1 EP 2448063A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rotation
- axis
- positioner
- guide ring
- cradle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005484 gravity Effects 0.000 claims abstract description 7
- 230000003287 optical effect Effects 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 7
- 230000033001 locomotion Effects 0.000 description 4
- 241001080024 Telles Species 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/125—Means for positioning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/18—Means for stabilising antennas on an unstable platform
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/18—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
- H01Q19/19—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/02—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
- H01Q3/08—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
Definitions
- the invention relates to the field of satellite communications, more generally known under the name SATCOM or "Satellite Communications" in English. It relates more particularly to a satellite dish positioner to allow communication with a satellite, this positioner being particularly intended to be placed on a moving carrier.
- satellite dish positioners for establishing communication with a satellite, these positioners being either fixed to the ground or mobile when placed on moving carriers.
- positioners of the type Elevation on Azimuth comprise two axes of rotation, one of which makes it possible to vary the azimuth of the parabolic antenna, that is to say the horizontal angle between the direction of the satellite dish and a corresponding reference direction generally. to the geographic north, and the other to vary the elevation of the satellite dish, that is to say the vertical angle between the direction of the satellite dish and the reference direction (geographic north).
- Such positioners have the disadvantage of presenting a singular point (better known under the name "keyholeā in English) vertically, that is to say at the zenith.
- weight of the load is generally more distributed on one axis than the other and counterweights must therefore be added to compensate for the imbalance.
- weight overload and unbalance are not acceptable for a parabolic antenna positioner to be placed on a moving carrier, as they penalize the dynamic performance of the positioner, and oppose the lightness requirements required in some applications such as aeronautics.
- the demand CA 1 236 211 discloses another type of parabolic antenna positioner having three axes of rotation to allow to orient the satellite dish in all possible directions to the satellite.
- Such a positioner has no singular point but is very complex to achieve, very cumbersome and very expensive.
- the invention aims to provide a parabolic antenna positioner which is devoid of vertical singular point and which is balanced, without requiring the addition of counterweight on the positioner, in particular to be able to be placed on a carrier in motion.
- the figure 1 represents in perspective an example of a positioner 1 according to the invention, equipped with a mobile assembly 10 with two degrees of freedom comprising a parabolic antenna 12 associated with a radio frequency amplifier 14 mounted on the back of the parabolic antenna 12.
- the positioner 1 comprises a base 16, which itself comprises a plate 18 and two pads 20, the pads 20 being fixed on the plate 18.
- a support cradle 22 comprising a guide ring 23 is mounted so as to obtain its rotation about the center O of the guide ring 23 and according to a first axis of horizontal rotation X, based on the pads 20, as it is sees on the figure 2 .
- the concept of "horizontal axis" is well known to those skilled in the art, and refers in particular to an axis parallel to the supposed horizontal plane on which the base is placed.
- the parabolic antenna 12 and the radio frequency amplifier 14 constitute a mass that is mobile in rotation with respect to the cradle 22.
- the cradle 22 comprises a Y-axis rotation shaft 24 for the parabolic antenna 12 possibly associated with a radiofrequency amplifier 14, as well as actuating and measuring means 26, detailed later in the description, carried by the cradle 22.
- the rotation shaft 24, and the actuating and measuring means 26 are such that the parabolic antenna 12 possibly associated with the radio frequency amplifier 14 is rotated relative to the cradle 22 around the horizontal axis Y, which extends orthogonally to the first axis of horizontal rotation X, being carried by the cradle 22.
- the satellite dish 12 extends generally above the Y axis, while the radio frequency amplifier 14 extends in the semicircle delimited by the guide ring 23.
- the parabolic antenna 12 and the radio frequency amplifier 14 are arranged on either side of the Y axis. They are, advantageously, distributed so that the center of gravity of the mobile assembly 10 formed in particular of the parabolic antenna 12 and possibly the radio frequency amplifier 14 is located on the Y axis, regardless of the angular position of this assembly 10 relative to to the crown 23.
- the guide ring 23 has a first portion P 1 which has two ends e.
- the first portion P 1 extends in a semicircle centered at a point O and radius r.
- the diameter of the semicircle passing through the ends e of the first portion P 1 defines a third axis W parallel to the second axis Y and passing through O.
- the second Y and third W axes are in the plane of the semicircle and the X axis is orthogonal to the plane of the semicircle.
- the radius r of the semicircle is for example between 10 and 30 cm.
- the second Y and third W axes are separated by a non-zero distance E, also called center distance E.
- the center distance E is between 5 and 15 cm.
- the second axis Y is balanced by a judicious distribution of the masses of the antenna 13 and the radio frequency amplifier 12.
- the first axis of rotation X of the positioner 1 passes through the center O of the semicircle in which the first portion P 1 of the guide ring 23 extends, and intersects the third axis W.
- the second axis of rotation Y of the positioner 1 does not pass through the center O of the semicircle, being parallel and not coincident with the third axis W. In this way, the first X and second Y axes of rotation of the positioner 1 do not intersect and are separated by a distance equal to the center distance E.
- the center distance E is such that the center of gravity of the support cradle 22 and the moving assembly 10 is located on the axis X.
- This center distance E allows the balancing of the X axis, centering in O the center.
- the positioner 1 according to the invention has no singular point vertically and promises to be balanced on its two axes of rotation X and Y.
- the positioner 1 also comprises an electric motor 28 coupled to a pinion 30, to allow the rotation of the pinion 30.
- the electric motor 28 and the pinion 30 are fixed on the plate 18 of the base 16 between the pads 20.
- an optical reading device 32 is placed under the guide ring 23, between the pads 20.
- the optical reading device 32 is fixed relative to the guide ring 23.
- the guide ring 23 further comprises two second portions P 2 respectively extending respectively from the two ends e of the first portion P 1 perpendicular to the third axis W.
- Each portion P 2 of the guide ring 23 has an orifice to allow the passage of the rotation shaft 24, rotatably mounted relative to the guide ring 23 along the second axis of rotation Y, and secured to the latter. ci by means of rotation guidance on each portion P 2 of the guide ring 23.
- the rotation shaft 24 forms, in cooperation with the second portions P 2 of the guide ring 23, the antenna support means parabolic 12.
- the rotation shaft 24 allows the rotation of the parabolic antenna 12 according to the second axis of rotation Y.
- the actuating means and measurement in rotation 26 about the Y axis are arranged on both sides. another of each P2 portion.
- the radiofrequency amplifier 14 and the parabolic antenna 12 are mounted on the rotation shaft 24, the radiofrequency amplifier 14 being located behind the parabolic antenna 12. In this way, the assembly formed by the radio frequency amplifier 14 and the parabolic antenna 12 can be rotated about the second axis of rotation Y.
- the radiofrequency amplifier 14 is offset from the rotation shaft 24, so that only the parabolic antenna 12 is mounted on the rotation shaft 24.
- the transmission between the radio frequency amplifier 14 and the parabolic antenna 12 is made for example using flexible coaxial cables and / or flexible waveguides.
- the motor 28 and the pinion 30 are in this embodiment fixed on the base 16 in the space defined by the guide ring 23.
- the outer face 23b at the first portion P 1 comprises a ring gear 36 extending longitudinally on the outer face 23b from one end e of the first portion P 1 to the other end e.
- the ring gear 36 cooperates with the pinion 30 so that when the electric motor 28 makes it possible to rotate the pinion 30, it causes rotation of the ring gear 36, and therefore the rotation of the guide ring 23 around the first axis of rotation X.
- the principle of rotating such a guide ring is for example described in the application US 2002/0030631 and the patent US 4,282,529 .
- the guiding ring 23 comprises two toothed rings 36, being for example made according to the principle described in the application WO 2009/033085 .
- the outer face 23b of the guide ring 23 also comprises, at the level of the first portion P 1 , a graduated measurement strip (or tape) 38 extending longitudinally on the outer face 23b from an end e of the first portion P 1 towards the other end e.
- the graded measurement band 38 provides information on the angular position of the guide ring 23 as it rotates about the first axis of rotation X.
- the optical reading device 32 makes it possible to determine this angular position of the guide ring 23 automatically. by reading the graded measurement band 38. In this way, it is possible to avoid the presence of encoders on the axis of rotation of a guide ring to know its angular position, as taught in the prior art.
- the ring gear 36, and if necessary, the measuring tape 38 is for example located on the inner face 23a of the guide ring 23.
- the pads 20 comprise a support 40 for supporting the electric motor 28, the pinion 30 and the optical device 32, as shown in FIG. figure 3 .
- the rotation of the pinion 30 is therefore on the side of the inner face 23a of the guide ring 23 to rotate the guide ring 23 via the ring gear 36.
- the parabolic antenna 12 has for example a diameter D between 30 cm and 80 cm, being for example equal to 45 cm, 60 cm or 75 cm. Indeed, the specific design of the positioner 1 according to the invention allows a high degree of modularity in the choice of the diameter of the parabolic antenna 12.
- the positioner 1 according to the invention makes it possible to significantly increase the pointing performance towards the satellite when it is at the vertical of the antenna, and this for X, C, Ku band communications or, preferably, Ka.
- the positioner 1 according to the invention makes it possible to obtain the necessary precision guaranteeing nominal communications performance for the frequency bands mentioned above.
- the total weight of the positioner 1 is reduced, being in particular less than 15 kg without the presence of the assembly consisting of the parabolic antenna 12 and possibly the radio frequency amplifier 14.
- the assembly consisting of the parabolic antenna 12 and possibly for example, the radio frequency amplifier 14 has a weight of less than 9 kg.
- the second axis Y being balanced by a judicious distribution of the masses of the antenna 12 and possibly the radio frequency amplifier 14.
- the positioner 1 is driven in a rotational movement along the horizontal axes of rotation X and Y, in order to be able to point the satellite dish 12 towards the satellite.
- the rotation along the first axis X is performed by means of the guide ring 23 which slides between the pads 20 following the driving of the pinion 30 by the electric motor 28.
- the rotation along the second axis Y is made by rotation of the shaft 24 which carries the satellite dish 12 and possibly the radiofrequency amplifier 14.
- the parabolic antenna positioner 1 described above has multiple advantages.
- the positioner 1 according to the invention is balanced thanks to the non-zero spacing between the second Y and third W axes, and to the geometry of the guide ring 23. Maintaining the pointing direction of the parabolic antenna 12 to the satellite is thus improved in all circumstances, especially when moving the carrier.
- the positioner 1 has a low mass balance that can meet all the constraints of the environment in which it is located, including aeronautical and / or tactical constraints.
- the simplified design of the positioner 1 according to the invention also makes it possible to limit the costs and the power consumption of the positioner, while at the same time enabling the positioner to exhibit high pointing performance and considerable deflection of the parabolic antenna, making it possible, for example, to obtain a minimum elevation of the order of 10 Ā° to 15 Ā°.
- Positioner 1 does not have an azimuth axis subject to an infinite number of revolutions, as is always the case for positioners of the type Elevation on Azimuth, signal transmission can be done for example using coaxial cables flexible and / or flexible waveguides, especially in the case where the radio frequency amplifier is remote without requiring the use of rotating joints as taught by the prior art, which reduces costs.
- the base 16 comprises a plate 18 rotating about an additional axis of azimuth to make it possible to obtain a positioner 1 along three axes of rotation, the rotary plate being for example made according to the principle described in the application CA 1 236 211 .
- the presence of three axes of rotation allows to have no singular point in any direction.
- the additional axis of azimuth is provided with a partial deflection (typically + -30 degrees on either side of the X axis of the figure 2 ), in which case no rotary joints are necessary.
- the additional azimuth axis is provided with a n 360 Ā° travel, this time requiring a rotary joint, in which case it is possible to maintain the antenna in a fixed position both in direction and in orientation, the antenna may then not have a symmetry of rotation relative to its axis, as for example, if with a linear polarization.
- a static rotation of the base (16) around X of approximately 15 to 45 Ā° degrees makes it possible to reach targets with a negative elevation. figures 5 and 6 .
- the positioner 1 is coupled to the use of a gear set retrofit system to improve the pointing performance towards the satellite.
- the base 16 is angularly offset relative to the guide ring 23 so that when the Y axis is horizontal, and parallel to the plate 18, the pads 20 are offset along the ring 23 relative to the projection of the center of gravity of the moving assembly 10 on the guide ring 23.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Support Of Aerials (AREA)
Abstract
Description
L'invention concerne le domaine des communications par satellite, plus gĆ©nĆ©ralement connu sous la dĆ©nomination SATCOM ou Ā« Satellite Communications Ā» en anglais. Elle se rapporte plus particuliĆØrement Ć un positionneur d'antenne parabolique pour permettre la communication avec un satellite, ce positionneur Ć©tant notamment destinĆ© Ć ĆŖtre placĆ© sur un porteur en mouvement.The invention relates to the field of satellite communications, more generally known under the name SATCOM or "Satellite Communications" in English. It relates more particularly to a satellite dish positioner to allow communication with a satellite, this positioner being particularly intended to be placed on a moving carrier.
Il existe actuellement diffƩrents types de positionneurs d'antenne parabolique pour permettre d'Ʃtablir une communication avec un satellite, ces positionneurs Ʃtant soit fixes par rapport au sol, soit mobiles lorsqu'ils sont placƩs sur des porteurs en mouvement.There are currently different types of satellite dish positioners for establishing communication with a satellite, these positioners being either fixed to the ground or mobile when placed on moving carriers.
La demande
Les demandes
Enfin, la demande
Dans ce contexte, l'invention vise Ć proposer un positionneur d'antenne parabolique qui soit dĆ©pourvu de point singulier Ć la verticale et qui soit Ć©quilibrĆ©, sans nĆ©cessiter l'ajout de contrepoids sur le positionneur, notamment pour ĆŖtre apte Ć ĆŖtre placĆ© sur un porteur en mouvement.In this context, the invention aims to provide a parabolic antenna positioner which is devoid of vertical singular point and which is balanced, without requiring the addition of counterweight on the positioner, in particular to be able to be placed on a carrier in motion.
A cette fin, l'invention a pour objet, selon un premier aspect, un positionneur d'antenne parabolique parabolique comportant :
- un socle,
- un berceau de support Ć©tant montĆ© de maniĆØre rotative par rapport au socle selon un premier axe de rotation,
- un ensemble mobile comportant une antenne parabolique, portĆ©s par le berceau de support, et montĆ© de maniĆØre rotative par rapport au berceau de support selon un deuxiĆØme axe de rotation, orthogonal au premier axe de rotation,
- a pedestal,
- a support cradle being rotatably mounted relative to the base according to a first axis of rotation,
- a mobile assembly comprising a satellite dish, carried by the support cradle, and rotatably mounted relative to the support cradle according to a second axis of rotation, orthogonal to the first axis of rotation,
Le positionneur peut Ʃgalement prƩsenter une ou plusieurs des caractƩristiques ci-dessous, considƩrƩes individuellement ou suivant toutes les combinaisons techniquement possibles :
- la distance est telle que le centre de gravitƩ du berceau de support et de l'ensemble mobile soit situƩ sur le premier axe de rotation ;
- la distance sĆ©parant le deuxiĆØme axe et le premier axe de rotation du berceau de support est comprise entre 5 et 15 cm ;
- le berceau de support comporte une couronne de guidage ayant une premiĆØre portion s'Ć©tendant selon un demi-cercle d'axe et deux deuxiĆØmes partions s'Ć©tendant respectivement depuis chacune des extrĆ©mitĆ©s de la premiĆØre portion de la couronne de guidage, perpendiculairement au troisiĆØme axe, l'ensemble mobile Ć©tant articulĆ© sur les deux deuxiĆØmes portions ;
- la couronne de guidage, notamment la premiĆØre portion de la couronne de guidage, comporte un rail de guidage, notamment deux rails de guidage disposĆ©s respectivement sur chacun des deux bords longitudinaux d'une face de la couronne de guidage ;
- le socle comporte un patin dans lequel coulisse le rail de guidage, notamment deux patins dans lesquels coulissent respectivement les deux rails de guidage de la couronne de guidage ;
- la couronne de guidage, notamment la premiĆØre portion de la couronne de guidage, comporte une couronne dentĆ©e s'Ć©tendant longitudinalement sur une face de la couronne de guidage, notamment depuis une extrĆ©mitĆ© de la premiĆØre portion vers l'autre extrĆ©mitĆ© et le socle comporte un moteur Ć©lectrique et un pignon, le moteur Ć©lectrique entraĆ®nant en rotation le pignon, et le pignon Ć©tant apte Ć entraĆ®ner en rotation la couronne de guidage en agissant sur la couronne dentĆ©e ;
- le berceau de support comporte une bande de mesure graduƩe s'Ʃtendant longitudinalement sur une face du berceau, il comporte un dispositif de lecture optique, placƩ notamment sur le socle, afin de dƩterminer la position angulaire du berceau de guidage par lecture optique de la bande de mesure graduƩe.
- l'ensemble mobile comporte, outre l'antenne parabolique, un amplificateur radiofrĆ©quence, l'antenne parabolique et l'amplificateur radiofrĆ©quence Ć©tant disposĆ©s de part et d'autre du deuxiĆØme axe de rotation ;
- le berceau de support est essentiellement dƩpourvu de masselottes d'Ʃquilibrage.
- the distance is such that the center of gravity of the support cradle and the moving assembly is located on the first axis of rotation;
- the distance separating the second axis and the first axis of rotation of the support cradle is between 5 and 15 cm;
- the support cradle comprises a guide ring having a first portion extending along a semicircle of axis and two second sections respectively extending from each end of the first portion of the guide ring, perpendicularly to the third axis; the moving assembly being articulated on the two second portions;
- the guide ring, in particular the first portion of the guide ring, comprises a guide rail, in particular two guide rails respectively disposed on each of the two longitudinal edges of a face of the guide ring;
- the base comprises a shoe in which slides the guide rail, in particular two pads in which slide respectively the two guide rails of the guide ring;
- the guide ring, in particular the first portion of the guide ring, comprises a ring gear extending longitudinally on one face of the guide ring, in particular from one end of the first portion towards the other end and the base comprises a an electric motor and a pinion, the electric motor driving the pinion in rotation, and the pinion being able to rotate the guide ring by acting on the ring gear;
- the support cradle comprises a graduated measurement strip extending longitudinally on one side of the cradle, it comprises an optical reading device, placed in particular on the base, in order to determine the angular position of the cradle of guidance by optical reading of the strip graduated measurement.
- the mobile assembly comprises, besides the parabolic antenna, a radio frequency amplifier, the parabolic antenna and the radiofrequency amplifier being disposed on either side of the second axis of rotation;
- the support cradle is essentially devoid of balancing weights.
D'autres caractĆ©ristiques et avantages de l'invention ressortiront de la description d'exemples de rĆ©alisation conformes Ć l'invention qui en sont donnĆ©s ci-dessous, Ć titre indicatif et nullement limitatif, en rĆ©fĆ©rence aux figures du dessin annexĆ©, parmi lesquelles :
- la
figure 1 est une vue en Ć©lĆ©vation d'un positionneur conforme Ć l'invention Ć©quipĆ© d'une antenne parabolique et d'un amplificateur radiofrĆ©quence ; - la
figure 2 est une autre vue en perspective du positionneur de lafigure 1 ; - la
figure 3 est une vue en Ć©lĆ©vation d'un positionneur conforme Ć l'invention Ć©quipĆ© d'une antenne parabolique, l'amplificateur radiofrĆ©quence Ć©tant dĆ©portĆ© ; - la
figure 4 est une autre vue en perspective du positionneur de lafigure 3 ; et - les
figures 5 et6 sont des vues en ƩlƩvation respectivement de variantes de rƩalisation des modes de rƩalisation desfigures 1 et3 .
- the
figure 1 is an elevational view of a positioner according to the invention equipped with a parabolic antenna and a radio frequency amplifier; - the
figure 2 is another perspective view of the positioner of thefigure 1 ; - the
figure 3 is an elevational view of a positioner according to the invention equipped with a parabolic antenna, the radio frequency amplifier being deported; - the
figure 4 is another perspective view of the positioner of thefigure 3 ; and - the
figures 5 and6 are elevational views respectively of alternative embodiments of the embodiments offigures 1 and3 .
La
Le positionneur 1 est destinĆ© Ć permettre Ć l'antenne parabolique 12 d'ĆŖtre pointĆ©e en direction d'un satellite donnĆ©, notamment un satellite situĆ© aux environs de la verticale du positionneur 1. Le positionneur 1 est destinĆ© Ć ĆŖtre placĆ© sur un porteur en mouvement, lequel peut ĆŖtre de tout type. En particulier, le positionneur 1 est utilisĆ© pour des applications civiles et/ou militaires, et le porteur est un porteur du type maritime, aĆ©rien et/ou terrestre. Le porteur est par exemple un aĆ©ronef, un vĆ©hicule terrestre et/ou un navire.The
Le positionneur 1 comporte un socle 16, qui comporte lui-mĆŖme un plateau 18 et deux patins 20, les patins 20 Ć©tant fixĆ©s sur le plateau 18.The
Un berceau de support 22 comportant une couronne de guidage 23 est montĆ© de maniĆØre Ć obtenir sa rotation autour du centre O de la couronne de guidage 23 et selon un premier axe de rotation horizontal X en s'appuyant sur les patins 20, comme on le voit sur la
L'antenne parabolique 12 et de l'amplificateur radiofrĆ©quence 14 constituent une masse mobile en rotation par rapport au berceau 22. A cet effet, le berceau 22 comporte un arbre de rotation 24 d'axe Y pour l'antenne parabolique 12 associĆ©e Ć©ventuellement Ć un amplificateur radiofrĆ©quence 14, ainsi que des moyens d'actionnement et de mesure 26, dĆ©taillĆ©s plus loin dans la description, portĆ©s par le berceau 22.The
L'arbre de rotation 24, et les moyens d'actionnement et de mesure 26 sont tels que l'antenne parabolique 12 associĆ©e Ć©ventuellement Ć l'amplificateur radiofrĆ©quence 14 est entraĆ®nĆ©e en rotation par rapport au berceau 22 autour de l'axe horizontal Y, lequel s'Ć©tend orthogonalement au premier axe de rotation horizontal X, en Ć©tant portĆ© par le berceau 22.The
L'antenne parabolique 12 s'Ć©tend globalement au dessus de l'axe Y, alors que l'amplificateur radiofrĆ©quence 14 s'Ć©tend dans le demi-cercle dĆ©limitĆ© par la couronne de guidage 23. Ainsi, avantageusement, l'antenne parabolique 12 et l'amplificateur radiofrĆ©quence 14 sont disposĆ©s de part et d'autre de l'axe Y. Ils sont, avantageusement, rĆ©partis de sorte que le centre de gravitĆ© de l'ensemble mobile 10 formĆ© notamment de l'antenne parabolique 12 et Ć©ventuellement de l'amplificateur radiofrĆ©quence 14 soit situĆ© sur l'axe Y, quelle que soit la position angulaire de cet ensemble 10 par rapport Ć la couronne 23.The
La couronne de guidage 23 comporte une premiĆØre portion P1 qui prĆ©sente deux extrĆ©mitĆ©s e. La premiĆØre portion P1 s'Ć©tend selon un demi-cercle centrĆ© en un point O et de rayon r. Le diamĆØtre du demi-cercle passant par les extrĆ©mitĆ©s e de la premiĆØre portion P1 dĆ©finit un troisiĆØme axe W parallĆØle au deuxiĆØme axe Y et passant par O. De plus, les deuxiĆØme Y et troisiĆØme W axes sont dans le plan du demi-cercle et l'axe X est orthogonal au plan du demi-cercle. Le rayon r du demi-cercle est par exemple compris entre 10 et 30 cm.The
Les deuxiĆØme Y et troisiĆØme W axes sont sĆ©parĆ©s d'une distance E non nulle, appelĆ©e Ć©galement entraxe E. L'entraxe E est compris entre 5 et 15 cm.The second Y and third W axes are separated by a non-zero distance E, also called center distance E. The center distance E is between 5 and 15 cm.
Le deuxiĆØme axe Y est Ć©quilibrĆ© par une rĆ©partition judicieuse des masses de l'antenne 13 et de l'amplificateur radiofrĆ©quence 12.The second axis Y is balanced by a judicious distribution of the masses of the antenna 13 and the
Le premier axe de rotation X du positionneur 1 passe par le centre O du demi-cercle selon lequel s'Ć©tend la premiĆØre portion P1 de la couronne de guidage 23, et intersecte le troisiĆØme axe W. En revanche, le deuxiĆØme axe de rotation Y du positionneur 1 ne passe pas par le centre O du demi-cercle, Ć©tant parallĆØle et non confondu avec le troisiĆØme axe W. De la sorte, les premier X et deuxiĆØme Y axes de rotation du positionneur 1 ne s'intersectent pas et sont sĆ©parĆ©s d'une distance Ć©gale Ć l'entraxe E.The first axis of rotation X of the
L'entraxe E est tel que le centre de gravitĆ© du berceau de support 22 et de l'ensemble mobile 10 soit situĆ© sur l'axe X. Cet entraxe E permet l'Ć©quilibrage de l'axe X, en centrant en O le centre de gravitĆ© des masses tournant autour de X. Ainsi, le positionneur 1 selon l'invention ne prĆ©sente pas de point singulier Ć la verticale et promet d'ĆŖtre Ć©quilibrĆ© sur ses deux axes de rotation X et Y.The center distance E is such that the center of gravity of the
Le positionneur 1 comporte Ć©galement un moteur Ć©lectrique 28 accouplĆ© Ć un pignon 30, pour permettre la rotation du pignon 30. Le moteur Ć©lectrique 28 et le pignon 30 sont fixĆ©s sur le plateau 18 du socle 16 entre les patins 20.The
Par ailleurs, un dispositif de lecture optique 32 est placĆ© sous la couronne de guidage 23, entre les patins 20. Le dispositif de lecture optique 32 est fixe relativement Ć la couronne de guidage 23.Furthermore, an
La couronne de guidage 23 comporte de plus deux deuxiĆØmes portions P2 s'Ć©tendant respectivement chacune depuis les deux extrĆ©mitĆ©s e de la premiĆØre portion P1, perpendiculairement au troisiĆØme axe W.The
Chaque portion P2 de la couronne de guidage 23 comporte un orifice pour permettre le passage de l'arbre de rotation 24, montĆ© de maniĆØre rotative par rapport Ć la couronne de guidage 23 selon le deuxiĆØme axe de rotation Y, et solidarisĆ© Ć celle-ci au moyen de guidage en rotation sur chaque portion P2 de la couronne de guidage 23. L'arbre de rotation 24 forme, en coopĆ©ration avec les deuxiĆØmes portions P2 de la couronne de guidage 23, les moyens de support de l'antenne parabolique 12. L'arbre de rotation 24 permet la rotation de l'antenne parabolique 12 selon le deuxiĆØme axe de rotation Y. Les moyens d'actionnement et de mesure en rotation 26 autour de l'axe Y sont disposĆ©s de part et d'autre de chaque portion P2.Each portion P 2 of the
Dans l'exemple reprƩsentƩ sur les
En variante, comme reprƩsentƩ sur les
La couronne de guidage 23 comporte deux faces extĆ©rieure 23b et intĆ©rieure 23a, opposĆ©es l'une Ć l'autre. La face extĆ©rieure 23b au niveau de la premiĆØre portion P1, opposĆ©e Ć l'antenne parabolique 12, comporte sur chacun de ses deux bords longitudinaux un rail de guidage 34, destinĆ© Ć permettre le coulissement de la couronne de guidage 23 dans les patins 20 lors de la rotation de la couronne de guidage 23 autour du premier axe de rotation X.The
Par ailleurs, la face extĆ©rieure 23b au niveau de la premiĆØre portion P1 comporte une couronne dentĆ©e 36 s'Ć©tendant longitudinalement sur la face extĆ©rieure 23b depuis une extrĆ©mitĆ© e de la premiĆØre portion P1vers l'autre extrĆ©mitĆ© e.Furthermore, the
La couronne dentĆ©e 36 coopĆØre avec le pignon 30 de sorte que lorsque le moteur Ć©lectrique 28 permet de mettre en rotation le pignon 30, celui-ci entraĆ®ne la rotation de la couronne dentĆ©e 36, et donc la rotation de la couronne de guidage 23 autour du premier axe de rotation X.The
Le principe de mise en rotation d'une telle couronne de guidage est par exemple dƩcrit dans la demande
La face extĆ©rieure 23b de la couronne de guidage 23 comporte encore, au niveau de la premiĆØre portion P1, une bande (ou ruban) de mesure graduĆ©e 38 s'Ć©tendant longitudinalement sur la face extĆ©rieure 23b depuis une extrĆ©mitĆ© e de la premiĆØre portion P1vers l'autre extrĆ©mitĆ© e.The
La bande de mesure graduƩe 38 renseigne sur la position angulaire de la couronne de guidage 23 lors de sa rotation autour du premier axe de rotation X. Le dispositif de lecture optique 32 permet de dƩterminer cette position angulaire de la couronne de guidage 23 de faƧon automatique par lecture de la bande de mesure graduƩe 38. De la sorte, il est possible d'Ʃviter la prƩsence de codeurs sur l'axe de rotation d'une couronne de guidage pour connaƮtre sa position angulaire, comme enseignƩ dans l'art antƩrieur.The graded
Dans le cas oĆ¹ l'amplificateur radiofrĆ©quence 14 est dĆ©portĆ©, la couronne dentĆ©e 36, et le cas Ć©chĆ©ant, la bande de mesure graduĆ©e 38, est par exemple situĆ©e sur la face intĆ©rieure 23a de la couronne de guidage 23. Les patins 20 comportent un support 40 permettant de supporter le moteur Ć©lectrique 28, le pignon 30 et le dispositif optique 32, comme reprĆ©sentĆ© sur la
L'antenne parabolique 12 prĆ©sente par exemple un diamĆØtre D compris entre 30 cm et 80 cm, Ć©tant par exemple Ć©gal Ć 45 cm, 60 cm ou 75 cm. En effet, la conception spĆ©cifique du positionneur 1 selon l'invention permet une forte modularitĆ© dans le choix du diamĆØtre de l'antenne parabolique 12.The
Le positionneur 1 selon l'invention permet d'accroĆ®tre significativement les performances de pointage en direction du satellite lorsque celui-ci est Ć la vertical de l'antenne, et ce pour des communications en bandes X, C, Ku ou, de prĆ©fĆ©rence, Ka. Le positionneur 1 selon l'invention permet d'obtenir la prĆ©cision nĆ©cessaire garantissant des performances de communications nominales pour les bandes de frĆ©quence citĆ©es prĆ©cĆ©demment.The
Le poids total du positionneur 1 est rĆ©duit, Ć©tant notamment infĆ©rieur Ć 15 kg sans la prĆ©sence de l'ensemble constituĆ© de l'antenne parabolique 12 et Ć©ventuellement de l'amplificateur radiofrĆ©quence 14. L'ensemble constituĆ© de l'antenne parabolique 12 et Ć©ventuellement de l'amplificateur radiofrĆ©quence 14 a par exemple, quant Ć lui, un poids infĆ©rieur Ć 9 kg.The total weight of the
La gĆ©omĆ©trie particuliĆØre Ć l'invention de la couronne de guidage 23, le choix du ou des matĆ©riaux constitutifs de la couronne de guidage 23 et le choix de la valeur de l'entraxe E, associĆ©es ou non au positionnement de l'amplificateur radiofrĆ©quence 14 sur l'arbre de rotation 24 derriĆØre l'antenne parabolique 12, permet de rĆ©soudre les problĆØmes d'Ć©quilibrage des positionneurs d'antenne parabolique du type XY connus. Le deuxiĆØme axe Y Ć©tant Ć©quilibrĆ© par une rĆ©partition judicieuse des masses de l'antenne 12 et Ć©ventuellement de l'amplificateur radiofrĆ©quence 14.The particular geometry of the invention of the
En fonctionnement, le positionneur 1 est animĆ© d'un mouvement en rotation selon les axes de rotation horizontaux X et Y, afin de pouvoir pointer l'antenne parabolique 12 en direction du satellite. La rotation selon le premier axe X est rĆ©alisĆ©e par l'intermĆ©diaire de la couronne de guidage 23 qui coulisse entre les patins 20 suite Ć l'entraĆ®nement du pignon 30 par le moteur Ć©lectrique 28. La rotation selon le deuxiĆØme axe Y est rĆ©alisĆ©e par rotation de l'arbre 24 qui porte l'antenne parabolique 12 et Ć©ventuellement l'amplificateur radiofrĆ©quence 14.In operation, the
Le positionneur 1 d'antenne parabolique dƩcrit ci-dessus prƩsente de multiples avantages.The
Le positionneur 1 selon l'invention est Ć©quilibrĆ© grĆ¢ce Ć l'entraxe non nul entre les deuxiĆØme Y et troisiĆØme W axes, et Ć la gĆ©omĆ©trie de la couronne de guidage 23. Le maintien de la direction de pointage de l'antenne parabolique 12 vers le satellite s'en trouve ainsi amĆ©liorĆ© en toute circonstance, notamment lors du dĆ©placement du porteur. Le positionneur 1 prĆ©sente un bilan de masse faible qui permet de rĆ©pondre Ć toutes les contraintes de l'environnement dans lequel il se situe, notamment aux contraintes aĆ©ronautiques et/ou tactiques.The
La conception simplifiĆ©e du positionneur 1 selon l'invention permet Ć©galement de limiter les coĆ»ts, et la consommation Ć©lectrique du positionneur, tout en permettant au positionneur de prĆ©senter des performances de pointage importantes et un dĆ©battement important de l'antenne parabolique, permettant par exemple d'obtenir une Ć©lĆ©vation minimale de l'ordre de 10Ā°Ć 15Ā°.The simplified design of the
Le positionneur 1 ne comportant pas d'axe azimut assujetti Ć un nombre infini de tours, comme c'est toujours le cas pour les positionneurs du type ElĆ©vation sur Azimut, la transmission des signaux peut se faire par exemple Ć l'aide de cĆ¢bles coaxiaux souples et/ou de guides d'ondes souples, notamment dans le cas oĆ¹ l'amplificateur radiofrĆ©quence est dĆ©portĆ©, sans nĆ©cessiter l'utilisation de joints tournants comme enseignĆ© par l'art antĆ©rieur, ce qui rĆ©duit les coĆ»ts.
Bien entendu, l'invention n'est pas limitĆ©e au mode de rĆ©alisation qui vient d'ĆŖtre dĆ©crit.Of course, the invention is not limited to the embodiment just described.
En variante, le socle 16 comporte un plateau 18 tournant autour d'un axe supplƩmentaire d'azimut pour permettre d'obtenir un positionneur 1 selon trois axes de rotation, le plateau tournant Ʃtant par exemple rƩalisƩ selon le principe dƩcrit dans la demande
En variante Ć©galement, le positionneur 1 est couplĆ© Ć l'utilisation d'un systĆØme Ć rattrapage de jeu d'engrenage pour amĆ©liorer les performances de pointage en direction du satellite.Also as a variant, the
Sur les
Claims (9)
caractƩrisƩ en ce que la distance (E) est telle que le centre de gravitƩ du berceau de support (22) et de l'ensemble mobile (10) soit situƩ sur le premier axe de rotation (X).
characterized in that the distance (E) is such that the center of gravity of the support cradle (22) and the moving assembly (10) is located on the first axis of rotation (X).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1004199A FR2966646B1 (en) | 2010-10-26 | 2010-10-26 | PARABOLIC ANTENNA POSITIONER |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2448063A1 true EP2448063A1 (en) | 2012-05-02 |
EP2448063B1 EP2448063B1 (en) | 2016-01-13 |
Family
ID=44147617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11306378.8A Active EP2448063B1 (en) | 2010-10-26 | 2011-10-25 | Satellite-dish positioner |
Country Status (5)
Country | Link |
---|---|
US (1) | US8681065B2 (en) |
EP (1) | EP2448063B1 (en) |
ES (1) | ES2568226T3 (en) |
FR (1) | FR2966646B1 (en) |
IL (1) | IL215916A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102820537A (en) * | 2012-08-27 | 2012-12-12 | äøå½ēµåē§ęéå¢å ¬åøē¬¬äŗååē ē©¶ę | X-Y axis antenna mount |
EP3280003A1 (en) * | 2016-08-04 | 2018-02-07 | Thales | Antenna positioner |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9847584B2 (en) * | 2014-12-02 | 2017-12-19 | Ubiquiti Networks, Inc. | Multi-panel antenna system |
FR3042917B1 (en) * | 2015-10-22 | 2018-12-07 | Zodiac Data Systems | ACQUISITION ASSIST ANTENNA DEVICE AND ANTENNA SYSTEM FOR TRACKING A MOVING TARGET ASSOCIATED WITH |
WO2019173603A1 (en) * | 2018-03-08 | 2019-09-12 | Viasat, Inc. | Antenna positioner with eccentric tilt position mechanism |
CN111175711B (en) * | 2020-01-08 | 2024-01-05 | äøå½č¹č¶éå¢ęéå ¬åøē¬¬äøäŗåē ē©¶ę | Combined radar feed source adjusting device |
CN113067154B (en) * | 2021-03-31 | 2022-08-02 | 大čæęµ·äŗå¤§å¦ | Compact ultra-wideband tri-notch fractal antenna |
CN113922088A (en) * | 2021-10-18 | 2022-01-11 | åäŗ¬å¾®ēŗ³ęē©ŗē§ęęéå ¬åø | Low-orbit satellite antenna turntable and low-orbit satellite antenna |
WO2024223301A1 (en) * | 2023-04-27 | 2024-10-31 | Hitec Luxembourg S.A. | Optical ground station for satellite communication |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB735359A (en) | 1953-01-09 | 1955-08-17 | English Electric Co Ltd | Improvements relating to gimbal mechanisms |
US4282529A (en) | 1978-12-18 | 1981-08-04 | General Dynamics, Pomona Division | Differential drive rolling arc gimbal |
FR2589633A1 (en) * | 1985-10-31 | 1987-05-07 | Grip Rolf | Active type aiming antenna |
CA1236211A (en) | 1985-03-19 | 1988-05-03 | Michael R. Davenport | Stabilization system for satellite tracking antenna |
WO1998057389A1 (en) * | 1997-06-13 | 1998-12-17 | Trulstech Innovation Kb | An arrangement comprising an antenna reflector and a transceiver horn combined to form a compact antenna unit |
US6285338B1 (en) | 2000-01-28 | 2001-09-04 | Motorola, Inc. | Method and apparatus for eliminating keyhole problem of an azimuth-elevation gimbal antenna |
US20020030631A1 (en) | 2000-06-12 | 2002-03-14 | Neil Verkerk | Gimbal system for satellite antenna |
US20030141420A1 (en) | 1999-08-18 | 2003-07-31 | Richard Knight | Moving yoke |
US20070241244A1 (en) * | 2006-04-18 | 2007-10-18 | X-Ether, Inc. | Method and apparatus for eliminating keyhole problems in an X-Y gimbal assembly |
WO2009033085A1 (en) | 2007-09-05 | 2009-03-12 | Viasat, Inc. | Roller based antenna positioner |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5227806A (en) * | 1991-03-20 | 1993-07-13 | Japan Radio Co., Ltd. | Stabilized ship antenna system for satellite communication |
US6333718B1 (en) * | 1997-10-29 | 2001-12-25 | Dassault Electronique | Continuous multi-satellite tracking |
CA2453902A1 (en) * | 2003-01-30 | 2004-07-30 | Brian A. Harron | Gimballed reflector mounting platform |
KR20070060630A (en) * | 2005-12-09 | 2007-06-13 | ķźµģ ģķµģ ģ°źµ¬ģ | Antenna system for tracking satellite |
US7463206B1 (en) * | 2007-06-11 | 2008-12-09 | Naval Electronics Ab | Antenna |
-
2010
- 2010-10-26 FR FR1004199A patent/FR2966646B1/en not_active Expired - Fee Related
-
2011
- 2011-10-25 US US13/280,559 patent/US8681065B2/en not_active Expired - Fee Related
- 2011-10-25 IL IL215916A patent/IL215916A/en active IP Right Grant
- 2011-10-25 ES ES11306378.8T patent/ES2568226T3/en active Active
- 2011-10-25 EP EP11306378.8A patent/EP2448063B1/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB735359A (en) | 1953-01-09 | 1955-08-17 | English Electric Co Ltd | Improvements relating to gimbal mechanisms |
US4282529A (en) | 1978-12-18 | 1981-08-04 | General Dynamics, Pomona Division | Differential drive rolling arc gimbal |
CA1236211A (en) | 1985-03-19 | 1988-05-03 | Michael R. Davenport | Stabilization system for satellite tracking antenna |
FR2589633A1 (en) * | 1985-10-31 | 1987-05-07 | Grip Rolf | Active type aiming antenna |
WO1998057389A1 (en) * | 1997-06-13 | 1998-12-17 | Trulstech Innovation Kb | An arrangement comprising an antenna reflector and a transceiver horn combined to form a compact antenna unit |
US20030141420A1 (en) | 1999-08-18 | 2003-07-31 | Richard Knight | Moving yoke |
US6285338B1 (en) | 2000-01-28 | 2001-09-04 | Motorola, Inc. | Method and apparatus for eliminating keyhole problem of an azimuth-elevation gimbal antenna |
US20020030631A1 (en) | 2000-06-12 | 2002-03-14 | Neil Verkerk | Gimbal system for satellite antenna |
US20070241244A1 (en) * | 2006-04-18 | 2007-10-18 | X-Ether, Inc. | Method and apparatus for eliminating keyhole problems in an X-Y gimbal assembly |
WO2009033085A1 (en) | 2007-09-05 | 2009-03-12 | Viasat, Inc. | Roller based antenna positioner |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102820537A (en) * | 2012-08-27 | 2012-12-12 | äøå½ēµåē§ęéå¢å ¬åøē¬¬äŗååē ē©¶ę | X-Y axis antenna mount |
EP3280003A1 (en) * | 2016-08-04 | 2018-02-07 | Thales | Antenna positioner |
FR3054933A1 (en) * | 2016-08-04 | 2018-02-09 | Thales | POSITIONER FOR ANTENNA |
Also Published As
Publication number | Publication date |
---|---|
IL215916A (en) | 2015-11-30 |
US8681065B2 (en) | 2014-03-25 |
US20120098727A1 (en) | 2012-04-26 |
FR2966646A1 (en) | 2012-04-27 |
FR2966646B1 (en) | 2013-10-04 |
IL215916A0 (en) | 2012-02-29 |
EP2448063B1 (en) | 2016-01-13 |
ES2568226T3 (en) | 2016-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2448063B1 (en) | Satellite-dish positioner | |
EP0142397B1 (en) | Antenna stabilisation and aiming device, especially on a ship | |
EP2798314B1 (en) | Stabilised platform | |
WO2000039885A1 (en) | Method and device for pointing and positioning a multisatellite antenna | |
FR2966645A1 (en) | TRI-AXIS POSITIONER FOR ANTENNA | |
CA2729190A1 (en) | Improvements in the determination of at least one value associated with the electromagnetic radiation of an object being tested | |
EP2256039A1 (en) | Through-pivot with flexible elements and spacecraft comprising such a pivot | |
EP3144228A1 (en) | Gyroscopic actuator with dual gimbal guidance, suspension member and abutment element | |
EP3291367B1 (en) | System for assembling two parts in a motion transmitting device | |
FR2761286A1 (en) | Multi-axis positioning mechanism | |
EP1964778A1 (en) | Pivot with blades | |
EP3280003B1 (en) | Antenna positioner | |
FR2502404A1 (en) | Articulated mounting for satellite sub-assembly - uses output from inertial detector to control step or torque motor to move support arm for stabilisation | |
FR2646023A1 (en) | Antenna pointing device, satellite equipped with such a device and antenna pointing process using such a device | |
FR2472853A1 (en) | ANTENNA WITH AN ADJUSTABLE BEAM AND SATELLITE COMPRISING SUCH ANTENNA | |
EP0498699B1 (en) | Pointing mechanism for a payload, especially for a satellite antenna | |
CA3165023C (en) | Radiator with reduced irradiance and guidance system for geostationary satellite | |
EP1635485B1 (en) | Optical transmission method between an on-board spacecraft terminal and a distant terminal, and spacecraft adapted for said method | |
FR2690532A1 (en) | Pointing, or aiming, device for optical equipment e.g. for satellite communication using modulated laser beam - has system of two mirrors rotating about axes perpendicular to each other with fine tuning of first mirror | |
EP3839604B1 (en) | Improved off-centre scanning device | |
EP0455543B1 (en) | Device for pointing a reflector antenna | |
WO2023148595A1 (en) | Propulsion device for a rotary wing aerodyne with vertical take-off and landing, and aerodyne equipped with such a propulsion device | |
FR3071816A1 (en) | MULTIROTOR TYPE DRONE COMPRISING A ROTATION SPEED MANAGEMENT UNIT OF EACH ROTOR AND METHOD OF CONTROLLING SUCH A DRONE | |
WO2021170723A1 (en) | Movable antenna support | |
WO2022069682A1 (en) | Device for positioning an antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20121003 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01Q 1/18 20060101ALI20150622BHEP Ipc: H01Q 19/19 20060101ALN20150622BHEP Ipc: H01Q 1/12 20060101ALN20150622BHEP Ipc: H01Q 3/08 20060101AFI20150622BHEP |
|
INTG | Intention to grant announced |
Effective date: 20150717 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 771054 Country of ref document: AT Kind code of ref document: T Effective date: 20160215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011022599 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2568226 Country of ref document: ES Kind code of ref document: T3 Effective date: 20160428 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 771054 Country of ref document: AT Kind code of ref document: T Effective date: 20160113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160414 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160513 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160513 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011022599 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 |
|
26N | No opposition filed |
Effective date: 20161014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161025 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161025 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20161031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20111025 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160113 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230522 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231019 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231114 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231009 Year of fee payment: 13 Ref country code: FR Payment date: 20231023 Year of fee payment: 13 Ref country code: DE Payment date: 20231011 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240925 Year of fee payment: 14 |