EP2313346A1 - Highly crystalline lithium transition metal oxides - Google Patents
Highly crystalline lithium transition metal oxidesInfo
- Publication number
- EP2313346A1 EP2313346A1 EP09777608A EP09777608A EP2313346A1 EP 2313346 A1 EP2313346 A1 EP 2313346A1 EP 09777608 A EP09777608 A EP 09777608A EP 09777608 A EP09777608 A EP 09777608A EP 2313346 A1 EP2313346 A1 EP 2313346A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- transition metal
- metal oxide
- lithium transition
- degree
- powderous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 title claims abstract description 28
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 39
- 238000005245 sintering Methods 0.000 claims abstract description 26
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 26
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 19
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 15
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 12
- 230000005855 radiation Effects 0.000 claims abstract description 9
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 8
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 8
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 8
- 239000013078 crystal Substances 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 7
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 5
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 5
- 150000003623 transition metal compounds Chemical class 0.000 claims abstract description 3
- 239000002243 precursor Substances 0.000 claims description 42
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 11
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 8
- 229910007679 Li1+aM1−aO2 Inorganic materials 0.000 abstract 1
- 239000011575 calcium Substances 0.000 description 85
- 239000000203 mixture Substances 0.000 description 26
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 20
- 238000007792 addition Methods 0.000 description 17
- 239000002002 slurry Substances 0.000 description 17
- 229910052744 lithium Inorganic materials 0.000 description 16
- 239000010406 cathode material Substances 0.000 description 15
- 229910052717 sulfur Inorganic materials 0.000 description 15
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 14
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 239000011593 sulfur Substances 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 11
- 239000012535 impurity Substances 0.000 description 10
- 229910032387 LiCoO2 Inorganic materials 0.000 description 9
- 229910013191 LiMO2 Inorganic materials 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 229910052723 transition metal Inorganic materials 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229910003005 LiNiO2 Inorganic materials 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 7
- 239000005864 Sulphur Substances 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 229910021653 sulphate ion Inorganic materials 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 150000003624 transition metals Chemical class 0.000 description 6
- 229910052788 barium Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000002427 irreversible effect Effects 0.000 description 4
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Chemical compound [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 229910017709 Ni Co Inorganic materials 0.000 description 3
- 229910003267 Ni-Co Inorganic materials 0.000 description 3
- 229910003262 Ni‐Co Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- -1 transition metal sulphate Chemical class 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 229910014411 LiNi1/2Mn1/2O2 Inorganic materials 0.000 description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- 229910015853 MSO4 Inorganic materials 0.000 description 2
- 238000003991 Rietveld refinement Methods 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000011258 core-shell material Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000011076 safety test Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical group OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910008041 Li-M-O2 Inorganic materials 0.000 description 1
- 229910052493 LiFePO4 Inorganic materials 0.000 description 1
- 229910015118 LiMO Inorganic materials 0.000 description 1
- 229910016145 LiMn1 Inorganic materials 0.000 description 1
- 229910016104 LiNi1 Inorganic materials 0.000 description 1
- 229910013200 LiNiMnCo Inorganic materials 0.000 description 1
- 229910016489 Mn1/2Ni1/2 Inorganic materials 0.000 description 1
- 229910018669 Mn—Co Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910016774 Ni0.5Mn0.3Co0.2 Inorganic materials 0.000 description 1
- 229910021543 Nickel dioxide Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 235000021463 dry cake Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000002017 high-resolution X-ray diffraction Methods 0.000 description 1
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000010977 jade Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000009783 overcharge test Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000003921 particle size analysis Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000009781 safety test method Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- PWYYWQHXAPXYMF-UHFFFAOYSA-N strontium(2+) Chemical compound [Sr+2] PWYYWQHXAPXYMF-UHFFFAOYSA-N 0.000 description 1
- 230000002522 swelling effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
- C01G53/42—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
- C01G53/44—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/12—Complex oxides containing manganese and at least one other metal element
- C01G45/1221—Manganates or manganites with trivalent manganese, tetravalent manganese or mixtures thereof
- C01G45/1228—Manganates or manganites with trivalent manganese, tetravalent manganese or mixtures thereof of the type (MnO2)-, e.g. LiMnO2 or Li(MxMn1-x)O2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/40—Complex oxides containing cobalt and at least one other metal element
- C01G51/42—Complex oxides containing cobalt and at least one other metal element containing alkali metals, e.g. LiCoO2
- C01G51/44—Complex oxides containing cobalt and at least one other metal element containing alkali metals, e.g. LiCoO2 containing manganese
- C01G51/50—Complex oxides containing cobalt and at least one other metal element containing alkali metals, e.g. LiCoO2 containing manganese of the type (MnO2)n-, e.g. Li(CoxMn1-x)O2 or Li(MyCoxMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/77—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/11—Powder tap density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to a powderous lithium transition metal oxide, used as active cathode material in rechargeable lithium batteries. More particularly, in Li(Mn-Ni-Co)O 2 type compounds higher crystallinity is obtained through a optimal selection of sintering temperature.
- LiCoO 2 is still the most widely applied cathode material for rechargeable batteries.
- LiCoO 2 is still the most widely applied cathode material for rechargeable batteries.
- LiFePO 4 and Li-Mn-spinel which both suffer from much lower energy density
- LiNiO 2 based layered cathode materials and Li(Mn-Ni-Co)O 2 based layered cathode materials are the most likely candidates to replace LiCoO 2 in commercial battery applications.
- the first document which conclusively shows that additional lithium can be doped into LiMO 2 is JP2000-200607, claiming Li[Co 1 - X M x ]O 2 and Li[Ni 1 - X M x ]O 2 where M is at least 2 metals which have an average valence state of 3.
- Metals M include lithium, Mn, Co, Ni.
- the first disclosure of the possibility of excess lithium, doped into the crystal structure of LiMO 2 was JP11 -307097, claiming Li (1 . a) Ni 1 .
- JP3653409 (Sanyo) claims a doped LiNiO 2 with FWHM of the main peak at 003 of 0.15-0.22 deg of 2 theta, using Cu - K alpha radiations.
- JP3301931 (Sanyo) claims a doped (> 1%) LiNi-Mn-Co oxide where the main 003 peak (at 18.71 ⁇ 0.25) has a FWHM ⁇ 0.22 degree.
- a composite oxide Li a Mn 0 . 5 - x Nio. 5 .yM x+y 0 2 is disclosed, with M being an element which is in a solid solution where it can displace Mn and Ni.
- M are B, Be, V, C, Si, P, Sc, Cu, Zn, Ga, Ge, As, Se, Sr, Mo, Pd, Ag, Cd, In, Sn, Sb, Te, Ba, Ta, W, Pb, Bi, Fe, Cr, Ti, Zr, Nb, Mg, Y, Al, Na, K, Mg, Ca, Co, Cs, La, Ce, Nd, Sm, Eu, and Tb.
- these oxides have a diffraction peak at a 2 ⁇ of 18.6 +/-1 ° with a half width of from 0.05° to 0.20° , and also a peak at 44.1 +/- 1 ° having a half width of from 0.10° to 0.20° .
- the description only gives 2 examples of highly crystalline undoped LiMnNi Oxides having a half width of the peak at 44.1 ° of below 0.1 ° . All of the other oxides, like LiNiMnCo and LiMnNiMg oxides, are less crystalline, having half width values over 0.1 ° .
- cathode materials involve improving parameters which matter in the batteries. Some of the parameters are relatively easy to measure, like capacity, voltage profile and rate performance, which can be measured by making and testing coin cells. Other parameters are less obvious. So it is not fully clear how safety or swelling properties (e.g. of charged polymer batteries during storage at elevated temperature) can be measured, without assembling real batteries. There exists a strong indication that these safety and storage parameters are not only determined by the chemical composition of the cathode but also by surface properties. However, reliable previous art in this area is rare.
- the extent of this reaction is a surface property.
- LiNiO 2 based cathodes As well as Al, Mg-Ti or Ni-Ti doping of LiCoO 2 has been frequently disclosed, for example in JP2002-151154 (Al+Co doped LiNiO 2 ) or JP2000-200607 (doped LiCoO 2 ).
- Typical for doping is that the doped element fits to the host crystal structure, which limits doping of LiMO 2 more or less to transition metals, Li, Mg, Ti, Al, and maybe B.
- anionic doping like fluorine doping, phosphor doping or sulphur doping. It is however very questionable if these anions can replace oxygen because they differ in significantly in size or valence.
- the lithium salts LiF, Li 3 PO 4 and Li 2 SO 4 all have high thermal stability which promotes a thermodynamic co-existence with the LiMO 2 phase.
- doping is the modification of the bulk structure, whereas, for safety and storage properties, the surface chemistry is more important. Therefore, in many cases, the improvement of surface properties, is more than outweighed by the deterioration of bulk properties.
- Typical examples are the doping by aluminum, where better thermal stability often is accompanied by a dramatic decrease of power (rate performance).
- An alternative approach, widely disclosed in the literature is coating.
- An alternative approach is the creation of core-shell cathode materials, or gradient type cathode materials.
- a thick and dense shell of a more robust cathode material protects a core of a more sensitive cathode material.
- the final cathode has either a core-shell morphology or a gradient morphology.
- both the shell and the core are electrochemically active (have reversible capacity).
- Sulphate is an impurity of concern in layered lithium transition metal oxides.
- Sulphate typically originates from the mixed hydroxide precursors. This is because the mixed hydroxide preferably is precipitated from transition metal sulphate solution, which is the cheapest water soluble transition metal precursor. Complete removal of sulphur is difficult and increases the cost of the precursor.
- the sulphate impurity is suspected to cause (a) poor overcharge stability and (b) contribute to the highly undesired low Open Circuit Voltage (OCV) phenomena, where a certain fraction of batteries show a slow deterioration of OCV after initial charge.
- Sulphate impurities normally measured when using transition metal sulphate solutions in the manufacturing process can be up to 5 wt%.
- the (Li+M):0 ratio is with respect to the present invention preferably within a range of 0.99 to 1.01.
- the powderous lithium transition metal oxide has a X-ray diffraction peak at 18.6 ⁇ 0.2 degree, having as index 003, also with a FWHM value of ⁇ 0.1 degree.
- M' is Ca
- M' is Sr
- the invention also describes a process for improving the crystallinity of a powderous lithium transition metal oxide as described above, the metal oxide being obtained by sintering a M-hydroxide, -oxyhydroxide or -carbonate precursor together with a Li precursor, preferably Li 2 CO 3 , at a temperature T of at least 900" C, and preferably at least 950 0 C, for a time t between 1 and 48 hrs, with a value for (1+a)/(1 -a) between 0.99 and 1.1 , and selecting the sintering temperature such that the X-ray diffraction peak of said lithium transition metal oxide at 44.5 ⁇ 0.3 degree, having as index 104, measured with K alpha radiation, has a FWHM value of ⁇ 0.1 degree, or even
- the sintering temperature is selected such that the X-ray diffraction peak of said lithium transition metal oxide at 18.6 ⁇ 0.2 degree, having as index 003, has a FWHM value of ⁇ 0.1 degree, and more preferably ⁇ 0.08° .
- the process cannot be defined more precisely without duly restricting its scope, and also that it can be directly and positively verified by tests or procedures that are adequately specified when the result expressed in the process is achieved, and this without requiring undue effort in experimentation.
- the invention also demonstrates that the surface properties, determining the safety and stability of cathodes in real batteries - the surface properties being measured as base content by pH titration -are strongly determined by the sulfur and the content of added elements of the group Ca, Sr, Y, La, Ce and Zr, and preferably Ca or Sr.
- the lithium transition metal oxides containing 0.15-0.6 mol% sulphur and 150-1500 ppm Calcium and strontium show reduced content of soluble base and an improved morphology, characterized by the absence of fine particles. As a result, the performance in rechargeable lithium batteries is improved.
- the lithium transition metal oxide can be prepared by a cheap process, for example by a single firing of a mixture of a suitable precursor and lithium carbonate in air.
- the precursor is a mixed metal precursor like mixed hydroxide, oxyhydroxide or carbonate, already containing adequate amounts of sulphur and calcium.
- Surface modified cathode materials are prepared in a single step.
- the precursors can be enriched by Ca to reach a concentration of Ca of preferably 200-500 ppm. These precursors are used to prepare surface modified LiMO by a single cook. If the Ca impurity level of the precursors is lower, then Ca can be added to the precursor, preferably in liquid form, by a technique which the authors call slurry doping.
- High surface area precursor for example mixed hydroxide
- a dissolved calcium salt like CaCl 2 or Ca(NO 3 J 2 is slowly added until the desired concentration is reached.
- Doping with the other preferred elements is performed in an analogous manner.
- the calcium can be added during the precursor preparation process. This is possible by adding a small concentration of calcium (typically less than 100 ppm) to the water used to dissolve the metal salt (for example MSO 4 ) precursor or base (NaOH) precursor.
- Ca can be added in higher concentration to the water used to wash the precursor after finished precipitation.
- the surface modification by calcium is possibly a catalytic de-activation of active surface sites, because (a) Calcium (or one of the other preferred elements) has a much larger ionic radius and cannot be doped into the bulk structure and (b) up to 1500 ppm Ca (or one of the other preferred elements) is simply not enough to form a coating layer.
- the word coating is used in the conventional sense as a layer consisting of at least 10-100 atomic layers, corresponding to a few nm to about 100 nm thickness).
- the authors speculate that the mechanism of de-activation is related to a phenomenon known from catalyst technology as catalyst poisoning. During operation of a catalyst (for example platinum in a gas containing traces of sulphur species) trace amounts can de-activate the catalyst by covering catalytically active sites.
- At least 150 ppm of the elements like Ca, Sr, Y, La, Ce and Zr, are needed to achieve the beneficial effect, if the level is much higher, especially > 1500 ppm, then the electrochemical properties suffer, particularly the rate performance decreases and the irreversible capacity increases.
- the inventors of the actual patent application discovered that sulphur levels of
- 0.2 - 0.6 wt% can be tolerated if at least 150 ppm of the elements like Ca, Sr, Y, La, Ce and Zr is present, and that 0.2-0.6 wt% of sulphate is harmful to the cathode performance if the Ca impurity is lower.
- Fig. 1 X-ray diffraction pattern at different sintering temperatures
- Fig. 2 FWHM as function of scattering angle
- Fig. 3 X-ray diffraction pattern with detailed peak separation
- a hydroxide MOOH with was used as precursor. Samples were prepared at 92O 0 C, 94O 0 C, 96O 0 C and at 967 0 C. As expected, the BET surface area decreased with increasing temperature. The Li:M was basically identical (all samples had identical unit cell volume). The electrochemical performance improved with temperature, having the best performance at approx. 960-970 0 C sintering temperature.
- Figure 1 shows the X-ray diffraction pattern of the 4 samples: the sintering temperatures of the samples A-D can be found in Table 1 below.
- the FWHM (full width at half maximum) vs. scattering angle (deg.) is shown for the (single) peaks 101 , 006, 102, 104, 105, 110, 108, 113, the FWHM values being determined as explained below.
- the 003 peak was excluded because it typically shows asymmetry which is not fitted very well. Peaks at >70 degree were not fitted because of smaller resolution.
- Figure 2 shows the evolution of FWHM (left and right) as function of scattering angle (deg.) for the samples prepared at different temperatures from Table 1. Clearly, the FWHM decreases with increasing sintering temperature. The experimental results are summarized in Table 1.
- VoI stands for the unit cell volume per formula unit obtained by a Rietveld refinement of high resolution X-ray diffraction pattern (15 - 135 degree of 2 theta, 6 h measurement time).
- the unit cell volume is a very sensitive measure of the Li:M ratio.
- the refinement furthermore delivered the parameter for the "Size", together with the "Strain, which are a measure of the crystallinity of the sample. The larger the size and the smaller the strain, the better the crystallinity.
- the parameter "Q” corresponds to the specific capacity of the material using coin cells, measured between 4.3 and 3.0 V at a rate of 0.1 C.
- Qirr is the irreversible capacity, defined as Qcharge minus QDischarge, divided by Qcharge.
- the FWHM (full width at half maximum) values were determined as follows.
- the Xray powder diffraction pattern was collected using a Rigaku D/Max 2000 diffractometer with theta - two theta geometry and Cu radiation.
- a relatively narrow receiving slit (0.15 mm) was selected to limit the peak broadening contribution caused by the instrument.
- the divergence slit was 1 degree.
- the intrinsic FWHM of the powder i.e. the peak width caused by the crystallinity of the sample itself, is slightly less than that measured width, which always also includes some contribution from the instrument.
- the here reported and claimed FWHM values correspond to the values as measured with state of the art apparatus.
- the Xray diffraction pattern contains two contributions, the main one being caused by the K ⁇ 1 radiation, and a secondary one, which has a lower intensity, by the K ⁇ 2 radiation.
- Obtaining a reliable FWHM requires to remove the K ⁇ 2 part from the diffraction pattern. This was achieved using the software "Jade", resulting in a pure K ⁇ 1 Xray powder diffraction pattern.
- Both batches were then doped with Sr, according to the following process.
- Strontium nitrate was dissolved in water so as to obtain a 0.2 molar solution.
- About 1.5 kg of precursor was immersed into a stirred reactor, and an appropriate amount of ethanol was added, resulting in a relatively viscous slurry.
- 68.5 ml of the strontium solution was slowly added.
- the reactor was closed, and the slurry heated to 60 °C. Evaporating ethanol was removed from the reactor using a diaphragm pump. The stirring continued until the slurry became too dry for stirring.
- the dry cake was then sieved using a 53 ⁇ m mesh.
- the so obtained Sr modified precursor contained 800 ppm of Sr.
- the final products were then prepared by blending with Li 2 CO 3 and sintering.
- 1 kg blends of Li 2 CO 3 and Sr containing MOOH were prepared using a Turbula mixer.
- the ratio of Li:M was approximately 1.03.
- Test samples were sintered at 950 0 C and checked by Xray analysis. They showed lattice constants corresponding to a unit cell volume of 33.95 A 3 , i.e. within a preferred region.
- Each actual samples wase prepared from ca. 200 g of blended powders.
- the firings were performed from 880 °C to 960 °C, in a flow of air, for about 24 h, heating and cooling times included. After sintering, the samples were sieved using a 53 ⁇ m mesh.
- the final Sr containing Li-M-O 2 products were subjected to Xray analysis, Rietveld refinement, pH titration, coin cell testing, chemical analysis, and SEM.
- Tables V and 1 summarize the results obtained with the strontium containing samples from series A and B, as a function of the sintering temperature.
- the "Q” and “Rate” parameters were measured using coin cells.
- “Q” is the specific capacity measured at a discharge rate of 0.1 C
- “Rate” is a measure of the high rate discharge behavior, reported as the ratio of the 2 C capacity to the 0.1 C capacity.
- the FWHM values were measured according to the procedure of Example 1 a.
- the base content and BET surface area decrease with increasing sintering temperature. Since low base content and low BET are desired, a narrow FWHM is preferred. It is indeed assumed that a high BET increases the area where unwanted reactions between electrolyte and charged cathode can take place, thus causing poor safety performance, whereas a high base content is known to lower the high temperature storage properties.
- Example 2 Improved safety and lower base of Ca containing cathode
- the content of soluble base is titrated by logging the pH profile during addition of 0.1 M HCl at a rate of 0.5 ml/min until the pH reaches 3 under stirring.
- a reference pH profile is obtained by titrating suitable mixtures of LiOH and Li 2 CO 3 dissolved in low concentration in Dl water. In almost all cases two distinct plateaus are observed. The upper plateau is OHVH 2 O followed by CO 3 2 VHCO 3 ' , the lower plateau is HCO 3 " /H 2 CO 3 .
- the inflection point between the first and second plateau as well as the inflection point after the second plateau is obtained from the corresponding minima of the derivative d pH I d VoI of the pH profile. The second inflection point generally is near to pH 4.7. Results are listed as micromole of base per g of cathode.
- the amount of base which goes into solution is very reproducible, and is directly related to surface properties of the cathode. Since these have a significant influence on the stability (i.e. safety and overcharge/high T storage properties of the final battery) there is a correlation between base content and stability.
- TapD tap density Table 1B: Properties of sample MP1 and MP2
- samples are very similar, with one exception: the soluble base content of sample MP1 (with high Ca) was significantly lower than for MP2. Other properties are very similar, and although MP2 (with low Ca) shows slightly higher capacity, slightly lower irreversible capacity and slightly higher rate performance, the results for MP1 are still acceptable. More important, the samples MP1 and MP2 were sent to battery producer for safety testing. Whereas MP1 passed the safety test, MP2 did not pass.
- the "Safety overcharge test” used here is a safety test where a battery is charged at a very high rate (for example with 1C charge rate) until a much higher voltage than the normal operating voltage (for example 20V) is reached. In many cases during such a test more lithium is extracted from the cathode than can be inserted to the anode, so the dangerous effect of lithium plating occurs. At the same time the highly delithiated cathode is in a highly reactive state, and ohmic (resistive) heat is generated. The heat can initiate the dramatic thermal run-away reaction, ultimately leading to the explosion of the battery. Whether a battery passes such a test (i.e. does not explode) or not is strongly dependent on the choice of cathode material, its morphology, impurity levels and its surface chemistry. Very little fundamental scientific understanding exists, but the presence of fine particles definitively contributes to poor safety.
- Example 2 showed that a Ca content of approx. 250-400 ppm effectively lowered the base content and improved the safety of the cathode. If we now estimate the number of atomic layers on top of the surface of the cathode, assuming that a) all of the calcium is located at the surface of the cathode particles, b) the surface area of the cathode is reliably obtained by 5 point BET measurement using nitrogen, c) Calcium is evenly distributed on the surface, d) the average distance between Ca atoms is the same as in CaO; then it can be concluded that the effect of Ca is rather a catalytic effect (less than a few one atomic layer) and not caused by a conventional coating effect (many layers of atoms).
- the precursors naturally are low in Ca but contain some sulfur.
- Table 2B Slurry doped Li Nio. 53 Mn 0 . 27 C ⁇ o. 2 O 2
- EX10A (1 kg size) is prepared from a mass scale production precursor mixed hydroxide with metal composition Mn 1Z3 Ni 1 Z3 Co 1Z3 by mixing the precursor with Li 2 CO 3 (blend ratio 1.1 ) followed by heating to 96O 0 C.
- EX10B is prepared in the same way, with the exception that the precursor was modified by the previously described slurry doping: A total of 400 ppm Ca was slowly (drop wise) added in the form of Ca(NO 3 J 2 to a water based slurry of the precursor, followed by drying (no filtering).
- Example 5 Alternative elements besides Ca.
- the precursor is low in Ca but contain some sulfur.
- the precursors are doped by slurry doping: 1000 ppm of nitrate solutions of Ca, Y, Sr, La, Ba, Fe are added, respectively. A reference was slurry doped but no metal was added. After slurry doping the precursors were mixed with Li 2 CO 3 and cooked. Besides of the doping, final composition (Li, Mn, Ni, Co) was very similar.
- Base content Sr and Ca, and to a lesser degree Y and Ba are most efficient to lower the soluble base content.
- Example 6 Strontium versus Calcium Example 5 compared the efficiency of Ca, Sr, La, Ba, Y to lower the content of soluble base.
- Example 5 did not take into account that the sintering kinetics change with different additives - yielding very different BET values.
- Example 6 compares the effect of Ca and Sr more carefully.
- a reference without addition of additive (Ca or Sr) was prepared from a mixture of mixed transition metal hydroxide and Li 2 CO 3 at 98O 0 C. Further samples with addition of 400 and 1000 ppm Sr and 400 ppm Ca were prepared. Each sample used 1 kg of MOOH + Li 2 CO 3 .
- the additive (Ca, Sr) was added by the previously described "slurry doping" process. Appropriate amounts of solution of Sr(NO 3 ) 2 and Ca(NO 3 J 2 were added to a high viscous slurry of the precursor hydroxide during rigid stirring.
- the sintering temperature was adjusted to achieve a similar sintering.
- Base content was measured, unit cell volume and crystallite size was obtained from X-ray diffraction and electrochemical properties were tested by coin cells.
- Tables 5A and 5B summarizes the preparation conditions results
- the morphology (BET, particle size) of all samples was basically identical. Ca addition is most effective to lower the base content. 1000 ppm Sr reduce the base content about the same, but less than 400 ppm Ca. However, Sr is interesting because it reduces the base and at the same time the electrochemical properties deteriorate less than for 400 ppm Ca addition.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
A powderous lithium transition metal oxide having a layered crystal structure Li1+aM1-aO2±b M'k Sm with -0.03 < a < 0.06, b ≅ 0, 0 ≤ m ≤ 0.6, m being expressed in mol%, M being a transition metal compound, consisting of at least 95% of either one or more elements of the group Ni, Mn, Co and Ti; M' being present on the surface of the powderous oxide, and consisting of either one or more elements of the group Ca, Sr, Y, La, Ce and Zr, wherein: either k = 0 and M = Ni1-c-dMncCOd, with 0<c<1, and 0<d<1; or 0.015 < k < 0.15, k being expressed in wt% of said lithium transition metal oxide; characterized in that for said powderous oxide, the X-ray diffraction peak at 44.5 ± 0.3 degree, having as index 104, measured with K alpha radiation, has a FWHM value of ≤ 0.1 degree. By optimizing the sintering temperature of the metal oxide the FWHM value can be minimized.
Description
Highly crystalline Lithium transition metal Oxides
The invention relates to a powderous lithium transition metal oxide, used as active cathode material in rechargeable lithium batteries. More particularly, in Li(Mn-Ni-Co)O2 type compounds higher crystallinity is obtained through a optimal selection of sintering temperature.
LiCoO2 is still the most widely applied cathode material for rechargeable batteries. However, there exists a strong pressure to replace it by other materials for particular reasons. Currently, scarce resources of cobalt and fear of high prices accelerate this trend. Besides LiFePO4 and Li-Mn-spinel, which both suffer from much lower energy density, LiNiO2 based layered cathode materials and Li(Mn-Ni-Co)O2 based layered cathode materials are the most likely candidates to replace LiCoO2 in commercial battery applications. Today it is basically known that any composition Li[LixM1-X]O2 with M=Mn, Ni, Co within the quarternary system Li[Li173Mn2Z3]O2 - LiCoO2 - LiNiO2 - LiNio.5Mno.5O2 exists as a layered phase, and in most cases is electrochemically active.
It can be summarized that at the mid 90ties prior art were compositions within the Ni rich corner of the solid state solution between LiCoO2 - LiMn1 /2Ni1 /202 - (Li1-XNix]NiO2 , including further dopants (like Al). The other corners LiCoO2 and LiNi1/2Mn1/2O2 were also known. ^ During the 90ties there was put little focus on the Li stoichiometry. So the patents above just claim LiMO2 , or a range of Li stoichiometrics, but it has generally not been understood that the Li:M ratio is an important variable needing optimization. Li1M1 was typically seen as a desired stoichiometry which only can be obtained if a small lithium excess is used. In the late 90ties slowly understanding of the role of excess Lithium evolved.
The first document which conclusively shows that additional lithium can be doped into LiMO2 is JP2000-200607, claiming Li[Co1-XMx]O2 and Li[Ni1-XMx]O2 where M is at least 2 metals which have an average valence state of 3. Metals M include lithium, Mn, Co, Ni. Not surprisingly, within the next years several more publications regarding lithium rich (=Li [LixM1-X]O2) cathode materials were published. To our knowledge, the first disclosure of the possibility of excess lithium, doped into the crystal structure of LiMO2
(M=Mn, Ni, Co) was JP11 -307097, claiming Li(1.a)Ni1.b.c.dMnbCocMd02 where -0.15 < a <0.1 , 0.02 < b < 0.45, 0 < c < 0.5 and 0 < d < 0.2. The formula of claim 1 LixMO2 (if x=1.05 Li1-05MO2) at first glance contradicts today's consent that it be better written as Lii.o25Mo.97502 , i.e. there is a slight discrepancy between the oxygen stoichiometry, the first formula having a slightly lower (Li+M):O ratio. Both formulas describe the same material, and furthermore, none of them, describes the material completely accurate, simply because any "real" material possibly has a certain number of other disorder parameters like oxygen or cationic vacancies or interstitials, different composition on the surface etc. Thus - 1998 prior art can be defined as all solid solutions within the ternary system LiNiO2 - LiCoO2 - LiNi1/2Mn1/2θ2 - Li[Li1Z3Mn2Z3]O2.
Most of the hundreds of recent publications focus on compositions Li[LixM1-X]O2 with M=Mn-Ni-Co, almost exclusively the Ni:Mn ratio is 1 , and in many cases the compositions is either M=Mn1/3Ni1/3Cθi/3 or (Mn1/2Ni1/2)1.xCox with 0.1 < x < 0.2. It can be argued that there is a common consent that an excess of lithium (Li:M>1 ) is desired to obtain high rate.
Another issue is the shape of X-ray diffraction peaks. Sharp peaks with narrow FWHM (full width at half maximum) are related to high crystallinity. JP3653409 (Sanyo) claims a doped LiNiO2 with FWHM of the main peak at 003 of 0.15-0.22 deg of 2 theta, using Cu - K alpha radiations.
JP3301931 (Sanyo) claims a doped (> 1%) LiNi-Mn-Co oxide where the main 003 peak (at 18.71 ± 0.25) has a FWHM < 0.22 degree.
In EP1391950 A1 a composite oxide LiaMn0.5-xNio.5.yMx+y02 is disclosed, with M being an element which is in a solid solution where it can displace Mn and Ni. Examples of M are B, Be, V, C, Si, P, Sc, Cu, Zn, Ga, Ge, As, Se, Sr, Mo, Pd, Ag, Cd, In, Sn, Sb, Te, Ba, Ta, W, Pb, Bi, Fe, Cr, Ti, Zr, Nb, Mg, Y, Al, Na, K, Mg, Ca, Co, Cs, La, Ce, Nd, Sm, Eu, and Tb. Preferably these oxides have a diffraction peak at a 2Θ of 18.6 +/-1 ° with a half width of from 0.05° to 0.20° , and also a peak at 44.1 +/- 1 ° having a half width of from 0.10° to 0.20° . The description only gives 2 examples of highly crystalline undoped LiMnNi Oxides having a half width of the peak at 44.1 ° of below 0.1 ° . All of the other oxides, like LiNiMnCo and LiMnNiMg oxides, are less crystalline, having half width values over 0.1 ° .
Despite of the impressive numbers of prior art - it is still not fully clear which compositions within the ternary triangle LiNiO2 - LiCoO2 - LiNi1/2Mn1/2O2 - Li[Li1Z3Mn2Z3]O2 gives the best performance in terms of capacity and rate performance.
The overall development of cathode materials involves improving parameters which matter in the batteries. Some of the parameters are relatively easy to measure, like capacity, voltage profile and rate performance, which can be measured by making and testing coin cells. Other parameters are less obvious. So it is not fully clear how safety or swelling properties (e.g. of charged polymer batteries during storage at elevated temperature) can be measured, without assembling real batteries. There exists a strong indication that these safety and storage parameters are not only determined by the chemical composition of the cathode but also by surface properties. However, reliable previous art in this area is rare.
In this respect, the authors observed a problem that resides in the reaction of the surface of the active lithium transition metal oxide cathode material and the electrolyte in the battery, leading to poor storage properties and a decreased safety of the battery. The authors argue that lithium located near to the surface thermodynamically is less stable and goes into solution, but lithium in the bulk is thermodynamically stable and cannot go to dissolution. Thus a gradient of Li stability exists, between lower stability at the surface and higher stability in the bulk. By determining the "soluble base" content, based on the ion exchange reaction
(LiMO2 + δ H+ «--» Li1-SH5MO2 + δ Li+), the Li gradient can be established. The extent of this reaction is a surface property.
To improve safety, aluminum doping of LiNiO2 based cathodes, as well as Al, Mg-Ti or Ni-Ti doping of LiCoO2 has been frequently disclosed, for example in JP2002-151154 (Al+Co doped LiNiO2) or JP2000-200607 (doped LiCoO2). Typical for doping is that the doped element fits to the host crystal structure, which limits doping of LiMO2 more or less to transition metals, Li, Mg, Ti, Al, and maybe B. Several disclosures show anionic doping, like fluorine doping, phosphor doping or sulphur doping. It is however very questionable if these anions can replace oxygen because they differ in significantly in size or valence. It is more likely that they instead are present at the surface and grain boundaries as lithium salts. The lithium salts LiF, Li3PO4 and Li2SO4 all have high thermal stability which promotes a thermodynamic co-existence with the LiMO2 phase.
In general doping is the modification of the bulk structure, whereas, for safety and storage properties, the surface chemistry is more important. Therefore, in many cases, the improvement of surface properties, is more than outweighed by the deterioration of bulk properties. Typical examples are the doping by aluminum, where better thermal stability often is accompanied by a dramatic decrease of power (rate performance).
An alternative approach, widely disclosed in the literature is coating. An early disclosure of a coated cathode was KR20010002784, where a LiMO2 cathode (M=Ni1-XCox) (or the sulphur or fluorine "doped" LiMO2 cathode is coated with a metal oxide with metal selected from Al, Al, Mg, Sr, La, Ce, V and Ti and the stoichiometric amount of metal is at least 1%.
An alternative approach is the creation of core-shell cathode materials, or gradient type cathode materials. Here a thick and dense shell of a more robust cathode material protects a core of a more sensitive cathode material. Depending on sintering temperature and chemical composition, the final cathode has either a core-shell morphology or a gradient morphology. Typically both the shell and the core are electrochemically active (have reversible capacity).
Sulphate is an impurity of concern in layered lithium transition metal oxides. Sulphate typically originates from the mixed hydroxide precursors. This is because the mixed hydroxide preferably is precipitated from transition metal sulphate solution, which is the cheapest water soluble transition metal precursor. Complete removal of sulphur is difficult and increases the cost of the precursor. The sulphate impurity is suspected to cause (a) poor overcharge stability and (b) contribute to the highly undesired low Open Circuit Voltage (OCV) phenomena, where a certain fraction of batteries show a slow deterioration of OCV after initial charge. Sulphate impurities normally measured when using transition metal sulphate solutions in the manufacturing process can be up to 5 wt%.
It is an object of this invention to develop lithium transition metal oxide cathode materials having improved electrochemical properties, like capacity, voltage profile and rate performance; by improving the crystallinity of the cathode materials.
The invention discloses a powderous lithium transition metal oxide having a layered crystal structure Li^aMvaO∑±b M'k Sm , with -0.03 < a < 0.06, b = 0, 0 < m < 0.6, m being expressed in mol%, M being a transition metal compound, consisting of at least 95% of either one or more elements of the group Ni, Mn, Co and Ti; M1 being present on the surface of the powderous oxide, and consisting of either one or more elements of the group Ca, Sr, Y, La, Ce and Zr, wherein: either k = 0 and M = Ni^-dMncCOd, with 0<c<1 , and 0<d<1 ; or
0.015 < k < 0.15, k being expressed in wt% of said lithium transition metal oxide; and wherein the X-ray diffraction peak at 44.5 ± 0.3 degree, having as index 104, measured with K alpha radiation, has a FWHM value of < 0.1 degree. In one embodiment of the invention 0 < k < 0.15 and
with 0<c<1 , and 0<d<1 ; and more preferably c=d=0.333. The (Li+M):0 ratio is with respect to the present invention preferably within a range of 0.99 to 1.01.
Preferably, the powderous lithium transition metal oxide has a X-ray diffraction peak at 18.6 ± 0.2 degree, having as index 003, also with a FWHM value of < 0.1 degree.
In another embodiment, 0.15 < m < 0.6, m being expressed in mol%. Also preferably 0.0250 < k < 0.1 in wt%. In a more preferred embodiments, when M' is Ca, 0.0250 < k < 0.0500, and preferably k < 0.0400, in wt%, and 0.25 < m < 0.6, in mol%; when M' is Sr, 0.0300 < k < 0.1000, and 0.25 < m < 0.6, in mol%.
The invention also describes a process for improving the crystallinity of a powderous lithium transition metal oxide as described above, the metal oxide being obtained by sintering a M-hydroxide, -oxyhydroxide or -carbonate precursor together with a Li precursor, preferably Li2CO3, at a temperature T of at least 900" C, and preferably at least 9500C, for a time t between 1 and 48 hrs, with a value for (1+a)/(1 -a) between 0.99 and 1.1 , and selecting the sintering temperature such that the X-ray diffraction peak of said lithium transition metal oxide at 44.5 ± 0.3 degree, having as index 104, measured with K alpha radiation, has a FWHM value of < 0.1 degree, or even
< 0.1 degree. Preferably also the sintering temperature is selected such that the X-ray diffraction peak of said lithium transition metal oxide at 18.6 ± 0.2 degree, having as
index 003, has a FWHM value of < 0.1 degree, and more preferably < 0.08° . In the examples it will be clarified that the process cannot be defined more precisely without duly restricting its scope, and also that it can be directly and positively verified by tests or procedures that are adequately specified when the result expressed in the process is achieved, and this without requiring undue effort in experimentation.
The invention also demonstrates that the surface properties, determining the safety and stability of cathodes in real batteries - the surface properties being measured as base content by pH titration -are strongly determined by the sulfur and the content of added elements of the group Ca, Sr, Y, La, Ce and Zr, and preferably Ca or Sr. The lithium transition metal oxides containing 0.15-0.6 mol% sulphur and 150-1500 ppm Calcium and strontium show reduced content of soluble base and an improved morphology, characterized by the absence of fine particles. As a result, the performance in rechargeable lithium batteries is improved. The lithium transition metal oxide can be prepared by a cheap process, for example by a single firing of a mixture of a suitable precursor and lithium carbonate in air. Preferably the precursor is a mixed metal precursor like mixed hydroxide, oxyhydroxide or carbonate, already containing adequate amounts of sulphur and calcium.
Surface modified cathode materials are prepared in a single step. For the preferred compositions the precursors can be enriched by Ca to reach a concentration of Ca of preferably 200-500 ppm. These precursors are used to prepare surface modified LiMO by a single cook. If the Ca impurity level of the precursors is lower, then Ca can be added to the precursor, preferably in liquid form, by a technique which the authors call slurry doping. High surface area precursor (for example mixed hydroxide) is dispersed in as little as possible water (or any other solvent) to form a paste of high viscosity. During rigid stirring a dissolved calcium salt like CaCl2 or Ca(NO3J2 is slowly added until the desired concentration is reached. During addition, and during the following drying, calcium precipitates well-dispersed onto the surface of the mixed hydroxide. Doping with the other preferred elements is performed in an analogous manner. Alternatively the calcium can be added during the precursor preparation process. This is possible by adding a small concentration of calcium (typically less than 100 ppm) to the water used to dissolve the metal salt (for example MSO4) precursor or base (NaOH)
precursor. Alternatively Ca can be added in higher concentration to the water used to wash the precursor after finished precipitation.
When a small amount of calcium, strontium, or the other M' metal is added to the metal salt, like MSO4, some of it is trapped in the precipitated hydroxide. During the sintering step with Li2CO3 the lithium transition metal oxide crystallites form. Because e.g. Ca(2+) or Sr(2+) are too large to fit into the crystal structure there is a tendency to push them out during sintering. By their size Ca or Sr allow to stabilize the oxide surface, and as a result a mono or sub-monolayer forms of M1 is formed. In fact, when M', like Ca, is present on the surface of the crystallites, it acts as a sort of glue between grains.
The surface modification by calcium is possibly a catalytic de-activation of active surface sites, because (a) Calcium (or one of the other preferred elements) has a much larger ionic radius and cannot be doped into the bulk structure and (b) up to 1500 ppm Ca (or one of the other preferred elements) is simply not enough to form a coating layer. (Here the word coating is used in the conventional sense as a layer consisting of at least 10-100 atomic layers, corresponding to a few nm to about 100 nm thickness). The authors speculate that the mechanism of de-activation is related to a phenomenon known from catalyst technology as catalyst poisoning. During operation of a catalyst (for example platinum in a gas containing traces of sulphur species) trace amounts can de-activate the catalyst by covering catalytically active sites.
At least 150 ppm of the elements like Ca, Sr, Y, La, Ce and Zr, are needed to achieve the beneficial effect, if the level is much higher, especially > 1500 ppm, then the electrochemical properties suffer, particularly the rate performance decreases and the irreversible capacity increases. The inventors of the actual patent application discovered that sulphur levels of
0.2 - 0.6 wt% can be tolerated if at least 150 ppm of the elements like Ca, Sr, Y, La, Ce and Zr is present, and that 0.2-0.6 wt% of sulphate is harmful to the cathode performance if the Ca impurity is lower.
The invention is further explained by the following Examples and Figures. The Figures are summarized as follows:
Fig. 1 : X-ray diffraction pattern at different sintering temperatures
Fig. 2: FWHM as function of scattering angle
Fig. 3: X-ray diffraction pattern with detailed peak separation
Example 1 : High crystallinity
a) for M'k Sm with k, m = 0 and M = Ni1-OdMn0COd.
A hydroxide MOOH with
was used as precursor. Samples were prepared at 92O0C, 94O0C, 96O0C and at 9670C. As expected, the BET surface area decreased with increasing temperature. The Li:M was basically identical (all samples had identical unit cell volume). The electrochemical performance improved with temperature, having the best performance at approx. 960-9700C sintering temperature.
Figure 1 shows the X-ray diffraction pattern of the 4 samples: the sintering temperatures of the samples A-D can be found in Table 1 below. The FWHM (full width at half maximum) vs. scattering angle (deg.) is shown for the (single) peaks 101 , 006, 102, 104, 105, 110, 108, 113, the FWHM values being determined as explained below. The 003 peak was excluded because it typically shows asymmetry which is not fitted very well. Peaks at >70 degree were not fitted because of smaller resolution.
Figure 2 shows the evolution of FWHM (left and right) as function of scattering angle (deg.) for the samples prepared at different temperatures from Table 1. Clearly, the FWHM decreases with increasing sintering temperature. The experimental results are summarized in Table 1.
Figure 3 gives an additional example of two X-ray diffraction patterns of a Li-M-oxide with M=Ni0.53Mn0.263Co0.2: sample E is according to the invention, while sample F is not. Note that the figure shows an X-ray diffraction pattern before filtering, i.e. with both
the Cu Kα1 and the Kα2 responses as explained below with respect to the proper determination of the FWHD.
Table 1 : Results for Li-M-oxide with M=Ni0.53Mn0.263Co0.2 - optimum crystallinity
In Table 1 , "VoI" stands for the unit cell volume per formula unit obtained by a Rietveld refinement of high resolution X-ray diffraction pattern (15 - 135 degree of 2 theta, 6 h measurement time). The unit cell volume is a very sensitive measure of the Li:M ratio. The refinement furthermore delivered the parameter for the "Size", together with the "Strain, which are a measure of the crystallinity of the sample. The larger the size and the smaller the strain, the better the crystallinity. The parameter "Q" corresponds to the specific capacity of the material using coin cells, measured between 4.3 and 3.0 V at a rate of 0.1 C. "Qirr" is the irreversible capacity, defined as Qcharge minus QDischarge, divided by Qcharge.
The FWHM (full width at half maximum) values were determined as follows. The Xray powder diffraction pattern was collected using a Rigaku D/Max 2000 diffractometer with theta - two theta geometry and Cu radiation. A relatively narrow receiving slit (0.15 mm) was selected to limit the peak broadening contribution caused by the instrument. The divergence slit was 1 degree. It should be noted that the intrinsic FWHM of the powder, i.e. the peak width caused by the crystallinity of the sample itself, is slightly less than that measured width, which always also includes some contribution from the instrument. The here reported and claimed FWHM values correspond to the values as measured with state of the art apparatus.
The Xray diffraction pattern contains two contributions, the main one being caused by the Kα1 radiation, and a secondary one, which has a lower intensity, by the Kα2 radiation. Obtaining a reliable FWHM requires to remove the Kα2 part from the diffraction pattern. This was achieved using the software "Jade", resulting in a pure Kα1 Xray powder diffraction pattern.
To assess the crystallinity, two single peaks with good intensity, not overlapping with other peaks, were chosen. These peaks are the 104 peak at about 44.5° and the 113 peak at about 68° . We hereby use the hexagonal notation of the rhombohedral space group R-3m in the naming convention. The peaks are fitted by the Origin 8 software, using a Lorentz function. The Lorentz FWHM is listed in the tables.
The results show that, with increasing crystallinity (larger size and smaller strain, less FWHM) the electrochemical performance improves until it saturates at a size of 330 nm. Samples with a sufficient degree of crystallinity have a FWHM of the 104 peak (which, besides the 003, is the peak with the highest intensity) below 0.1 degree. The 003 peak has a FWHM of less than 0.08 degree.
b) for Li1+3M1^O216 Mk Sn, with 0.015 < k < 0.15, 0.15 < m < 0.6.
Two batches of undoped MOOH hydroxide precursors were prepared, both with a composition according to M=Ni0.5Mn0.3Co0.2. These precursors had a tap density of respectively 1.63 g/cm3 and 2.03 g/cm3, and a D50 of the particle size distribution of about 10 μm. Impurities were sulfate, respectively 0.15 wt% and 0.5 wt%, all other impurities (Na, Ca) being below 150 ppm. The samples derived from these two batches are denominated as series A and series B in Tables 1' and 1".
Both batches were then doped with Sr, according to the following process. Strontium nitrate was dissolved in water so as to obtain a 0.2 molar solution. About 1.5 kg of precursor was immersed into a stirred reactor, and an appropriate amount of ethanol was added, resulting in a relatively viscous slurry. During continued stirring, 68.5 ml of the strontium solution was slowly added. The reactor was closed, and the slurry heated to 60 °C. Evaporating ethanol was removed from the reactor using a diaphragm pump. The stirring continued until the slurry became too dry for stirring. The dry cake was
then sieved using a 53 μm mesh. The so obtained Sr modified precursor contained 800 ppm of Sr.
After this treatment, and compared with an untreated sample, no obvious changes of morphology could be demonstrated by either SEM or particle size analysis. In particular, no agglomerates containing larger Sr-salt crystals could be detected.
The final products were then prepared by blending with Li2CO3 and sintering. To this end, 1 kg blends of Li2CO3 and Sr containing MOOH were prepared using a Turbula mixer. The ratio of Li:M was approximately 1.03. Test samples were sintered at 950 0C and checked by Xray analysis. They showed lattice constants corresponding to a unit cell volume of 33.95 A3, i.e. within a preferred region.
Each actual samples wase prepared from ca. 200 g of blended powders. The firings were performed from 880 °C to 960 °C, in a flow of air, for about 24 h, heating and cooling times included. After sintering, the samples were sieved using a 53 μm mesh. The final Sr containing Li-M-O2 products were subjected to Xray analysis, Rietveld refinement, pH titration, coin cell testing, chemical analysis, and SEM.
Tables V and 1" summarize the results obtained with the strontium containing samples from series A and B, as a function of the sintering temperature. The "Q" and "Rate" parameters were measured using coin cells. "Q" is the specific capacity measured at a discharge rate of 0.1 C, while "Rate" is a measure of the high rate discharge behavior, reported as the ratio of the 2 C capacity to the 0.1 C capacity. The FWHM values were measured according to the procedure of Example 1 a. The base content and BET surface area decrease with increasing sintering temperature. Since low base content and low BET are desired, a narrow FWHM is preferred. It is indeed assumed that a high BET increases the area where unwanted reactions between electrolyte and charged cathode can take place, thus causing poor safety performance, whereas a high base content is known to lower the high temperature storage properties.
Performances thus appear to be excellent for the samples showing a 104 peak with a FWHM of 0.1 ° or less. Also, a FWHM of 0.08 or more seems desirable for this peak. This is valid for both the undoped (Example 1 a) and the Sr-doped (Example 1 b) samples.
Table V: Series A samples, preparation conditions and evaluation
Example 2: Improved safety and lower base of Ca containing cathode
2 cathode materials MP1 and MP2 with composition Li1+aM1.aO2tb CakSm were produced at large scale (several tons) from mixed transition metal hydroxide, which contained different amounts of Ca and sulfur. In both cases the stoichiometry was very similar (a=0.05, M=Mn173Ni1 Z3Co1 Z3 , m≡.0.4 mol% ) but the level of Ca was different : MP1 had 393 ppm Ca, whereas MP2 had a normal impurity level of 120 ppm Ca (normally more than 50 but less than 150 ppm are found). Other properties (lithium stoichiometry, particle size, BET surface area, X-ray diffraction pattern were basically similar.
The content of soluble base was measured as follows: 100 ml of de-ionized water is added to 7.5g of cathode, followed by stirring for 8 minutes. Settling-down is allowed for typically 3 minutes, then the solution is removed and passed through a 1 μrπ syringe filter, thereby achieving > 9Og of a clear solution which contains the soluble base.
The content of soluble base is titrated by logging the pH profile during addition of 0.1 M HCl at a rate of 0.5 ml/min until the pH reaches 3 under stirring. A reference pH profile is obtained by titrating suitable mixtures of LiOH and Li2CO3 dissolved in low concentration in Dl water. In almost all cases two distinct plateaus are observed. The upper plateau is OHVH2O followed by CO3 2VHCO3 ' , the lower plateau is HCO3 " /H2CO3. The inflection point between the first and second plateau as well as the inflection point after the second plateau is obtained from the corresponding minima of the derivative d pH I d VoI of the pH profile. The second inflection point generally is near to pH 4.7. Results are listed as micromole of base per g of cathode.
The amount of base which goes into solution is very reproducible, and is directly related to surface properties of the cathode. Since these have a significant influence on the stability (i.e. safety and overcharge/high T storage properties of the final battery) there is a correlation between base content and stability.
Tables 1A and 1 B summarize the results.
Table 1A: Properties of sample MP1 and MP2
TapD: tap density
Table 1B: Properties of sample MP1 and MP2
The samples are very similar, with one exception: the soluble base content of sample MP1 (with high Ca) was significantly lower than for MP2. Other properties are very similar, and although MP2 (with low Ca) shows slightly higher capacity, slightly lower irreversible capacity and slightly higher rate performance, the results for MP1 are still acceptable. More important, the samples MP1 and MP2 were sent to battery producer for safety testing. Whereas MP1 passed the safety test, MP2 did not pass.
The "Safety overcharge test" used here is a safety test where a battery is charged at a very high rate (for example with 1C charge rate) until a much higher voltage than the normal operating voltage (for example 20V) is reached. In many cases during such a test more lithium is extracted from the cathode than can be inserted to the anode, so the dangerous effect of lithium plating occurs. At the same time the highly delithiated cathode is in a highly reactive state, and ohmic (resistive) heat is generated. The heat can initiate the dramatic thermal run-away reaction, ultimately leading to the explosion of the battery. Whether a battery passes such a test (i.e. does not explode) or not is strongly dependent on the choice of cathode material, its morphology, impurity levels and its surface chemistry. Very little fundamental scientific understanding exists, but the presence of fine particles definitively contributes to poor safety.
Conclusion: the higher content of Ca caused lower soluble base content and higher safety.
Example 2 showed that a Ca content of approx. 250-400 ppm effectively lowered the base content and improved the safety of the cathode. If we now estimate the number of atomic layers on top of the surface of the cathode, assuming that a) all of the calcium is located at the surface of the cathode particles, b) the surface area of the cathode is reliably obtained by 5 point BET measurement using nitrogen, c) Calcium is evenly distributed on the surface, d) the average distance between Ca atoms is the same as in CaO; then it can be concluded that the effect of Ca is rather a catalytic effect (less than a few one atomic layer) and not caused by a conventional coating effect (many layers of atoms).
Example 3: Optimization of Ca and Sulfur additions.
This Example serves to demonstrate 2 aspects of the invention:
(1 ) it confirms the observation of Example 2 that Ca "neutralizes" the negative effect of a high soluble base content of sulfur containing cathodes, and
(2) it demonstrates that only samples which contain both sulfur and calcium according to the invention show good overall performance.
The Example uses a mixed transition metal hydroxide precursor with metal composition M=Mn1Z3Ni1 Z3Co1 Z3. The precursors naturally are low in Ca but contain some sulfur. The sulfur is removed after preparation of a preliminary Li-M-Oxide sample (Li:M = 1.1 ) by washing. Then the preliminary sample is used as precursor, and the following matrix is prepared:
(6a): no addition of sulfur nor calcium
(6b): addition of 400 ppm Ca
(6c): addition of 0.5 wt% SO4
(6d): addition of both 400 ppm Ca and 0.5 wt36 SO4, followed by a re-sintering. Final samples with the same morphology but different Ca, S composition are obtained. The addition of Ca and/or S is performed by slurry doping of
the Li-M-oxide preliminary sample. Slurry doping is the drop-wise addition of a Li2SO4 solution or of a Ca(NO3)2 solution during stirring of a preliminary sample powder-in- water slurry of high viscosity, followed by drying in air. A total of 400 ppm Ca or 5000 ppm (SO4) sulfur was added. Note that 1000 ppm of sulfate generally corresponds to approx. 0.1 mol% of sulfur, more accurate - for LiL04M0-96O2 1000 ppm correspond to 0.105 mol %. The experiment was repeated for a precursor with M=NiO-53Mn0-2ZCo0-2 composition, where the preliminary sample - the precursor during slurry doping - was prepared using a Li:M=1.02 blend ratio.
Electrochemical properties are tested, and settling down kinetics are measured. The sample without added Ca showed the highly undesired fine particles which do not settle down. All samples with Ca settled down very fast. Of all samples - only the sample which contains Ca and sulfur show overall good performances, as can be seen in Tables 2A and 2B.
Samples situated outside the claimed concentrations (either too high or too low) show the following disadvantages:
Low Ca & low S04 -» unacceptable level of fine particles
Low Ca and high SO4 -> high soluble base content, fine particles
High Ca and low SO4 -> relatively poor electrochemical performances.
Table 2A: Slurry doped Li Mn1Z3Ni1 Z3Co1Z3 O2
Table 2B: Slurry doped Li Nio.53Mn0.27Cθo.2 O2
Note that in this test (2B) some of the added SO4 was lost due to crystallisation.
As a result of Examples 2 and 3 the following Table 2C gives an overview of the addition of Ca and S.
Table 2C: Overview
Example 4: Comparison of identical morphology with high/ low Ca content
A sample EX10A (1 kg size) is prepared from a mass scale production precursor mixed hydroxide with metal composition Mn1Z3Ni1 Z3Co1Z3 by mixing the precursor with Li2CO3 (blend ratio 1.1 ) followed by heating to 96O0C. EX10B is prepared in the same way, with the exception that the precursor was modified by the previously described slurry doping: A total of 400 ppm Ca was slowly (drop wise) added in the form of Ca(NO3J2 to a water based slurry of the precursor, followed by drying (no filtering).
Table 3A and 3B summarize the results
Table 3A
Table 3B
As Tables 3A and 3B show, besides of the Ca impurity level, all 3 samples are, as expected for samples prepared under similar conditions from the same precursor, very similar. The PSD, obtained by laser diffraction are identical. Similar as observed in previous examples - the sample with Ca addition shows the smallest content of soluble base.
Example 5: Alternative elements besides Ca.
This example uses a mixed transition metal hydroxide precursor with metal composition M1=Mno.33Nio.38 Cθo.29 as precursor. The precursor is low in Ca but contain some sulfur. A similar experiment is done with a mixed hydroxide precursor with M2=Ni0.53Ni0.27Co0.2 composition.
The precursors are doped by slurry doping: 1000 ppm of nitrate solutions of Ca, Y, Sr, La, Ba, Fe are added, respectively. A reference was slurry doped but no metal was
added. After slurry doping the precursors were mixed with Li2CO3 and cooked. Besides of the doping, final composition (Li, Mn, Ni, Co) was very similar.
To compare the efficiency to lower the base content the following parameters are considered:
(a) Soluble base content (= soluble base / mass of cathode)
(b) Specific surface base (= soluble base content / surface area of cathode) (C) Molar efficiency of dopant (μmol) versus gravimetric efficiency of dopant (ppm)
The results are summarized in Tables 4A (M1 ) and 4B (M2) below.
Table 4A: Efficiency of Ca, Y, Ba, Sr, La for Li-M-oxide with M=Mno.33Nio.38 Cθo.29
Table 4B: Comparison of the efficiency of Ca, Y, Ba, Sr, La for Li-M-oxide with
The conclusions are as follows:
(a) Base content: Sr and Ca, and to a lesser degree Y and Ba are most efficient to lower the soluble base content.
(b) The final samples have different BET area, hence the "Specific Surface Base Content" is observed: Ca, Sr and Y, and to a lesser degree La lower the specific surface base content of the cathode.
(c) Gravimetric efficiency: Sr and Ca are the most efficient. Molar efficiency: Considering the high molecular weight of Y (more than twice that of Ca) we conclude that both Ca and Y are most efficient to neutralize high base caused by sulfur. Sr is somewhat less effective and La shows noticeable, but small efficiency. Ba is not effective, as can be seen in the "Specific Surface Base Content". Fe is inert
(not reported).
The authors speculate that the effective elements have an ionic radius of
0.7 - 1.2 Angstrom. Especially Ca and Y - which have almost similar and quite small ionic radius (in 6 coordination Ca: 0.99, Y: 0.893 A) - have a size that fits very well to
the surface of Li-M-oxide. The more preferred range for ionic radii is 0.85-1.15 Angstrom.
Example 6: Strontium versus Calcium Example 5 compared the efficiency of Ca, Sr, La, Ba, Y to lower the content of soluble base.
However, Example 5 did not take into account that the sintering kinetics change with different additives - yielding very different BET values. Example 6 compares the effect of Ca and Sr more carefully. A reference without addition of additive (Ca or Sr) was prepared from a mixture of mixed transition metal hydroxide
and Li2CO3 at 98O0C. Further samples with addition of 400 and 1000 ppm Sr and 400 ppm Ca were prepared. Each sample used 1 kg of MOOH + Li2CO3. The additive (Ca, Sr) was added by the previously described "slurry doping" process. Appropriate amounts of solution of Sr(NO3)2 and Ca(NO3J2 were added to a high viscous slurry of the precursor hydroxide during rigid stirring.
The sintering temperature was adjusted to achieve a similar sintering. Base content was measured, unit cell volume and crystallite size was obtained from X-ray diffraction and electrochemical properties were tested by coin cells. Tables 5A and 5B summarizes the preparation conditions results
Table 5A: Preparation and morphology of samples with Sr, Ca addition
Table 5B Electrochemical performance (capacity, irreversible capacity and rate (versus 0.1C) of samples with Sr, Ca addition
The morphology (BET, particle size) of all samples was basically identical. Ca addition is most effective to lower the base content. 1000 ppm Sr reduce the base content about the same, but less than 400 ppm Ca. However, Sr is interesting because it reduces the base and at the same time the electrochemical properties deteriorate less than for 400 ppm Ca addition.
The Examples illustrating the high crystallinity (Ex. 1 and ) show that the skilled man learns in this invention that, for a given composition, expressed in terms of Li:M ratio, it is the sintering temperature that determines the crystallinity of the obtained oxide. A small number of tests enables him to select the correct temperature in order to
obtain a material having an X-ray diffraction peak at 44.5° , and preferably also at 18.6°, with a FWHM value less than or equal to 0.1 ° . The skilled man has to:
- select the composition of the final product and prepare the corresponding quantities of M- and Li- precursors, - perform a number of sintering steps at different temperatures above 900° C, for example at intervals of 20°C between 920° and 1000°C, to prepare samples of the final lithium transition metal oxides,
- plot the FWHM values of the peaks of an X-ray diffraction pattern against the degrees for each of the samples, - determine the sintering temperature yielding FWHM values less than or equal to 0.1 ° for the diffraction peak at 44.5° , and preferably also at 18.6° .
Claims
1. A powderous lithium transition metal oxide having a layered crystal structure Li1+aM1.aO2±b M'k Sm with -0.03 < a < 0.06, b = 0, 0 < m < 0.6, m being expressed in mol%, M being a transition metal compound, consisting of at least 95% of either one or more elements of the group Ni, Mn, Co and Ti; M1 being present on the surface of the powderous oxide, and consisting of either one or more elements of the group Ca, Sr, Y, La, Ce and Zr, wherein: either k = 0 and M = Ni1-C-C1MnCCOd, with 0<c<1 , and 0<d<1 ; or 0.015 < k < 0.15, k being expressed in wt% of said lithium transition metal oxide; characterized in that for said powderous oxide, the X-ray diffraction peak at 44.5 ± 0.3 degree, having as index 104, measured with K alpha radiation, has a FWHM value of < 0.1 degree.
2. The powderous lithium transition metal oxide according to claim 1 , characterized in that the X-ray diffraction peak at 18.6 ± 0.2 degree, having as index 003, also has a FWHM value of < 0.1 degree.
3. The powderous lithium transition metal oxide according to claims 1 or 2, characterized in that 0.15 < m < 0.6, m being expressed in mol%.
4. The powderous lithium transition metal oxide according to any one of claims 1 to 3, characterized in 0.0250 < k < 0.1 in wt%.
5. The powderous lithium transition metal oxide according to any one of claims 1 to 4, characterized in that M' is Ca, with 0.0250 < k < 0.0500, and preferably k < 0.0400, in wt%, and 0.25 < m < 0.6, in mol%.
6. The powderous lithium transition metal oxide according to any one of claims 1 to 5, wherein 0 < k < 0.15, k being expressed in wt% of said metal oxide, and with 0<c<1 , and 0<d<1 ; and preferably c=d=0.333.
7. Process for improving the crystallinity of a powderous lithium transition metal oxide according to any one of claims 1 -6, said metal oxide being obtained by sintering a M-hydroxide, -oxyhydroxide or - carbonate precursor together with a Li precursor, preferably lithium carbonate, at a temperature T of at least 9000C, and preferably at least 950°C, for a time t between 1 and 48 hrs, comprising the step of: selecting a value for (1 +a)/(1 -a) between
0.99 and 1.1 , and selecting said sintering temperature such that the X-ray diffraction peak of said lithium transition metal oxide at 44.5 ± 0.3 degree, having as index 104, measured with K alpha radiation, has a FWHM value of < 0.1 degree.
8. Process according to claim 7, further comprising the step of selecting said sintering temperature such that the X-ray diffraction peak of said lithium transition metal oxide at 18.6 ± 0.2 degree, having as index 003, has a FWHM value of < 0.1 degree, and preferably < 0.08.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09777608A EP2313346A1 (en) | 2008-08-04 | 2009-08-03 | Highly crystalline lithium transition metal oxides |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EPPCT/EP2008/006411 | 2008-08-04 | ||
EP09777608A EP2313346A1 (en) | 2008-08-04 | 2009-08-03 | Highly crystalline lithium transition metal oxides |
PCT/EP2009/005600 WO2010015368A1 (en) | 2008-08-04 | 2009-08-03 | Highly crystalline lithium transition metal oxides |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2313346A1 true EP2313346A1 (en) | 2011-04-27 |
Family
ID=43760034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09777608A Withdrawn EP2313346A1 (en) | 2008-08-04 | 2009-08-03 | Highly crystalline lithium transition metal oxides |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP2313346A1 (en) |
-
2009
- 2009-08-03 EP EP09777608A patent/EP2313346A1/en not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2010015368A1 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8343390B2 (en) | Highly Crystalline lithium transition metal oxides | |
EP2178800B1 (en) | Doped lithium transition metal oxides containing sulfur | |
US20230253554A1 (en) | Ni based cathode material for rechargeable lithium-ion batteries | |
US7648693B2 (en) | Ni-based lithium transition metal oxide | |
US10756344B2 (en) | Precursor and method for preparing Ni based Li transition metal oxide cathodes for rechargeable batteries | |
JP5409724B2 (en) | Positive electrode material that combines high safety and high output in Li storage batteries | |
EP3776695B1 (en) | Lithium transition metal composite oxide as a positive electrode active material for rechargeable lithium secondary batteries | |
TW201717458A (en) | Precursor and method for preparing Li transition metal oxide cathodes for rechargeable batteries | |
EP3863973A1 (en) | Lithium transition metal composite oxide and method of production | |
EP2313346A1 (en) | Highly crystalline lithium transition metal oxides | |
Strobel et al. | Structural and electrochemical properties of new nanospherical manganese oxides for lithium batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110304 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20121214 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20160301 |