EP2387809A2 - A radome and method of cooling radar components - Google Patents
A radome and method of cooling radar componentsInfo
- Publication number
- EP2387809A2 EP2387809A2 EP10799491A EP10799491A EP2387809A2 EP 2387809 A2 EP2387809 A2 EP 2387809A2 EP 10799491 A EP10799491 A EP 10799491A EP 10799491 A EP10799491 A EP 10799491A EP 2387809 A2 EP2387809 A2 EP 2387809A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- housing
- radome
- ram air
- radar
- air inlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 238000001816 cooling Methods 0.000 title claims abstract description 10
- 230000005540 biological transmission Effects 0.000 claims description 4
- UJCHIZDEQZMODR-BYPYZUCNSA-N (2r)-2-acetamido-3-sulfanylpropanamide Chemical compound CC(=O)N[C@@H](CS)C(N)=O UJCHIZDEQZMODR-BYPYZUCNSA-N 0.000 claims description 3
- 241001669680 Dormitator maculatus Species 0.000 claims description 3
- 239000002826 coolant Substances 0.000 description 4
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/42—Housings not intimately mechanically associated with radiating elements, e.g. radome
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/02—Arrangements for de-icing; Arrangements for drying-out ; Arrangements for cooling; Arrangements for preventing corrosion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/28—Adaptation for use in or on aircraft, missiles, satellites, or balloons
Definitions
- the present invention relates to a radome particularly, but not exclusively, a radome for mounting on an aircraft's fuselage in order to protect and cool the aircraft's radar scanner components.
- a method of cooling radar scanner components in order to maintain the working temperature of the radar scanner components is also provided.
- Radar systems are used in a number of different scenarios in order to retrieve information such as the range, altitude, direction, speed etc. of moving objects such as aircrafts, ships, land based vehicles etc. or fixed objects such as terrain.
- Radar systems are typically housed in a radome which is designed to streamline and protect the working components of the radar whilst minimising any interference on the returned signal.
- ESA Electrode Scanned Array
- Active Phased Array Active Phased Array
- One of the important differences between the mode of operation of ESA radar systems and previous systems is that ESA systems use their antenna to carry out transmission / reception of the radar signal rather than a discrete transmitter / receiver. This has some significant advantages over previous systems; however, it does produce the side effect that the antenna heats up more during use than in previous radar systems. If left unchecked, this additional heat factor can contribute to a deterioration in equipment performance and or malfunction.
- Some form of maintaining the scanner components at working temperature in such systems is therefore required.
- One way of maintaining the working temperature of the radome is to use coolant based refrigeration techniques or recirculation of pressurised air within the housing in order to maintain an optimum temperature within the radome.
- such systems require undesirably complex
- a radome comprising:- a radar component housing;
- a ram air inlet provided in the radar component housing
- a ram air outlet provided in the radar component housing such that when the radome is installed on the body of a moving craft, air flow relative to the craft will enter the housing by way of the ram air inlet, circulate within the housing, and exit the housing by way of the ram air outlet in order to cool radar components within the radar component housing.
- the radome may be adapted to be mounted on an aircraft fuselage.
- the position of the ram air inlet and ram air outlet may be such that a transmission / reception antenna within the radome housing is cooled by the air circulating within the radome housing.
- the ram air inlet comprises a hole through a wall of the radome housing and a recessed flap surface in the radome housing.
- the ram air inlet is provided in a side wall of the radome housing.
- a removable filter element may also be provided at the ram air inlet.
- the ram air inlet comprises a NACA duct in a wall of the radome housing.
- the ram air outlet is provided in a lower wall of the radome housing.
- the ram air outlet is provided with a socket which allows it to be connected to a suction device.
- the socket may comprise a bayonet connection. For ground operation, this allows a suction device to induce a flow through the radome to provide the necessary flow of air in the radome.
- the ram air inlet may be provided aft of the ram air outlet in order to encourage circulation of air within the radome housing.
- a recirculation fan may also be provided to improve circulation of air within the radome housing.
- a method of cooling radar components comprising the steps of:- housing radar components in a radar housing;
- Fig. 1 is a schematic plan view from beneath a radome according to the present invention.
- Fig. 2 is a schematic side view of the radome of Fig. 1 where the radome is installed on the belly of an aircraft's fuselage.
- a radome, generally designated 10 has a radar housing 12 which has a streamlined profile in order to reduce drag on the aircraft.
- the radar housing 12 is attached to the underside of an aircraft's fuselage 14 and protects the radar scanner components 16 therein.
- the radar scanner components may include e.g. a transmission / reception antenna and a processor which are linked to the aircraft avionics in order to provide an integrated radar system.
- a NACA duct ram air inlet 18 (best seen in Fig. 1 ) is provided through one side of the radar housing 12.
- the ram air inlet 18 in the embodiment shown comprises a hole with a recessed flap 18 to receive the oncoming airflow (labelled "IN") such that the air IN enters the radar housing 12.
- a ram air outlet 20 (best seen in Fig. 2) is provided on the bottom of the radar housing 12.
- the ram air outlet 20 in the embodiment shown comprises a hole having a scooped flap which is directed away from the oncoming airflow (labelled "OUT") in order to encourage air circulating within the radar housing 12 to exit the radar housing 12.
- a removable filter element (not shown) may also be provided at the ram air inlet. This is useful, to filter out any unwanted contaminants in the incoming air flow. For example, in low level operations, the surrounding air may have a significant salt content; however, the removable filter is able to filter this out in order to prevent long term damage to the radar scanner
- the air inlet 18 is provided to the side of the radar scanner components 16 and the outlet 20 is provided forward of the radar scanner components 16. This ensures that the air entering the inlet must circulate within the radar housing 12 before it exits the outlet 20 and prevents the air simply entering the inlet 18 and passing straight through the radar housing 12 and out the outlet 20 without circulating over the radar scanner components 16. This forces circulation of the air within the radome 12 thereby ensuring optimum cooling within the radome 10.
- a recirculation fan 22 (Fig. 2) is also mounted in the radar housing 12. This may or may not be necessary; however, if provided it may further improve the circulation of air within the radar housing 12.
- the recirculation fan 22 may be driven in order to optimise recirculation of air in the housing 12.
- ram air IN is forced into the radar housing 12 through the ram air inlet 18.
- the dynamic air pressure at the inlet 18 may assist with this.
- the ram air enters the radar housing 12 it circulates around the inside of the housing 12.
- the distribution of the circulating air in the radar housing 12 can be improved by the recirculation fan 22, if required. Because ram air is typically relatively cool (particularly when the aircraft is flying in cooler, higher air) the flow of the air over the radar scanner components 16 cools those components. After circulating within the radar housing 12, the air will have been warmed by the radar scanner components 16 (in particular the antenna) and will exit the radome housing 12 by way of the ram air outlet 20.
- the ram air inlet 18 is positioned aft of the ram air outlet 20 such that the air entering the ram air inlet 18 must pass over the radar scanner components 16 before it can exit the ram air outlet 20.
- the relative positions of the inlet 18 and outlet 20 can be reversed if desired.
- the aft facing scoop of the ram air outlet 20 and the motion of the air flowing over the outer surface of the radome 12 results in a vacuum effect being created at the ram air outlet 20 to encourage the warmed air to be expelled from the ram air outlet 20 as the flow of air, labelled OUT in the Figs.
- the invention therefore provides an improved system of cooling
- the reduced part count and complexity has a number of further steps
- the invention is installed on an aircraft, it will be appreciated that it could equally be installed over the radar scanner components of any moving craft which is capable of moving at an air speed which results in a sufficient magnitude of ram air being imparted on the air inlet and air outlet.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Astronomy & Astrophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Radar Systems Or Details Thereof (AREA)
- Details Of Aerials (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0912158A GB0912158D0 (en) | 2009-07-14 | 2009-07-14 | A radome and method of cooling radar scanner components |
PCT/GB2010/051141 WO2011007164A2 (en) | 2009-07-14 | 2010-07-13 | A radome and method of cooling radar components |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2387809A2 true EP2387809A2 (en) | 2011-11-23 |
EP2387809B1 EP2387809B1 (en) | 2017-01-04 |
Family
ID=41057880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10799491.5A Active EP2387809B1 (en) | 2009-07-14 | 2010-07-13 | A radome and method of cooling radar components |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2387809B1 (en) |
GB (1) | GB0912158D0 (en) |
WO (1) | WO2011007164A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3482455A4 (en) * | 2016-07-05 | 2020-01-22 | Commscope Technologies LLC | Radome, reflector, and feed assemblies for microwave antennas |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2474923B (en) | 2008-07-18 | 2011-11-16 | Phasor Solutions Ltd | A phased array antenna and a method of operating a phased array antenna |
GB201215114D0 (en) | 2012-08-24 | 2012-10-10 | Phasor Solutions Ltd | Improvements in or relating to the processing of noisy analogue signals |
GB201403507D0 (en) | 2014-02-27 | 2014-04-16 | Phasor Solutions Ltd | Apparatus comprising an antenna array |
CN107942292A (en) * | 2017-10-27 | 2018-04-20 | 四川嘉义雷科电子技术有限公司 | It is provided with the distance-measuring equipment of gas cooling device |
DE102018102765A1 (en) * | 2018-02-07 | 2019-08-08 | Airbus Operations Gmbh | Antenna arrangement for an aircraft |
DE102019201103A1 (en) | 2019-01-29 | 2020-07-30 | Lufthansa Technik Aktiengesellschaft | Attachment housing for attachment to an aircraft |
CN113286490B (en) * | 2021-05-12 | 2022-08-16 | 北京无线电测量研究所 | Active and passive thermal control system of stratospheric airship radar |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007208468A (en) * | 2006-01-31 | 2007-08-16 | Toshiba Corp | Radome and antenna system with the radome |
-
2009
- 2009-07-14 GB GB0912158A patent/GB0912158D0/en not_active Ceased
-
2010
- 2010-07-13 EP EP10799491.5A patent/EP2387809B1/en active Active
- 2010-07-13 WO PCT/GB2010/051141 patent/WO2011007164A2/en active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2011007164A2 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3482455A4 (en) * | 2016-07-05 | 2020-01-22 | Commscope Technologies LLC | Radome, reflector, and feed assemblies for microwave antennas |
US11108149B2 (en) | 2016-07-05 | 2021-08-31 | Commscope Technologies Llc | Radome, reflector, and feed assemblies for microwave antennas |
Also Published As
Publication number | Publication date |
---|---|
GB0912158D0 (en) | 2009-08-26 |
WO2011007164A3 (en) | 2011-05-05 |
WO2011007164A2 (en) | 2011-01-20 |
EP2387809B1 (en) | 2017-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2387809B1 (en) | A radome and method of cooling radar components | |
US8678310B2 (en) | Ducted ram air generator assembly | |
CN113272678B (en) | System for cooling sensor components | |
CA2595154C (en) | Air inlet and method for a highspeed mobile platform | |
WO2021064376A2 (en) | Systems and methods for aircraft | |
US10059435B2 (en) | Low drag skin heat exchanger | |
WO2020033010A3 (en) | Aircraft drag reduction system and internally cooled electric motor system and aircraft using same | |
US9175695B2 (en) | Fluid-cooling device for a turbine engine propulsive unit | |
US11820496B2 (en) | Heat dissipation structure, heat dissipation method and device, unmanned aerial vehicle, and readable storage medium | |
EP2557039B1 (en) | Aircraft supplemental liquid cooler and method | |
US20080099631A1 (en) | Tandem air inlet apparatus and method for an airborne mobile platform | |
JP7050958B2 (en) | Antenna device | |
CA2720836A1 (en) | De-icing system for an airplane | |
CN101730791A (en) | Turbojet engine for aircraft | |
US11673682B2 (en) | Vehicle heat exchanger system including an inflatable member operable to press a cooling tube | |
US20060272800A1 (en) | Radiator fan shroud with flow directing ports | |
CN215590991U (en) | Flying body and power device | |
EP0362796A2 (en) | Pod assembly with integrated radio frequency and aerial refueling equipment | |
US11326515B2 (en) | Arrangements for drawing in air and trapping foreign bodies in an aircraft propulsion assembly | |
CN208904220U (en) | A kind of air-cooled radome of airborne suspension type | |
US20200247535A1 (en) | Ducted rotor stators | |
US20150099446A1 (en) | Chilled air plenum system for aircraft galleys | |
CN221316702U (en) | Unmanned aerial vehicle structure of high-efficient heat dissipation | |
RU2718694C1 (en) | Unobtrusive multifunctional aircraft of long range and flight duration | |
CA2602214A1 (en) | Aircraft propulsion system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110720 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160517 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 860070 Country of ref document: AT Kind code of ref document: T Effective date: 20170115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010039383 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Ref country code: NL Ref legal event code: MP Effective date: 20170104 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 860070 Country of ref document: AT Kind code of ref document: T Effective date: 20170104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170504 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170404 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170504 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170404 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010039383 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 |
|
26N | No opposition filed |
Effective date: 20171005 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170713 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170104 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230603 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230710 Year of fee payment: 14 Ref country code: DE Payment date: 20230710 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240618 Year of fee payment: 15 |