EP2232070B1 - Mikropumpe - Google Patents
Mikropumpe Download PDFInfo
- Publication number
- EP2232070B1 EP2232070B1 EP08870391A EP08870391A EP2232070B1 EP 2232070 B1 EP2232070 B1 EP 2232070B1 EP 08870391 A EP08870391 A EP 08870391A EP 08870391 A EP08870391 A EP 08870391A EP 2232070 B1 EP2232070 B1 EP 2232070B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- micropump
- actuator
- layer
- inlet valve
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/02—Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
- F04B43/04—Pumps having electric drive
- F04B43/043—Micropumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B19/00—Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
- F04B19/006—Micropumps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49229—Prime mover or fluid pump making
Definitions
- the invention relates to a micropump according to the preamble of claim 1H.
- Micropumps for controlled and highly accurate delivery of insulin are known in principle.
- previous micropumps suffer from complex manufacturing processes with many non-standard process steps.
- the many special process steps of the prior art make such micropumps expensive and lower the manufacturing yields.
- micropumps are not accurate enough in terms of delivered drug levels.
- micropumps for insulin delivery must work very precisely with high dosing accuracy, without the need for elaborate sensors to detect delivered insulin volumes.
- An active flow measurement is very problematic in connection with insulin, because the substance reacts to elevated temperatures, such as in connection with so-called hot-film sensors for flow measurement, harmful.
- a serious disadvantage of previous micropumps is also the lack of security: for example, in micropumps according to the prior art, the emitted Amount of insulin depends on the pre-pressure in the insulin reservoir, which, when designed as a flexible bag, can be mechanically pressurized. For example, setting, or lying the pump wearer on the insulin micropump the reservoir to an unwanted insulin delivery, or lead to an unwanted increase in the dose just delivered. In view of the dangers of insulin overdose, this should be avoided at all costs.
- the EP 1393469 A2 shows a semiconductor device with regions of different pore structure and a corresponding manufacturing method.
- the semiconductor substrate has two partial regions which differ in their pore structure.
- the DE 10 2005 052 039 A1 shows a method for manufacturing a micropump and a micropump made by this method, in which the micropump is made of a composite substrate and of a semiconductor material and an anodically bondable glass.
- the micropump is made of a composite substrate and of a semiconductor material and an anodically bondable glass.
- internal structures are first defined in the Andean bondable glass and at the same time further internal structures are defined in a second planar substrate to be applied.
- the EP 0424087 A1 describes a micropump having piezoelectric means which form part of a wall of a reservoir to thereby convey liquid into and out of the reservoir.
- a valve flap can be held by a spring.
- the US 5520522 describes a micropump which works by means of magnetstrictive or electrostrictive elements in order to dispense with faulty elements.
- the invention leads to a micropump, in particular for the highly precise delivery of insulin, the micropump having a plurality of functional elements, such as at least one inlet valve and at least one outlet valve and at least one pumping chamber.
- a micropump designed according to the concept of the invention is characterized in that all such functional elements of the micropump are produced exclusively by structuring layers from one direction.
- the functional elements are not generated by two-sided structuring processes, but merely by structuring processes that take place from one direction and one side.
- fragile production conditions can be avoided and the micropump thus be produced on a large scale with high yield.
- the at least one preferably exclusively an inlet valve, comprises at least one coil spring, which is arranged such that it has a in Z direction ensures soft suspension of the valve stem of the intake valve.
- the at least one preferably exclusively an inlet valve
- comprises at least one coil spring, which is arranged such that it has a in Z direction ensures soft suspension of the valve stem of the intake valve.
- Particularly preferred is an embodiment with several nested spiral springs in order to reduce unwanted material stress can.
- the micropump has a carrier layer, in particular of borosilicate glass, in which at least one fluid channel, in particular an inlet channel and / or an outlet channel, is / are introduced.
- the carrier layer additionally limits the pumping chamber directly.
- an embodiment is particularly preferred in which the inlet valve of the micropump by means of at least one actuator, preferably a piezoactuator, is actively sealable, so an embodiment in which the inlet valve of the micropump by a corresponding activation of at least one actuator can be kept closed so as to prevent insulin entry into the micropump even in the event that the insulin reservoir itself has been pressurized.
- the delivery volume of the micropump is thereby independent of the admission pressure in the insulin storage container.
- the described embodiment suppresses undesired active agent flows or refluxes of a required metered quantity and strictly limits the metering output to a so-called "stroke volume", which is the quantity corresponding to a pump stroke or "stroke".
- valve sealing surface of the inlet valve in particular arranged on a valve stem, can be pressed against the carrier layer by means of at least one actuator so as to avoid undesired inflow of fluid, in particular insulin, into the micropump.
- a valve sealing surface an exhaust valve by means of at least one actuator actively pressed against the carrier layer.
- the generated inlet valve structure and / or the outlet valve structure comprise at least one spiral spring section.
- the at least one coil spring preferably carries the valve stem of the respective valve. It can also several, for example, two to five, such coil springs, preferably three coil springs, are nested in one another, that the central valve stem is held completely symmetrical of these and can completely degrade any residual stress in the springs by a minimal rotation of the valve stem. Due to the relatively large spring lengths while a soft suspension of the central valve stem in the Z direction (ie perpendicular to the surface extension of the first and second carrier layer) realized, the spring height corresponds to almost the entire functional layer height. In this state, the at least one inlet valve punch and / or the at least one outlet valve punch still sits firmly on the stop or sacrificial layer arranged below the functional layer.
- the stop layer adjacent to the functional layer serves as the sacrificial layer, for example with the aid of liquid or vapor Hydrofluoric acid removed in a conventional manner.
- the functional unit "inlet valve” is freely movable and can thus be deflected in the Z direction.
- the spacing of the at least one spiral spring from the base layer now preferably corresponds to the thickness of the previously removed_stop layer (sacrificial layer) of preferably approximately 4 up to 5 ⁇ m. It is advantageous that in the described etching process as many areas of the mentioned stop layer are removed as they would later enter undesired compressive stresses into the mechanical structure of the micropump.
- the micropump including an active ingredient supply (preferably an insulin supply) and possibly also connected injection needle or microneedle array, is preferably mounted as a so-called “disposable” - a disposable item - in a device, in particular clipped, which represents the so-called “pump” for the end user.
- the "pump” preferably contains the control electronics, the energy supply eg by batteries or accumulators, a user interface and / or a wireless interface to a user interface or to a telemedical device, or possibly also a wireless interface to a blood sugar value determination device, the measured Blood glucose data sent to the "pump" for further processing.
- the "pump” preferably also contains the actuators of the micropump. These are up to three actuators, preferably three actuators, which act on the micropump at locations provided for this purpose, preferably on the inlet valve, on the pump membrane (ie on the pumping chamber) and on the outlet valve.
- the up to three actuators can preferably be embodied in the form of so-called piezo-stacks, ie arrangements of cascade-like piezoelectrical disks or individual elements connected to a piezoactuator which shortens or extends in length by an applied electrical voltage, depending on the polarity of the electrical voltage relative to the polarization of the piezo elements.
- the pumping function will be described with an arrangement of three actuators, although it is also possible to dispense with individual actuators and give up the corresponding associated subfunction or additional safety.
- the conditioning can be done manually or preferably automatically (for example motor-driven), for example by an actuator block comprising the three relatively positioned actuators being moved forward as a unit, until such as a resonance sequence change of one of the actuators (Preferably the piezo stack) indicates that a contact with the micropump, in particular the base layer or a force on the actuators takes place.
- the measurement on a single actuator, in particular on a single piezo element is sufficient to detect that the entire assembly is the correct one Location has reached.
- the contact of the actual pump membrane (preferably base layer) by the second actuator via its vibration behavior in electrical resonance excitation is very easy to detect.
- the core idea of this conditioning method is that when only one actuator is advanced in its nominal position, the nominal positions of the other actuators automatically also vote automatically because they have been adjusted relative to one another on the actuator block.
- the method is simply to bring an actuator to a hard stop, so for example, to block the inlet valve and / or the outlet valve or push through the pump diaphragm to the stop.
- the actuator block is advanced with a defined force until, due to the hard stop, no further movement is possible. In this case, an active measurement of the actuator position is unnecessary (for example due to resonance frequency change).
- the conditioning is carried out with the aid of at least one simple spring or spring arrangement, which simply presses the actuator block forward against the micropump without further motor action. If at least one the valves, either the inlet valve or the exhaust valve, to be blocked mechanically, so at least one of the two actuators unabated acts on the micropump or its valve seats, the desired position of the actuator is always defined relative to the micropump. It is never provided during operation of the pump that both the inlet valve and the outlet valve would both be released simultaneously, so both associated actuators would be shortened. This feature allows a particularly simple positioning of the actuator block by means of a spring, which only has to be strong enough to securely lock the two valves and to press against their stops - their valve seats.
- the micropump is then inserted or clipped into the "pump" only in the position provided for this purpose, for example within a guide or in a side frame, wherein the actuator block, for example manually, has to be pushed back slightly, for example, in order to be able to receive the micropump.
- the spring of the actuator block simply pushes the latter against the micropump, thereby blocking both the inlet valve and the outlet valve and at the same time exactly defining the actuator associated with the pump diaphragm in its position relative to the pump diaphragm.
- the pump membrane actuator second actuator
- the two valve actuators sufficient to apply over the actuator block and the spacer and the pumping action itself. If, for example, the outlet valve is to be released and then the pump membrane is brought into abutment by "stroke", the outlet valve actuator can be withdrawn by the thickness of the base layer of, for example, about 20 ⁇ m plus an additional offset of about 5 ⁇ m, preferably taking advantage of the piezoelectric effect.
- the intake valve actuator for example, by slightly less than the base layer thickness, so for example 19.5 ⁇ m withdrawn, whereby the, in particular middle, spacer along with the Aktuatorblock advances by just this distance and the pump diaphragm (preferably base layer) against its stop (preferably second carrier layer) or almost against their attack auslnaturet.
- the actuator block automatically, only by at least one simple spring or spring assembly in the desired position relative to the micropump, which means a comfortable handling when inserting the micropump and also intrinsic safety brings with it: passive spring action ensures that all valves are blocked in an electrically de-energized state, ie a "normally closed behavior" is present. In this constellation, insulin can not pass through the micropump even if the reservoir is pressurized because both the inlet and outlet valves are depressed by one actuator at a time.
- the micropump operates in the case of providing three actuators as follows:
- the actuator directly associated with the exhaust valve is retracted, for example by applying an electrical voltage to the piezo stack, whereby the exhaust valve is released. This does not mean that the exhaust valve is opened, but rather remains closed until it is opened by an overpressure inside the micropump. Only then can insulin leave the micropump. Since the inlet valve is still preferably blocked, insulin can not enter the micropump from the insulin supply.
- the actuator directly associated with the diaphragm of the micropump is extended, preferably by applying an electrical voltage, and pushes the pump diaphragm (preferably the base layer) to the top stop, i. preferably through to the second carrier layer.
- the so-called "stroke volume" is discharged through the outlet valve.
- the exhaust valve is blocked by extending the associated actuator (for example, by removing the electrical voltage that had shortened the actuator or briefly reverse the voltage and then set to zero) and then the intake valve associated with the first actuator, for example by applying shortened electrical voltage, whereby the inlet valve is released, but not yet opened.
- the inlet valve remains rather closed, even against an overpressure from the outside in the insulin reservoir, because nothing can flow out of the micropump due to the blocked outlet valve.
- the pumping chamber associated actuator is shortened, for example by removing the electrical voltage on Piezo stack and the pump diaphragm (preferably the base layer) moves back to its original position, the inlet valve is opened and a "stroke-volume" insulin enters the micropump.
- the inlet valve associated actuator is again electrically de-energized, whereby it expands to its original length and blocks the inlet valve again. Then the pumping process can be repeated.
- the third actuator exhaust valve actuator
- the second actuator pump actuator
- the first actuator releases the inlet valve
- the second actuator releases the inlet valve
- the first actuator releases the inlet valve
- the second actuator releases the inlet valve
- the first actuator releases the pump membrane to its original position, via the inlet valve the previously discharged "stroke volume” from the insulin reservoir is replaced again and enters the micropump , whereupon the inlet valve is blocked again by means of the first actuator, etc.
- actuators are piezoactuators, by means of which the function of the micropump has been described by way of example.
- actuators such as thermal or electrical actuators, in particular with appropriate Use spring mechanisms as actuators in addition to or as an alternative to piezo actuators.
- Fig. 1 starts the production of a micropump starting from a silicon wafer as a first carrier layer 1, which is provided on its front side V with a (thermal) oxide as the lower stop layer 2, in which at suitable location contact holes 3 for electrical contacting of the base support layer material silicon to subsequently applied silicon layers be created.
- the electrical contacts are advantageous for a later, so-called anodic bonding process, in which a current flow for entering a high-strength connection to a, for example in Fig. 10 shown, second carrier layer 4 (here: glass substrate) is required.
- Fig. 2 shows another intermediate stage of the micropump, in their manufacture, wherein on the front side of the lower stop layer 2, a base layer 5 formed as EpiPoly silicon layer was applied.
- the thickness of the base layer 5 is 11 ⁇ m.
- the base layer 5 can optionally be planarized, for example by a CMP step.
- Fig. 3 shows an alternative starting point for the manufacturing process, wherein of a so-called SOI wafer 6 as Starting material is started.
- the steps of the films 1 and 2 can then be omitted, since a higher-quality semifinished product is already used as the starting material.
- a disadvantage in this case is that no electrically conductive connection from the lower, first carrier layer 1 to the upper, arranged on the front side V of the first carrier layer 1, base layer 5 of the SOI wafer 6 via contact holes is available.
- suitable contact means must be provided over the wafer edge, eg, clamps or spring contacts, which electrically contact, for example, the upper base layer 5 of the SOI wafer 6 from the edge.
- Fig. 4 shows the continuation of the manufacturing process, regardless of whether the variant according to the Fig. 1 and 2 or the variant according to Fig. 3 is pursued. Illustrated below is based on the 4 to 12 the variant according to Fig. 1 and 2 in which a silicon wafer is assumed as the starting point (first carrier layer 1) - the "SOI wafer" variant can be easily derived therefrom.
- a thick oxide is deposited as an upper stop layer 7 and structured such that the stop layer 7 serving as the sacrificial layer remains on selected surfaces. These selected areas are all areas in later manufacturing steps, in which a silicon plasma etching process must be stopped and / or a cantilevered movable structure is to arise. It is essential that immediately above the contact holes 3, a stop layer 7 is provided.
- the thickness of the upper stop layer 7 is in the embodiment shown about 4 to 5 microns.
- SOI wafer for example, a thermal oxide grown to a thickness of 2.5 .mu.m and above a still 1.8 .mu.m thick oxide are deposited, such as in the form of TEOS or plasma oxide, which in total a stop layer thickness of about 4 , 3 ⁇ m yields.
- TEOS TEOS
- plasma oxide TEOS
- the deposition of the full stop layer thickness (oxide thickness) is preferably carried out as TEOS or plasma oxide at relatively low temperatures of, for example, 300 ° C. to 450 ° C.
- a manufacturing step is shown, in which on the front side of the base layer 5 and on the front side of the stop layer 7, a functional layer 8 having a thickness of about 15 to 24 microns was deposited.
- the functional layer 8 consists in the embodiment shown of an EpiPoly silicon layer. Since on the front side (layer surface) of the functional layer 8 must be later anodically bonded, a planarization of the surface, for example by a CMP process at this point is highly recommended, regardless of whether previously the base layer 5 planarized or for the Base layer, an SOI wafer layer was used.
- the planarization step must level the topography of the surface and "smoothen" the surfaces microscopically for bonding.
- Fig. 6 is the wafer stack after applying and structuring an Antibond layer 9, which on the later Valve sealing surfaces must remain, shown.
- the Antibond layer 9 may for example consist of silicon nitride, silicon carbide or graphite.
- recesses 10, 11 have been etched around the anti-bonding layer surface areas 9 to a depth of about 2 to 5 microns. These recesses 10, 11 are later not to come into contact with the second carrier layer 4 to be bonded in order to guarantee a mobility of microfluidic functional elements to be produced, here an inlet valve punch 14 and an outlet valve punch 17.
- the functional layer 8 has been structured inter alia in the region below the recesses 10, 11.
- a pumping chamber 15 and an outlet valve 16 having an outlet valve punch 17 has been created, wherein on the front side of the outlet valve punch 16 there is likewise an anti-bonding layer 9 as a sealing surface.
- the functional elements 12 are in accordance with the method step Fig. 7 not finished yet. For this it is still necessary, as is apparent Fig. 8 results in selectively removing the upper stop layer 7 (sacrificial layer).
- the inlet valve 13 or the inlet valve punch 14 is freely movable and can be deflected in particular in the Z direction.
- the distance of the inlet valve punch 14 to the base layer 5 corresponds to the thickness of the previously removed oxide (upper stop layer 7 (sacrificial layer)) of 4 to 5 ⁇ m.
- the formation of the inlet valve 13. This includes in the embodiment according to Fig. 7 a spiral spring 18, which in a plan view below the wafer stack in Fig. 7 is shown.
- the coil spring 18 carries the end of the inlet valve stem 14, whereby a soft storage of the inlet valve stem 14 is given in the Z direction and material stress can relax.
- FIG. 16 An enfindungssiee embodiment of the inlet valve 14 results from the perspective view according to Fig. 16 , Evident are three nested coil springs 18, all of which are connected at one end to the inlet valve stem 14 and although at evenly distributed circumferentially arranged locations.
- the central inlet valve punch 14 is held completely symmetrical by the coil springs 18 and any residual stress of the coil springs is completely degraded by a minimum rotation of the inlet valve punch 14. Due to the relatively large spring lengths, a soft suspension of the central intake valve plunger in the Z direction is realized, with the spring height corresponding to almost the entire sacrificial layer height.
- Fig. 16 the structure and the arrangement of the exhaust valve 16 with its central valve stem 17th Off Fig. 16 It can be seen that both an inlet valve chamber and an outlet valve chamber and the pumping chamber 15 are contoured circular and are interconnected via large opening cross-sections.
- Fig. 8 an intermediate step of manufacturing the micropump, in which the (top) stop layer 7 (sacrificial layer) was selectively removed.
- the inlet valve 13 is released.
- the inlet valve punch 14 was still firmly on the thick, the stop layer 7 (sacrificial layer) forming oxide, which has also formed the etch stop for the plasma etching process for structuring the functional layer 8.
- Fig. 9 illustrates an anodic bonding process:
- the pre-structured second carrier layer 4 here a borosilicate glass wafer (for example a Pyrexglaswafer) has holes at corresponding points as fluid channels 19, 20.
- the left in the drawing fluid channel 19 forms an inlet channel for supplying active ingredient (insulin) and the fluid channel 20, which is located in the plane of the right, an outlet channel for discharging a "stroke" volume.
- the fluid channel 19 is preferably connected to a storage tank or storage bag with insulin, and the fluid channel 20 is connected to an injection needle or particularly preferably a microneedle array, for example of porous silicon, etc.
- the peripheral edges of the lower ends of the fluid channels 19, 20 form the valve seats for the inlet valve plunger 14 and the outlet valve plunger 17, respectively.
- the anti-Bonn layer surface portions form the sealing surfaces of the inlet valve 13 of the outlet valve 16.
- Anti-bonding surfaces shown are provided as seats on the back of the second carrier layer 4.
- the functional layer 8 has to be contacted with an electrical voltage source and poled positively with respect to the second carrier layer 4, which has been set up in an adjusted manner.
- this contacting is possible without problems via the first carrier layer 1 due to the contact holes 3 in the lower stop layer 2.
- voltages of a few 100 V to a few 1000 V are used in a manner known per se, depending on the thickness of the second carrier layer 4.
- the anodic polarity of the front side or the silicon surface of the sacrificial layer 8 against the second carrier layer 4 results in a high-strength, high-precision and achieved irreversible connection of the contact surfaces to each other, without the need for an adhesive.
- the insulin within the micropump comes into contact only with silicon, borosilicate glass and the antibond layer - all these substances are well insulin-compatible.
- Fig. 10 shows the bonded wafer assembly after performing the anodic bonding process.
- the first carrier layer 1 has been removed.
- the back-thinning of the first carrier layer 1 can be done by back grinding, plasma etching or by a combination of back grinding and plasma etching. Alternatively, you can also be etched wet, such as in hot caustic potash using an etching mask as anterior protection.
- the removal of the complete first carrier layer 1 by plasma etching is particularly gentle, since no mechanical action takes place here. Since it is not necessary per se to etch anisotropically, it is possible, for example, to etch with an isotropic SF 6 process with advantageously higher removal rates of 50 to 100 pm / min or more, so that the removal of the first carrier layer 1 takes only a few minutes.
- the contact holes 3 Since an etching attack on the overlying base layer (in this case silicon) up to the (second) stop layer 7 takes place via the contact holes 3, it is advantageous to switch from pure isotropic plasma etching to an at least partially anisotropic plasma etching in the final phase of the process.
- the advantage of anisotropy is in the case that the contact holes 3 may be over-etched, for example to compensate for ⁇ tzenhomogenticianen or wafer thickness variations over the wafer surface, without the etchings in the base layer laterally in the contact hole areas are getting larger.
- the disadvantage is the lower etching rate for anisotropic etching.
- the recognition of this transition can, for example, by means of an optical end point detection via "Optical Emissions Spectroscopy" - so-called OES - done in which the achievement of the lower (first) stop layer 2 detected at any point and then the Passivier Marine be inserted for remedyiseren or further over-etching to be already in etching not laterally extended contact holes 3 during overetching.
- OES optical Emissions Spectroscopy
- the thick oxide region which is opposite to the contact hole 3 is etch-limiting.
- the OES endpoint recognition system also indicates when the first carrier layer, ie all silicon, has been removed from the lower stop layer 2 and the process has reached its end.
- Fig. 12 shows the removal of the remaining stop layers 2, 7: on the one hand, the planar lower stop layer 2, on the other hand, the upper stop layer 7 (sacrificial layer) ( ⁇ tzstopp Scheme over the open contact holes 3).
- the removal can in turn be carried out by liquid or vaporous hydrofluoric acid. Since, in particular, oxide layers introduce strong compressive stresses into the mechanical structure, it is advantageous to remove all oxide layers at the end of the process.
- the first actuator A1 is directly associated with the inlet valve 13, the second actuator A2 directly with the pumping chamber 15 and the third actuator A3 directly with the outlet valve 16.
- all the actuators A1 to A3 act directly on the base layer 5, which limits the micropump on the side remote from the second carrier layer 4.
- the second actuator A2 can be dispensed with (compare general description part).
- Fig. 13 illustrates the bonding process in the case of the "SOI wafer variant.” Except for the difficulty of electrically contacting the top SOI layer (base layer 5) via contact springs, etc. from the side or over the wafer edge, because there are no vias to the bottom , First carrier layer 1 are present, the structure and the procedure corresponds exactly to the counterpart of Fig. 9 ,
- Fig. 14 shows the bonded wafer stack after removing the first carrier layer 1. Since there are no contact holes in the lower stop layer 2 in the SOI structure, the removal of the first carrier layer 1 by etching back in plasma is particularly easy and simple. It is advantageous to control the isotropic silicon etching with SF 6 plasma with an end point recognition system (OES). This indicates when no more silicon is etched and when all has arrived on the lower stop layer 2, the lower stop layer 2 represents the etch stop for this etching process. In this case, an overetching can also be provided for safety in order to actually remove all silicon completely from the lower stop layer 2 and to compensate for prone inhomogeneities.
- OES end point recognition system
- Fig. 15 shows the state of the wafer day after removal of the lower stop layer 2 by liquid or vapor HF. Also in this case, it is advisable to remove all the oxide to remove unwanted compressive stresses from the mechanical structure.
- the function of the shown actuators A1 to A3 will be explained in the general part of the description.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Micromachines (AREA)
- Reciprocating Pumps (AREA)
Description
- Die Erfindung betrifft eine Mikropumpe gemäß dem Oberbegriff des Anspruchs 1H.
- Mikropumpen zur kontrollierten und hochgenauen Abgabe von Insulin sind im Grundsatz bekannt. Bisherige Mikropumpen leiden jedoch unter komplexen Herstellungsprozessen mit vielen Nicht-Standardprozessschritten. Die vielen Sonderprozessschritte nach dem bisherigen Stand der Technik machen derartige Mikropumpen teuer und erniedrigen die Fertigungsausbeuten.
- Darüber hinaus sind bekannte Mikropumpen nicht genau genug hinsichtlich der abgegebenen Wirkstoffmengen. Mikropumpen zur Insulinabgabe müssen jedoch sehr präzise mit hoher Dosiergenauigkeit arbeiten, und zwar ohne aufwändige Sensorik zur Erfassung abgegebener Insulinmengen. Eine aktive Flussmessung ist im Zusammenhang mit Insulin sehr problematisch, weil der Stoff auf erhöhte Temperaturen, etwa im Zusammenhang mit sogenannten Heißfilmsensoren zur Flussmessung, schädlich reagiert.
- Ein schwerwiegender Nachteil bisheriger Mikropumpen ist zudem die mangelnde Sicherheit: so ist beispielsweise bei Mikropumpen nach dem bisherigen Stand der Technik die abgegebene Insulinmenge abhängig vom Vordruck im Insulinvorratsbehälter, der, wenn er als flexibler Beutel ausgelegt ist, mechanisch unter Druck gesetzt werden kann. Beispielsweise kann ein Setzen, oder Liegen des Pumpenträgers auf der Insulinmikropumpe den Vorratsbehälter zu einer ungewollten Insulinabgabe, bzw. zu einer ungewollten Erhöhung der gerade abgegebenen Dosis führen. Angesichts der Gefährlichkeit einer Insulinüberdosierung ist dies unter allen Umständen zu vermeiden.
- In der
EP 1 651 867 B1 ist ein Verfahren zur Herstellung einer Mikropumpe beschrieben. Die Fertigung der bekannten Mikropumpe ist äußerst aufwändig, da während des Herstellungsprozesses, bei dem unterschiedliche Siliziumschichten von zwei entgegengesetzten Seiten her strukturiert werden, immer wieder, beispielsweise in den Fig. 3b und 3c der Druckschrift gezeigte, fragile Zwischenzustände entstehen, die aufwändig abgestützt werden müssen, um eine Zerstörung der Mikropumpe bereits bei deren Fertigung zu vermeiden. Aus derDE 10 2005 032452 A1 ist ein Verfahren zur Herstellung von kommunizierenden Hohlräumen bekannt, wobei alle Prozessschritte im Wesentlichen von einer Seite auf das Siliziumsubstrat angewendet werden. Aus derDE 10 2005042648 A1 ist ebenfalls ein solches Verfahren bekannt. - Die
EP 1393469 A2 zeigt ein Halbleiterbauelement mit Bereichen unterschiedlicher Porenstruktur und ein entsprechendes Herstellungsverfahren. Das Halbleitersubstrat weist zwei Teilbereiche auf, die sich in ihrer Porenstruktur unterscheiden. - Die
DE 10 2005 052 039 A1 zeigt ein Verfahren zur Herstellung einer Mikropumpe und ein durch dieses Verfahren hergestellte Mikropumpe, bei dem die Mikropumpe aus einem Kompositsubstrat und aus einem Halbleitermaterial und einem anodisch bondbaren Glas hergestellt wird. Hierbei werden zunächst im andische bondbaren Glas innere Strukturen festgelegt und gleichzeitig in einem aufzubringenden zweiten planaren Substrat weitre innere Strukturen festgelegt. - Die
EP 0424087 A1 beschreibt eine Mikropumpe mit piezoelektrischen Mitteln, welche Teil einer Wand eines Reservoirs bilden, um somit Flüssigkeit in bzw. aus dem Reservoir zu befördern. Dabei kann eine Ventilklappe mittels einer Feder festgehalten werden. - Die
US 5520522 beschreibt eine Mikropumpe welche mittels magnetstriktiven oder elektrostriktiven Elementen arbeitet, um auf Fehlerelemente zu verzichten. - Offenbarung der Enfinung
- Die Erfindung führt auf eine Mikropumpe, insbesondere zum hochgenauen Fördern von Insulin, wobei die Mikropumpe mehrere Funktionselemente, wie mindestens ein Einlassventil und mindestens ein Auslassventil und mindestens eine Pumpkammer aufweist. Eine nach dem Konzept der Erfindung ausgebildete Mikropumpe zeichnet sich dadurch aus, dass sämtliche derartige Funktionselemente der Mikropumpe ausschließlich durch Strukturierung von Schichten aus einer Richtung hergestellt sind. Anders ausgedrückt werden die Funktionselemente nicht durch zweiseitige Strukturierungsprozesse, sondern lediglich durch Strukturierungsprozesse erzeugt, die von einer Richtung und von einer Seite her erfolgen. Hierdurch können fragile Fertigungszustände vermieden werden und die Mikropumpe somit großtechnisch mit hoher Ausbeute hergestellt werden.
- Von besonderem Vorteil ist bei der Erfindung, bei der das mindestens eine, vorzugsweise das ausschließlich eine Einlassventil, mindestens eine Spiralfeder umfasst, die derart angeordnet ist, dass sie eine in Z-Richtung weiche Aufhängung des Ventilstempels des Einlassventils gewährleistet. Besonders bevorzugt ist eine Ausführungsform mit mehreren ineinander verschachtelten Spiralfedern, um unerwünschten Materialstress abbauen zu können.
- In Weiterbildung der Erfindung weist die Mikropumpe eine Trägerschicht, insbesondere aus Borosilikatglas, auf, in der mindestens ein Fluidkanal, insbesondere ein Einlasskanal und/oder ein Auslasskanal, eingebracht sind/ist. Bevorzugt begrenzt die Trägerschicht zusätzlich die Pumpkammer unmittelbar.
- Im Hinblick auf einen Einsatz der Mikropumpe als Insulin-Förderpumpe zur hochgenauen Insulindosierung ist eine Ausführungsform besonders bevorzugt, bei der das Einlassventil der Mikropumpe mittels mindestens eines Aktuators, vorzugsweise eines Piezoaktuators, aktiv abdichtbar ist, also eine Ausführungsform, bei der das Einlassventil der Mikropumpe durch eine entsprechende Aktivierung mindestens eines Aktuators geschlossen gehalten werden kann, um somit einen Insulineintritt in die Mikropumpe selbst für den Fall zu verhindern, dass der Insulinvorrat selbst mit Druck beaufschlagt wurde. Anders ausgedrückt wird das Fördervolumen der Mikropumpe hierdurch unabhängig vom Vordruck im Insulinvorratsbehältnis. Hierdurch kann eine hohe Dosiergenauigkeit erreicht werden. Durch die beschriebene Ausführungsform werden vor allem unerwünschte Wirkstoff-Flüsse bzw. Rückflüsse von einer geforderten Dosiermenge unterdrückt und die Dosierabgabe streng an ein sogenanntes "Stroke-Volumen", das ist die Menge, die einem Pumpenstoß bzw. "Stroke" entspricht, gekoppelt.
- Bevorzugt ist eine Ausführungsform, bei der eine, insbesondere an einem Ventilstempel angeordnete, Ventildichtfläche des Einlassventils mittels mindestens eines Aktuators gegen die Trägerschicht pressbar ist um somit ein ungewolltes Einströmen von Fluid, insbesondere Insulin in die Mikropumpe zu vermeiden. Bevorzugt ist auch eine Ventildichtfläche eines Auslassventils mittels mindestens eines Aktuators aktiv gegen die Trägerschicht pressbar.
- Zur Herstellung einer erfindungsgemäßen Mikropumpe eignet sich ein Verfahren beidem die erzeugte Einlassventilstruktur und/oder die Auslassventilstruktur mindestens einen Spiralfederabschnitt umfassen. Dabei trägt die mindestens eine Spiralfeder bevorzugt den Ventilstempel des jeweiligen Ventils. Es können auch mehrere, beispielsweise zwei bis fünf, derartiger Spiralfedern, bevorzugt drei Spiralfedern, so ineinander geschachtelt werden, dass der zentrale Ventilstempel völlig symmetrisch von diesen gehalten wird und sich jeglicher Eigenspannung in den Federn durch eine minimale Verdrehung des Ventilstempels vollständig abbauen kann. Durch die relativ großen Federlängen wird dabei eine weiche Aufhängung des zentralen Ventilstempels in Z-Richtung (also senkrecht zur Flächenerstreckung der ersten und zweiten Trägerschicht) realisiert, wobei die Federhöhe nahezu der gesamten Funktionsschichthöhe entspricht. In diesem Zustand sitzt der mindestens eine Einlassventilstempel und/oder der mindestens eine Auslassventilstempel noch fest auf der unterhalb der Funktionsschicht angeordneten Stopp- bzw. Opferschicht.
- Insbesondere um den Einlassventilstempel in Z-Richtung verstellbar zu machen und/oder die Pumpkammer und/oder die Auslassventilkammer zu vergrößern, wird in Weiterbildung der Erfindung bevorzugt die an die Funktionsschicht angrenzende (obere) als Opferschicht dienende Stoppschicht, beispielsweise mit Hilfe von flüssiger oder dampfförmiger Flusssäure in an sich bekannter Weise entfernt. Nach diesem Ätzvorgang ist die Funktionseinheit "Einlassventil" frei beweglich und kann somit in Z-Richtung ausgelenkt werden. Der Abstand der mindestens einen Spiralfeder zur BasisSchicht entspricht nun bevorzugt der Dicke der zuvor entfernten_Stoppschicht (Opferschicht) von vorzugsweise etwa 4 bis 5 µm. Es ist vorteilhaft, dass bei dem beschriebenen Ätzprozess möglichst viele Bereiche der erwähnten Stoppschicht mit entfernt werden, da diese später unerwünschte Druckspannungen in den mechanischen Aufbau der Mikropumpe eintragen würden.
- Im Folgenden wird die Funktionsweise eines bevorzugten Ausführungsbeispiels einer Mikropumpe beschrieben: Bevorzugt wird die Mikropumpe inklusive eines Wirkstoffvorrats (vorzugsweise eines Insulinvorrats) und ggf. auch angeschlossener Injektionsnadel oder Mikronadelarray vorzugsweise als sogenanntes "Disposable" - ein Wegwerfartikel - in eine Vorrichtung montiert, insbesondere eingeklippst, die für den Endbenutzer die sogenannte "Pumpe" darstellt. Die "Pumpe" enthält bevorzugt die Steuerelektronik, die Energieversorgung z.B. durch Batterien oder Akkumulatoren, ein Benutzer-Interface und/oder eine drahtlose Schnittstelle zu einem Benutzer-Interface oder zu einer telemedizinischen Einrichtung, oder eventuell auch eine drahtlose Schnittstelle zu einer Blutzuckerwertbestimmungseinrichtung, die gemessene Blutzuckerdaten an die "Pumpe" zur weiteren Verarbeitung übermittelt. Die "Pumpe" enthält bevorzugt auch die Aktuatoren der Mikropumpe. Hierbei handelt es sich um bis zu drei Aktuatoren, bevorzugt um drei Aktuatoren, die an dafür vorgesehenen Stellen auf die Mikropumpe einwirken, bevorzugt auf das Einlassventil, auf die Pumpenmembran (also auf die Pumpkammer) und auf das Auflassventil. Die bis zu drei Aktuatoren können bevorzugt in Form von sogenannten Piezostacks ausgeführt werden, d.h. Anordnungen von kaskadenartig hintereinander geschalteten piezoelektrischen Scheiben oder Einzelelementen zu jeweils einem Piezoaktuator, der sich durch eine angelegte elektrische Spannung in seiner Länge verkürzt oder verlängert, je nach Polung der elektrischen Spannung relativ zur Polarisation der Piezoelemente.
- Zunächst wird die Pumpenfunktion mit einer Anordnung aus drei Aktuatoren beschrieben, obwohl es auch möglich ist, auf einzelne Aktuatoren zu verzichten und die entsprechende, damit verbundene Teilfunktion oder zusätzliche Sicherheit aufzugeben.
- Nach der Montage der Mikropumpe in der dafür vorgesehenen Aufnahmevorrichtung ("Pumpe") werden die Aktuatoren konditioniert, d.h. einmal in eine definierte Position gebracht und dort fixiert:
- ● Sodass ein erster Aktuator auf eine Membran (vorzugsweise Basisschicht) unter dem Einlassventilstempel drückt und über diese Membran das Einlassventil gegen die zweite Trägerschicht geschlossen und blockiert wird,
- ● sodass ein zweiter Aktuator auf der Membran (vorzugsweise Basisschicht) der Mikropumpe gerade eben aufliegt und so deren "Ausgangslage" definiert, oder alternativ einfach die Membran bis zum von der zweiten Trägerschicht gebildeten Anschlag durchdrückt;
- ● sodass ein dritter Aktuator auf den Bereich des Auslassventilstempels (insbesondere auf die Basisschicht) drückt und diesen gegen die zweite Trägerschicht schließt und blockiert.
- Das Konditionieren kann manuell oder bevorzugt automatisch (beispielsweise motorgetrieben) erfolgen, indem z.B. ein Aktuatorblock, umfassend die drei relativ zueinander positionierten Aktuatoren, als eine Einheit nach vorne bewegt, solange bis z.B. eine Resonanzsequenzänderung eines der Aktuatoren (vorzugsweise des Piezostacks) anzeigt, dass eine Berührung mit der Mikropumpe, insbesondere der Basisschicht oder eine Krafteinwirkung auf die Aktuatoren stattfindet. Da der Aktuatorblock vorteilhaft als eine Einheit vorwärts bewegt wird und die einzelnen Aktuatoren aus dem Block zuvor vom Hersteller relativ zueinander richtig positioniert wurden, genügt die Messung an einem einzigen Aktuator, insbesondere an einem einzigen Piezoelement, um zu erkennen, dass die gesamte Anordnung die richtige Lage erreicht hat. Z.B. ist die Berührung der eigentlichen Pumpenmembran (vorzugsweise Basisschicht) durch den zweiten Aktuator über dessen Schwingungsverhalten bei elektrischer Resonanzanregung sehr leicht zu detektieren. Kerngedanke dieses Konditionierverfahrens ist es, dass wenn nur ein Aktuator in seiner Soll-Position vorgeschoben wird, auch automatisch die Soll-Positionen der anderen Aktuatoren stimmen, weil sie auf dem Aktuatorblock relativ zueinander einjustiert worden sind. Besonders einfach, weil ohne Messung durchführbar, ist die Methode, einen Aktuator einfach auf einen harten Anschlag zu bringen, also beispielsweise das Einlassventil und/oder das Auslassventil zu blockieren oder aber die Pumpenmembran bis zum Anschlag durchzudrücken. Dazu wird der Aktuatorblock mit definierter Kraft soweit vorgefahren, bis aufgrund des harten Anschlags keine weitere Bewegung mehr möglich ist. In diesem Fall erübrigt sich eine aktive Messung der Aktuatorposition (etwa durch Resonanzfrequenzänderung).
- In einer besonders bevorzugten Ausgestaltung des Konditionierverfahrens wird die Konditionierung mit Hilfe mindestens einer einfachen Feder oder Federanordnung, die den Aktuatorblock ohne weitere Motorik einfach nach vorn gegen die Mikropumpe drückt, durchgeführt. Wenn mindestens eines der Ventile, entweder das Einlassventil oder das Auslassventil, mechanisch blockiert werden soll, also wenigstens einer der beiden Aktuatoren unverkürzt auf die Mikropumpe bzw. deren Ventilsitze wirkt, ist die Soll-Position des Aktuatorblocks relativ zur Mikropumpe immer definiert. Es ist im Betrieb der Pumpe niemals vorgesehen, dass sowohl das Einlassventil als auch das Auslassventil beide gleichzeitig freigegeben würden, also beide zugehörigen Aktuatoren verkürzt wären. Dieses Funktionsmerkmal gestattet eine besonders einfache Positionierung des Aktuatorblocks mittels einer Feder, die nur stark genug sein muss, um die beiden Ventile sicher zu blockieren und gegen ihre Anschläge - ihre Ventilsitze - zu drücken. Damit ist auch die Position des gesamten Aktuatorblocks definiert. Die Mikropumpe wird dann nur in die dafür vorgesehene Position, beispielsweise innerhalb einer Führung oder in einen seitlichen Rahmen in die "Pumpe" eingesetzt bzw. eingeklippst, wobei der Aktuatorblock, bevorzugt beispielsweise manuell etwas zurückgeschoben werden muss, um die Mikropumpe aufnehmen zu können. Ist die Mikropumpe in Position gebracht, lässt man die Feder des Aktuatorblocks letzteren einfach gegen die Mikropumpe drücken, wodurch beispielsweise sowohl das Einlassventil als auch das Auslassventil blockiert werden und gleichzeitig auch der der Pumpenmembran zugeordnete Aktuator in seiner Position relativ zur Pumpenmembran exakt definiert wird.
- Insbesondere dann, wenn auf eine hohe Dynamik des Pumpvorgangs verzichtet werden soll, ist es möglich, beispielsweise den Pumpenmembranaktuator (zweiter Aktuator) einzusparen und beispielsweise durch ein starres Abstandselement zu ersetzen, welches auf die Pumpenmembran (vorzugsweise Basisschicht) drückt. In diesem Fall können die beiden Ventilaktuatoren ausreichen, um über den Aktuatorblock und das Abstandselement auch die Pumpwirkung selbst aufzubringen. Soll z.B. das Auslassventil freigegeben und anschließend die Pumpenmembran per "Stroke" in Anschlag gebracht werden, kann der Auslassventilaktuator um die Dicke der Basisschicht von beispielsweise ca. 20µm zuzüglich eines zusätzlichen Offsets von etwa 5µm zurückgenommen werden, vorzugsweise unter Ausnutzung des Piezoeffekts. Anschließend wird der Einlassventilaktuator beispielsweise um etwas weniger als die Basisschichtdicke, also beispielsweise 19,5µm zurückgenommen, wodurch das, insbesondere mittlere, Abstandselement mitsamt dem Aktuatorblock um eben diese Strecke vorrückt und die Pumpenmembran (vorzugsweise Basisschicht) gegen ihren Anschlag (vorzugsweise zweite Trägerschicht) oder nahezu gegen ihren Anschlag auslängt. In allen beschriebenen Fällen ist es sehr leicht ermöglicht, den Aktuatorblock selbsttätig, nur durch mindestens eine einfache Feder oder Federanordnung in die gewünschte Position relativ zur Mikropumpe zu bringen, was eine bequeme Handhabung beim Einsetzen der Mikropumpe bedeutet und auch Eigensicherheit mit sich bringt: Durch die passive Federwirkung ist sichergestellt, dass im elektrisch spannungslosen Zustand alle Ventile blockiert sind, also ein "Normally-Closed -Verhalten" vorliegt. In dieser Konstellation kann kein Insulin die Mikropumpe passieren, selbst wenn der Vorratsbehälter unter Druck gesetzt wird, weil sowohl das Einlass- als auch das Auslassventil von jeweils einem Aktuator zugedrückt werden.
- Die Mikropumpe arbeitet im Falle des Vorsehens von drei Aktuatoren wie folgt:
- Vor einem Pumpstoß wird der dem Auslassventil unmittelbar zugeordnete Aktuator beispielsweise durch Anlegen einer elektrischen Spannung an den Piezostack zurückgezogen, wodurch das Auslassventil freigegeben wird. Dies bedeutet noch nicht, dass das Auslassventil geöffnet wird, es bleibt vielmehr so lange weiter geschlossen, bis es durch einen Überdruck im Inneren der Mikropumpe geöffnet wird. Erst dann kann Insulin die Mikropumpe verlassen. Da das Einlassventil bevorzugt immer noch blockiert ist, kann aus dem Insulinvorrat kein Insulin in die Mikropumpe gelangen.
- Nun wird der der Membran der Mikropumpe unmittelbar zugeordnete Aktuator, vorzugsweise durch Anlegen einer elektrischen Spannung, verlängert und drückt die Pumpenmembran (vorzugsweise die Basisschicht) bis zum oberen Anschlag, d.h. bevorzugt bis zur zweiten Trägerschicht durch. Dabei wird das sogenannte "Stroke-Volumen" durch das Auslassventil abgegeben.
- Als nächster Schritt wird das Auslassventil durch Verlängerung des diesem zugeordneten Aktuators blockiert (beispielsweise durch Wegnehmen der elektrischen Spannung, die den Aktuator verkürzt hatte oder kurzzeitig die Spannung umpolen und erst dann auf Null setzen) und danach der dem Einlassventil zugeordnete erste Aktuator, beispielsweise durch Anlegen einer elektrischen Spannung verkürzt, wodurch das Einlassventil freigegeben, aber noch nicht geöffnet wird. Das Einlassventil bleibt vielmehr weiter geschlossen, und zwar selbst gegen einen Überdruck von Außen im Insulinvorrat, weil aus der Mikropumpe aufgrund des blockierten Auslassventils nichts abfließen kann. Erst wenn der zweite, der Pumpkammer zugeordnete Aktuator verkürzt wird, beispielsweise durch Wegnehmen der elektrischen Spannung am Piezostack und sich die Pumpenmembran (vorzugsweise die Basisschicht) in ihrer Ausgangslage zurückbewegt, wird das Einlassventil geöffnet und ein "Stroke-Volumen" Insulin gelangt in die Mikropumpe. Danach wird der erste, dem Einlassventil zugeordnete Aktuator wieder elektrisch spannungslos geschaltet, wodurch er sich bis zu seiner Ausgangslänge ausdehnt und das Einlassventil erneut blockiert. Daraufhin kann der Pumpvorgang wiederholt werden. Der dritte Aktuator (Auslassventilaktuator) gibt das Auslassventil frei, der zweite Aktuator (Pumpenaktuator) führt einen "Stroke" durch und das "Stroke-Volumen" wird durch das Auslassventil aus der Mikropumpe gefördert. Der dritte Aktuator blockiert dann das Auslassventil und der erste Aktuator gibt das Einlassventil frei, woraufhin der zweite Aktuator die Pumpenmembran in ihre Ausgangslage zurückführt, wobei über das Einlassventil das vorher abgegebene "Stroke-Volumen" aus dem Insulinvorratsbehälter wieder ersetzt wird und in die Mikropumpe gelangt, woraufhin das Einlassventil mittels des ersten Aktuators wieder blockiert wird, usw.
- Wesentlich ist, dass stets nur das "Stroke-Volumen" in die Mikropumpe gelangt, und zwar unabhängig von einem allfälligen Vordruck im Vorratsbehältnis, und auch stets genau dieses "Stroke-Volumen" aus der Mikropumpe gefördert wird, ohne einen schädlichen Rückfluss in die Mikropumpe zurück. Dadurch wird die Dosierung sehr genau und die Mikropumpe eigensicher, auch bei Überdruck im Vorratsbehältnis. Wegen ihrer hohen longitudialen Steifigkeit bieten sich als Aktuatoren Piezoaktuatoren an, anhand derer beispielhaft die Funktion der Mikropumpe beschrieben wurde. Es ist jedoch auch möglich andere Aktuatoren, beispielsweise thermische oder elektrische Aktuatoren, insbesondere mit entsprechenden Federwerken als Aktuatoren zusätzlich oder alternativ zu Piezoaktuatoren einzusetzen.
- Es zeigen in:
- Fig. 1 - 2:
- zwei anfängliche Verfahrensschritte zur Herstellung einer Mikropumpe ausgehend von einem Siliziumwafer als erster Trägerschicht,
- Fig. 3
- einen alternativen Startpunkt für ein Herstellungsverfahren zur Herstellung einer Mikropumpe, ausgehend von einem SOI-Wafer,
- Fig. 4 - 12
- wichtige Herstellungsschritte zur Herstellung einer Mikropumpe, wobei bei den gezeigten Verfahrenschritten die erste Trägerschicht als Siliziumwafer ausgebildet ist,
- Fig. 13 - 15
- wesentliche Verfahrensschritte bei der Herstellung einer Mikropumpe, wobei hier die erste Trägerschicht Teil des SOI-Wafers ist, wobei der Verfahrensschritt gemäß
Fig. 13 dem Verfahrensschritt gemäßFig. 9 , der Verfahrenschritt gemäßFig. 14 dem Verfahrensschritt gemäßFig. 11 und der Verfahrensschritt gemäßFig. 15 dem Verfahrensschritt gemäßFig. 12 entspricht, und - Fig. 16
- eine perspektivische Darstellung einer noch nicht fertigen erfindungsgemäßen Mikropumpe bei deren Herstellung.
- In den Figuren sind gleiche Bauteile und Bauteile mit der gleichen Funktion mit den gleichen Bezugszeichen gekennzeichnet.
- In
Fig. 1 startet die Herstellung einer Mikropumpe ausgehend von einem Siliziumwafer als erster Trägerschicht 1, die auf ihrer Vorderseite V mit einem (thermischen) Oxid als untere Stoppschicht 2 versehen wird, in welcher an geeigneter Stelle Kontaktlöcher 3 für eine elektrische Kontaktierung vom Basisträgerschichtmaterial Silizium zu nachfolgend aufgebrachten Siliziumschichten angelegt werden. Die elektrischen Kontakte sind vorteilhaft für einen späteren, sogenannten anodischen Bondprozess, bei dem ein Stromfluss für das Eingehen einer hochfesten Verbindung zu einer, beispielsweise inFig. 10 gezeigten, zweiten Trägerschicht 4 (hier: Glassubstrat) erforderlich wird. -
Fig. 2 zeigt ein weiteres Zwischenstadium der Mikropumpe, bei deren Herstellung, wobei auf die Vorderseite der unteren Stoppschicht 2 eine als EpiPoly-Siliziumschicht ausgebildete Basisschicht 5 aufgebracht wurde. In diesem Ausführungsbeispiel beträgt die Dicke der Basisschicht 5 11µm. Die Basisschicht 5 kann optional, beispielsweise durch einen CMP-Schritt planarisiert werden. -
Fig. 3 zeigt einen alternativen Startpunkt für den Herstellungsprozess, wobei von einem sogenannten SOI-Wafer 6 als Ausgangsmaterial gestartet wird. Die Schritte der Folien 1 und 2 können dann entfallen, da bereits ein höherwertiges Halbzeug als Ausgangsmaterial verwendet wird. Nachteilig ist in diesem Fall jedoch, dass keine elektrisch leitendfähige Verbindung von der unteren, ersten Trägerschicht 1 zur oberen, auf der Vorderseite V der ersten Trägerschicht 1 angeordneten, Basisschicht 5 des SOI-Wafers 6 über Kontaktlöcher zur Verfügung steht. Für eine spätere anodische Bondung müssen geeignete Kontaktmittel über den Waferrand bereitgestellt werden, z.B. Klammern oder Federkontakte, die beispielsweise die obere Basisschicht 5 des SOI-Wafers 6 vom Rand her elektrisch kontaktieren. -
Fig. 4 zeigt die Fortsetzung des Herstellungsprozesses, und zwar unabhängig davon, ob die Variante gemäß denFig. 1 und 2 oder die Variante gemäßFig. 3 verfolgt wird. Illustriert ist im Folgenden anhand derFig. 4 bis 12 die Variante gemäß denFig. 1 und 2 , bei der von einem Siliziumwafer als Startpunkt (erste Trägerschicht 1) ausgegangen wird - die "SOI-Wafer"-Variante lässt sich daraus unschwer ableiten. - Auf der Vorderseite der Basisschicht 5 wird ein dickes Oxid als obere Stoppschicht 7 abgeschieden und so strukturiert, dass auf ausgewählten Flächen die als Opferschicht dienende Stoppschicht 7 stehen bleibt. Diese ausgewählten Flächen sind in späteren Fertigungsschritten allesamt Bereiche, in denen ein Silizium-Plasmaätzprozess gestoppt werden muss und/oder eine freitragende bewegliche Struktur entstehen soll. Wesentlich ist, dass unmittelbar oberhalb der Kontaktlöcher 3 eine Stoppschicht 7 vorgesehen ist.
- Die Dicke der oberen Stoppschicht 7 beträgt in dem gezeigten Ausführungsbeispiel etwa 4 bis 5 µm. In der Variante "SOI-Wafer" kann beispielsweise ein thermisches Oxid bis zu einer Dicke von 2,5µm aufgewachsen und darüber noch ein 1,8µm dickes Oxid abgeschieden werden, etwa in der Form von TEOS oder Plasmaoxid, was in Summe eine Stoppschichtdicke von maximal ca. 4,3µm ergibt. In der Variante, bei der von einem Siliziumwafer als erste Trägerschicht ausgegangen wird ist eine thermische Oxidation nicht zu empfehlen, da hierdurch nicht tolerierbare Stressgradienten in das Basisschichtmaterial (Epipoly-Silizium) eingetragen würden, die die weitere Verwendung als mechanisches Schichtmaterial unmöglich machen würden. Für den letztgenannten Fall erfolgt die Abscheidung der vollen Stoppschichtdicke (Oxiddicke) bevorzugt als TEOS oder Plasmaoxid bei relativ niedrigen Temperaturen von z.B. 300°C bis 450°C.
- In
Fig. 5 ist ein Herstellungsschritt gezeigt, bei dem auf die Vorderseite der Basisschicht 5 sowie auf die Vorderseite der Stoppschicht 7 eine Funktionsschicht 8 mit einer Dicke von etwa 15 bis 24 µm abgeschieden wurde. Die Funktionsschicht 8 besteht in dem gezeigten Ausführungsbeispiel aus einer EpiPoly-Siliziumschicht. Da auf der Vorderseite (Schichtoberfläche) der Funktionsschicht 8 später anodisch gebondet werden muss, ist eine Planarisierung der Oberfläche, beispielsweise durch ein CMP-Verfahren an dieser Stelle unbedingt zu empfehlen, und zwar unabhängig davon, ob bereits vorangehend die Basisschicht 5 planarisiert oder für die Basisschicht eine SOI-Waferschicht verwendet wurde. Der Planarisierschritt muss die Topographie der Oberfläche einebnen und die Flächen für eine Bondung mikroskopisch "glätten". - In
Fig. 6 ist der Waferstack nach dem Aufbringen und Strukturierung einer Antibond-Schicht 9, die auf den späteren Ventil-Dichtflächen verbleiben muss, gezeigt. Die Antibond-Schicht 9 kann beispielsweise aus Siliziumnitrid, Siliziumkarbid oder Graphit bestehen. Außerdem sind Ausnehmungen 10, 11 rund um die Antibond-Schicht-Flächenbereiche 9 mit einer Tiefe von etwa 2 bis 5 µm eingeätzt worden. Diese Ausnehmungen 10, 11 sollen später nicht mit der zu bondenden zweiten Trägerschicht 4 in Kontakt kommen, um eine Beweglichkeit von herzustellenden mikrofluidischen Funktionselementen, hier eines Einlassventilstempels 14 und eines Auslassventilstempels 17 zu garantieren. - In
Fig. 7 ist die Funktionsschicht 8 unter anderem in dem Bereich unterhalb der Ausnehmungen 10, 11 strukturiert worden. Anders ausgedrückt werden durch die mikrofluidischen Funktionselemente 12 geschaffen, nämlich ein Einlassventil 13 mit einem Einlassventilstempel 14, auf dessen Vorderseite sich die Antibond-Schicht 9 als Ventildichtfläche befindet. Ferner wurde eine Pumpkammer 15 sowie ein Auslassventil 16 mit einem Auslassventilstempel 17 geschaffen, wobei auf der Vorderseite des Auslassventilstempels 16 sich ebenfalls eine Antibond-Schicht 9 als Dichtfläche befindet. Die Funktionselemente 12 sind bei dem Verfahrenschritt gemäßFig. 7 noch nicht fertig gestellt. Hierzu ist es noch notwendig, wie sich ausFig. 8 ergibt, die obere Stoppschicht 7 (Opferschicht) selektiv zu entfernen. Dies kann durch flüssige oder dampfförmige Flusssäure in an sich bekannter Weise durchgeführt werden. Nach dieser Ätzung ist das Einlassventil 13 bzw. der Einlassventilstempel 14 frei beweglich und kann insbesondere in Z-Richtung ausgelenkt werden. Der Abstand des Einlassventilstempels 14 zur Basisschicht 5 entspricht der Dicke des zuvor entfernten Oxids (obere Stoppschicht 7 (Opferschicht)) von 4 bis 5 µm. Erwähnenswert ist an dieser Stelle die Ausbildung des Einlassventils 13. Dieses umfasst bei dem Ausführungsbeispiel gemäßFig. 7 eine Spiralfeder 18, die in einer Draufsicht unterhalb des Waferstacks inFig. 7 gezeigt ist. Die Spiralfeder 18 trägt endseitig den Einlassventilstempel 14, wodurch eine weiche Lagerung des Einlassventilstempels 14 in Z-Richtung gegeben ist und sich Materialstress relaxieren kann. - Eine enfindungsgemäße Ausführungsform des Einlassventils 14 ergibt sich aus der perspektivischen Darstellung gemäß
Fig. 16 . Zu erkennen sind drei ineinander geschachtelte Spiralfedern 18, die allesamt einenends mit dem Einlassventilstempel 14 verbunden sind und zwar an in Umfangsrichtung gleichmäßig verteilt angeordneten Stellen. Der zentrale Einlassventilstempel 14 wird völlig symmetrisch von den Spiralfedern 18 gehalten und jegliche Eigenspannung der Spiralfedern wird durch eine minimale Verdrehung des Einlassventilstempels 14 vollständig abgebaut. Durch die relativ großen Federlängen wird eine weiche Aufhängung des zentralen Einlassventilstempels in Z-Richtung realisiert, wobei die Federhöhe nahezu der gesamten Opferschichthöhe entspricht. Weiterhin ergibt sich ausFig. 16 der Aufbau und die Anordnung des Auslassventils 16 mit seinem zentrischen Ventilstempel 17. AusFig. 16 ist zu erkennen, dass sowohl eine Einlassventilkammer als auch eine Auslassventilkammer sowie die Pumpkammer 15 kreisrund konturiert sind und über große Öffnungsquerschnitte miteinander verbunden sind. - Wie zuvor erwähnt, ist in
Fig. 8 ein Zwischenschritt der Herstellung der Mikropumpe gezeigt, bei dem die (obere) Stoppschicht 7 (Opferschicht) selektiv entfernt wurde. Erst hierdurch wird das Einlassventil 13 frei. Zuvor saß der Einlassventilstempel 14 noch fest auf dem dicken, die Stoppschicht 7 (Opferschicht) bildenden Oxid, das auch den Ätzstopp für den Plasmaätzprozess zur Strukturierung der Funktionsschicht 8 gebildet hat. - Insbesondere aus den
Fig. 6 bis 8 wird deutlich, dass die Herstellung der Funktionselemente 12 ausschließlich durch Vorderseitenstrukturierung, also durch Strukturierung in eine Richtung auf die Vorderseite V der ersten Trägerschicht zu erfolgt ist. Die Trägerschicht 1 wurde dabei nicht in Mitleidenschaft gezogen, etwa weil durch sie hindurch strukturiert worden wäre. -
Fig. 9 illustriert einen anodischen Bondprozess: Die vorstrukturierte zweite Trägerschicht 4, hier ein Borosilikatglaswafer (beispielsweise ein Pyrexglaswafer) weist an entsprechenden Stellen Bohrungen als Fluidkanäle 19, 20 auf. Dabei bildet der in der Zeichnung linke Fluidkanal 19 einen Einlasskanal zum Zuführen von Wirkstoff (Insulin) und der Fluidkanal 20, der sich in der Zeichnungsebene rechts befindet, einen Auslasskanal zum Auslassen eines "Stroke"-Volumens. Bevorzugt wird der Fluidkanal 19 mit einem Vorratstank oder Vorratsbeutel mit Insulin verbunden und der Fluidkanal 20 an eine Injektionsnadel oder besonders bevorzugt ein Mikronadelarray, beispielsweise aus porösem Silizium, etc. angeschlossen. Die Umfangsränder der unteren Enden der Fluidkanäle 19, 20 bilden die Ventilsitze für den Einlassventilstempel 14 bzw. den Auslassventilstempel 17. Die Antibond-Schicht-Flächenabschnitte bilden die Dichtflächen des Einlassventils 13 des Auslassventils 16. Zusätzlich oder alternativ zu der Antibond-Schicht 9 können nicht gezeigte Antibond-Flächen als Sitzflächen auf der Rückseite der zweiten Trägerschicht 4 vorgesehen werden. - Für den anodischen Bondprozess muss die Funktionsschicht 8 mit einer elektrischen Spannungsquelle kontaktiert und positiv gegenüber der justiert aufgelegten zweiten Trägerschicht 4 gepolt werden. In der gezeigten Variante, ausgehend von einem Siliziumwafer als erster Trägerschicht 1, ist diese Kontaktierung problemlos über die erste Trägerschicht 1 aufgrund der Kontaktlöcher 3 in der unteren Stoppschicht 2 möglich. Dabei kommen in an sich bekannter Weise Spannungen von einigen 100 V bis einigen 1000 V zum Einsatz, je nach Dicke der zweiten Trägerschicht 4. Durch die anodische Polung der Vorderseite bzw. der Siliziumoberfläche der Opferschicht 8 gegen die zweite Trägerschicht 4 wird eine hochfeste, hochgenaue und irreversible Verbindung der Kontaktflächen zueinander erreicht, ohne dass es hierzu eines Klebstoffs bedürfte. Letzteres ist entscheidend im Zusammenhang mit der eingeschränkten Stabilität und Bioaktivität von Insulin, das durch viele Materialien, wie viele Kunststoffe oder Klebstoffe in seiner Wirksamkeit beeinträchtigt würde. Bei der gezeigten Mikropumpe kommt das Insulin innerhalb der Mikropumpe lediglich mit Silizium, Borosilikatglas und der Antibond-Schicht in Kontakt - alle diese Stoffe sind gut Insulin-verträglich.
-
Fig. 10 zeigt den gebondeten Waferaufbau nach der Durchführung des anodischen Bondprozesses. - In
Fig. 11 ist die erste Trägerschicht 1 entfernt worden. Das Rückdünnen der ersten Trägerschicht 1 kann durch Rückschleifen, Plasmaätzen oder durch eine Kombination aus Rückschleifen und Plasmaätzen geschehen. Alternativ kann
auch nass geätzt werden, etwa in heißer Kalilauge unter Verwendung einer Ätzmaske als Vorderseitenschutz. Die Entfernung der kompletten ersten Trägerschicht 1 durch Plasmaätzen ist besonders schonend, da hier keine mechanische Einwirkung stattfindet. Da es hierzu an sich nicht erforderlich ist, anisotrop zu ätzen, kann beispielsweise mit einem isotropen SF6-Prozess mit vorteilhaft höheren Abtragraten von 50 bis 100pm/min oder mehr geätzt werden, sodass das Entfernen der ersten Trägerschicht 1 nur wenige Minuten dauert. Da über die Kontaktlöcher 3 ein Ätzangriff auf die darüberliegende Basisschicht (hier Silizium) bis zur (zweiten) Stoppschicht 7 erfolgt, ist es vorteilhaft, in der Endphase des Prozesses von rein isotropen Plasmaätzen auf ein zumindest teilweise anisotropes Plasmaätzen umzuschalten. Der Vorteil der Anisotropie ist in dem Fall, dass die Kontaktlöcher 3 überätzt werden dürfen etwa zum Ausgleich von Ätzinhomogenitäten oder Waferdickenschwankungen über die Waferfläche, ohne dass die Einätzungen in die Basisschicht in den Kontaktlochbereichen lateral immer größer werden. Der Nachteil ist die geringere Ätzgeschwindigkeit bei anisotropem Ätzen. Das Umschalten von einem rein isotropen Ätzprozess zu einem zumindest teilweise anisotropen Plasmaätzprozess kann dadurch realisiert werden, dass entsprechend der Lehre derDE 42 410 45 A1 der isotrope SF6-Ätzschritt gegen Ende des Rückätzens alternierend mit sogenannten Passivierschritten mit beispielsweise C4F8 oder C3F6 als Passiviergas durchgeführt wird. Das Erkennen dieses Übergangs kann beispielsweise mittels einer optischen Endpunkterkennung über "Optical Emissions Spectroscopy" - sogenanntes OES - erfolgen, in dem das Erreichen der unteren (ersten) Stoppschicht 2 an irgendeiner Stelle erkannt und dann für das Weiterätzen bzw. weitere Überätzen die Passivierschritte eingefügt werden, um die bereits in Ätzung begriffenen Kontaktlöcher 3 während des Überätzens lateral nicht übermäßig auszudehnen. In vertikaler Richtung ist der dicke Oxidbereich, der dem Kontaktloch 3 gegenüberliegt, jeweils ätzbegrenzend. Mit dieser Vorgehensweise können Inhomogenitäten des Ätzprozesses selbst bzw. Waferdickenschwankungen durch Überätzen ungestraft ausgeglichen werden. Das OES-Endpunkterkennungssystem zeigt auch an, wenn die erste Trägerschicht, also sämtliches Silizium, von der unteren Stoppschicht 2 entfernt wurde und der Prozess an seinem Ende angelangt ist. -
Fig. 12 zeigt das Entfernen der noch verbliebenen Stoppschichten 2, 7: zum einen der flächigen unteren Stoppschicht 2, zum anderen der oberen Stoppschicht 7 (Opferschicht) (Ätzstoppbereich über den offenen Kontaktlöchern 3). Das Entfernen kann wiederum durch flüssig oder dampfförmige Flusssäure erfolgen. Da insbesondere Oxidschichten starke Druckspannungen in den mechanischen Aufbau eintragen, ist es vorteilhaft, am Prozessende alle Oxidschichten zu entfernen. - Ferner ist auf
Fig. 12 eine mögliche Anordnung eines ersten Aktuators A1, eines zweiten Aktuators A2 und eines dritten Aktuators A3 gezeigt. Dabei ist der erste Aktuator A1 unmittelbar dem Einlassventil 13, der zweite Aktuator A2 unmittelbar der Pumpkammer 15 und der dritte Aktuator A3 unmittelbar dem Auslassventil 16 zugeordnet. Zu erkennen ist, dass sämtliche Aktuatoren A1 bis A3 unmittelbar auf die Basisschicht 5 einwirken, die die Mikropumpe auf der von der zweiten Trägerschicht 4 abgewandten Seite begrenzt. Bezüglich der Funktionsweise und einer möglichen Ansteuerung der Aktuatoren A1 bis A3 wird auf den allgemeinen Beschreibungsteil verwiesen. Insbesondere wird darauf hingewiesen, dass bei Bedarf beispielsweise auf den zweiten Aktuator A2 verzichtet werden kann (vergleiche allgemeiner Beschreibungsteil). -
Fig. 13 illustriert den Bondprozess für den Fall der "SOI"-Wafer" Variante. Bis auf die Schwierigkeit, die obere SOI-Schicht (Basisschicht 5) über Kontaktfedern, etc. von der Seite oder über den Waferrand elektrisch zu kontaktieren, weil keine Kontaktlöcher zur unteren, ersten Trägerschicht 1 vorhanden sind, entspricht der Aufbau und die Vorgehensweise genau dem Pendant vonFig. 9 . -
Fig. 14 zeigt den gebondeten Waferstack nach dem Entfernen der ersten Trägerschicht 1. Da es beim SOI-Aufbau keine Kontaktlöcher in der unteren Stoppschicht 2 gibt ist das Entfernen der ersten Trägerschicht 1 durch ein Rückätzen in Plasma besonders problemlos und einfach möglich. Es ist vorteilhaft, die isotrope Silizium-Ätzung mit SF6-Plasma mit einem Endpunkterkennungssystem (OES) zu kontrollieren. Dieses zeigt an, wenn kein Silizium mehr geätzt wird und wenn überall auf der unteren Stoppschicht 2 angelangt ist, wobei die untere Stoppschicht 2 dem Ätzstopp für diesen Ätzprozess darstellt. Dabei kann auch zur Sicherheit ein Überätzen vorgesehen werden, um tatsächlich sämtliches Silizium restlos von der unteren Stoppschicht 2 zu entfernen und anfällige Inhomogenitäten auszugleichen. Da der vollständige Prozess isotrop durchgeführt werden kann, sind Abtragungsraten extrem hoch (typischerweise 100µm/min oder mehr) und die Prozesszeit sehr kurz (nur wenige Minuten). Alternativ kann auch nass geätzt werden, z.B. in heißer Kalilauge unter Verwendung einer Ätzmaske als Vorderseitenschutz. -
Fig. 15 zeigt den Zustand des Waferstags nach dem Entfernen der unteren Stoppschicht 2 durch flüssige oder dampfförmige HF. Auch in diesem Fall empfiehlt es sich, sämtliches Oxid zu entfernen, um unerwünschte Druckspannungen aus dem mechanischen Aufbau herauszunehmen. Die Funktion der gezeigten Aktuatoren A1 bis A3 wird im allgemeinen Beschreibungsteil erläutert. - Zusammenfassend wird in den Figuren ein Herstellungsprozess vorgeschlagen, der in beiden gezeigten Varianten (Siliziumwafer/SOI-Wafer) ausschließlich aus Standardprozessschritten der Mikrosystemtechnik bzw. der Halbleitertechnik basiert. Zu keinem Zeitpunkt des Prozesses treten fragile Waferzustände oder Waferzwischenzustände auf, in denen der Wafer bzw. der Waferaufbau durch Folien oder ähnliche aufwändige Sondermaßnahmen stabilisiert werden müsste. In allen Prozessstadien hat man es vielmehr mit robusten Aufbauten zu tun, die ohne Besonderheiten gehandhabt und prozessiert werden können. Alle Kanäle, durch die im Betrieb der Mikropumpe Flüssigkeiten strömen sollen, haben vergleichsweise große Kanalhöhen von beispielsweise 15 bis 24 µm und in Folge dessen geringe Strömungswiderstände und geringe "Totvolumina". Dies alles wird mit einem vergleichsweise einfachen und besonders kostengünstigen Prozess realisiert.
Claims (6)
- Mikropumpe mit mehreren Funktionselementen (12), wobei die Funktionselemente (12) ausschließlich durch Strukturierung aus einer Richtung hergestellt sind, dadurch gekennzeichnet, dass das Einlassventil (13) der Mikropumpe mehrere, einen Einlassventilstempel (14) symmetrisch haltende, ineinander verschachtelte Spiralfedern (18) aufweist, und dass die Spiralfedern (18) allesant einenends mit dem Einlassvenülstempel (14) an in Umfangsrichtung gleichmäßig verteilt angeordneten Stellen verbunden sind.
- Mikropumpe nach Anspruch 1, dadurch gekennzeichnet, dass die Mikropumpe eine Trägerschicht (1, 4) aufweist, in der mindestens ein Fluidkanal (19, 20) eingebracht ist und die die Pumpkammer (15) unmittelbar begrenzt.
- Mikropumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Einlassventil (13) und/oder das Auslassventil (16) der Mikropumpe mittels mindestens eines Aktuators (A1- A3) aktiv abdichtbar sind.
- Mikropumpe nach Anspruch 3, dadurch gekennzeichnet, dass eine Ventildichtfläche des Einlassventils (13) und/oder eine Ventildichtfläche des Auslassventils (16) mittels eines Aktuators (A1-A3) gegen die Trägerschicht (1, 4) pressbar ist.
- Mikropumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dem Einlassventil (13), dem Auslassventil (16) und der Pumpkammer (15) jeweils mindestens ein Aktuator (A1-A3) unmittelbar zugeordnet sind.
- Mikropumpe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass nur dem Einlassventil (13) und dem Auslassventil (16) jeweils mindestens ein Aktuator (A1, A3) unmittelbar zugeordnet sind, und dass der Pumpvorgang durch eine Ansteuerung mindestens eines dieser Aktuatoren (A1, A3) steuerbar ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008003792A DE102008003792A1 (de) | 2008-01-10 | 2008-01-10 | Verfahren zum Herstellen einer Mikropumpe sowie Mikropumpe |
PCT/EP2008/067708 WO2009087025A1 (de) | 2008-01-10 | 2008-12-17 | Verfahren zum herstellen einer mikropumpe sowie mikropumpe |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2232070A1 EP2232070A1 (de) | 2010-09-29 |
EP2232070B1 true EP2232070B1 (de) | 2012-11-21 |
Family
ID=40427298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08870391A Not-in-force EP2232070B1 (de) | 2008-01-10 | 2008-12-17 | Mikropumpe |
Country Status (5)
Country | Link |
---|---|
US (1) | US8607450B2 (de) |
EP (1) | EP2232070B1 (de) |
DE (1) | DE102008003792A1 (de) |
TW (1) | TWI510426B (de) |
WO (1) | WO2009087025A1 (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008041542A1 (de) | 2008-08-26 | 2010-03-04 | Robert Bosch Gmbh | Mikropumpe |
DE102008042054A1 (de) | 2008-09-12 | 2010-03-18 | Robert Bosch Gmbh | Mikroventil, Mikropumpe sowie Herstellungsverfahren |
DE102010029573A1 (de) | 2010-06-01 | 2011-12-01 | Robert Bosch Gmbh | Mikropumpe |
DE102019208023B4 (de) * | 2019-05-31 | 2024-01-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zum herstellen einer mikromechanischen vorrichtung, mikromechanisches ventil und mikropumpe |
CA3231106A1 (en) * | 2021-09-09 | 2023-03-16 | Torramics Inc. | Apparatus and method of operating a gas pump |
CN116116474B (zh) * | 2023-03-23 | 2024-09-17 | 京东方科技集团股份有限公司 | 微型泵阵列器件及其制备方法 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0424087A1 (de) | 1989-10-17 | 1991-04-24 | Seiko Epson Corporation | Mikropumpe oder Mikrodurchflussmenge |
DE4239464A1 (de) * | 1992-11-24 | 1994-05-26 | Heinzl Joachim | Elektrothermische, statische Mikropumpe |
JP2810302B2 (ja) | 1993-10-01 | 1998-10-15 | ティーディーケイ株式会社 | 小型ポンプ |
US5759015A (en) | 1993-12-28 | 1998-06-02 | Westonbridge International Limited | Piezoelectric micropump having actuation electrodes and stopper members |
TW341672B (en) * | 1997-08-09 | 1998-10-01 | Defence Dept Chung Shan Inst | Compact, light and voiceless micro-cooling system driven by ohm-heat |
AU2001272500B2 (en) * | 2000-05-25 | 2005-06-23 | Debiotech Sa | Micromachined fluidic device and method for making same |
DE10102993B4 (de) * | 2001-01-24 | 2009-01-08 | Robert Bosch Gmbh | Herstellungsverfahren für ein mikromechanisches Bauelement |
TW568881B (en) * | 2001-05-23 | 2004-01-01 | Chung Shan Inst Of Science | Programmable electric capacitance micro-pump system |
US20030064095A1 (en) * | 2001-09-14 | 2003-04-03 | Imedd, Inc. | Microfabricated nanopore device for sustained release of therapeutic agent |
DE10241066A1 (de) * | 2002-09-05 | 2004-03-18 | Robert Bosch Gmbh | Halbleiterbauelement und Verfahren |
US7367781B2 (en) * | 2003-01-16 | 2008-05-06 | The Regents Of The University Of Michigan | Packaged micromachined device such as a vacuum micropump, device having a micromachined sealed electrical interconnect and device having a suspended micromachined bonding pad |
DE10334240A1 (de) | 2003-07-28 | 2005-02-24 | Robert Bosch Gmbh | Verfahren zur Herstellung eines mikromechanischen Bauteils vorzugsweise für fluidische Anwendungen und Mikropumpe mit einer Pumpmembran aus einer Polysiliciumschicht |
TWI228101B (en) * | 2003-09-26 | 2005-02-21 | Ind Tech Res Inst | Micro pump using magnetic fluid or magneto-rheological fluid |
WO2006108053A2 (en) * | 2005-04-05 | 2006-10-12 | The Ohio State University | Diffusion delivery systems and methods of fabrication |
DE102005032452A1 (de) * | 2005-07-12 | 2007-01-25 | Robert Bosch Gmbh | Verfahren zur Herstellung von kommunizierenden Hohlräumen und nach diesem Verfahren hergestellte Vorrichtung |
DE102005042648B4 (de) * | 2005-09-08 | 2007-06-21 | Robert Bosch Gmbh | Verfahren zur Herstellung von kommunizierenden Hohlräumen |
EP1926679A2 (de) * | 2005-09-09 | 2008-06-04 | Koninklijke Philips Electronics N.V. | Verfahren zur herstellung eines mikrosystems, dieses mikrosystem, stapel folien mit diesem mikrosystem, elektronisches gerät mit diesem mikrosystem und verwendung des elektronischen geräts |
DE102005052039A1 (de) * | 2005-10-31 | 2007-05-03 | Robert Bosch Gmbh | Verfahren zur Herstellung einer Mikropumpe und durch dieses Verfahren hergestellte Mikropumpe |
TWI288740B (en) * | 2005-11-23 | 2007-10-21 | Chiang-Ho Cheng | Valveless micro impedance pump |
DE102006026559A1 (de) * | 2006-06-06 | 2007-12-20 | Eads Deutschland Gmbh | Mikromechanischer Filter für Mikropartikel, insbesondere für pathogene Bakterien und Viren, sowie Verfahren zu seiner Herstellung |
CA2671069A1 (en) * | 2006-12-01 | 2008-06-12 | Tti Ellebeau, Inc. | Systems, devices, and methods for powering and/or controlling devices, for instance transdermal delivery devices |
GB2446204A (en) * | 2007-01-12 | 2008-08-06 | Univ Brunel | A Microfluidic device |
-
2008
- 2008-01-10 DE DE102008003792A patent/DE102008003792A1/de not_active Withdrawn
- 2008-12-17 WO PCT/EP2008/067708 patent/WO2009087025A1/de active Application Filing
- 2008-12-17 EP EP08870391A patent/EP2232070B1/de not_active Not-in-force
- 2008-12-17 US US12/811,936 patent/US8607450B2/en not_active Expired - Fee Related
-
2009
- 2009-01-08 TW TW098100453A patent/TWI510426B/zh not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200946444A (en) | 2009-11-16 |
WO2009087025A1 (de) | 2009-07-16 |
DE102008003792A1 (de) | 2009-07-16 |
EP2232070A1 (de) | 2010-09-29 |
US8607450B2 (en) | 2013-12-17 |
TWI510426B (zh) | 2015-12-01 |
US20110034873A1 (en) | 2011-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2232070B1 (de) | Mikropumpe | |
DE60114411T2 (de) | Microbearbeitete fluidische vorrichtung und herstellungsverfahren | |
EP2220371B1 (de) | Pumpenanordnung mit sicherheitsventil | |
DE69500529T2 (de) | Mikropumpe | |
EP0517698B1 (de) | Mikrominiaturisierte pumpe | |
DE69009431T2 (de) | Mikropumpe. | |
DE69410487T2 (de) | Mikropumpe | |
DE60220633T2 (de) | Piezoelektrischer Tintenstrahldruckkopf und Verfahren zu seiner Herstellung | |
DE69415549T2 (de) | Mikromaschinen-flüssigkeitsfluss-regulator | |
EP0613535B1 (de) | Mikromechanisches ventil für mikromechanische dosiereinrichtungen | |
EP2556282B1 (de) | Mikroventil mit elastisch verformbarer ventillippe, herstellungsverfahren und mikropumpe | |
DE10202996A1 (de) | Piezoelektrisch steuerbare Mikrofluidaktorik | |
DE102011005471B4 (de) | Mikro-Ejektor und Verfahren für dessen Herstellung | |
WO1987007218A1 (en) | Piezoelectrically operated fluid pump | |
EP1576294B1 (de) | Normal doppelt geschlossenes mikroventil | |
WO2000070224A1 (de) | Mikromechanische pumpe | |
EP1651867B1 (de) | Verfahren zur herstellung eines mikromechanischen bauteils, vorzugsweise für fluidische anwendungen und mikropumpe mit einer pumpmemembran aus einer polysiliciumschicht | |
DE69313766T2 (de) | Mikrosteuervorrichtung fuer fluidum und verfahren zu deren herstellung | |
WO2008025601A1 (de) | Verfahren zur herstellung von bauteilen zur steuerung eines fluidflusses sowie bauteile, hergestellt nach diesem verfahren | |
EP1488106B1 (de) | Freistrahldosiermodul und verfahren zu seiner herstellung | |
WO2010031559A1 (de) | Mikrofluidisches ventil, mikrofluidische pumpe, mikrofluidisches system und ein herstellungsverfahren | |
DE102016216870B4 (de) | Verfahren zum Herstellen eines mikromechanischen Bauteils mit einer freigestellten Drucksensoreinrichtung | |
DE102019208023A1 (de) | Verfahren zum herstellen einer mikromechanischen vorrichtung und mikromechanisches ventil | |
DE19938055A1 (de) | Aktorbauglied für einen Mikrozerstäuber und Verfahren zu seiner Herstellung | |
DE60303875T2 (de) | Flüssigkeitsausstossverfahren unter Verwendung einer asymmetrischen electrostatischen Vorrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100810 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20110321 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 585223 Country of ref document: AT Kind code of ref document: T Effective date: 20121215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008008725 Country of ref document: DE Effective date: 20130117 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20121121 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130221 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130304 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130321 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130222 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 |
|
BERE | Be: lapsed |
Owner name: ROBERT BOSCH G.M.B.H. Effective date: 20121231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130221 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121231 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121231 |
|
26N | No opposition filed |
Effective date: 20130822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008008725 Country of ref document: DE Effective date: 20130822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121217 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081217 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 585223 Country of ref document: AT Kind code of ref document: T Effective date: 20131217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131217 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200221 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20201222 Year of fee payment: 13 Ref country code: GB Payment date: 20201222 Year of fee payment: 13 Ref country code: FR Payment date: 20201217 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20201230 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502008008725 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210701 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211217 |