Nothing Special   »   [go: up one dir, main page]

EP2254681A2 - Structure de filtration de gaz - Google Patents

Structure de filtration de gaz

Info

Publication number
EP2254681A2
EP2254681A2 EP09721313A EP09721313A EP2254681A2 EP 2254681 A2 EP2254681 A2 EP 2254681A2 EP 09721313 A EP09721313 A EP 09721313A EP 09721313 A EP09721313 A EP 09721313A EP 2254681 A2 EP2254681 A2 EP 2254681A2
Authority
EP
European Patent Office
Prior art keywords
channels
walls
structure according
filter
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09721313A
Other languages
German (de)
English (en)
Inventor
Adrien Vincent
Fabiano Rodrigues
Atanas Chapkov
David Pinturaud
David Lechevalier
Vignesh Rajamani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Original Assignee
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Centre de Recherche et dEtudes Europeen SAS filed Critical Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Publication of EP2254681A2 publication Critical patent/EP2254681A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/48Honeycomb supports characterised by their structural details characterised by the number of flow passages, e.g. cell density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • the invention relates to the field of filter structures optionally comprising a catalytic component, for example used in an exhaust line of a diesel-type internal combustion engine.
  • Filters for the treatment of gases and the removal of soot typically from a diesel engine are well known in the prior art. These structures most often have a honeycomb structure, one of the faces of the structure allowing the admission of the exhaust gas to be treated and the other side the evacuation of the treated exhaust gas.
  • the structure comprises, between these intake and discharge faces, a set of adjacent ducts or channels, most often of square section, with axes parallel to each other separated by porous walls.
  • the ducts are closed at one or the other of their ends to define inlet chambers opening along the inlet face and outlet chambers opening along the discharge face.
  • the channels are alternately closed in an order such that the exhaust gases, during the crossing of the honeycomb body, are forced to pass through the sidewalls of the inlet channels to join the outlet channels. In this way, the particles or soot are deposited and accumulate on the porous walls of the filter body.
  • porous ceramic filters for example made of cordierite, alumina, aluminum titanate, mullite, silicon nitride or a silicon / silicon carbide mixture are used for the filtration of gases. or silicon carbide.
  • the particulate filter is subjected to a succession of filtration phases (accumulation of soot) and regeneration (removal of soot).
  • filtration phases the soot particles emitted by the engine are retained and are deposited inside the filter.
  • regeneration phases the soot particles are burned inside the filter, in order to restore its filtration properties.
  • the porous structure is then subjected to radial, tangential thermomechanical stresses and intense axial, which can lead to micro-cracking likely over time to cause a severe loss of filtration capacity of the unit, or even its complete deactivation. This phenomenon is particularly observed on monolithic filters of large diameter.
  • filtering structures associating several blocks or monolithic unit elements in honeycomb.
  • the elements are most often assembled together by gluing by means of a glue or cement of a ceramic nature, hereinafter called seal cement.
  • seal cement a glue or cement of a ceramic nature
  • Examples of such filtering structures are described in particular in patent applications EP 816 065, EP 1 142 619, EP 1 455 923, WO 2004/090294 or WO 2005/063462.
  • the coefficients of thermal expansion of the different parts of the structure must be of substantially the same order.
  • the assembled filters currently marketed for light vehicles typically comprise approximately 10 to 20 unit elements having, in a cross-section, a square, rectangular or hexagonal section and whose elemental surface in section is between about 13 cm 2 and about 25 cm 2 . These elements consist of a plurality of channels of usually square section.
  • the increase of the pressure drop as a function of the soot loading level of the filter is in particular directly measurable by the loading slope ⁇ P / M su ⁇ e s, in which ⁇ P represents the pressure drop and M sul es the accumulated soot mass in the filter.
  • filter elements whose shape and the internal volume of the inlet and outlet channels are different.
  • the wall elements follow one another, in cross section and following a horizontal row and / or vertical channels, to define a sinusoidal shape or wave (wavy in English).
  • the wall elements typically wave a half-period of sinusoid across the width of a channel.
  • the thermal mass of this type of filters known from the prior art makes it possible to limit the thermal gradients and thus to avoid thermal shocks during the regeneration phase. Furthermore, the transformation of pollutant emissions into the gas phase (ie mainly carbon monoxide (CO) and unburned hydrocarbons (HC), or even nitrogen oxides (NO x ) or sulfur oxides (SO x )). less harmful gases (such as water vapor, carbon dioxide (CO2) or nitrogen gas (N 2 )) require additional catalytic treatment.
  • the most advanced current filters thus additionally have a catalytic component.
  • the catalytic function is generally obtained by impregnating the honeycomb structure with a solution comprising the catalyst or a precursor of the catalyst, generally based on a precious metal of the platinum group.
  • the catalyst may, cumulatively or alternatively, be introduced into the fuel.
  • Such catalytic filters are effective in the treatment of pollutant gases when the temperature reached within the filter is greater than the minimum temperature of activity of the catalyst.
  • An initiation or activation temperature is also defined, which corresponds, for given pressure and gas flow conditions, to the temperature at which a catalyst converts 50% by volume of the polluting gases into non-polluting species. Depending on the pressure and gas flow conditions, this temperature generally varies between about 10O 0 C and about 240 0 C for an SiC-based filter comprising a noble metal catalyst of the platinum family.
  • the so-called "light down” time also known as the time of defusing or deactivation, corresponding to the time required for the hot filter to reach substantially, during cooling, on average and in all its volume, the catalyst initiation temperature. This period is characteristic of a given filter and the catalyst used, whether the catalyst is previously deposited on the filter or introduced into the fuel.
  • the object of the invention is to propose a filtering structure which, at constant mass, has a better filtration efficiency, in particular in terms of defusing time, and a lower loading slope than the known structures of the prior art. .
  • the subject of the invention is a structure for filtering particles-loaded gases of the honeycomb type and comprising a set of longitudinal adjacent channels with parallel axes separated by porous filtering walls, said channels being alternately plugged at either end of the structure so as to define inlet channels and outlet channels for the gas to be filtered, and to force said gas to pass through the porous walls separating the input and output channels, said structure being such that in cross-section:
  • porous walls have corrugations so as to be concave with respect to the center of the inlet channels and convex at their center with respect to the center of the outlet channels,
  • the output channels have at least one rounded corner.
  • the corrugated walls preferably represent at least a quarter or even half of the walls of the structure, the others may for example be rectilinear.
  • all the walls are not corrugated, it is preferred that, along a given axis, all the walls or one wall out of two are corrugated.
  • each inlet channel may have two concave walls with respect to its center and facing each other, each outlet channel having two walls facing each other. and being convex in their middle relative to the center of the channel.
  • each input channel has only one concave wall with respect to its center
  • each output channel has only one convex wall in the middle. in relation to the center of the canal.
  • other configurations are possible, for example in which, along the two axes, one wall out of two is corrugated, the channels having two contiguous walls concave or convex and two straight walls.
  • all the porous walls have corrugations so as to be concave with respect to the center of the inlet channels and convex in their middle relative to the center of the outlet channels.
  • the structure is such that, in a cross section, the porous walls along a first axis are rectilinear, while the porous walls along a second axis, perpendicular to the first axis, are corrugated so as to be concave relative to the center of the input and convex channels in their middle relative to the center of the output channels.
  • the corrugations are preferably sinusoidal, in particular such that the ratio T between the amplitude (h) and the half-period (p) is less than or equal to 0.2, in particular to 0.15.
  • the amplitude h is defined as the distance between the highest point of the sinusoid and the lowest point.
  • the ratio T is preferably less than or equal to 0.12 and / or greater than or equal to 0.05, especially 0.07 and even 0.9. Too high a ratio may limit too much the volume of the output channels which leads to an increase in the pressure drop and may make it more difficult to manufacture the filters. Too low a ratio is too close to a conventional structure with square channels and flat walls to fully benefit from all the advantages of the invention.
  • the half-period of the sinusoidal walls is preferably equal to the period of the filtering structure.
  • the period of the filtering structure is defined as the distance between the center of an output channel and the center of an input channel adjacent to that output channel.
  • the ratio R is preferably between 1.1 and 2.0.
  • the structure obtained can be described as asymmetrical, in the sense that the overall volume of the input channels is greater than the total volume of the output channels. This This configuration makes it possible to increase the area available for filtration and / or catalysis, thereby decreasing the pressure drop of the filters and the soot loading slope.
  • the exit channels preferably have two or at least two rounded corners, and preferably four rounded corners. All corners are preferably rounded.
  • the output channels preferably have four corners, in particular all rounded. Their transverse section is in this case delimited by at least two (and in particular four) convex walls in their middle relative to the center of the channel.
  • the radius of curvature of the or each rounded corner of the outlet channels is preferably such that the ratio of the period of the filtering structure to the radius of curvature is between 1, 5 and 1000, preferably between 2 and 500, and even more preferably between 4 and 100, or even between 5 and 20.
  • a too high radius of curvature penalizes the pressure drop, whereas a radius of curvature that is too small does not make it possible to obtain, in a completely satisfactory manner, the advantages related to the invention.
  • Input channels may also have one or more rounded corners, including 1, 2, 3 or 4 rounded corners.
  • the rounded corners may also have a radius of curvature such that the ratio of the period of the filtering structure to the radius of curvature is between 1, 5 and 1000, preferably between 2 and 500 and even more preferably between 4 and This characteristic is however not preferred because it leads to increase the thermal inertia of the filters, which can certainly contribute to improving the thermomechanical resistance of the filter, but at the expense of the activation time of the filter. catalyst.
  • the input channels therefore do not have rounded corners.
  • the soul of a wall is defined as an imaginary line which, in a transverse section, shares a given wall in two portions of equal thickness.
  • the distance E 0 is defined as the distance between the corner of an outlet channel and the point of intersection between the two wall cores closest to said corner.
  • the distance E mn is defined as the minimum distance, for a given channel, between the inner surface of the wall and the core of this wall.
  • the ratio E c / E mn is preferably greater than or equal to 3, in particular 3.1.
  • the section of the channels in cross-section is preferably constant over the entire length of the structure. It is also preferred that the sections of all the output channels are identical, with the possible exception of the channels located at the periphery of the filter structure or the channels of the structures located at the periphery of the filter. The same characteristic is also preferred for the input channels.
  • the thickness of the walls is preferably between 150 and 500 micrometers, in particular between 200 and 500 micrometers, or even between 300 and 400 micrometers.
  • the channel density is preferably between 150 and 500 micrometers, in particular between 200 and 500 micrometers, or even between 300 and 400 micrometers.
  • the porosity of the material constituting the filtering walls of the filter is preferably between 30 and 70% by volume and / or the median pore diameter is preferably between 5 and 40 ⁇ m.
  • the walls are preferably based on silicon carbide, which has a very good chemical resistance and at high temperatures.
  • the walls may also be of a material chosen from cordierite, alumina, aluminum titanate, mullite, silicon nitride, sintered metals, a silicon / silicon carbide mixture, or any of their mixtures.
  • At least part or even all of the surface of the inlet channels is preferably coated with a catalyst intended to promote the elimination of pollutant gases (such as CO, HC, NO x ) and / or soot.
  • pollutant gases such as CO, HC, NO x
  • the filtering structure described above may thus be deposited, preferably by impregnation, at least one active catalytic phase, preferably comprising a precious metal such as Pt, Pd, Rh and optionally an oxide selected from CeO 2, ZrO 2, or one of their mixtures.
  • a precious metal such as Pt, Pd, Rh and optionally an oxide selected from CeO 2, ZrO 2, or one of their mixtures.
  • the active principle is usually deposited according to well-known heterogeneous catalysis techniques, in the porosity of a support layer in general based on oxide with a high specific surface area, for example alumina, titanium oxide, silica, ceria or zirconium oxide.
  • the invention also relates to an assembled filter comprising a plurality of filter structures as previously described, said structures being bonded together by a cement.
  • Structures can be, in cross section, square, rectangular, triangular or hexagonal.
  • a hexagonal shape has the advantage of improving the thermomechanical resistance of the constant mass filter and thus allows the use of larger monolithic structures.
  • Another subject of the invention is the use of a filtration structure or of an assembled filter as previously described as a depollution device on an exhaust line of a Diesel or Petrol engine, preferably Diesel.
  • Figures 1 and 2 are front elevational views of a portion of the gas evacuation face of a filter according to the prior art.
  • Figures 3 to 5 are front elevational views of a portion of the gas evacuation face of a filter according to the invention.
  • Figure 6 is a front elevational view of a portion of the gas evacuation face of a filter according to a comparative example which will be discussed later.
  • FIG. 1 shows a portion of the evacuation face of a filtration structure according to the prior art, in particular according to the application WO 2005/016491.
  • the structure is of the honeycomb type and comprises a set of adjacent channels 11 and 12, longitudinal axes parallel to each other, and separated by porous filtering walls 13.
  • the channels 11, 12 are alternately blocked by plugs 14 at either end of the structure so as to define inlet channels 11 and outlet channels 12 for the gas to be filtered, and so as to force said gas to pass through the porous walls 13.
  • the face shown being a gas evacuation face (rear face of the filter), the plugs 14 plug the inlet channels 11.
  • At the opposite side on the contrary front face or admission face of the gases), are the output channels 12 which are plugged.
  • FIG. 1 shows a portion of the evacuation face of a filtration structure according to the prior art, in particular according to the application WO 2005/016491.
  • the structure is of the honeycomb type and comprises a set of adjacent channels 11 and 12, longitudinal axes parallel to
  • FIG. 1 is such that, in transverse section, the porous walls 13 have sinusoidal corrugations so that said porous walls 13 are concave with respect to the center of the inlet channels 11 and convex with respect to the center of the output channels 12.
  • the ratio R is of the order of 1, 6.
  • Figure 2 shows the structure of Figure 1, the plugs 14 are no longer shown.
  • the core 15 of some walls 13 is shown in dotted lines, and takes the sinusoidal form of the undulations of the walls 13.
  • the amplitude h and the half-period p of the sinusoid are shown schematically in the figure, as well as the quantities E 0 and E mn .
  • the distance E 0 is defined as being the distance between the corner 16 of an outlet channel 12 and the point of intersection between the two wall cores closest to said corner 16.
  • the distance E mn is defined as being the minimum distance, for a given channel, between the inner surface of the wall and the core 15 of this wall 13.
  • the ratio E c / E mn is of the order of 2.
  • Figure 3 illustrates a filtration structure according to the invention.
  • the structure is of the honeycomb type and comprises a set of adjacent channels 21 and 22, longitudinal axes parallel to each other, and separated by porous filter walls 23.
  • the channels 21 and 22 are alternately blocked by plugs 24 at either end of the structure so as to define inlet channels 21 and outlet channels 22 for the gas to be filtered, and to force said gas to pass through the porous walls 23.
  • the face shown being the gas evacuation face (rear face of the filter), the plugs 24 close the inlet channels 21.
  • the output channels 22 At the opposite face on the contrary (front face or admission face of the gases), are the output channels 22 which are plugged.
  • the porous walls 23 have sinusoidal corrugations so that said porous walls 23 are concave with respect to the center of the inlet channels 21 and convex at their center with respect to the center of the outlet channels 22.
  • the ratio R is of the order of 1, 7.
  • the outlet channels 22 have four corners 25, all rounded, thus defining four curves, located at each corner 25 of the channel, and concave with respect to the center of the channel 22.
  • Other embodiments are of course possible, in which the number of rounded corners is two, or three, for each output channel 22.
  • each outlet channel 22 each have a single convexity at their center with respect to the center of the channel 22, and the four walls 23 delimiting an inlet channel 21 each have a single concavity with respect to the center of the channel 21.
  • FIG. 4 are diagrammatically represented the quantities E 0 and E mn .
  • the ratio E c / E mn is higher than in the structures of the prior art, in this case greater than 3.
  • the core of some walls is represented in dashed lines 26.
  • FIG. 5 illustrates another embodiment, in which the porous walls 27 along a first axis x are rectilinear, while the porous walls 23, along a second axis y, perpendicular to the first axis x, are corrugated so as to be concave relative to the center of the inlet channels 21 and convex in their middle relative to the center of the outlet channels 22.
  • each outlet channel 22 is delimited by two rectilinear walls 27 facing each other and by two corrugated walls 23 which are convex in their middle with respect to the center of the channel.
  • Each input channel 21 is itself delimited by two rectilinear walls 27 facing each other and two corrugated walls 23 also facing each other and being concave with respect to the center of the channel.
  • FIG. 6 illustrates a filter according to a comparative example, thus excluding the invention.
  • the input channels have rounded corners 17. It is possible to define the distance E 0 ', defined as being the distance between the corner 17 of an inlet channel 11 and the point of intersection between the two wall-cores closest to said corner 17.
  • the first population of monolithic elements or monoliths in the form bee and silicon carbide.
  • the median pore diameter d 5 o denotes the diameter of the particles such that respectively 50% of the total population of the grains has a size less than this diameter.
  • a porogen of the polyethylene type in a proportion equal to 5% by weight of the total weight of the SiC grains and a methylcellulose type shaping additive in a proportion equal to 10% by weight of the total weight of the SiC grains.
  • the quantity of water required is then added and kneaded to obtain a homogeneous paste whose plasticity allows extrusion through a die configured to obtain monolithic blocks of square section and whose internal channels have a cross section. illustrated schematically in FIG. 1.
  • the half-period p of the corrugations is 1.95 mm and corresponds to the period of the filtering structure.
  • the ratio T is 0.11.
  • the green monoliths obtained are dried by microwave for a time sufficient to bring the water content not chemically bound to less than 1% by weight.
  • the channels of each face of the monolith are alternately blocked according to well-known techniques, for example described in application WO 2004/065088.
  • the monoliths are then fired in argon according to a rise in temperature of 20 ° C / hour until a maximum temperature of 2200 ° C. is reached which is maintained for 6 hours.
  • the porous material obtained has an open porosity of 47% and a median pore diameter of the order of 15 microns.
  • An assembled filter is then formed from the monoliths.
  • Sixteen elements from the same mixture were assembled together according to conventional techniques by bonding using a cement of the following chemical composition: 72% by weight of SiC, 15% by weight of Al 2 O 3, 11% by weight of SiO 2 , the remainder consisting of impurities, predominantly Fe 2 ⁇ 3 and alkali and alkaline earth metal oxides.
  • the average thickness of the joint between two adjacent blocks is of the order of 2 mm.
  • the assembly is then machined in order to form assembled filters of cylindrical shape of about 14.4 cm in diameter. The dimensional characteristics of the elements thus obtained are given in Table 1 below.
  • baked monoliths are, moreover, impregnated with a catalytic solution comprising platinum, and then dried and heated.
  • the dimensional characteristic Ec ' is the equivalent of the characteristic Ec for the input channels
  • the die is this time adapted to produce monolithic blocks characterized by an arrangement of the type shown schematically in FIG. 3, in which the output channels have rounded corners.
  • the corrugation of the walls is characterized by a ratio T of 0.11.
  • the open front area (OFA) or open front area obtained by calculating the percentage ratio of the area covered by the sum of the cross sections of the input channels of the front face of the monolithic unitary elements (Except the walls and plugs) on the total area of the corresponding cross-section of said unitary elements.
  • the amount of storage of residues is greater the higher the percentage.
  • the WALL which corresponds to the ratio, in cross-section and in percentage, between the area occupied by all the walls of a unitary monolithic element (excluding the plugs) and the total area of said cross section.
  • the specific filtration surface of the filter (monolithic or assembled), which corresponds to the internal surface of all the walls of the filter inlet channels expressed in m 2 , relative to the volume in m 3 of filter, integrating the case its outer coating.
  • the soot storage volume is all the higher as the specific surface thus defined is large.
  • pressure loss is meant within the meaning of the present invention the differential pressure existing between the upstream and downstream of the filter.
  • the pressure drop was measured according to the techniques of the art, for a gas flow rate of 250 kg / h and a temperature of 250 ° C. on the new filters (not loaded in soot).
  • the various filters are previously mounted on an exhaust line of a diesel engine 2.0 L run at full power (4000 rpm) for 30 minutes then dismantled and weighed to determine their initial mass. The filters are then reassembled on the engine test bench with a
  • This test aims to measure the catalyst initiation temperature.
  • This CO and HC conversion temperature was here determined according to an experimental protocol identical to that described in application EP 1759763, in particular in its paragraphs 33 and 34. The test was carried out on samples of monoliths cooked and impregnated with catalyst such as previously described.
  • the flow of gas to be cleaned up is cooled to a constant mass flow rate of 60 kg / h of gas from 400 to 150 ° C.
  • the time required for the monolith is then measured. so that its average temperature is equal to the catalyst priming temperature
  • the filter according to the invention has an open front surface and a specific filtration surface area higher than that of the filter of the prior art (example 1) for the same WALL, therefore the same mass of monolith.
  • This change in geometry which consists of a local increase of the thickness of the wall at the outlet channels, has the effect of significantly increasing the defusing time of the catalytic activity. If the load loss in the unloaded state is slightly higher, while remaining acceptable, the loading slope is lower than for the filter reference, which is favorable to the reduction of overconsumption of fuel due to the presence of the filtration device.
  • the filter according to the invention has a shorter defusing time and a higher pressure drop while remaining perfectly acceptable for the application.
  • the filter according to the invention has, compared to Example 2, a significantly higher open face area and a significantly higher filtration surface area, and especially a significantly lower loading slope.
  • the filter according to the invention therefore has the best compromise with regard to the different properties required.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

L'invention a pour objet une structure de filtration de gaz chargés en particules, du type en nid d'abeilles et comprenant un ensemble de canaux adjacents longitudinaux d'axes parallèles entre eux (21, 22) séparés par des parois poreuses filtrantes (23), lesdits canaux (21, 22) étant alternativement bouchés à l'une ou l'autre des extrémités de la structure de façon à définir des canaux d'entrée (21 ) et des canaux de sortie (22) pour le gaz à filtrer, et de façon à forcer ledit gaz à traverser les parois poreuses (23) séparant les canaux d'entrée (21 ) et de sortie (22), ladite structure étant telle qu'en coupe transversale : - le rapport R entre la somme des aires des canaux d'entrée et la somme des aires des canaux de sortie est supérieur à 1, - au moins une partie des parois poreuses (23) présentent des ondulations de façon à être concaves par rapport au centre des canaux d'entrée (21 ) et convexes en leur milieu par rapport au centre des canaux de sortie (22), - les canaux de sortie (22) possèdent au moins un coin arrondi (25).

Description

STRUCTURE DE FILTRATION DE GAZ
L'invention se rapporte au domaine des structures filtrantes comprenant éventuellement une composante catalytique, par exemple utilisées dans une ligne d'échappement d'un moteur à combustion interne du type diesel.
Les filtres permettant le traitement des gaz et l'élimination des suies typiquement issues d'un moteur diesel sont bien connus de l'art antérieur. Ces structures présentent le plus souvent une structure en nid d'abeille, une des faces de la structure permettant l'admission des gaz d'échappement à traiter et l'autre face l'évacuation des gaz d'échappement traités. La structure comporte, entre ces faces d'admission et d'évacuation, un ensemble de conduits ou canaux adjacents, le plus souvent de section carrée, d'axes parallèles entre eux séparés par des parois poreuses. Les conduits sont obturés à l'une ou l'autre de leurs extrémités pour délimiter des chambres d'entrée s'ouvrant suivant la face d'admission et des chambres de sortie s'ouvrant suivant la face d'évacuation. Les canaux sont alternativement obturés dans un ordre tel que les gaz d'échappement, au cours de la traversée du corps en nid d'abeille, sont contraints de traverser les parois latérales des canaux d'entrée pour rejoindre les canaux de sortie. De cette manière, les particules ou suies se déposent et s'accumulent sur les parois poreuses du corps filtrant.
A l'heure actuelle, on utilise pour la filtration des gaz des filtres en matière céramique poreuse, par exemple en cordiérite, en alumine, en titanate d'aluminium, en mullite, en nitrure de silicium, en un mélange silicium/carbure de silicium ou en carbure de silicium.
Durant sa mise en œuvre, le filtre à particules est soumis à une succession de phases de filtration (accumulation des suies) et de régénération (élimination des suies). Lors des phases de filtration, les particules de suies émises par le moteur sont retenues et se déposent à l'intérieur du filtre. Lors des phases de régénération, les particules de suie sont brûlées à l'intérieur du filtre, afin de lui restituer ses propriétés de filtration. La structure poreuse est alors soumise à des contraintes thermomécaniques radiales, tangentielles et axiales intenses, qui peuvent entraîner des micro-fissurations susceptibles sur la durée d'entraîner une perte sévère des capacités de filtration de l'unité, voire sa désactivation complète. Ce phénomène est particulièrement observé sur des filtres monolithiques de grand diamètre. Pour résoudre ces problèmes et augmenter la durée de vie des filtres, il a été proposé des structures de filtration associant plusieurs blocs ou éléments unitaires monolithiques en nid d'abeille. Les éléments sont le plus souvent assemblés entre eux par collage au moyen d'une colle ou d'un ciment de nature céramique, appelés dans la suite de la description ciment de joint. Des exemples de telles structures filtrantes sont notamment décrits dans les demandes de brevets EP 816 065, EP 1 142 619, EP 1 455 923, WO 2004/090294 ou encore WO 2005/063462. Afin d'assurer une relaxation optimale des contraintes dans une telle structure assemblée, il est connu que les coefficients de dilatation thermique des différentes parties de la structure (éléments de filtration, ciment de revêtement, ciment de joint) doivent être sensiblement du même ordre. De ce fait, lesdites parties sont avantageusement synthétisées sur la base d'un même matériau, le plus souvent le carbure de silicium SiC ou la cordiérite. Ce choix permet en outre d'homogénéiser la répartition de la chaleur lors de la régénération du filtre. Afin d'obtenir les meilleurs performances de résistance thermomécanique et de perte de charge, les filtres assemblés actuellement commercialisés pour les véhicules légers comportent typiquement environ 10 à 20 éléments unitaires présentant, selon une coupe transversale, une section carrée, rectangulaire ou hexagonale et dont la surface élémentaire en coupe est comprise entre environ 13 cm2 et environ 25 cm2. Ces éléments sont constitués d'une pluralité de canaux de section le plus souvent carrée.
De manière générale, il existe à l'heure actuelle un besoin visant à augmenter conjointement les performances globales de filtration et la durée de vie des filtres actuels. Plus précisément, l'amélioration des filtres peut être directement mesurée par la comparaison des propriétés qui suivent, le meilleur compromis possible entre ces propriétés étant recherché, pour des régimes moteurs équivalents : une faible perte de charge occasionnée par une structure filtrante en fonctionnement, c'est-à-dire typiquement lorsque celle-ci est dans une ligne d'échappement d'un moteur à combustion interne, aussi bien lorsque que ladite structure est exempte de particules de suies (perte de charge initiale) que lorsqu'elle est chargée en particules, une augmentation de la perte de charge du filtre au cours dudit fonctionnement la plus faible possible, c'est à dire un faible accroissement de la perte de charge en fonction du temps d'utilisation ou plus exactement en fonction du niveau de chargement en suies du filtre, - une surface totale de filtration élevée, une masse de l'élément monolithique adaptée pour assurer une masse thermique suffisante pour minimiser la température maximale de régénération et les gradients thermiques subis par le filtre qui peuvent eux-mêmes entraîner des fissures sur l'élément, - un volume de stockage de suies important, notamment à perte de charge constante, de manière à réduire la fréquence de régénération, une résistance thermomécanique forte, c'est-à-dire permettant une durée de vie prolongée du filtre, un volume de stockage des résidus plus important. L'augmentation de la perte de charge en fonction du niveau de chargement en suies du filtre est notamment directement mesurable par la pente de chargement ΔP/Msuιes, dans lequel ΔP représente la perte de charge et Msules la masse de suie accumulée dans le filtre.
Il a été proposé, dans la demande de brevet WO 05/016491 , des éléments filtrants dont la forme et le volume interne des canaux d'entrée et de sortie sont différents. Dans de telles structures, les éléments de paroi se succèdent, en coupe transversale et en suivant un rang horizontal et/ou vertical de canaux, pour définir une forme sinusoïdale ou en vague (wavy en anglais).
Les éléments de paroi ondulent typiquement d'une demi-période de sinusoïde sur la largeur d'un canal.
La masse thermique de ce type de filtres connus de l'art antérieur permet de limiter les gradients thermiques et donc d'éviter les chocs thermiques durant la phase de régénération. Par ailleurs la transformation des émissions polluantes en phase gazeuse (c'est à dire principalement le monoxyde de carbone (CO) et les hydrocarbures imbrûlés (HC) voire les oxydes d'azote (NOx) ou de soufre (SOx)) en des gaz moins nocifs (tels que la vapeur d'eau, le dioxyde de carbone (CO2) ou l'azote gazeux (N2)) nécessite un traitement catalytique supplémentaire. Les filtres actuels les plus évolués présentent ainsi de surcroît une composante catalytique. La fonction catalytique est en général obtenue par imprégnation de la structure en nid d'abeille par une solution comprenant le catalyseur ou un précurseur du catalyseur, généralement à base d'un métal précieux du groupe du platine. Le catalyseur peut, de manière cumulative ou alternative, être introduit dans le carburant.
De tels filtres catalytiques sont efficaces dans le traitement des gaz polluants dès lors que la température atteinte au sein du filtre est supérieure à la température minimale d'activité du catalyseur. On définit aussi une température d'amorçage ou d'activation, qui correspond, pour des conditions de pression et de débit gazeux données, à la température à laquelle un catalyseur convertit 50 % en volume des gaz polluants en espèces non-polluantes. Suivant les conditions de pression et de débit gazeux, cette température varie généralement entre environ 10O0C et environ 2400C, pour un filtre à base de SiC comprenant un catalyseur à base d'un métal noble de la famille du platine. Lorsque le filtre est soumis à des gaz plus froids, par exemple pendant les premières minutes d'utilisation du véhicule après un arrêt, les taux de conversion chutent rapidement car la température du filtre peut baisser en-deçà de la température d'activation. Il est possible de déterminer avec une précision suffisante le temps dit de « light down », aussi appelé temps de désamorçage ou de désactivation, correspondant au temps nécessaire au filtre chaud pour atteindre sensiblement, lors du refroidissement, en moyenne et dans tout son volume, la température d'amorçage du catalyseur. Cette période est caractéristique d'un filtre donné et du catalyseur utilisé, que ce catalyseur soit préalablement déposé sur le filtre ou introduit dans le carburant.
Compte tenu du grand nombre de véhicules à moteur en circulation, une augmentation même minime de ce temps, par exemple de l'ordre de la seconde, permettrait de réduire de façon très sensible les émissions polluantes gazeuses et se traduirait ainsi par un progrès technique considérable. II est cependant essentiel qu'une telle diminution n'entraîne pas de dégradation sensible des autres propriétés caractérisant le filtre en fonctionnement, c'est-à-dire principalement les propriétés telles qu'elles ont été précédemment définies. L'invention a pour but de proposer une structure filtrante, qui, à masse constante, présente une meilleure efficacité de filtration, en particulier en termes de temps de désamorçage, et une pente de chargement plus faible que les structures connues de l'art antérieur.
A cet effet, l'invention a pour objet une structure de filtration de gaz chargés en particules, du type en nid d'abeilles et comprenant un ensemble de canaux adjacents longitudinaux d'axes parallèles entre eux séparés par des parois poreuses filtrantes, lesdits canaux étant alternativement bouchés à l'une ou l'autre des extrémités de la structure de façon à définir des canaux d'entrée et des canaux de sortie pour le gaz à filtrer, et de façon à forcer ledit gaz à traverser les parois poreuses séparant les canaux d'entrée et de sortie, ladite structure étant telle qu'en coupe transversale :
- le rapport R entre la somme des aires des canaux d'entrée et la somme des aires des canaux de sortie est supérieur à 1 ,
- au moins une partie des parois poreuses présentent des ondulations de façon à être concaves par rapport au centre des canaux d'entrée et convexes en leur milieu par rapport au centre des canaux de sortie,
- les canaux de sortie possèdent au moins un coin arrondi.
Les parois ondulées représentent de préférence au moins un quart, voire la moitié des parois de la structure, les autres pouvant être par exemple rectilignes. Lorsque toutes les parois ne sont pas ondulées, il est préféré que, selon un axe donné, toutes les parois ou une paroi sur deux soient ondulées. Si toutes les parois selon un axe sont ondulées, les parois selon l'axe perpendiculaire étant rectilignes, chaque canal d'entrée peut posséder deux parois concaves par rapport à son centre et se faisant face, chaque canal de sortie possédant deux parois se faisant face et étant convexes en leur milieu par rapport au centre du canal. Si, selon un axe donné, seule une paroi sur deux est ondulée, chaque canal d'entrée ne possède plus qu'une paroi concave par rapport à son centre, et chaque canal de sortie ne possède plus qu'une paroi convexe en son milieu par rapport au centre du canal. D'autres configurations sont possibles, par exemple dans lesquelles, selon les deux axes, une paroi sur deux est ondulée, les canaux possédant deux parois contigϋes concaves ou convexes et deux parois rectilignes.
Selon un mode de réalisation préféré, toutes les parois poreuses présentent des ondulations de façon à être concaves par rapport au centre des canaux d'entrée et convexes en leur milieu par rapport au centre des canaux de sortie. Selon un mode de réalisation alternatif, la structure est telle que, dans une section transversale, les parois poreuses selon un premier axe sont rectilignes, tandis que les parois poreuses selon un second axe, perpendiculaire au premier axe, sont ondulées de manière à être concaves par rapport au centre des canaux d'entrée et convexes en leur milieu par rapport au centre des canaux de sortie.
Les ondulations sont de préférence sinusoïdales, notamment telles que le rapport T entre l'amplitude (h) et la demi-période (p) est inférieur ou égal à 0,2, notamment à 0,15. On définit l'amplitude h comme étant la distance entre le point le plus haut de la sinusoïde et le point le plus bas. Le rapport T est de préférence inférieur ou égal à 0,12 et/ou supérieur ou égal à 0,05, notamment 0,07 et même 0,9. Un rapport trop grand risque de limiter trop fortement le volume des canaux de sortie ce qui conduit à une augmentation de la perte de charge et risque de rendre plus difficile la fabrication des filtres. Un rapport trop faible se rapproche trop d'une structure conventionnelle à canaux carrés et parois planes pour pouvoir bénéficier pleinement de tous les avantages liés à l'invention.
La demi-période des parois sinusoïdales est de préférence égale à la période de la structure filtrante. On définit la période de la structure filtrante comme étant la distance entre le centre d'un canal de sortie et le centre d'un canal d'entrée adjacent à ce canal de sortie. De cette manière, au moins deux (et notamment les quatre) parois délimitant un canal de sortie présentent chacune une seule convexité par rapport aux centre du canal, et au moins deux (et notamment les quatre) parois délimitant un canal d'entrée présentent chacune une seule concavité par rapport au centre du canal.
Le rapport R est de préférence compris entre 1 ,1 et 2,0. La structure obtenue peut être qualifiée d'asymétrique, au sens où le volume global des canaux d'entrée est supérieur au volume global des canaux de sortie. Cette configuration permet d'augmenter la surface disponible pour la filtration et/ou la catalyse, diminuant de ce fait la perte de charge des filtres et la pente de chargement en suie.
Les canaux de sortie possèdent de préférence deux ou au moins deux coins arrondis, et de préférence quatre coins arrondis. Tous les coins sont de préférence arrondis. Les canaux de sortie possèdent de préférence quatre coins, en particulier tous arrondis. Leur section transverse est dans ce cas délimitée par au moins deux (et notamment quatre) parois convexes en leur milieu par rapport au centre du canal. Le rayon de courbure du ou de chaque coin arrondi des canaux de sortie est de préférence tel que le rapport de la période de la structure filtrante sur le rayon de courbure soit compris entre 1 ,5 et 1000, de préférence entre 2 et 500 et de manière encore plus préférée entre 4 et 100, voire entre 5 et 20. Un rayon de courbure trop élevé pénalise la perte de charge, tandis qu'un rayon de courbure trop faible ne permet pas d'obtenir de manière tout à fait satisfaisante les avantages liés à l'invention.
Les canaux d'entrée peuvent également présenter un ou plusieurs coins arrondis, notamment 1 , 2, 3 ou 4 coins arrondis. Les coins arrondis peuvent également présenter un rayon de courbure tel que le rapport de la période de la structure filtrante sur le rayon de courbure soit compris entre 1 ,5 et 1000, de préférence entre 2 et 500 et de manière encore plus préférée entre 4 et 100, voire entre 5 et 20. Cette caractéristique n'est toutefois pas préférée car elle conduit à augmenter l'inertie thermique des filtres, ce qui peut certes contribuer à améliorer la résistance thermomécanique du filtre, mais au détriment du temps d'activation du catalyseur. De préférence, les canaux d'entrée ne présentent donc pas de coins arrondis.
On définit l'âme d'une paroi comme étant une ligne imaginaire qui, dans une section transverse, partage une paroi donnée en deux portions d'épaisseur égale. La distance E0 est définie comme étant la distance entre le coin d'un canal de sortie et le point d'intersection entre les deux âmes de paroi les plus proches dudit coin. La distance Emιn est définie comme étant la distance minimale, pour un canal donné, entre la surface interne de la paroi et l'âme de cette paroi. Le rapport Ec/Emιn est de préférence supérieur ou égal à 3, notamment à 3,1. La section des canaux en coupe transversale est de préférence constante sur toute la longueur de la structure. Il est également préféré que les sections de tous les canaux de sortie soient identiques, à l'exception éventuelle des canaux situés en périphérie de la structure de filtration ou des canaux des structures situées en périphérie du filtre. La même caractéristique est également préférée pour les canaux d'entrée.
Pour assurer une bonne capacité de filtration sans trop pénaliser la perte de charge, l'épaisseur des parois est de préférence comprise entre 150 et 500 micromètres, notamment entre 200 et 500 micromètres, voire entre 300 et 400 micromètres. De même, la densité de canaux est de préférence comprise entre
1 et 280 canaux par cm2, notamment entre 15 et 65 canaux par cm2.
La porosité du matériau constituant les parois filtrantes du filtre est de préférence comprise entre 30 et 70% en volume et/ou le diamètre médian de pores est de préférence compris entre 5 et 40μm. Les parois sont de préférence à base de carbure de silicium, qui présente une très bonne résistance chimique et aux températures élevées. Les parois peuvent également être en un matériau choisi parmi la cordiérite, l'alumine, le titanate d'aluminium, la mullite, le nitrure de silicium, les métaux frittes, un mélange silicium/carbure de silicium, ou l'un quelconque de leurs mélanges.
Une partie au moins, voire la totalité de la surface des canaux d'entrée est de préférence revêtue d'un catalyseur destiné à favoriser l'élimination des gaz polluants (tels que CO, HC, NOx) et/ou des suies.
Sur la structure filtrante préalablement décrite, peut ainsi être déposée, de préférence par imprégnation, au moins une phase catalytique active, comprenant de préférence un métal précieux tel que Pt, Pd, Rh et éventuellement un oxyde choisi parmi Ceθ2, Zrθ2, ou l'un de leurs mélanges.
Le principe actif est habituellement déposé selon des techniques bien connues en catalyse hétérogène, dans la porosité d'une couche support en général à base d'oxyde à forte surface spécifique, par exemple l'alumine, l'oxyde de titane, la silice, l'oxyde de cérium ou de zirconium.
L'invention a également pour objet un filtre assemblé comprenant une pluralité de structures filtrantes telles que précédemment décrites, lesdites structures étant liées entre elles par un ciment. Les structures peuvent être, en section transversale, de forme carrée, rectangulaire, triangulaire ou encore hexagonale. Une forme hexagonale présente l'avantage d'améliorer la résistance thermomécanique du filtre à masse constante et permet de ce fait l'utilisation de plus grandes structures monolithiques. L'invention a encore pour objet l'utilisation d'une structure de filtration ou d'un filtre assemblé tels que précédemment décrits comme dispositif de dépollution sur une ligne d'échappement d'un moteur Diesel ou Essence, de préférence Diesel.
Les figures 1 à 4 et les exemples non limitatifs qui suivent permettent de mieux comprendre l'invention et ses avantages.
Les figures 1 et 2 sont des vues de face en élévation d'une portion de la face d'évacuation des gaz d'un filtre selon l'art antérieur.
Les figures 3 à 5 sont des vues de face en élévation d'une portion de la face d'évacuation des gaz d'un filtre selon l'invention. La figure 6 est une vue de face en élévation d'une portion de la face d'évacuation des gaz d'un filtre selon un exemple comparatif qui sera discuté plus loin.
Sur la figure 1 est représentée une portion de la face d'évacuation d'une structure de filtration selon l'art antérieur, notamment selon la demande WO 2005/016491. La structure est du type en nid d'abeilles et comprend un ensemble de canaux adjacents 11 et 12, longitudinaux, d'axes parallèles entre eux, et séparés par des parois poreuses filtrantes 13. Les canaux 11 , 12 sont alternativement bouchés par des bouchons 14 à l'une ou l'autre des extrémités de la structure de façon à définir des canaux d'entrée 11 et des canaux de sortie 12 pour le gaz à filtrer, et de façon à forcer ledit gaz à traverser les parois poreuses 13. La face représentée étant une face d'évacuation des gaz (face arrière du filtre), les bouchons 14 bouchent les canaux d'entrée 11. Au niveau de la face opposée au contraire (face avant ou face d'admission des gaz), ce sont les canaux de sortie 12 qui sont bouchés. La structure de la figure 1 est telle qu'en coupe transversale, les parois poreuses 13 présentent des ondulations sinusoïdales de façon à ce que lesdites parois poreuses 13 soient concaves par rapport au centre des canaux d'entrée 11 et convexes par rapport au centre des canaux de sortie 12. Le rapport R est de l'ordre de 1 ,6. La figure 2 reprend la structure de la figure 1 , les bouchons 14 n'étant plus représentés. L'âme 15 de quelques parois 13 est représentée en lignes pointillées, et reprend la forme sinusoïdale des ondulations des parois 13.
L'amplitude h et la demi-période p de la sinusoïde sont représentées de manière schématique sur la figure, ainsi que les grandeurs E0 et Emιn. Comme indiqué précédemment, la distance E0 est définie comme étant la distance entre le coin 16 d'un canal de sortie 12 et le point d'intersection entre les deux âmes de paroi les plus proches dudit coin 16. La distance Emιn est définie comme étant la distance minimale, pour un canal donné, entre la surface interne de la paroi et l'âme 15 de cette paroi 13. Pour la structure des figures 1 et 2, le rapport Ec/Emιn est de l'ordre de 2.
La figure 3 illustre une structure de filtration selon l'invention.
La structure est du type en nid d'abeilles et comprend un ensemble de canaux adjacents 21 et 22, longitudinaux, d'axes parallèles entre eux, et séparés par des parois poreuses filtrantes 23. Les canaux 21 et 22 sont alternativement bouchés par des bouchons 24 à l'une ou l'autre des extrémités de la structure de façon à définir des canaux d'entrée 21 et des canaux de sortie 22 pour le gaz à filtrer, et de façon à forcer ledit gaz à traverser les parois poreuses 23. La face représentée étant la face d'évacuation des gaz (face arrière du filtre), les bouchons 24 bouchent les canaux d'entrée 21. Au niveau de la face opposée au contraire (face avant ou face d'admission des gaz), ce sont les canaux de sortie 22 qui sont bouchés.
En coupe transversale, les parois poreuses 23 présentent des ondulations sinusoïdales de façon à ce que lesdites parois poreuses 23 soient concaves par rapport au centre des canaux d'entrée 21 et convexes en leur milieu par rapport au centre des canaux de sortie 22. Le rapport R est de l'ordre de 1 ,7.
Les canaux de sortie 22 possèdent quatre coins 25, tous arrondis, définissant par conséquent quatre courbes, situées à chaque coin 25 du canal, et concaves par rapport au centre du canal 22. D'autres modes de réalisation sont bien entendu possibles, dans lesquels le nombre de coins arrondis est de deux, ou encore trois, pour chaque canal de sortie 22.
Les quatre parois 23 délimitant chaque canal de sortie 22 présentent chacune une seule convexité en leur milieu par rapport aux centre du canal 22, et les quatre parois 23 délimitant un canal d'entrée 21 présentent chacune une seule concavité par rapport au centre du canal 21.
En figure 4 sont représentées schématiquement les grandeurs E0 et Emιn.
Du fait du surplus de matière au niveau des coins des canaux de sortie 22, le rapport Ec/Emιn est plus élevé que dans les structures de l'art antérieur, en l'occurrence supérieur à 3. L'âme de certaines parois est représentée en lignes pointillées 26.
La figure 5 illustre un autre mode de réalisation, dans lequel les parois poreuses 27 selon un premier axe x sont rectilignes, tandis que les parois poreuses 23, selon un second axe y, perpendiculaire au premier axe x, sont ondulées de manière à être concaves par rapport au centre des canaux d'entrée 21 et convexes en leur milieu par rapport au centre des canaux de sortie 22. De cette manière, chaque canal de sortie 22 est délimité par deux parois rectilignes 27 se faisant face et par deux parois ondulées 23, lesquelles sont convexes en leur milieu par rapport au centre du canal. Chaque canal d'entrée 21 est quant à lui délimité par deux parois rectilignes 27 se faisant face et par deux parois ondulées 23 se faisant également faces et étant concaves par rapport au centre du canal.
La figure 6 illustre un filtre selon un exemple comparatif, donc hors invention. Dans le cas de figure représenté, seuls les canaux d'entrée présentent des coins 17 arrondis. On peut définir la distance E0', définie comme étant la distance entre le coin 17 d'un canal d'entrée 11 et le point d'intersection entre les deux âmes de paroi les plus proches dudit coin 17.
L'invention et ses avantages par rapport aux structures déjà connues seront mieux compris à la lecture des exemples non limitatifs qui suivent.
Exemple 1 (comparatif):
On a synthétisé selon les techniques de l'art, par exemple décrites dans les brevets EP 816065, EP 1 142 619, EP 1 455 923 ou encore WO 2004/090294, une première population d'éléments monolithiques ou monolithes en forme de nid d'abeille et en carbure de silicium.
Pour ce faire, de manière comparable au procédé décrit dans la demande EP 1 142 619, on mélange dans un premier temps 70% poids d'une poudre de SiC dont les grains présentent un diamètre médian d5o de 10 microns, avec une deuxième poudre de SiC dont les grains présentent un diamètre médian d5o de 0,5 micron. Au sens de la présente description, on désigne par diamètre médian de pore d5o le diamètre des particules tel que respectivement 50% de la population totale des grains présente une taille inférieure à ce diamètre. A ce mélange est ajouté un porogène du type polyéthylène dans une proportion égale à 5% poids du poids total des grains de SiC et un additif de mise en forme du type methylcellulose dans une proportion égale à 10% poids du poids total des grains de SiC.
On ajoute ensuite la quantité d'eau nécessaire et on malaxe jusqu'à obtenir une pâte homogène dont la plasticité permet l'extrusion à travers une filière configurée pour l'obtention de blocs monolithes de section carrée et dont les canaux internes présentent une section transversale illustrée schématiquement en figure 1. La demi-période p des ondulations est de 1 ,95 mm et correspond à la période de la structure filtrante. Le rapport T est de 0,11. Les monolithes crus obtenus sont séchés par micro-onde pendant un temps suffisant pour amener la teneur en eau non liée chimiquement à moins de 1 % en masse.
Les canaux de chaque face du monolithe sont alternativement bouchés selon des techniques bien connues, par exemple décrites dans la demande WO 2004/065088.
Les monolithes (éléments) sont ensuite cuits sous argon selon une montée en température de 20°C/heure jusqu'à atteindre une température maximale de 22000C qui est maintenue pendant 6 heures.
Le matériau poreux obtenu, présente une porosité ouverte de 47% et un diamètre médian de pores de l'ordre de 15 micromètres.
Un filtre assemblé est ensuite formé à partir des monolithes. Seize éléments issus d'un même mélange ont été assemblés entre eux selon les techniques classiques par collage au moyen d'un ciment de composition chimique suivante : 72% poids de SiC, 15% poids d'AI2θ3, 11 % poids de SiO2, le reste étant constitué par des impuretés, majoritairement de Fe2θ3 et d'oxydes de métaux alcalins et alcalino-terreux. L'épaisseur moyenne du joint entre deux blocs voisins est de l'ordre de 2 mm. L'ensemble est ensuite usiné, afin de constituer des filtres assemblés de forme cylindrique d'environ 14,4 cm de diamètre. Les caractéristiques dimensionnelles des éléments ainsi obtenus sont données dans le tableau 1 ci-après.
Selon les techniques classiques de dépôt du catalyseur de conversion des gaz polluants, des monolithes cuits sont par ailleurs imprégnés par une solution catalytique comprenant du platine, puis séchés et chauffés.
L'analyse chimique montre une concentration en Pt totale de 40 g/ft3 (1 g/ft3 = 0,035 kg/m3), soit 3,46 grammes répartis de façon homogène sur les différentes parties du filtre.
Exemple 2 (comparatif) :
La technique de synthèse des monolithes décrite précédemment est reprise à l'identique, mais la filière est cette fois adaptée de manière à réaliser des blocs monolithes se caractérisant par une disposition telle que les canaux d'entrée (et non de sortie) ont des coins arrondis. Cette disposition est illustrée par la figure 6.
Comme indiqué ci-avant, la caractéristique dimensionnelle Ec' est l'équivalent de la caractéristique Ec pour les canaux d'entrée
Exemple 3 (selon l'invention) :
La technique de synthèse des monolithes décrite précédemment est reprise à l'identique, mais la filière est cette fois adaptée de manière à réaliser des blocs monolithes se caractérisant par une disposition du type de celle représentée schématiquement en figure 3, dans laquelle les canaux de sortie présentent des coins arrondis. Selon une coupe transversale, l'ondulation des parois est caractérisée par un rapport T de 0,11.
Les caractéristiques dimensionnelles des éléments ainsi obtenus sont données dans le tableau 1 ci-après. Tableau 1
Les échantillons obtenus ont été évalués et caractérisés selon les modes opératoires suivants:
Caractéristiques dimensionnelles
Le tableau 2 ci-après indique pour chaque exemple les caractéristiques dimensionnelles suivantes :
- l'OFA (« open front area » en anglais) ou surface de front ouverte, obtenue en calculant le rapport en pourcentage de l'aire couverte par la somme des sections transversales des canaux d'entrée de la face avant des éléments monolithiques unitaires (hormis les parois et bouchons) sur l'aire totale de la section transversale correspondante desdits éléments unitaires. Le volume de stockage des résidus est d'autant plus grand que ce pourcentage sera élevé. - le WALL, qui correspond au rapport, selon une coupe transversale et en pourcentage, entre la surface occupée par l'ensemble des parois d'un élément monolithique unitaire (hormis les bouchons) et l'aire totale de ladite section transversale. - la surface spécifique de filtration du filtre (monolithique ou assemblé), qui correspond à la surface interne de l'ensemble des parois des canaux d'entrée filtrants exprimée en m2, rapportée au volume en m3 de filtre, en intégrant le cas échéant son revêtement externe. Le volume de stockage des suies est d'autant plus élevé que la surface spécifique ainsi définie est grande.
Mesure de perte de charge et de la pente de chargement :
Par perte de charge, on entend au sens de la présente invention la pression différentielle existant entre l'amont et l'aval du filtre. La perte de charge a été mesurée selon les techniques de l'art, pour un débit de gaz de 250 kg/h et une température de 2500C sur les filtres neufs (non-chargés en suie).
Pour la mesure de perte de charge sur filtre chargé en suies, les différents filtres sont préalablement montés sur une ligne d'échappement d'un moteur diesel 2.0 L mis en marche à pleine puissance (4000 tr/minutes) pendant 30 minutes puis démontés et pesés afin de déterminer leur masse initiale. Les filtres sont ensuite remontés sur banc moteur avec un régime à
3000 tr/min et un couple de 50 Nm afin d'obtenir des charges en suies dans le filtre de 7 g/l. La mesure de perte de charge sur le filtre ainsi chargé en suies est réalisée comme sur le filtre neuf. On mesure aussi la perte de charge en fonction de différents taux de chargements compris entre 0 et 10 gramme/litre afin d'établir la pente de chargement ΔP/Msuιe.
Tel que reporté dans le tableau 2, on a attribué les notes suivantes à chacun des filtres selon l'échelle suivante :
+++ : pente de chargement très élevée ++ : pente de chargement élevée, + : pente de chargement moyenne,
: pente de chargement faible. Mesure du temps de désamorçage:
Ce test vise à mesurer la température d'amorçage du catalyseur. Cette température de conversion en CO et HC a ici été déterminée selon un protocole expérimental identique à celui décrit dans la demande EP 1759763, notamment dans ses alinéas 33 et 34. Le test a été réalisé sur des échantillons de monolithes cuits et imprégnés de catalyseur comme décrit précédemment.
Après activation du catalyseur et stabilisation à 4000C de la température moyenne du monolithe, le flux de gaz à dépolluer est refroidi à débit massique constant de 60kg/h de gaz de 400 à 1500C. On mesure alors le temps nécessaire au monolithe pour que sa température moyenne soit égale à la température d'amorçage du catalyseur
Les résultats obtenus pour les exemples 1 à 3, directement comparables, ont été reportés dans le tableau 2.
Tableau 2
Le filtre selon l'invention présente une surface de front ouverte et une surface spécifique de filtration plus élevée que celle du filtre de l'art antérieur (exemple 1 ) pour un même WALL, donc une même masse de monolithe. Ce changement de géométrie, qui consiste en une augmentation locale de l'épaisseur de la paroi au niveau des canaux de sortie, a pour effet d'augmenter de manière significative le temps de désamorçage de l'activité catalytique. Si la perte de charge à l'état non chargé est légèrement plus élevée, tout en restant acceptable, la pente de chargement est quant à elle plus faible que pour le filtre de référence, ce qui est favorable à la réduction de la surconsommation de carburant due à la présence du dispositif de filtration. Par rapport au filtre comparatif selon l'exemple 2, le filtre selon l'invention présente un temps de désamorçage plus faible et une perte de charge plus élevée tout en restant parfaitement acceptable pour l'application. En revanche le filtre selon l'invention présente par rapport à l'exemple 2 une surface de front ouverte et une surface spécifique de filtration significativement plus élevées, et surtout une pente de chargement nettement plus faible.
Le filtre selon l'invention présente donc le meilleur compromis au regard des différentes propriétés requises.

Claims

REVENDICATIONS
1. Structure de filtration de gaz chargés en particules, du type en nid d'abeilles et comprenant un ensemble de canaux adjacents longitudinaux d'axes parallèles entre eux (21 , 22) séparés par des parois poreuses filtrantes (23), lesdits canaux (21 , 22) étant alternativement bouchés à l'une ou l'autre des extrémités de la structure de façon à définir des canaux d'entrée (21 ) et des canaux de sortie (22) pour le gaz à filtrer, et de façon à forcer ledit gaz à traverser les parois poreuses (23) séparant les canaux d'entrée (21 ) et de sortie (22), ladite structure étant telle qu'en coupe transversale :
- le rapport R entre la somme des aires des canaux d'entrée et la somme des aires des canaux de sortie est supérieur à 1 , - au moins une partie des parois poreuses (23) présentent des ondulations de façon à être concaves par rapport au centre des canaux d'entrée (21 ) et convexes en leur milieu par rapport au centre des canaux de sortie (22),
- les canaux de sortie (22) possèdent au moins un coin arrondi (25).
2. Structure de filtration selon la revendication 1 , telle que toutes les parois poreuses (23) présentent des ondulations de façon à être concaves par rapport au centre des canaux d'entrée (21 ) et convexes en leur milieu par rapport au centre des canaux de sortie (22).
3. Structure de filtration selon l'une des revendications précédentes, dans laquelle les ondulations sont sinusoïdales.
4. Structure de filtration selon la revendication précédente, telle que le rapport T entre l'amplitude (h) et la demi-période (p) est inférieur ou égal à 0,2, notamment à 0,15.
5. Structure de filtration selon l'une des revendications précédentes, telle que le rapport R est compris entre 1 ,1 et 2,0.
6. Structure de filtration selon l'une des revendications précédentes, dans laquelle les canaux de sortie (22) possèdent quatre coins (25), tous arrondis.
7. Structure de filtration selon l'une des revendications précédentes, dans laquelle le rayon de courbure du ou de chaque coin arrondi (25) des canaux de sortie (22) est tel que le rapport de la période de la structure filtrante sur le rayon de courbure soit compris entre 1 ,5 et 1000, notamment entre 2 et 500 ou entre 4 et 100.
8. Structure de filtration selon l'une des revendications précédentes, telle que la section des canaux (21 , 22) en coupe transversale est constante sur toute la longueur de la structure.
9. Structure de filtration selon l'une des revendications précédentes, dans laquelle l'épaisseur des parois (23) est comprise entre 150 et 500 micromètres, notamment entre 200 et 500 micromètres.
10. Structure de filtration selon l'une des revendications précédentes, dans laquelle la densité de canaux (21 , 22) est comprise entre 1 et 280 canaux par cm2, notamment entre 15 et 65 canaux par cm2.
11. Structure de filtration selon l'une des revendications précédentes, dans laquelle les parois (23) sont à base de carbure de silicium ou d'un matériau choisi parmi la cordiérite, l'alumine, le titanate d'aluminium, la mullite, le nitrure de silicium, les métaux frittes, un mélange silicium/carbure de silicium, ou l'un quelconque de leurs mélanges.
12. Structure de filtration selon l'une des revendications précédentes, dans laquelle une partie au moins de la surface des canaux d'entrée (21 ) est revêtue d'un catalyseur destiné à favoriser l'élimination des gaz polluants et/ou des suies.
13. Filtre assemblé comprenant une pluralité de structures de filtration selon l'une des revendications précédentes, lesdites structures étant liées entre elles par un ciment.
14. Utilisation d'une structure de filtration ou d'un filtre assemblé selon l'une des revendications précédentes comme dispositif de dépollution sur une ligne d'échappement d'un moteur, notamment Diesel.
EP09721313A 2008-03-11 2009-03-10 Structure de filtration de gaz Withdrawn EP2254681A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0851579A FR2928561B1 (fr) 2008-03-11 2008-03-11 Structure de filtration de gaz
PCT/FR2009/050395 WO2009115762A2 (fr) 2008-03-11 2009-03-10 Structure de filtration de gaz

Publications (1)

Publication Number Publication Date
EP2254681A2 true EP2254681A2 (fr) 2010-12-01

Family

ID=39855135

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09721313A Withdrawn EP2254681A2 (fr) 2008-03-11 2009-03-10 Structure de filtration de gaz

Country Status (6)

Country Link
US (1) US20110020185A1 (fr)
EP (1) EP2254681A2 (fr)
JP (1) JP2011513060A (fr)
KR (1) KR20100132949A (fr)
FR (1) FR2928561B1 (fr)
WO (1) WO2009115762A2 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2959673A1 (fr) * 2010-05-04 2011-11-11 Saint Gobain Ct Recherches Structure de filtration de gaz a canaux tels qu'en nid d'abeilles
WO2013109820A1 (fr) * 2012-01-20 2013-07-25 Dow Global Technologies Llc Filtre céramique ayant des canaux asymétriques pour particules de gaz d'échappement
JP6120709B2 (ja) * 2012-09-27 2017-04-26 日本碍子株式会社 ハニカム触媒体
WO2014054159A1 (fr) 2012-10-04 2014-04-10 イビデン株式会社 Filtre en structure alvéolaire
US10603187B2 (en) * 2013-07-17 2020-03-31 Aesculap Implant Systems, Llc Spinal interbody device, system and method
JP6239303B2 (ja) 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
US9808794B2 (en) * 2013-09-23 2017-11-07 Corning Incorporated Honeycomb ceramic substrates, honeycomb extrusion dies, and methods of making honeycomb ceramic substrates
GB2520776A (en) * 2013-12-02 2015-06-03 Johnson Matthey Plc Wall-flow filter comprising catalytic washcoat
JP6406480B1 (ja) * 2017-03-01 2018-10-17 株式会社村田製作所 濾過フィルタ
JP7155292B2 (ja) 2018-05-04 2022-10-18 コーニング インコーポレイテッド 高いアイソスタティック強度のハニカム構造およびハニカム構造用の押出ダイ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1316686B1 (fr) * 2001-12-03 2007-09-05 Hitachi Metals, Ltd. Filtre céramique en nid d'abeilles
CN100345611C (zh) * 2002-09-13 2007-10-31 揖斐电株式会社 蜂窝状结构体
FR2857696B1 (fr) * 2003-07-18 2005-10-21 Saint Gobain Ct Recherches Bloc filtrant pour la filtration de particules contenues dans les gaz d'echappement d'un moteur a combustion interne.
US7393377B2 (en) * 2004-02-26 2008-07-01 Ngk Insulators, Ltd. Honeycomb filter and exhaust gas treatment apparatus
FR2874647B1 (fr) * 2004-08-25 2009-04-10 Saint Gobain Ct Recherches Bloc filtrant a ailettes pour la filtration de particules contenues dans les gaz d'echappement d'un moteur a combustion interne
FR2925353B1 (fr) * 2007-12-20 2009-12-11 Saint Gobain Ct Recherches Structure de filtration d'un gaz a canaux hexagonaux asymetriques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009115762A2 *

Also Published As

Publication number Publication date
FR2928561B1 (fr) 2011-08-19
US20110020185A1 (en) 2011-01-27
FR2928561A1 (fr) 2009-09-18
WO2009115762A3 (fr) 2009-12-10
KR20100132949A (ko) 2010-12-20
JP2011513060A (ja) 2011-04-28
WO2009115762A2 (fr) 2009-09-24

Similar Documents

Publication Publication Date Title
EP2234693B1 (fr) Structure de filtration d'un gaz a canaux hexagonaux assymetriques
EP2254681A2 (fr) Structure de filtration de gaz
EP2244804B1 (fr) Structure de filtration d'un gaz a canaux hexagonaux assymetriques
EP1979589A2 (fr) Filtre catalytique presentant un temps d'amorcage reduit
FR2946892A1 (fr) Structure de filtration d'un gaz a canaux hexagonaux irreguliers.
EP2069617B1 (fr) Element monolithique a coins renforces pour la filtration de particules
EP2254682A2 (fr) Structure de filtration d'un gaz a epaisseur de paroi variable
EP1954374B1 (fr) Structure a base de carbure de silicium de porosite de surface de paroi controlee pour filtration d'un gaz
FR2944052A1 (fr) Structure de filtration d'un gaz et de reduction des nox.
EP2111281A1 (fr) Structure de filtration d'un gaz a paroi ondulee
EP1871525A2 (fr) Filtre catalytique pour la filtration d'un gaz comprenant un revetement et/ou un joint de porosite controlee
EP2244805B1 (fr) Structure de filtration d'un gaz a canaux hexagonaux concaves ou convexes
EP2091890B1 (fr) Procede d'obtention d'une structure poreuse a base de carbure de silicium et structure poreuse obtenue
WO2009156638A1 (fr) Filtre ou support catalytique à base de carbure de silicium et de titanate d'aluminium
WO2011138552A1 (fr) Structure de filtration de gaz
EP2468382A1 (fr) Filtre a particules du type assemble
WO2011138555A1 (fr) Structure de filtration de gaz
FR2886868A1 (fr) Structure et filtre catalytique pour la filtration d'un gaz comprenant un revetement et/ou un joint de porosite controlee

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101011

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RAJAMANI, VIGNESH

Inventor name: LECHEVALIER, DAVID

Inventor name: PINTURAUD, DAVID

Inventor name: CHAPKOV, ATANAS

Inventor name: RODRIGUES, FABIANO

Inventor name: VINCENT, ADRIEN

111L Licence recorded

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

Name of requester: SAINT-GOBAIN INDUSTRIEKERAMIK ROEDENTAL GMBH, DE

Effective date: 20110418

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121002