Nothing Special   »   [go: up one dir, main page]

EP2177757A1 - Procédé et dispositif de surchauffe intermédiaire à l'aide de vapeur saturée pendant l'évaporation directe solaire dans une centrale thermique solaire - Google Patents

Procédé et dispositif de surchauffe intermédiaire à l'aide de vapeur saturée pendant l'évaporation directe solaire dans une centrale thermique solaire Download PDF

Info

Publication number
EP2177757A1
EP2177757A1 EP08018158A EP08018158A EP2177757A1 EP 2177757 A1 EP2177757 A1 EP 2177757A1 EP 08018158 A EP08018158 A EP 08018158A EP 08018158 A EP08018158 A EP 08018158A EP 2177757 A1 EP2177757 A1 EP 2177757A1
Authority
EP
European Patent Office
Prior art keywords
steam
solar
power plant
thermal power
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08018158A
Other languages
German (de)
English (en)
Inventor
Jürgen Birnbaum
Markus Fichtner
Georg Haberberger
Stefan Schill
Gerhard Dr. Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP08018158A priority Critical patent/EP2177757A1/fr
Publication of EP2177757A1 publication Critical patent/EP2177757A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/003Devices for producing mechanical power from solar energy having a Rankine cycle
    • F03G6/005Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the invention relates to a method for operating a solar thermal power plant, as well as a solar thermal power plant with a working fluid circuit, based on direct evaporation solar steam generator and a steam turbine to relax the working fluid under delivery of technical work, the solar steam generator and the steam turbine are connected in the working fluid circuit, with at least one reheater to overheat the working fluid.
  • Solar thermal power plants are an alternative to conventional electricity generation.
  • a solar thermal power plant uses solar radiation energy to produce electrical energy. It consists of a solar power plant section for the absorption of solar energy and a second mostly conventional power plant part.
  • the solar power plant part comprises a solar field of concentrating systems. They are the main component of the solar power plant part.
  • Well-known concentrating systems are the parabolic trough collector, the Fresnel collector, the solar tower with heliostats and the paraboloid mirror.
  • Parabolic trough collectors and Fresnel collectors concentrate the sun's rays onto an absorber tube placed in the focal line. There, the solar energy is absorbed and passed as heat to a heat transfer medium.
  • Thermal oil, water, air or molten salt can be used as the heat transfer medium.
  • the conventional power plant part usually includes a steam turbine and a generator and a capacitor, wherein in Compared to the conventional power plant, the heat input through the boiler is replaced by the heat input generated by the solar field.
  • solar thermal power plants are operated with indirect evaporation, i. that heat exchangers are connected between the solar power plant part and the conventional power plant part in order to transfer the energy generated in the solar field from the heat transfer medium of a solar field cycle to a water-steam cycle of the conventional power plant part.
  • a future option is the direct evaporation, in which form the solar field circuit of the solar power plant part and the water-steam cycle of the conventional power plant part of a common circuit, the feed water is preheated in the solar field, evaporated and possibly overheated and so the conventional part is supplied.
  • the solar power plant part is thus a solar steam generator.
  • the conventional power plant part can not be optimally operated.
  • the relaxation of the steam over the largest possible pressure gradient is very limited by the resulting in the relaxation in the turbine moisture.
  • a reheating of the steam is necessary.
  • reheating is carried out by means of a heat exchanger in the boiler.
  • the reheat can be carried out in a separate solar field.
  • this embodiment of the reheat does not seem appropriate, since a very high pressure loss is to be expected at a reheat in the solar field.
  • the device-related object of the invention is therefore to provide a solar thermal power plant with improved reheat. Another object is the specification of a method for operating such a power plant.
  • the inventive solar thermal power plant includes a working fluid circuit, a direct steam based solar steam generator and a steam turbine for expansion of the working fluid under output technical work, the solar steam generator and the steam turbine are connected in the working fluid circuit, with at least one reheater to overheat the working fluid, which means Working fluid from the solar steam generator is heated.
  • the working fluid can be overheated without the very high pressure loss expected in the solar field during reheating.
  • the reheater is a steam-steam heat exchanger.
  • the working fluid from the solar steam generator is saturated steam or superheated steam.
  • the steam-steam heat exchanger is connected on the primary side in a tap of the steam turbine. This is advantageously dispensed with a removal of the higher quality live steam. "Tapping" means a vapor extraction between two blade stages.
  • an additional firing for reheating in the flow direction of a working fluid is connected behind the reheater.
  • the temperature of the reheated steam may be equal to or even higher than the live steam temperature.
  • the solar steam generator is connected to the turbine via a main steam line, in which an additional firing is connected.
  • a water separator in the circuit upstream of the reheater may be expedient to drive with the highest possible steam content in the steam-steam heat exchanger on the cold secondary side of the reheater.
  • the condensate is introduced from the water at a suitable location again in the working fluid circuit.
  • the solar thermal power plant includes a generator for electrical power generation.
  • Particularly advantageous solar thermal power plant includes parabolic trough collectors, which have a high technology maturity and have the highest concentration factor for linearly concentrating systems, whereby high process temperatures are possible.
  • Fresnel collectors are used.
  • An advantage of the Fresnel collectors over the parabolic trough collector lies in the piping and the resulting, relatively low pressure losses.
  • Another advantage of the Fresnel collectors are the opposite Parabolic trough collectors largely simpler components that are to produce without high-tech know-how. Fresnel collectors are therefore inexpensive to purchase and maintain.
  • a further advantageous alternative embodiment uses a solar tower for solar direct evaporation, which enables the highest process temperatures.
  • the object is achieved by a method for operating a solar thermal power plant, in which a working fluid is circulated, in which the working fluid by solar irradiation in a solar steam generator evaporates directly and relaxed by releasing technical work and in a reheater , which is heated by means of working fluid from the solar steam generator, is overheated.
  • the method makes use of the device described.
  • the advantages of the device therefore also result for the method.
  • FIG. 1 shows the schematic structure and the cycle process of a solar thermal power plant 1 with direct evaporation according to the invention.
  • the plant 1 comprises a solar field 2, in which the solar radiation is concentrated and converted into heat energy.
  • the solar panel 2 may include, for example, parabolic trough collectors, Fresnel collectors, solar towers or Paraboloidaptkollektoren.
  • Concentrated solar radiation is delivered to a heat transfer medium, which is vaporized and introduced via a main steam line 3 into a steam turbine 4 as working fluid.
  • the steam turbine 4 comprises a high-pressure turbine 5 and a low-pressure turbine 6, which drive a generator 7.
  • the working fluid is expanded and then liquefied in a condenser 8.
  • a feedwater pump 9 pumps the liquefied heat transfer medium back into the solar field 2, whereby the circuit 10 of the heat transfer medium and the working fluid is closed.
  • Saturated steam is taken from the solar field 2 and fed to a steam-steam heat exchanger 11 for overheating of the cold reheat steam.
  • the saturated steam is cooled down to the point where it is used for recuperative feedwater pre-heating at the appropriate temperature Can be used in the feedwater system (feed 12).
  • a water separator 13 are installed in the circuit 10 to go with the highest possible steam content in the steam-steam heat exchanger 11 on the cold reheat side.
  • the condensate from the water separator 13 is reintroduced into the feedwater circuit 10 at a suitable location (feed point 14).
  • the temperature of the hot reheat steam is determined by the volatility of the steam-steam heat exchanger 11 and the saturated steam temperature at the predetermined by the solar panel 2 and the pressure loss of the steam-steam heat exchanger 11 pressure.
  • FIG. 2 shows a second embodiment of the reheat, in which the steam after exiting the high-pressure turbine 5 a reheatening in two steam-steam heat exchangers 11,15 is supplied.
  • the first steam-steam heat exchanger 11 is flowed through by saturated steam from the solar field 2 on the primary side.
  • the steam for the second steam-steam heat exchanger 15 is taken from a tap 16 of the high-pressure turbine 5 and used for a second reheating of the partially expanded steam in the steam-steam heat exchanger 15.
  • the vapors of the working fluid, cooled either of these intermediate superheaters in the heat exchangers 11, 15, which are obtained either as steam or as condensate, are used at the corresponding points before entry into the solar field 2 for recuperative feed water preheating (feed points 12, 17).
  • feed points 12, 17 Before the two steam-steam heat exchangers 11,15 can optionally be installed a water separator 13 in the reheat (depending on the steam parameters of the cold reheat) to go with the highest possible steam content in the heat exchanger 11,15.
  • saturated steam from the solar panel 2 is used in a steam-steam heat exchanger 11 for a first overheating of the partially expanded steam, which then by means of an additional firing 18 to the desired Parameter is overheated.
  • the live steam parameters can also be additionally raised to compensate for temperature fluctuations due to cloud passage by means of an additional firing 19 in the main steam line 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
EP08018158A 2008-10-16 2008-10-16 Procédé et dispositif de surchauffe intermédiaire à l'aide de vapeur saturée pendant l'évaporation directe solaire dans une centrale thermique solaire Withdrawn EP2177757A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08018158A EP2177757A1 (fr) 2008-10-16 2008-10-16 Procédé et dispositif de surchauffe intermédiaire à l'aide de vapeur saturée pendant l'évaporation directe solaire dans une centrale thermique solaire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08018158A EP2177757A1 (fr) 2008-10-16 2008-10-16 Procédé et dispositif de surchauffe intermédiaire à l'aide de vapeur saturée pendant l'évaporation directe solaire dans une centrale thermique solaire

Publications (1)

Publication Number Publication Date
EP2177757A1 true EP2177757A1 (fr) 2010-04-21

Family

ID=40756229

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08018158A Withdrawn EP2177757A1 (fr) 2008-10-16 2008-10-16 Procédé et dispositif de surchauffe intermédiaire à l'aide de vapeur saturée pendant l'évaporation directe solaire dans une centrale thermique solaire

Country Status (1)

Country Link
EP (1) EP2177757A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011138215A3 (fr) * 2010-05-06 2012-03-15 Siemens Aktiengesellschaft Partie solaire d'une centrale héliothermique et centrale héliothermique présentant des surfaces de collecteurs solaires pour agent caloporteur et agent de travail
DE102010041734A1 (de) * 2010-09-30 2012-04-05 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Erzeugen von überhitztem Wasserdampf mittels solarthermisch betriebenem Zwischenüberhitzer sowie Verwendung des überhitzten Wasserdampfs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2450363A1 (fr) * 1979-02-28 1980-09-26 Anvar Centrale thermique de production d'electricite a partir d'energie solaire
WO1996031697A1 (fr) * 1995-04-03 1996-10-10 Compañia Sevillana De Electricidad, S.A. Systeme d'integration de l'energie solaire dans une centrale thermique classique de production d'energie electrique
US20070157614A1 (en) * 2003-01-21 2007-07-12 Goldman Arnold J Hybrid Generation with Alternative Fuel Sources
EP1820964A1 (fr) * 2006-02-17 2007-08-22 Siemens Aktiengesellschaft Méthode et dispositif pour augmenter la production énergétique dans une centrale thermique solaire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2450363A1 (fr) * 1979-02-28 1980-09-26 Anvar Centrale thermique de production d'electricite a partir d'energie solaire
WO1996031697A1 (fr) * 1995-04-03 1996-10-10 Compañia Sevillana De Electricidad, S.A. Systeme d'integration de l'energie solaire dans une centrale thermique classique de production d'energie electrique
US20070157614A1 (en) * 2003-01-21 2007-07-12 Goldman Arnold J Hybrid Generation with Alternative Fuel Sources
EP1820964A1 (fr) * 2006-02-17 2007-08-22 Siemens Aktiengesellschaft Méthode et dispositif pour augmenter la production énergétique dans une centrale thermique solaire

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MUELLER M ET AL: "SOLARE FARMKRAFTWERKE UND DIREKTVERDAMPFUNG IN KOLLEKTOREN", FORSCHUNGSVERBUND SONNENENERGIE, XX, XX, 31 December 1993 (1993-12-31), pages 57 - 64, XP000647082 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011138215A3 (fr) * 2010-05-06 2012-03-15 Siemens Aktiengesellschaft Partie solaire d'une centrale héliothermique et centrale héliothermique présentant des surfaces de collecteurs solaires pour agent caloporteur et agent de travail
CN102884317A (zh) * 2010-05-06 2013-01-16 西门子公司 太阳能热电站设备的太阳能电站部分和具有用于载热介质和工质的太阳能收集器面的太阳能热电站设备
DE102010041734A1 (de) * 2010-09-30 2012-04-05 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Erzeugen von überhitztem Wasserdampf mittels solarthermisch betriebenem Zwischenüberhitzer sowie Verwendung des überhitzten Wasserdampfs

Similar Documents

Publication Publication Date Title
WO2008113798A2 (fr) Procédé et dispositif de surchauffe intermédiaire lors de l'évaporation directe solaire dans une centrale thermique solaire
DE102008051384B3 (de) Solarhybridbetriebenes Gas- und Dampfkraftwerk
EP1984624B1 (fr) Méthode et dispositif pour augmenter la production énergétique dans une centrale thermique solaire
EP2521861B1 (fr) Centrale solaire thermique à évaporation indirecte et procédé permettant de faire fonctionner une telle centrale solaire thermique
DE19723543C2 (de) Energieerzeugungsanlage
EP2187051A1 (fr) Procédé et dispositif destinés à la surchauffe intermédiaire dans une centrale thermique solaire à l'aide d'une évaporation indirecte
EP1820965A1 (fr) Méthode et dispositif pour régler la production énergétique dans une centrale thermique solaire
EP0526816A1 (fr) Centrale à turbines à gaz et à vapeur avec un générateur de vapeur solaire
EP2467601B1 (fr) Centrale solaire thermique comprenant un échangeur de chaleur dans la section de préchauffage d'eau d'alimentation, et procédé d'exploitation de cette centrale
WO2010118796A2 (fr) Centrale thermique à vapeur comportant des capteurs solaires
EP2567090A2 (fr) Partie solaire d'une centrale héliothermique et centrale héliothermique présentant des surfaces de collecteurs solaires pour agent caloporteur et agent de travail
WO2010069671A1 (fr) Générateur de vapeur à récupération de chaleur et procédé pour améliorer le fonctionnement d'un générateur de vapeur à récupération de chaleur
DE3017699A1 (de) Sonnenkraftwerk mit einem auf einem turm angeordnetem solarerhitzer
DE4126036A1 (de) Gas- und dampfturbinenkraftwerk mit einem solar beheizten dampferzeuger
DE19627425A1 (de) Verfahren zum Betrieb einer Hybrid-Solar-Kombianlage sowie eine Hybrid-Solar-Kombianlage
DE102012110579B4 (de) Anlage und Verfahren zur Erzeugung von Prozessdampf
DE102010040208B4 (de) Solarthermische Durchlaufverdampfer-Heizfläche mit lokaler Querschnittsverengung an ihrem Eintritt
WO2015003898A1 (fr) Système de préchauffage et procédé utilisant un tel système de préchauffage
EP2177757A1 (fr) Procédé et dispositif de surchauffe intermédiaire à l'aide de vapeur saturée pendant l'évaporation directe solaire dans une centrale thermique solaire
DE102011004271A1 (de) Durchlaufdampferzeuger für die indirekte Verdampfung insbesondere in einem Solarturm-Kraftwerk
WO2012025284A1 (fr) Procédé permettant de faire fonctionner une turbine à vapeur d'une centrale thermique solaire et installation de chaudière permettant de mettre en œuvre ledit procédé
DE102010048292A1 (de) Verfahren zum Betrieb eines Niedertemperaturkraftwerks
DE102010040199A1 (de) Solarthermischer Druchlaufverdampfer
DE102010040216A1 (de) Solarthermischer Druchlaufdampferzeuger mit einem Dampfabscheider und nachgeschaltetem Sternverteiler für Solarturm-Kraftwerke mit direkter Verdampfung
DE3534230A1 (de) Kernreaktoranlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

XX Miscellaneous (additional remarks)

Free format text: DIE BEZUGNAHMEN AUF DIE NICHT VORHANDENE ZEICHNUNG NR. 4 GELTEN ALS GESTRICHEN.

AKY No designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Effective date: 20110405

Ref country code: DE

Ref legal event code: 8566