Nothing Special   »   [go: up one dir, main page]

EP2031183A1 - Steam turbine shaft with heat insulation layer - Google Patents

Steam turbine shaft with heat insulation layer Download PDF

Info

Publication number
EP2031183A1
EP2031183A1 EP07016848A EP07016848A EP2031183A1 EP 2031183 A1 EP2031183 A1 EP 2031183A1 EP 07016848 A EP07016848 A EP 07016848A EP 07016848 A EP07016848 A EP 07016848A EP 2031183 A1 EP2031183 A1 EP 2031183A1
Authority
EP
European Patent Office
Prior art keywords
shaft
steam
cooling
flow
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07016848A
Other languages
German (de)
French (fr)
Other versions
EP2031183B1 (en
Inventor
Jan Dr. Walkenhorst
Armin Dr. De Lazzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP20070016848 priority Critical patent/EP2031183B1/en
Publication of EP2031183A1 publication Critical patent/EP2031183A1/en
Application granted granted Critical
Publication of EP2031183B1 publication Critical patent/EP2031183B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/084Cooling fluid being directed on the side of the rotor disc or at the roots of the blades the fluid circulating at the periphery of a multistage rotor, e.g. of drum type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/313Layer deposition by physical vapour deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • F05D2260/2322Heat transfer, e.g. cooling characterized by the cooling medium steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2118Zirconium oxides

Definitions

  • the invention relates to a shaft for a steam turbine, wherein the shaft has a cooling steam section, which is designed to flow with a cooling steam.
  • Steam turbines are used with fresh steam inlet temperatures of up to 620 ° C. There are currently efforts to increase the steam inlet temperature to 700 ° C. Such high steam inlet temperatures require suitable cooling options for thermally stressed areas in the steam turbine.
  • the shaft One of the most thermally stressed areas in a steam turbine is the shaft.
  • the steam inlet region of the live steam is particularly thermally stressed, since the live steam impinges directly on the shaft at this point.
  • the waves are therefore made either with a suitable thermal barrier coating on this live steam section, which is designed to flow with live steam.
  • suitable materials can be used which can be exposed to high temperatures. However, such materials are relatively expensive.
  • Another way to generally cool a steam turbine shaft is that along the surface of the steam turbine shaft, a cooling medium is guided along. Due to the comparatively colder cooling medium in comparison to the hot live steam, the surface is cooled at individual sections of the shaft by convective flow of the cooling steam. However, it can not be ruled out that such cooling steam systems will fail during operation, which could lead to the hot live steam impinging on the section to be cooled instead of the cooling medium, with the result that this section is subjected to too much thermal stress and thus damaged could.
  • the invention begins, whose task is to provide a shaft in which a failure of the cooling medium supply reduces the risk of damaging the shaft.
  • a shaft for a steam turbine wherein the shaft has a cooling steam section, which is designed for flowing with a cooling steam, wherein the cooling steam section is formed with a thermal barrier coating.
  • the invention is based on the idea that it previously seemed necessary to form only the regions of the shaft with a thermal barrier coating which come into direct contact with the hot live steam or form the regions of a wave with a thermal barrier coating which are thermally stressed.
  • the invention now resolves itself from this idea and proposes to form at areas of the turbine shaft, which are initially acted upon only with cooling medium and thereby not necessarily a thermal barrier coating is required at this point, yet form a thermal barrier coating.
  • a failure of the cooling medium it may be the case that the live steam flows into the cooling steam section, as a result of which this cooling steam section is thermally stressed too much.
  • this cooling steam section with a thermal barrier coating as well.
  • a combination of a thermal barrier coating with active cooling by means of a cooling medium is proposed.
  • One of the advantages is that, as a result, a reduction of the thermal gradients in a transient operating state is achieved.
  • Another advantage is that the shaft is protected against thermal overload in the event of a short-term failure of the cooling medium.
  • Another advantage can be seen in the fact that with the lining with a thermal barrier coating and cooling media can be used, for example, have a vapor state that could not be used without thermal insulation layer as a cooling medium.
  • the shaft is designed as a single-flow or double-flow shaft for use in a high-pressure turbine part.
  • a steam with a high inlet temperature is used as live steam. Therefore, suitable cooling options had to be found for the high-pressure turbine sections, which is achieved according to the invention with the thermal barrier coating.
  • the shaft is designed as a single or double-flow shaft for use in a medium-pressure turbine section. It also medium-pressure turbine sections are fed with live steam temperatures, which corresponds to the temperatures of the live steam at high pressure turbine sections. Therefore medium-pressure turbine sections would have to be suitably cooled or protected against overheating, which is achieved according to the invention with the thermal barrier coating.
  • the thermal barrier coating comprises a sprayed or applied by PVD ceramic layer, which is applied in the form of a multilayer coating.
  • a so-called adhesion promoter layer (bond coating) is first applied.
  • a known adhesion promoter layer would be, for example, MCrAlY (-20Cr-12Al) or aluminum alloys.
  • a so-called oxidation layer is applied, which consists for example of Al 2 O 3 .
  • the thermal insulation layer is applied to the oxidation layer, which effects a thermal insulation.
  • the thermal barrier coating has a specific heat transfer of less than two watts per meter and Kelvin ⁇ 2 ⁇ W mK ,
  • the thermal barrier coating may be constructed in one or more layers and comprise an oxide ceramic.
  • the thermal barrier coating may comprise at least 50 percent by mass of an oxide of one or more third major and minor group elements (eg, boron group, elements 5, 13, 21, 31, 39, 49, 57, 81, 89) or 4.
  • Main group and subgroup carbon group, elements 6, 14, 22, 32, 40, 50, 72, 82, 104
  • a thermal barrier coating made of yttrium-stabilized zirconium oxide (ZrO 2 + (x%) Y 2 O 3 ) with a zirconium oxide content between 0% and 15%.
  • the FIG. 1 shows a steam turbine, which is designed as a high pressure turbine part.
  • the steam turbine 1 has an outer casing 2 and an inner casing 3 and one around a Rotation axis 4 rotatably mounted shaft 5.
  • the shaft 5 has various blades 7, wherein in the FIG. 1 only three blades are provided with the reference numeral 7.
  • the inner housing 3 comprises a plurality of guide vanes 6, wherein in the FIG. 1 only three vanes are provided with the reference numeral 6.
  • a live steam flows into the inflow region 8 and flows in a flow direction 9.
  • the thermal energy of the live steam is converted into rotational energy of the shaft 5.
  • a diagonal stage 11 which, on the one hand, directs live steam directly from the inflow region 8 into the flow channel 19 and, on the other hand, separates a cooling steam section 10, which is designed to flow with a cooling steam.
  • the possibility of the flow of the cooling steam section 10 is in the FIG. 1 not shown in detail. It is conceivable that the cooling steam is conducted or conducted via an external line into the cooling steam section 10. In operation, the area 12 is subjected to high thermal loads. By the flow of cooling steam into the cooling steam section 10, however, overheating is effectively avoided. However, it can not be ruled out that the cooling steam supply does not take place due to a fault, which could then lead to overheating.
  • the shaft therefore has a thermal barrier coating 13 in the cooling steam section 10.
  • the FIG. 2 shows a double-flow medium-pressure turbine section 14.
  • the inflow area 8 is such that the live steam is deflected into a flow channel in the right direction and a live steam area is deflected in the left direction.
  • a thermal barrier coating 13 is formed in the cooling steam section 10. As a result, the shaft is protected against overheating when live steam penetrates into the cooling steam section 10 in the region 15.
  • FIG. 3 shows a section of a steam turbine.
  • the cooling steam section 10 is arranged below a discharge device 16. For the sake of clarity, only one blade is shown with the reference numeral 7.
  • a live steam flows past the blade 7 in the flow direction 9, and further, a cooling medium 17 flows along the cooling steam portion 10.
  • the broken line 18 shows the state when the cooling medium supply is interrupted due to a failure.
  • live steam from the flow channel 19 can penetrate into the cooling steam section 10 via a gap 20. To avoid overheating of this section 10, this is lined with the thermal barrier coating 13.
  • the thermal barrier coating used is yttrium-stabilized zirconium oxide (ZrO 2 + (x%) Y 2 O 3 ) with a zirconium oxide content between 0% and 15%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The steam turbine has a shaft and a discharging unit (16). The shaft has a cooling steam section (10) which is formed for flow of a cooling steam. The cooling steam section is arranged below the discharging unit. The cooling steam section is formed with a thermal insulation layer (13). The shaft is designed as single-flow or double-flow shaft for insertion in a high pressure partial turbine. The thermal insulation layer is formed from an yttrium-stabilized zirconium oxide.

Description

Die Erfindung betrifft eine Welle für eine Dampfturbine, wobei die Welle einen Kühldampfabschnitt aufweist, der zum Beströmen mit einem Kühldampf ausgebildet ist.The invention relates to a shaft for a steam turbine, wherein the shaft has a cooling steam section, which is designed to flow with a cooling steam.

Dampfturbinen werden mit Frischdampfeintrittstemperaturen von bis zu 620°C eingesetzt. Es sind derzeit Bestrebungen da, die Dampfeintrittstemperatur auf 700°C zu erhöhen. Solch hohe Dampfeintrittstemperaturen erfordern geeignete Kühlungsmöglichkeiten für thermisch beanspruchte Bereiche in der Dampfturbine.Steam turbines are used with fresh steam inlet temperatures of up to 620 ° C. There are currently efforts to increase the steam inlet temperature to 700 ° C. Such high steam inlet temperatures require suitable cooling options for thermally stressed areas in the steam turbine.

Eines der am höchsten thermisch beanspruchten Bereiche in einer Dampfturbine ist die Welle. Insbesondere ist der Dampfeintrittsbereich des Frischdampfs besonders thermisch belastet, da der Frischdampf an dieser Stelle auf die Welle direkt auftrifft. Die Wellen werden daher entweder mit einer geeigneten Wärmedämmschicht auf diesem Frischdampfabschnitt, der zum Beströmen mit Frischdampf ausgebildet ist, gefertigt. Alternativ dazu können geeignete Materialien verwendet werden, die den hohen Temperaturen ausgesetzt werden können. Allerdings sind solche Materialien vergleichsweise teuer.One of the most thermally stressed areas in a steam turbine is the shaft. In particular, the steam inlet region of the live steam is particularly thermally stressed, since the live steam impinges directly on the shaft at this point. The waves are therefore made either with a suitable thermal barrier coating on this live steam section, which is designed to flow with live steam. Alternatively, suitable materials can be used which can be exposed to high temperatures. However, such materials are relatively expensive.

Eine weitere Möglichkeit, eine Dampfturbinenwelle generell zu kühlen, besteht darin, dass entlang der Oberfläche der Dampfturbinenwelle ein Kühlmedium entlang geführt wird. Durch das vergleichsweise kältere Kühlmedium im Vergleich zum heißen Frischdampf wird die Oberfläche an einzelnen Abschnitten der Welle durch konvektive Strömung des Kühldampfes gekühlt. Allerdings ist nicht auszuschließen, dass solche Kühldampfsysteme während des Betriebs versagen, was dazu führen könnte, dass bei Wegfall des Kühlmediums stattdessen der heiße Frischdampf auf den zu kühlenden Abschnitt auftrifft, was dazu führt, dass dieser Abschnitt zu sehr thermisch beansprucht wird und dadurch beschädigt werden könnte.Another way to generally cool a steam turbine shaft is that along the surface of the steam turbine shaft, a cooling medium is guided along. Due to the comparatively colder cooling medium in comparison to the hot live steam, the surface is cooled at individual sections of the shaft by convective flow of the cooling steam. However, it can not be ruled out that such cooling steam systems will fail during operation, which could lead to the hot live steam impinging on the section to be cooled instead of the cooling medium, with the result that this section is subjected to too much thermal stress and thus damaged could.

Wünschenswert wäre es eine Möglichkeit zu haben, bei der ein plötzlicher Ausfall des Kühldampfs nicht zu einer unmittelbaren Beschädigung der Welle führt.It would be desirable to have a possibility in which a sudden failure of the cooling steam does not lead to an immediate damage to the shaft.

An dieser Stelle setzt die Erfindung an, deren Aufgabe es ist, eine Welle anzugeben, bei der ein Versagen der Kühlmediumzuführung die Gefahr einer Beschädigung der Welle verringert.At this point, the invention begins, whose task is to provide a shaft in which a failure of the cooling medium supply reduces the risk of damaging the shaft.

Gelöst wird diese Aufgabe durch eine Welle für eine Dampfturbine, wobei die Welle einen Kühldampfabschnitt aufweist, der zum Beströmen mit einem Kühldampf ausgebildet ist, wobei der Kühldampfabschnitt mit einer Wärmedämmschicht ausgebildet ist.This object is achieved by a shaft for a steam turbine, wherein the shaft has a cooling steam section, which is designed for flowing with a cooling steam, wherein the cooling steam section is formed with a thermal barrier coating.

Die Erfindung geht von dem Gedanken aus, dass es bisher notwendig erschien, lediglich die Bereiche der Welle mit einer Wärmedämmschicht auszubilden, die unmittelbar mit dem heißen Frischdampf in Berührung kommen bzw. die Bereiche einer Welle mit einer Wärmedämmschicht auszubilden, die thermisch beansprucht sind. Die Erfindung löst sich nun von diesem Gedanken und schlägt vor, an Bereichen der Turbinenwelle, die zunächst nur mit Kühlmedium beaufschlagt werden und dadurch nicht unbedingt eine Wärmedämmschicht an dieser Stelle erforderlich ist, dennoch mit einer Wärmedämmschicht auszubilden. Bei einem Ausfall des Kühlmediums kann es sein, dass der Frischdampf in den Kühldampfabschnitt strömt, wodurch dieser Kühldampfabschnitt thermisch zu sehr belastet wird.The invention is based on the idea that it previously seemed necessary to form only the regions of the shaft with a thermal barrier coating which come into direct contact with the hot live steam or form the regions of a wave with a thermal barrier coating which are thermally stressed. The invention now resolves itself from this idea and proposes to form at areas of the turbine shaft, which are initially acted upon only with cooling medium and thereby not necessarily a thermal barrier coating is required at this point, yet form a thermal barrier coating. In the event of a failure of the cooling medium, it may be the case that the live steam flows into the cooling steam section, as a result of which this cooling steam section is thermally stressed too much.

Erfindungsgemäß wird daher vorgeschlagen, auch diesen Kühldampfabschnitt mit einer Wärmedämmschicht auszubilden. Somit wird eine Kombination einer Wärmedämmschicht mit einer aktiven Kühlung mittels eines Kühlmediums vorgeschlagen. Der Vorteil ist u. a. darin zu sehen, dass dadurch eine Reduktion der thermischen Gradienten in einem transienten Betriebszustand erreicht wird. Ein weiterer Vorteil ist, dass die Welle vor einer thermischen Überbelastung bei einem kurzzeitigen Ausfall des Kühlmediums geschützt wird. Ein weiterer Vorteil ist darin zu sehen, dass mit der Auskleidung mit einer Wärmedämmschicht auch Kühlmedien verwendet werden können, die beispielsweise einen Dampfzustand aufweisen, die ohne Wärmedämmschicht nicht als Kühlmedium verwendet werden könnten.According to the invention, it is therefore proposed to form this cooling steam section with a thermal barrier coating as well. Thus, a combination of a thermal barrier coating with active cooling by means of a cooling medium is proposed. One of the advantages is that, as a result, a reduction of the thermal gradients in a transient operating state is achieved. Another advantage is that the shaft is protected against thermal overload in the event of a short-term failure of the cooling medium. Another advantage can be seen in the fact that with the lining with a thermal barrier coating and cooling media can be used, for example, have a vapor state that could not be used without thermal insulation layer as a cooling medium.

Somit kann ein kälterer Kühldampf eingesetzt werden, ohne dass zulässige Beanspruchungen überschritten werden.Thus, a colder cooling steam can be used without permissible stresses are exceeded.

In einer vorteilhaften Weiterbildung wird die Welle als einflutige oder zweiflutige Welle zum Einsatz in einer Hochdruck-Teilturbine ausgebildet. Gerade in Hochdruck-Teilturbinen wird ein Dampf mit einer hohen Eintrittstemperatur als Frischdampf verwendet. Daher mussten für die Hochdruck-Teilturbinen geeignete Kühlmöglichkeiten gefunden werden, was erfindungsgemäß mit der Wärmedämmschicht erreicht wird.In an advantageous development, the shaft is designed as a single-flow or double-flow shaft for use in a high-pressure turbine part. Especially in high-pressure turbine sections, a steam with a high inlet temperature is used as live steam. Therefore, suitable cooling options had to be found for the high-pressure turbine sections, which is achieved according to the invention with the thermal barrier coating.

Vorteilhafterweise wird die Welle als eine ein- oder zweiflutige Welle zum Einsatz in einer Mitteldruck-Teilturbine ausgebildet. Es werden ebenso Mitteldruck-Teilturbinen mit Frischdampftemperaturen beströmt, die den Temperaturen des Frischdampfes bei Hochdruck-Teilturbinen entspricht. Daher müssten ebenso Mitteldruck-Teilturbinen geeignet gekühlt werden bzw. vor einer Überhitzung geschützt werden, was erfindungsgemäß mit der Wärmedämmschicht erreicht wird.Advantageously, the shaft is designed as a single or double-flow shaft for use in a medium-pressure turbine section. It also medium-pressure turbine sections are fed with live steam temperatures, which corresponds to the temperatures of the live steam at high pressure turbine sections. Therefore medium-pressure turbine sections would have to be suitably cooled or protected against overheating, which is achieved according to the invention with the thermal barrier coating.

Die Wärmedämmschicht umfasst eine aufgespritzte oder durch PVD-Verfahren aufgebrachte keramische Schicht, die in Form einer Mehrlagen-Beschichtung aufgebracht ist.
Auf die Dampfturbinenkomponente wird zunächst eine so genannte Haftvermittlerschicht (bond coating) aufgebracht. Eine bekannte Haftvermittlerschicht wäre beispielsweise MCrAlY (-20Cr-12Al) oder Aluminiumlegierungen.
Auf die Haftvermittlerschicht wird eine so genannte Oxidationsschicht aufgebracht, die zum Beispiel aus Al2O3 besteht. Des Weiteren wird auf die Oxidationsschicht die Wärmedämmschicht aufgebracht, die eine thermische Isolation bewirkt.
The thermal barrier coating comprises a sprayed or applied by PVD ceramic layer, which is applied in the form of a multilayer coating.
On the steam turbine component, a so-called adhesion promoter layer (bond coating) is first applied. A known adhesion promoter layer would be, for example, MCrAlY (-20Cr-12Al) or aluminum alloys.
On the adhesion promoter layer, a so-called oxidation layer is applied, which consists for example of Al 2 O 3 . Furthermore, the thermal insulation layer is applied to the oxidation layer, which effects a thermal insulation.

Als Wärmedämmschicht können beispielsweise yttriumstabilisierte Zirkonoxid-Schichten verwendet werden. Zudem weist die Wärmedämmschicht einen spezifischen Wärmedurchgang von weniger als zwei Watt pro Meter und Kelvin < 2 W mK .

Figure imgb0001
For example, yttrium-stabilized zirconium oxide layers can be used as the thermal barrier coating. In addition, the thermal barrier coating has a specific heat transfer of less than two watts per meter and Kelvin < 2 W mK ,
Figure imgb0001

Die Wärmedämmschicht kann ein- oder mehrlagig aufgebaut sein und eine Oxidkeramik umfassen.The thermal barrier coating may be constructed in one or more layers and comprise an oxide ceramic.

Alternativ dazu kann die Wärmedämmschicht mit mindestens 50 Massenprozent aus einem Oxid eines oder mehrerer Elemente der 3. Haupt- und Nebengruppe (beispielsweise Borgruppe, Elemente 5, 13, 21, 31, 39, 49, 57, 81, 89) oder der 4. Haupt- und Nebengruppe (Kohlenstoffgruppe, Elemente 6, 14, 22, 32, 40, 50, 72, 82, 104) ausgebildet sein. Insbesondere ist eine Wärmedämmschicht aus yttriumstabilisiertem Zirkonoxid (ZrO2 + (x%)Y2O3) mit einem Zirkonoxidanteil zwischen 0% und 15%.Alternatively, the thermal barrier coating may comprise at least 50 percent by mass of an oxide of one or more third major and minor group elements (eg, boron group, elements 5, 13, 21, 31, 39, 49, 57, 81, 89) or 4. Main group and subgroup (carbon group, elements 6, 14, 22, 32, 40, 50, 72, 82, 104) may be formed. In particular, a thermal barrier coating made of yttrium-stabilized zirconium oxide (ZrO 2 + (x%) Y 2 O 3 ) with a zirconium oxide content between 0% and 15%.

Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels näher erläutert, wobei Komponenten mit ähnlicher Wirkungsweise mit denselben Bezugszeichen versehen sind.In the following, the invention will be explained in more detail with reference to an exemplary embodiment, wherein components having a similar mode of action are provided with the same reference numerals.

Es zeigen:Show it:

Figur 1FIG. 1
eine Querschnittsansicht einer Hochdruck-Teilturbine,a cross-sectional view of a high-pressure turbine section,
Figur 2FIG. 2
eine Querschnittsansicht eines Teiles einer zweiflutigen Mitteldruck-Teilturbine,a cross-sectional view of a part of a double-flow medium-pressure turbine section,
Figur 3FIG. 3
eine Querschnittsansicht eines Teiles einer Dampfturbine.a cross-sectional view of a part of a steam turbine.

Die Figur 1 zeigt eine Dampfturbine, die als Hochdruck-Teilturbine ausgebildet ist. Die Dampfturbine 1 weist ein Außengehäuse 2 und ein Innengehäuse 3 auf sowie einen um eine Rotationsachse 4 drehbar gelagerte Welle 5 auf. Die Welle 5 weist verschiedene Laufschaufeln 7 auf, wobei in der Figur 1 lediglich drei Laufschaufeln mit dem Bezugszeichen 7 versehen sind. Das Innengehäuse 3 umfasst mehrere Leitschaufeln 6, wobei in der Figur 1 lediglich drei Leitschaufeln mit dem Bezugszeichen 6 versehen sind. Im Betrieb strömt ein Frischdampf in den Einströmbereich 8 und strömt in einer Strömungsrichtung 9. Die thermische Energie des Frischdampfs wird dabei in Rotationsenergie der Welle 5 umgewandelt. Im Bereich des Einströmbereichs 8 ist eine Diagonalstufe 11 ausgebildet, die zum einen den Frischdampf direkt vom Einströmbereich 8 in den Strömungskanal 19 leitet und andererseits einen Kühldampfabschnitt 10, der zum Beströmen mit einem Kühldampf ausgebildet ist, trennt. Die Möglichkeit der Beströmung des Kühldampfabschnitts 10 ist in der Figur 1 nicht näher dargestellt. Es ist denkbar, dass der Kühldampf über eine externe Leitung in den Kühldampfabschnitt 10 geführt bzw. geleitet wird. Im Betrieb wird der Bereich 12 thermisch stark belastet. Durch die Beströmung mit Kühldampf in den Kühldampfabschnitt 10 ist allerdings eine Überhitzung wirksam vermieden. Allerdings ist nicht auszuschließen, dass die Kühldampfzuführung wegen einer Störung nicht erfolgt, was dann zu einer Überhitzung führen könnte. Die Welle weist daher eine Wärmedämmschicht 13 im Kühldampfabschnitt 10 auf.The FIG. 1 shows a steam turbine, which is designed as a high pressure turbine part. The steam turbine 1 has an outer casing 2 and an inner casing 3 and one around a Rotation axis 4 rotatably mounted shaft 5. The shaft 5 has various blades 7, wherein in the FIG. 1 only three blades are provided with the reference numeral 7. The inner housing 3 comprises a plurality of guide vanes 6, wherein in the FIG. 1 only three vanes are provided with the reference numeral 6. In operation, a live steam flows into the inflow region 8 and flows in a flow direction 9. The thermal energy of the live steam is converted into rotational energy of the shaft 5. In the region of the inflow region 8, a diagonal stage 11 is formed which, on the one hand, directs live steam directly from the inflow region 8 into the flow channel 19 and, on the other hand, separates a cooling steam section 10, which is designed to flow with a cooling steam. The possibility of the flow of the cooling steam section 10 is in the FIG. 1 not shown in detail. It is conceivable that the cooling steam is conducted or conducted via an external line into the cooling steam section 10. In operation, the area 12 is subjected to high thermal loads. By the flow of cooling steam into the cooling steam section 10, however, overheating is effectively avoided. However, it can not be ruled out that the cooling steam supply does not take place due to a fault, which could then lead to overheating. The shaft therefore has a thermal barrier coating 13 in the cooling steam section 10.

Die Figur 2 zeigt eine zweiflutige Mitteldruck-Teilturbine 14. Aus Gründen der Übersichtlichkeit ist lediglich eine Laufschaufel mit dem Bezugszeichen 7 und eine Leitschaufel mit dem Bezugszeichen 6 versehen. Der Einströmbereich 8 ist derart, dass der Frischdampf in einen Strömungskanal in die rechte Richtung abgelenkt wird und ein Frischdampfbereich in die linke Richtung abgelenkt wird. Im die Welle 5 vor einer Überhitzung bei einem Ausfall des Kühlmediums zu schützen, ist im Kühldampfabschnitt 10 eine Wärmedämmschicht 13 ausgebildet. Dadurch wird die Welle vor Überhitzung geschützt, wenn Frischdampf im Bereich 15 in den Kühldampfabschnitt 10 eindringt.The FIG. 2 shows a double-flow medium-pressure turbine section 14. For the sake of clarity, only a blade with the reference numeral 7 and a guide vane with the reference numeral 6 is provided. The inflow area 8 is such that the live steam is deflected into a flow channel in the right direction and a live steam area is deflected in the left direction. In the shaft 5 to protect against overheating in case of failure of the cooling medium, a thermal barrier coating 13 is formed in the cooling steam section 10. As a result, the shaft is protected against overheating when live steam penetrates into the cooling steam section 10 in the region 15.

Die Figur 3 zeigt einen Ausschnitt einer Dampfturbine. Der Kühldampfabschnitt 10 ist unterhalb einer Ableiteinrichtung 16 angeordnet. Aus Gründen der Übersichtlichkeit ist lediglich eine Laufschaufel mit dem Bezugszeichen 7 dargestellt. Ein Frischdampf strömt in der Strömungsrichtung 9 an der Laufschaufel 7 vorbei und des Weiteren strömt ein Kühlmedium 17 entlang des Kühldampfabschnitts 10. Die gestrichelte Linie 18 zeigt den Zustand, wenn die Kühlmediumzufuhr wegen einer Störung unterbrochen ist. In diesem Fall kann Frischdampf aus dem Strömungskanal 19 über einen Spalt 20 in den Kühldampfabschnitt 10 eindringen. Zur Vermeidung einer Überhitzung dieses Abschnitts 10 wird dieser mit der Wärmedämmschicht 13 ausgekleidet.The FIG. 3 shows a section of a steam turbine. The cooling steam section 10 is arranged below a discharge device 16. For the sake of clarity, only one blade is shown with the reference numeral 7. A live steam flows past the blade 7 in the flow direction 9, and further, a cooling medium 17 flows along the cooling steam portion 10. The broken line 18 shows the state when the cooling medium supply is interrupted due to a failure. In this case, live steam from the flow channel 19 can penetrate into the cooling steam section 10 via a gap 20. To avoid overheating of this section 10, this is lined with the thermal barrier coating 13.

Als Wärmedämmschicht wird yttriumstabilisiertes Zirkonoxid (ZrO2 + (x%)Y2O3) mit einem Zirkonoxidanteil zwischen 0% und 15% verwendet.The thermal barrier coating used is yttrium-stabilized zirconium oxide (ZrO 2 + (x%) Y 2 O 3 ) with a zirconium oxide content between 0% and 15%.

Claims (4)

Welle (5) für eine Dampfturbine (1),
wobei die Welle einen Kühldampfabschnitt (10) aufweist, der zum Beströmen mit einem Kühldampf ausgebildet ist,
dadurch gekennzeichnet, dass der Kühldampfabschnitt (10) mit einer Wärmedämmschicht (13) ausgebildet ist.
Shaft (5) for a steam turbine (1),
wherein the shaft has a cooling steam section (10) which is designed to flow with a cooling steam,
characterized in that the cooling steam section (10) is formed with a thermal barrier coating (13).
Welle (5) nach Anspruch 1,
wobei die Welle als einflutige oder zweiflutige Welle zum Einsatz in einer Hochdruck-Teilturbine ausgebildet ist.
Shaft (5) according to claim 1,
wherein the shaft is formed as a single-flow or double-flow shaft for use in a high-pressure turbine section.
Welle (5) nach Anspruch 1 oder 2,
wobei die Welle als einflutige oder zweiflutige Welle zum Einsatz in einer Mitteldruck-Teilturbine ausgebildet ist.
Shaft (5) according to claim 1 or 2,
wherein the shaft is designed as a single-flow or double-flow shaft for use in a medium-pressure turbine section.
Welle (5) nach einem der vorhergehenden Ansprüche,
wobei die Wärmedämmschicht aus einem yttriumstabilisierten Zirkonoxid gebildet ist.
Shaft (5) according to one of the preceding claims,
wherein the heat-insulating layer is formed of a yttrium-stabilized zirconia.
EP20070016848 2007-08-28 2007-08-28 Steam turbine shaft with heat insulation layer Not-in-force EP2031183B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20070016848 EP2031183B1 (en) 2007-08-28 2007-08-28 Steam turbine shaft with heat insulation layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20070016848 EP2031183B1 (en) 2007-08-28 2007-08-28 Steam turbine shaft with heat insulation layer

Publications (2)

Publication Number Publication Date
EP2031183A1 true EP2031183A1 (en) 2009-03-04
EP2031183B1 EP2031183B1 (en) 2015-04-29

Family

ID=38924349

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070016848 Not-in-force EP2031183B1 (en) 2007-08-28 2007-08-28 Steam turbine shaft with heat insulation layer

Country Status (1)

Country Link
EP (1) EP2031183B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH699978A1 (en) * 2008-11-26 2010-05-31 Alstom Technology Ltd Steam turbine.
US8702376B2 (en) 2009-10-12 2014-04-22 Alstom Technology Ltd. High temperature radially fed axial steam turbine
EP3015644A1 (en) * 2014-10-29 2016-05-04 Alstom Technology Limited Steam turbine rotor
EP2481884A3 (en) * 2011-01-31 2017-04-05 General Electric Company Method and system for controlling thermal differential in turbine systems

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0894942A2 (en) * 1997-07-31 1999-02-03 Kabushiki Kaisha Toshiba Gas Turbine
WO2001046576A1 (en) * 1999-12-21 2001-06-28 Siemens Aktiengesellschaft Method for operating a steam turbine, and a turbine system provided with a steam turbine that functions according to said method
EP1154123A1 (en) * 2000-05-10 2001-11-14 Siemens Aktiengesellschaft Method of cooling the shaft of a high pressure steam turbine
EP1378630A1 (en) * 2002-07-01 2004-01-07 ALSTOM (Switzerland) Ltd Steam turbine
EP1452688A1 (en) * 2003-02-05 2004-09-01 Siemens Aktiengesellschaft Steam turbine rotor, method and use of actively cooling such a rotor
EP1734145A1 (en) * 2005-06-13 2006-12-20 Siemens Aktiengesellschaft Coating system for a component having a thermal barrier coating and an erosion resistant coating, method for manufacturing and method for using said component
EP1785586A1 (en) * 2005-10-20 2007-05-16 Siemens Aktiengesellschaft Rotor of a turbomachine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0894942A2 (en) * 1997-07-31 1999-02-03 Kabushiki Kaisha Toshiba Gas Turbine
WO2001046576A1 (en) * 1999-12-21 2001-06-28 Siemens Aktiengesellschaft Method for operating a steam turbine, and a turbine system provided with a steam turbine that functions according to said method
EP1154123A1 (en) * 2000-05-10 2001-11-14 Siemens Aktiengesellschaft Method of cooling the shaft of a high pressure steam turbine
EP1378630A1 (en) * 2002-07-01 2004-01-07 ALSTOM (Switzerland) Ltd Steam turbine
EP1452688A1 (en) * 2003-02-05 2004-09-01 Siemens Aktiengesellschaft Steam turbine rotor, method and use of actively cooling such a rotor
EP1734145A1 (en) * 2005-06-13 2006-12-20 Siemens Aktiengesellschaft Coating system for a component having a thermal barrier coating and an erosion resistant coating, method for manufacturing and method for using said component
EP1785586A1 (en) * 2005-10-20 2007-05-16 Siemens Aktiengesellschaft Rotor of a turbomachine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH699978A1 (en) * 2008-11-26 2010-05-31 Alstom Technology Ltd Steam turbine.
US8454306B2 (en) 2008-11-26 2013-06-04 Alstom Technology Ltd. Steam turbine
CN101737088B (en) * 2008-11-26 2017-04-12 通用电器技术有限公司 Steam turbine
US8702376B2 (en) 2009-10-12 2014-04-22 Alstom Technology Ltd. High temperature radially fed axial steam turbine
EP2481884A3 (en) * 2011-01-31 2017-04-05 General Electric Company Method and system for controlling thermal differential in turbine systems
EP3015644A1 (en) * 2014-10-29 2016-05-04 Alstom Technology Limited Steam turbine rotor
US10533421B2 (en) 2014-10-29 2020-01-14 General Electric Technology Gmbh Steam turbine rotor
US11053799B2 (en) 2014-10-29 2021-07-06 General Electric Technology Gmbh Steam turbine rotor

Also Published As

Publication number Publication date
EP2031183B1 (en) 2015-04-29

Similar Documents

Publication Publication Date Title
EP1500790B1 (en) Shroud segment for a turbomachine
EP1692372A1 (en) Use of a thermal insulating layer for a housing of a steam turbine and a steam turbine
WO2009030197A1 (en) Multilayer shielding ring for a flight driving mechanism
WO2013026870A1 (en) Turbomachine comprising a coated rotor blade tip and a coated inner housing
EP1930544A1 (en) Turbine blade
CH703864B1 (en) Turbo machine with a bridge made of ceramic matrix composite (CMC)
EP1947293A1 (en) Guide vane for a gas turbine
EP2031183B1 (en) Steam turbine shaft with heat insulation layer
EP2802748B1 (en) Turbomachine with bolt cooling
EP2984295B1 (en) Seal ring segment for a stator of a turbine
EP2358979B1 (en) Axial compressor for a gas turbine having passive radial gap control
WO2009109430A1 (en) Sealing arrangement and gas turbine
WO2017144207A1 (en) Gas turbine cooled via the rear hollow shaft
EP2997236B1 (en) Steam turbine
DE102010036071A1 (en) Housing-side structure of a turbomachine
EP2112334A1 (en) Outer housing for a turbo engine
EP1625283B1 (en) Running-in coating for gas turbines
EP2431570A1 (en) Steam turbine with a dummy piston and wet steam blockage
EP2310633B1 (en) Reducing the thermal load of an external housing for a turbo-machine
EP2723996B1 (en) Method for temperature balance in a steam turbine
EP2957718A1 (en) Turbine
WO2015055422A1 (en) Turbine blade, ring segment, associated turbine blade arrangement, stator, rotor, turbine and power plant system
EP1895094B1 (en) Swirl cooled rotor welding seam
WO2018036697A1 (en) Outflow housing of a steam turbine
EP2194236A1 (en) Turbine casing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090904

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20110707

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141121

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 724560

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007013897

Country of ref document: DE

Effective date: 20150611

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150831

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150829

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007013897

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150429

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150828

26N No opposition filed

Effective date: 20160201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150828

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150828

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 724560

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070828

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180829

Year of fee payment: 12

Ref country code: FR

Payment date: 20180822

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20180827

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181019

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20181107

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007013897

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190828

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200303

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190828