EP2031183A1 - Steam turbine shaft with heat insulation layer - Google Patents
Steam turbine shaft with heat insulation layer Download PDFInfo
- Publication number
- EP2031183A1 EP2031183A1 EP07016848A EP07016848A EP2031183A1 EP 2031183 A1 EP2031183 A1 EP 2031183A1 EP 07016848 A EP07016848 A EP 07016848A EP 07016848 A EP07016848 A EP 07016848A EP 2031183 A1 EP2031183 A1 EP 2031183A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- shaft
- steam
- cooling
- flow
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/08—Heating, heat-insulating or cooling means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/08—Heating, heat-insulating or cooling means
- F01D5/081—Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
- F01D5/084—Cooling fluid being directed on the side of the rotor disc or at the roots of the blades the fluid circulating at the periphery of a multistage rotor, e.g. of drum type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/31—Application in turbines in steam turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/30—Manufacture with deposition of material
- F05D2230/31—Layer deposition
- F05D2230/313—Layer deposition by physical vapour deposition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/90—Coating; Surface treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/60—Shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/232—Heat transfer, e.g. cooling characterized by the cooling medium
- F05D2260/2322—Heat transfer, e.g. cooling characterized by the cooling medium steam
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/20—Oxide or non-oxide ceramics
- F05D2300/21—Oxide ceramics
- F05D2300/2118—Zirconium oxides
Definitions
- the invention relates to a shaft for a steam turbine, wherein the shaft has a cooling steam section, which is designed to flow with a cooling steam.
- Steam turbines are used with fresh steam inlet temperatures of up to 620 ° C. There are currently efforts to increase the steam inlet temperature to 700 ° C. Such high steam inlet temperatures require suitable cooling options for thermally stressed areas in the steam turbine.
- the shaft One of the most thermally stressed areas in a steam turbine is the shaft.
- the steam inlet region of the live steam is particularly thermally stressed, since the live steam impinges directly on the shaft at this point.
- the waves are therefore made either with a suitable thermal barrier coating on this live steam section, which is designed to flow with live steam.
- suitable materials can be used which can be exposed to high temperatures. However, such materials are relatively expensive.
- Another way to generally cool a steam turbine shaft is that along the surface of the steam turbine shaft, a cooling medium is guided along. Due to the comparatively colder cooling medium in comparison to the hot live steam, the surface is cooled at individual sections of the shaft by convective flow of the cooling steam. However, it can not be ruled out that such cooling steam systems will fail during operation, which could lead to the hot live steam impinging on the section to be cooled instead of the cooling medium, with the result that this section is subjected to too much thermal stress and thus damaged could.
- the invention begins, whose task is to provide a shaft in which a failure of the cooling medium supply reduces the risk of damaging the shaft.
- a shaft for a steam turbine wherein the shaft has a cooling steam section, which is designed for flowing with a cooling steam, wherein the cooling steam section is formed with a thermal barrier coating.
- the invention is based on the idea that it previously seemed necessary to form only the regions of the shaft with a thermal barrier coating which come into direct contact with the hot live steam or form the regions of a wave with a thermal barrier coating which are thermally stressed.
- the invention now resolves itself from this idea and proposes to form at areas of the turbine shaft, which are initially acted upon only with cooling medium and thereby not necessarily a thermal barrier coating is required at this point, yet form a thermal barrier coating.
- a failure of the cooling medium it may be the case that the live steam flows into the cooling steam section, as a result of which this cooling steam section is thermally stressed too much.
- this cooling steam section with a thermal barrier coating as well.
- a combination of a thermal barrier coating with active cooling by means of a cooling medium is proposed.
- One of the advantages is that, as a result, a reduction of the thermal gradients in a transient operating state is achieved.
- Another advantage is that the shaft is protected against thermal overload in the event of a short-term failure of the cooling medium.
- Another advantage can be seen in the fact that with the lining with a thermal barrier coating and cooling media can be used, for example, have a vapor state that could not be used without thermal insulation layer as a cooling medium.
- the shaft is designed as a single-flow or double-flow shaft for use in a high-pressure turbine part.
- a steam with a high inlet temperature is used as live steam. Therefore, suitable cooling options had to be found for the high-pressure turbine sections, which is achieved according to the invention with the thermal barrier coating.
- the shaft is designed as a single or double-flow shaft for use in a medium-pressure turbine section. It also medium-pressure turbine sections are fed with live steam temperatures, which corresponds to the temperatures of the live steam at high pressure turbine sections. Therefore medium-pressure turbine sections would have to be suitably cooled or protected against overheating, which is achieved according to the invention with the thermal barrier coating.
- the thermal barrier coating comprises a sprayed or applied by PVD ceramic layer, which is applied in the form of a multilayer coating.
- a so-called adhesion promoter layer (bond coating) is first applied.
- a known adhesion promoter layer would be, for example, MCrAlY (-20Cr-12Al) or aluminum alloys.
- a so-called oxidation layer is applied, which consists for example of Al 2 O 3 .
- the thermal insulation layer is applied to the oxidation layer, which effects a thermal insulation.
- the thermal barrier coating has a specific heat transfer of less than two watts per meter and Kelvin ⁇ 2 ⁇ W mK ,
- the thermal barrier coating may be constructed in one or more layers and comprise an oxide ceramic.
- the thermal barrier coating may comprise at least 50 percent by mass of an oxide of one or more third major and minor group elements (eg, boron group, elements 5, 13, 21, 31, 39, 49, 57, 81, 89) or 4.
- Main group and subgroup carbon group, elements 6, 14, 22, 32, 40, 50, 72, 82, 104
- a thermal barrier coating made of yttrium-stabilized zirconium oxide (ZrO 2 + (x%) Y 2 O 3 ) with a zirconium oxide content between 0% and 15%.
- the FIG. 1 shows a steam turbine, which is designed as a high pressure turbine part.
- the steam turbine 1 has an outer casing 2 and an inner casing 3 and one around a Rotation axis 4 rotatably mounted shaft 5.
- the shaft 5 has various blades 7, wherein in the FIG. 1 only three blades are provided with the reference numeral 7.
- the inner housing 3 comprises a plurality of guide vanes 6, wherein in the FIG. 1 only three vanes are provided with the reference numeral 6.
- a live steam flows into the inflow region 8 and flows in a flow direction 9.
- the thermal energy of the live steam is converted into rotational energy of the shaft 5.
- a diagonal stage 11 which, on the one hand, directs live steam directly from the inflow region 8 into the flow channel 19 and, on the other hand, separates a cooling steam section 10, which is designed to flow with a cooling steam.
- the possibility of the flow of the cooling steam section 10 is in the FIG. 1 not shown in detail. It is conceivable that the cooling steam is conducted or conducted via an external line into the cooling steam section 10. In operation, the area 12 is subjected to high thermal loads. By the flow of cooling steam into the cooling steam section 10, however, overheating is effectively avoided. However, it can not be ruled out that the cooling steam supply does not take place due to a fault, which could then lead to overheating.
- the shaft therefore has a thermal barrier coating 13 in the cooling steam section 10.
- the FIG. 2 shows a double-flow medium-pressure turbine section 14.
- the inflow area 8 is such that the live steam is deflected into a flow channel in the right direction and a live steam area is deflected in the left direction.
- a thermal barrier coating 13 is formed in the cooling steam section 10. As a result, the shaft is protected against overheating when live steam penetrates into the cooling steam section 10 in the region 15.
- FIG. 3 shows a section of a steam turbine.
- the cooling steam section 10 is arranged below a discharge device 16. For the sake of clarity, only one blade is shown with the reference numeral 7.
- a live steam flows past the blade 7 in the flow direction 9, and further, a cooling medium 17 flows along the cooling steam portion 10.
- the broken line 18 shows the state when the cooling medium supply is interrupted due to a failure.
- live steam from the flow channel 19 can penetrate into the cooling steam section 10 via a gap 20. To avoid overheating of this section 10, this is lined with the thermal barrier coating 13.
- the thermal barrier coating used is yttrium-stabilized zirconium oxide (ZrO 2 + (x%) Y 2 O 3 ) with a zirconium oxide content between 0% and 15%.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
Die Erfindung betrifft eine Welle für eine Dampfturbine, wobei die Welle einen Kühldampfabschnitt aufweist, der zum Beströmen mit einem Kühldampf ausgebildet ist.The invention relates to a shaft for a steam turbine, wherein the shaft has a cooling steam section, which is designed to flow with a cooling steam.
Dampfturbinen werden mit Frischdampfeintrittstemperaturen von bis zu 620°C eingesetzt. Es sind derzeit Bestrebungen da, die Dampfeintrittstemperatur auf 700°C zu erhöhen. Solch hohe Dampfeintrittstemperaturen erfordern geeignete Kühlungsmöglichkeiten für thermisch beanspruchte Bereiche in der Dampfturbine.Steam turbines are used with fresh steam inlet temperatures of up to 620 ° C. There are currently efforts to increase the steam inlet temperature to 700 ° C. Such high steam inlet temperatures require suitable cooling options for thermally stressed areas in the steam turbine.
Eines der am höchsten thermisch beanspruchten Bereiche in einer Dampfturbine ist die Welle. Insbesondere ist der Dampfeintrittsbereich des Frischdampfs besonders thermisch belastet, da der Frischdampf an dieser Stelle auf die Welle direkt auftrifft. Die Wellen werden daher entweder mit einer geeigneten Wärmedämmschicht auf diesem Frischdampfabschnitt, der zum Beströmen mit Frischdampf ausgebildet ist, gefertigt. Alternativ dazu können geeignete Materialien verwendet werden, die den hohen Temperaturen ausgesetzt werden können. Allerdings sind solche Materialien vergleichsweise teuer.One of the most thermally stressed areas in a steam turbine is the shaft. In particular, the steam inlet region of the live steam is particularly thermally stressed, since the live steam impinges directly on the shaft at this point. The waves are therefore made either with a suitable thermal barrier coating on this live steam section, which is designed to flow with live steam. Alternatively, suitable materials can be used which can be exposed to high temperatures. However, such materials are relatively expensive.
Eine weitere Möglichkeit, eine Dampfturbinenwelle generell zu kühlen, besteht darin, dass entlang der Oberfläche der Dampfturbinenwelle ein Kühlmedium entlang geführt wird. Durch das vergleichsweise kältere Kühlmedium im Vergleich zum heißen Frischdampf wird die Oberfläche an einzelnen Abschnitten der Welle durch konvektive Strömung des Kühldampfes gekühlt. Allerdings ist nicht auszuschließen, dass solche Kühldampfsysteme während des Betriebs versagen, was dazu führen könnte, dass bei Wegfall des Kühlmediums stattdessen der heiße Frischdampf auf den zu kühlenden Abschnitt auftrifft, was dazu führt, dass dieser Abschnitt zu sehr thermisch beansprucht wird und dadurch beschädigt werden könnte.Another way to generally cool a steam turbine shaft is that along the surface of the steam turbine shaft, a cooling medium is guided along. Due to the comparatively colder cooling medium in comparison to the hot live steam, the surface is cooled at individual sections of the shaft by convective flow of the cooling steam. However, it can not be ruled out that such cooling steam systems will fail during operation, which could lead to the hot live steam impinging on the section to be cooled instead of the cooling medium, with the result that this section is subjected to too much thermal stress and thus damaged could.
Wünschenswert wäre es eine Möglichkeit zu haben, bei der ein plötzlicher Ausfall des Kühldampfs nicht zu einer unmittelbaren Beschädigung der Welle führt.It would be desirable to have a possibility in which a sudden failure of the cooling steam does not lead to an immediate damage to the shaft.
An dieser Stelle setzt die Erfindung an, deren Aufgabe es ist, eine Welle anzugeben, bei der ein Versagen der Kühlmediumzuführung die Gefahr einer Beschädigung der Welle verringert.At this point, the invention begins, whose task is to provide a shaft in which a failure of the cooling medium supply reduces the risk of damaging the shaft.
Gelöst wird diese Aufgabe durch eine Welle für eine Dampfturbine, wobei die Welle einen Kühldampfabschnitt aufweist, der zum Beströmen mit einem Kühldampf ausgebildet ist, wobei der Kühldampfabschnitt mit einer Wärmedämmschicht ausgebildet ist.This object is achieved by a shaft for a steam turbine, wherein the shaft has a cooling steam section, which is designed for flowing with a cooling steam, wherein the cooling steam section is formed with a thermal barrier coating.
Die Erfindung geht von dem Gedanken aus, dass es bisher notwendig erschien, lediglich die Bereiche der Welle mit einer Wärmedämmschicht auszubilden, die unmittelbar mit dem heißen Frischdampf in Berührung kommen bzw. die Bereiche einer Welle mit einer Wärmedämmschicht auszubilden, die thermisch beansprucht sind. Die Erfindung löst sich nun von diesem Gedanken und schlägt vor, an Bereichen der Turbinenwelle, die zunächst nur mit Kühlmedium beaufschlagt werden und dadurch nicht unbedingt eine Wärmedämmschicht an dieser Stelle erforderlich ist, dennoch mit einer Wärmedämmschicht auszubilden. Bei einem Ausfall des Kühlmediums kann es sein, dass der Frischdampf in den Kühldampfabschnitt strömt, wodurch dieser Kühldampfabschnitt thermisch zu sehr belastet wird.The invention is based on the idea that it previously seemed necessary to form only the regions of the shaft with a thermal barrier coating which come into direct contact with the hot live steam or form the regions of a wave with a thermal barrier coating which are thermally stressed. The invention now resolves itself from this idea and proposes to form at areas of the turbine shaft, which are initially acted upon only with cooling medium and thereby not necessarily a thermal barrier coating is required at this point, yet form a thermal barrier coating. In the event of a failure of the cooling medium, it may be the case that the live steam flows into the cooling steam section, as a result of which this cooling steam section is thermally stressed too much.
Erfindungsgemäß wird daher vorgeschlagen, auch diesen Kühldampfabschnitt mit einer Wärmedämmschicht auszubilden. Somit wird eine Kombination einer Wärmedämmschicht mit einer aktiven Kühlung mittels eines Kühlmediums vorgeschlagen. Der Vorteil ist u. a. darin zu sehen, dass dadurch eine Reduktion der thermischen Gradienten in einem transienten Betriebszustand erreicht wird. Ein weiterer Vorteil ist, dass die Welle vor einer thermischen Überbelastung bei einem kurzzeitigen Ausfall des Kühlmediums geschützt wird. Ein weiterer Vorteil ist darin zu sehen, dass mit der Auskleidung mit einer Wärmedämmschicht auch Kühlmedien verwendet werden können, die beispielsweise einen Dampfzustand aufweisen, die ohne Wärmedämmschicht nicht als Kühlmedium verwendet werden könnten.According to the invention, it is therefore proposed to form this cooling steam section with a thermal barrier coating as well. Thus, a combination of a thermal barrier coating with active cooling by means of a cooling medium is proposed. One of the advantages is that, as a result, a reduction of the thermal gradients in a transient operating state is achieved. Another advantage is that the shaft is protected against thermal overload in the event of a short-term failure of the cooling medium. Another advantage can be seen in the fact that with the lining with a thermal barrier coating and cooling media can be used, for example, have a vapor state that could not be used without thermal insulation layer as a cooling medium.
Somit kann ein kälterer Kühldampf eingesetzt werden, ohne dass zulässige Beanspruchungen überschritten werden.Thus, a colder cooling steam can be used without permissible stresses are exceeded.
In einer vorteilhaften Weiterbildung wird die Welle als einflutige oder zweiflutige Welle zum Einsatz in einer Hochdruck-Teilturbine ausgebildet. Gerade in Hochdruck-Teilturbinen wird ein Dampf mit einer hohen Eintrittstemperatur als Frischdampf verwendet. Daher mussten für die Hochdruck-Teilturbinen geeignete Kühlmöglichkeiten gefunden werden, was erfindungsgemäß mit der Wärmedämmschicht erreicht wird.In an advantageous development, the shaft is designed as a single-flow or double-flow shaft for use in a high-pressure turbine part. Especially in high-pressure turbine sections, a steam with a high inlet temperature is used as live steam. Therefore, suitable cooling options had to be found for the high-pressure turbine sections, which is achieved according to the invention with the thermal barrier coating.
Vorteilhafterweise wird die Welle als eine ein- oder zweiflutige Welle zum Einsatz in einer Mitteldruck-Teilturbine ausgebildet. Es werden ebenso Mitteldruck-Teilturbinen mit Frischdampftemperaturen beströmt, die den Temperaturen des Frischdampfes bei Hochdruck-Teilturbinen entspricht. Daher müssten ebenso Mitteldruck-Teilturbinen geeignet gekühlt werden bzw. vor einer Überhitzung geschützt werden, was erfindungsgemäß mit der Wärmedämmschicht erreicht wird.Advantageously, the shaft is designed as a single or double-flow shaft for use in a medium-pressure turbine section. It also medium-pressure turbine sections are fed with live steam temperatures, which corresponds to the temperatures of the live steam at high pressure turbine sections. Therefore medium-pressure turbine sections would have to be suitably cooled or protected against overheating, which is achieved according to the invention with the thermal barrier coating.
Die Wärmedämmschicht umfasst eine aufgespritzte oder durch PVD-Verfahren aufgebrachte keramische Schicht, die in Form einer Mehrlagen-Beschichtung aufgebracht ist.
Auf die Dampfturbinenkomponente wird zunächst eine so genannte Haftvermittlerschicht (bond coating) aufgebracht. Eine bekannte Haftvermittlerschicht wäre beispielsweise MCrAlY (-20Cr-12Al) oder Aluminiumlegierungen.
Auf die Haftvermittlerschicht wird eine so genannte Oxidationsschicht aufgebracht, die zum Beispiel aus Al2O3 besteht. Des Weiteren wird auf die Oxidationsschicht die Wärmedämmschicht aufgebracht, die eine thermische Isolation bewirkt.The thermal barrier coating comprises a sprayed or applied by PVD ceramic layer, which is applied in the form of a multilayer coating.
On the steam turbine component, a so-called adhesion promoter layer (bond coating) is first applied. A known adhesion promoter layer would be, for example, MCrAlY (-20Cr-12Al) or aluminum alloys.
On the adhesion promoter layer, a so-called oxidation layer is applied, which consists for example of Al 2 O 3 . Furthermore, the thermal insulation layer is applied to the oxidation layer, which effects a thermal insulation.
Als Wärmedämmschicht können beispielsweise yttriumstabilisierte Zirkonoxid-Schichten verwendet werden. Zudem weist die Wärmedämmschicht einen spezifischen Wärmedurchgang von weniger als zwei Watt pro Meter und Kelvin
Die Wärmedämmschicht kann ein- oder mehrlagig aufgebaut sein und eine Oxidkeramik umfassen.The thermal barrier coating may be constructed in one or more layers and comprise an oxide ceramic.
Alternativ dazu kann die Wärmedämmschicht mit mindestens 50 Massenprozent aus einem Oxid eines oder mehrerer Elemente der 3. Haupt- und Nebengruppe (beispielsweise Borgruppe, Elemente 5, 13, 21, 31, 39, 49, 57, 81, 89) oder der 4. Haupt- und Nebengruppe (Kohlenstoffgruppe, Elemente 6, 14, 22, 32, 40, 50, 72, 82, 104) ausgebildet sein. Insbesondere ist eine Wärmedämmschicht aus yttriumstabilisiertem Zirkonoxid (ZrO2 + (x%)Y2O3) mit einem Zirkonoxidanteil zwischen 0% und 15%.Alternatively, the thermal barrier coating may comprise at least 50 percent by mass of an oxide of one or more third major and minor group elements (eg, boron group,
Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels näher erläutert, wobei Komponenten mit ähnlicher Wirkungsweise mit denselben Bezugszeichen versehen sind.In the following, the invention will be explained in more detail with reference to an exemplary embodiment, wherein components having a similar mode of action are provided with the same reference numerals.
- Figur 1FIG. 1
- eine Querschnittsansicht einer Hochdruck-Teilturbine,a cross-sectional view of a high-pressure turbine section,
- Figur 2FIG. 2
- eine Querschnittsansicht eines Teiles einer zweiflutigen Mitteldruck-Teilturbine,a cross-sectional view of a part of a double-flow medium-pressure turbine section,
- Figur 3FIG. 3
- eine Querschnittsansicht eines Teiles einer Dampfturbine.a cross-sectional view of a part of a steam turbine.
Die
Die
Die
Als Wärmedämmschicht wird yttriumstabilisiertes Zirkonoxid (ZrO2 + (x%)Y2O3) mit einem Zirkonoxidanteil zwischen 0% und 15% verwendet.The thermal barrier coating used is yttrium-stabilized zirconium oxide (ZrO 2 + (x%) Y 2 O 3 ) with a zirconium oxide content between 0% and 15%.
Claims (4)
wobei die Welle einen Kühldampfabschnitt (10) aufweist, der zum Beströmen mit einem Kühldampf ausgebildet ist,
dadurch gekennzeichnet, dass der Kühldampfabschnitt (10) mit einer Wärmedämmschicht (13) ausgebildet ist.Shaft (5) for a steam turbine (1),
wherein the shaft has a cooling steam section (10) which is designed to flow with a cooling steam,
characterized in that the cooling steam section (10) is formed with a thermal barrier coating (13).
wobei die Welle als einflutige oder zweiflutige Welle zum Einsatz in einer Hochdruck-Teilturbine ausgebildet ist.Shaft (5) according to claim 1,
wherein the shaft is formed as a single-flow or double-flow shaft for use in a high-pressure turbine section.
wobei die Welle als einflutige oder zweiflutige Welle zum Einsatz in einer Mitteldruck-Teilturbine ausgebildet ist.Shaft (5) according to claim 1 or 2,
wherein the shaft is designed as a single-flow or double-flow shaft for use in a medium-pressure turbine section.
wobei die Wärmedämmschicht aus einem yttriumstabilisierten Zirkonoxid gebildet ist.Shaft (5) according to one of the preceding claims,
wherein the heat-insulating layer is formed of a yttrium-stabilized zirconia.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20070016848 EP2031183B1 (en) | 2007-08-28 | 2007-08-28 | Steam turbine shaft with heat insulation layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20070016848 EP2031183B1 (en) | 2007-08-28 | 2007-08-28 | Steam turbine shaft with heat insulation layer |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2031183A1 true EP2031183A1 (en) | 2009-03-04 |
EP2031183B1 EP2031183B1 (en) | 2015-04-29 |
Family
ID=38924349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20070016848 Not-in-force EP2031183B1 (en) | 2007-08-28 | 2007-08-28 | Steam turbine shaft with heat insulation layer |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP2031183B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH699978A1 (en) * | 2008-11-26 | 2010-05-31 | Alstom Technology Ltd | Steam turbine. |
US8702376B2 (en) | 2009-10-12 | 2014-04-22 | Alstom Technology Ltd. | High temperature radially fed axial steam turbine |
EP3015644A1 (en) * | 2014-10-29 | 2016-05-04 | Alstom Technology Limited | Steam turbine rotor |
EP2481884A3 (en) * | 2011-01-31 | 2017-04-05 | General Electric Company | Method and system for controlling thermal differential in turbine systems |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0894942A2 (en) * | 1997-07-31 | 1999-02-03 | Kabushiki Kaisha Toshiba | Gas Turbine |
WO2001046576A1 (en) * | 1999-12-21 | 2001-06-28 | Siemens Aktiengesellschaft | Method for operating a steam turbine, and a turbine system provided with a steam turbine that functions according to said method |
EP1154123A1 (en) * | 2000-05-10 | 2001-11-14 | Siemens Aktiengesellschaft | Method of cooling the shaft of a high pressure steam turbine |
EP1378630A1 (en) * | 2002-07-01 | 2004-01-07 | ALSTOM (Switzerland) Ltd | Steam turbine |
EP1452688A1 (en) * | 2003-02-05 | 2004-09-01 | Siemens Aktiengesellschaft | Steam turbine rotor, method and use of actively cooling such a rotor |
EP1734145A1 (en) * | 2005-06-13 | 2006-12-20 | Siemens Aktiengesellschaft | Coating system for a component having a thermal barrier coating and an erosion resistant coating, method for manufacturing and method for using said component |
EP1785586A1 (en) * | 2005-10-20 | 2007-05-16 | Siemens Aktiengesellschaft | Rotor of a turbomachine |
-
2007
- 2007-08-28 EP EP20070016848 patent/EP2031183B1/en not_active Not-in-force
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0894942A2 (en) * | 1997-07-31 | 1999-02-03 | Kabushiki Kaisha Toshiba | Gas Turbine |
WO2001046576A1 (en) * | 1999-12-21 | 2001-06-28 | Siemens Aktiengesellschaft | Method for operating a steam turbine, and a turbine system provided with a steam turbine that functions according to said method |
EP1154123A1 (en) * | 2000-05-10 | 2001-11-14 | Siemens Aktiengesellschaft | Method of cooling the shaft of a high pressure steam turbine |
EP1378630A1 (en) * | 2002-07-01 | 2004-01-07 | ALSTOM (Switzerland) Ltd | Steam turbine |
EP1452688A1 (en) * | 2003-02-05 | 2004-09-01 | Siemens Aktiengesellschaft | Steam turbine rotor, method and use of actively cooling such a rotor |
EP1734145A1 (en) * | 2005-06-13 | 2006-12-20 | Siemens Aktiengesellschaft | Coating system for a component having a thermal barrier coating and an erosion resistant coating, method for manufacturing and method for using said component |
EP1785586A1 (en) * | 2005-10-20 | 2007-05-16 | Siemens Aktiengesellschaft | Rotor of a turbomachine |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH699978A1 (en) * | 2008-11-26 | 2010-05-31 | Alstom Technology Ltd | Steam turbine. |
US8454306B2 (en) | 2008-11-26 | 2013-06-04 | Alstom Technology Ltd. | Steam turbine |
CN101737088B (en) * | 2008-11-26 | 2017-04-12 | 通用电器技术有限公司 | Steam turbine |
US8702376B2 (en) | 2009-10-12 | 2014-04-22 | Alstom Technology Ltd. | High temperature radially fed axial steam turbine |
EP2481884A3 (en) * | 2011-01-31 | 2017-04-05 | General Electric Company | Method and system for controlling thermal differential in turbine systems |
EP3015644A1 (en) * | 2014-10-29 | 2016-05-04 | Alstom Technology Limited | Steam turbine rotor |
US10533421B2 (en) | 2014-10-29 | 2020-01-14 | General Electric Technology Gmbh | Steam turbine rotor |
US11053799B2 (en) | 2014-10-29 | 2021-07-06 | General Electric Technology Gmbh | Steam turbine rotor |
Also Published As
Publication number | Publication date |
---|---|
EP2031183B1 (en) | 2015-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1500790B1 (en) | Shroud segment for a turbomachine | |
EP1692372A1 (en) | Use of a thermal insulating layer for a housing of a steam turbine and a steam turbine | |
WO2009030197A1 (en) | Multilayer shielding ring for a flight driving mechanism | |
WO2013026870A1 (en) | Turbomachine comprising a coated rotor blade tip and a coated inner housing | |
EP1930544A1 (en) | Turbine blade | |
CH703864B1 (en) | Turbo machine with a bridge made of ceramic matrix composite (CMC) | |
EP1947293A1 (en) | Guide vane for a gas turbine | |
EP2031183B1 (en) | Steam turbine shaft with heat insulation layer | |
EP2802748B1 (en) | Turbomachine with bolt cooling | |
EP2984295B1 (en) | Seal ring segment for a stator of a turbine | |
EP2358979B1 (en) | Axial compressor for a gas turbine having passive radial gap control | |
WO2009109430A1 (en) | Sealing arrangement and gas turbine | |
WO2017144207A1 (en) | Gas turbine cooled via the rear hollow shaft | |
EP2997236B1 (en) | Steam turbine | |
DE102010036071A1 (en) | Housing-side structure of a turbomachine | |
EP2112334A1 (en) | Outer housing for a turbo engine | |
EP1625283B1 (en) | Running-in coating for gas turbines | |
EP2431570A1 (en) | Steam turbine with a dummy piston and wet steam blockage | |
EP2310633B1 (en) | Reducing the thermal load of an external housing for a turbo-machine | |
EP2723996B1 (en) | Method for temperature balance in a steam turbine | |
EP2957718A1 (en) | Turbine | |
WO2015055422A1 (en) | Turbine blade, ring segment, associated turbine blade arrangement, stator, rotor, turbine and power plant system | |
EP1895094B1 (en) | Swirl cooled rotor welding seam | |
WO2018036697A1 (en) | Outflow housing of a steam turbine | |
EP2194236A1 (en) | Turbine casing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17P | Request for examination filed |
Effective date: 20090904 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20110707 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20141121 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 724560 Country of ref document: AT Kind code of ref document: T Effective date: 20150515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502007013897 Country of ref document: DE Effective date: 20150611 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20150429 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150831 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150829 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502007013897 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150429 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150828 |
|
26N | No opposition filed |
Effective date: 20160201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150828 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150828 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 724560 Country of ref document: AT Kind code of ref document: T Effective date: 20150828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20070828 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCOW Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20180829 Year of fee payment: 12 Ref country code: FR Payment date: 20180822 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20180827 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20181019 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20181107 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502007013897 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190828 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200303 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190828 |