Nothing Special   »   [go: up one dir, main page]

EP2015171A1 - Cryptographic method comprising secure modular exponentiation against hidden-channel attacks without the knowledge of the public exponent, cryptoprocessor for implementing the method and associated chip card - Google Patents

Cryptographic method comprising secure modular exponentiation against hidden-channel attacks without the knowledge of the public exponent, cryptoprocessor for implementing the method and associated chip card Download PDF

Info

Publication number
EP2015171A1
EP2015171A1 EP07301194A EP07301194A EP2015171A1 EP 2015171 A1 EP2015171 A1 EP 2015171A1 EP 07301194 A EP07301194 A EP 07301194A EP 07301194 A EP07301194 A EP 07301194A EP 2015171 A1 EP2015171 A1 EP 2015171A1
Authority
EP
European Patent Office
Prior art keywords
acc
mgt
mod
bit
montgomery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07301194A
Other languages
German (de)
French (fr)
Inventor
Benoît FEIX
Mathieu Ciet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gemplus SA
Original Assignee
Gemplus SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gemplus SA filed Critical Gemplus SA
Priority to EP07301194A priority Critical patent/EP2015171A1/en
Priority to US12/666,892 priority patent/US20100177887A1/en
Priority to PCT/EP2008/055427 priority patent/WO2009003740A1/en
Priority to EP08749996A priority patent/EP2162820A1/en
Publication of EP2015171A1 publication Critical patent/EP2015171A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • G06F7/728Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic using Montgomery reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/002Countermeasures against attacks on cryptographic mechanisms
    • H04L9/003Countermeasures against attacks on cryptographic mechanisms for power analysis, e.g. differential power analysis [DPA] or simple power analysis [SPA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/30Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
    • H04L9/3006Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy underlying computational problems or public-key parameters
    • H04L9/302Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy underlying computational problems or public-key parameters involving the integer factorization problem, e.g. RSA or quadratic sieve [QS] schemes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/72Indexing scheme relating to groups G06F7/72 - G06F7/729
    • G06F2207/7219Countermeasures against side channel or fault attacks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • G06F7/723Modular exponentiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/04Masking or blinding
    • H04L2209/046Masking or blinding of operations, operands or results of the operations

Definitions

  • the invention relates to a cryptographic method comprising a secure modular exponentiation against hidden channel attacks that does not require knowledge of the public exponent, a crypto processor for the implementation of the method and an associated smart card.
  • M is then according to the application a message to sign or to decipher.
  • d is a private key.
  • S is a result, depending on the application a signed or decrypted message.
  • Hiding the number M by a random number s is a known countermeasure for securing the modular exponentiation operations, especially when they are implemented in smart card microcircuits, against so-called auxiliary channel or hidden channel attacks. (Side Channel Attacks) that provide information on the number of d.
  • a second countermeasure particularly known from the document by JS Coron, P. Paillier "Countermeasure method in an electronic component which uses RSA-type public key cryptography algorithm" Patent number FR 2799851. Publication date 2001-04-20 . Int Pub Numb. WO0128153 is to use two random numbers s1, s2 to perform the operation (M + s1.N) d mod (s2.N). Then, at the end of the calculation, the contribution made by s1 and s2 is removed by performing a modulo N reduction. and s2 can be small, obtaining them is easier. However, this method requires performing modulo s2.N. This requires the use of a multiplier of a size larger than the module and is not always compatible with smart card type applications.
  • An object of the invention is to propose a solution for performing a modular operation of the type M d mod N more interesting than the known solutions because not requiring the knowledge of e, nor a crypto processor of size greater than that of the module.
  • the invention proposes to effectively protect the operation of exponentiation by a random mask, without the knowledge of e.
  • the invention thus makes it possible to effectively protect the exponentiation operation with a random mask whose inverse is rapidly calculable, and without randomizing the module.
  • the invention also relates to a cryptoprocessor including in particular a Montgomery multiplier for the implementation of a method as described above.
  • the invention finally relates to a smart card comprising a cryptoprocessor as described above.
  • the invention is preferably implemented using a Montgomery multiplier.
  • a disadvantage of this multiplier is that it introduces into the calculation a constant R, called the Montgomery constant.
  • This exponentiation calculation has the advantage of being particularly fast.
  • Montgomery's multiplications and exponentiations introduce into the result a contribution function of Montgomery's R constant.
  • This constant can be eliminated at the end of each multiplication, for example by performing a Montgomery multiplication by R 2 after a calculation. Where possible, and especially for exponentiation, it is easier to compensate for the constant R upstream by multiplying the operand by the constant R rather than to compensate for a power of R (a fortiori a negative power of R). output.
  • the same register or the same part of memory can be used to store intermediate variables whose name includes the same letter: M1, M2 can to be stored successively in a register M.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Computing Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Storage Device Security (AREA)

Abstract

The method involves drawing of a random value, and initializing variables with the aid of the random value and by utilizing a chosen module and a Montgomery variable. An algorithm enabling a loop invariant to be retained is applied by virtue of properties of a Montgomery multiplier. A result is unmasked to obtain a signature of a message.

Description

L'invention concerne un procédé cryptographique comprenant une exponentiation modulaire sécurisée contre les attaques à canaux cachés ne nécessitant pas la connaissance de l'exposant public, un crypto processeur pour la mise en oeuvre du procédé et une carte à puce associée.The invention relates to a cryptographic method comprising a secure modular exponentiation against hidden channel attacks that does not require knowledge of the public exponent, a crypto processor for the implementation of the method and an associated smart card.

L'invention porte en particulier sur un procédé cryptographique sécurisé contre les attaques à canaux cachés au cours duquel, pour réaliser une exponentiation modulaire de type S = Md mod N, où M est un opérande, d un premier exposant, N est un module et S est un résultat.The invention relates in particular to a secure cryptographic method against attacks hidden channel in which to perform a modular exponentiation type S = M d mod N, where M is an operand of a first exponent N is a module and S is a result.

De tels procédés sont notamment intéressants pour des applications asymétriques de signature et de déchiffrement. M est alors selon l'application un message à signer ou à déchiffrer. d est une clé privée. S est un résultat, selon l'application un message signé ou déchiffré.Such methods are particularly interesting for asymmetrical applications of signature and decryption. M is then according to the application a message to sign or to decipher. d is a private key. S is a result, depending on the application a signed or decrypted message.

Masquer le nombre M par un nombre aléatoire s est une contre-mesure connue pour sécuriser les opérations d'exponentiation modulaire, notamment lorsqu'elles sont implémentées dans les microcircuits de type carte à puce, contre des attaques dites par canaux auxiliaires ou à canaux cachés (en anglais Side Channel Attacks) qui permettent d'obtenir de l'information sur le nombre d. Une première contre-mesure connue du document intitulé « Timing Attack on Implementations of Diffie-Hellman, RSA, DSS and Other Systems », de Paul Kocher, Crypto 1996, LNCS Springer , consiste à tirer un aléa s, calculer se, où e est une clé privée ou publique associée à d, puis multiplier M par se (se.M), élever le résultat de la multiplication à la puissance d ((se.M)d) puis réduire modulo N. d et e étant une clé publique et une clé privée associée, on a d.e = 1 modulo ϕ(N), où ϕ représente la fonction d'Euler, de sorte que le résultat ((se.M)d) modulo N se simplifie pour donner (s.Md) modulo N. Une division modulaire par s permet finalement d'obtenir le résultat recherché S = Md mod N. Cette solution est certes efficace, mais sa mise en oeuvre est onéreuse. En effet, pour que la mesure soit efficace, il est indispensable que se soit de taille supérieure à la taille de M. Ceci suppose que s soit de grande taille, plus précisément de taille supérieure à la taille de M divisée par e. Si e est de petite taille (par exemple de moins de dix-sept), s doit être de grande taille (dans l'exemple, de plus du nombre de bits du module divisé par dix-sept). Produire des nombres aléatoires de grande taille nécessite l'utilisation d'un générateur de grande taille, qui d'une part consomme un courant important et d'autre part nécessite un temps de calcul relativement important, ce qui n'est pas toujours compatible avec des applications de type carte à puce.Hiding the number M by a random number s is a known countermeasure for securing the modular exponentiation operations, especially when they are implemented in smart card microcircuits, against so-called auxiliary channel or hidden channel attacks. (Side Channel Attacks) that provide information on the number of d. A first known countermeasure of the document entitled "Timing Attack on Implementations of Diffie-Hellman, RSA, DSS and Other Systems" by Paul Kocher, Crypto 1996, LNCS Springer is to draw a hazard s, calculate se, where e is a private or public key associated with d, then multiply M by s e (s e .M), raise the result of multiplication to the power d ((s e .M) d ) then reduce modulo N. d and e being a public key and an associated private key, we have de = 1 modulo φ (N), where φ represents the function of Euler, so that the result (( s e .M) d ) modulo N is simplified to give (sM d ) modulo N. A modular division by s finally makes it possible to obtain the desired result S = M d mod N. This solution is certainly effective, but its implementation work is expensive. Indeed, for the measurement to be effective, it is essential that s e is larger than the size of M. This assumes that s is large, more precisely larger than the size of M divided by e. If e is small (for example less than seventeen), s must be large (in the example, more than the number of bits in the module divided by seventeen). Producing large random numbers requires the use of a large generator, which on the one hand consumes a large current and on the other hand requires a relatively large calculation time, which is not always compatible with smart card type applications.

Une deuxième contre-mesure, connue notamment du document de J.S. Coron, P. Paillier « Countermeasure method in an electronic component which uses on RSA-type public key cryptographie algorithm » Patent number FR 2799851. Publication date 2001-04-20 . Int Pub Numb. WO0128153 , consiste à utiliser deux nombres aléatoires s1, s2 pour réaliser l'opération (M+s1.N)d mod (s2.N). On enlève ensuite à la fin du calcul la contribution apportée par s1 et s2, en effectuant une réduction modulo N. Comme s1 et s2 peuvent être de petite taille, leur obtention est plus aisée. Toutefois, cette méthode nécessite de réaliser des opérations modulo s2.N. Ceci nécessite l'utilisation d'un multiplieur d'une taille supérieure au module et n'est pas toujours compatible avec des applications de type carte à puce.A second countermeasure, particularly known from the document by JS Coron, P. Paillier "Countermeasure method in an electronic component which uses RSA-type public key cryptography algorithm" Patent number FR 2799851. Publication date 2001-04-20 . Int Pub Numb. WO0128153 is to use two random numbers s1, s2 to perform the operation (M + s1.N) d mod (s2.N). Then, at the end of the calculation, the contribution made by s1 and s2 is removed by performing a modulo N reduction. and s2 can be small, obtaining them is easier. However, this method requires performing modulo s2.N. This requires the use of a multiplier of a size larger than the module and is not always compatible with smart card type applications.

Ces contre-mesures ont comme inconvénient majeur de nécessiter de connaître la valeur de e, exposant public, ou de nécessiter un crypto processeur de taille supérieure à celle du module.These countermeasures have the major disadvantage of requiring to know the value of e, public exponent, or to require a crypto processor of size greater than that of the module.

Un but de l'invention est de proposer une solution pour réaliser une opération modulaire de type Md mod N plus intéressante que les solutions connues car ne nécessitant pas la connaissance de e, ni un crypto processeur de taille supérieure à celle du module.An object of the invention is to propose a solution for performing a modular operation of the type M d mod N more interesting than the known solutions because not requiring the knowledge of e, nor a crypto processor of size greater than that of the module.

Pour cela, l'invention propose de protéger efficacement l'opération d'exponentiation par un masque aléatoire, sans la connaissance de e.For this, the invention proposes to effectively protect the operation of exponentiation by a random mask, without the knowledge of e.

On notera dans ce document

  • Mgt (A, B, N) la multiplication modulaire de Montgomery de A par B modulo N,
  • A et B deux entiers,
  • N le modulo choisi, il définit l'ensemble {0, ..., N-1} des entiers dans lequel on fait les opérations,
  • n = nombre de bits de N, soit la longueur de N en base 2,
  • R = 2n, une constante co-prime avec N, et qui dépend de la taille de N,
  • M le message à signer ou à déchiffrer,
  • S la signature du message M ou le message déchiffré.
It will be noted in this document
  • Mgt (A, B, N) modular Montgomery multiplication of A by B modulo N,
  • A and B two integers,
  • N the selected modulo, it defines the set {0, ..., N-1} of the integers in which one does the operations,
  • n = number of bits of N, the length of N in base 2,
  • R = 2 n , a co-prime constant with N, which depends on the size of N,
  • M the message to sign or decipher,
  • S the signature of the message M or the decrypted message.

L'invention est un procédé cryptographique destiné à signer ou déchiffrer un message M, comprenant une exponentiation modulaire comprenant les étapes de :

  • tirage d'une valeur aléatoire s,
  • initialisation de variables avec l'aide de s,
  • application d'un algorithme permettant de garder un invariant de boucle grâce aux propriétés du multiplicateur de Montgomery Mgt,
  • démasquage du résultat afin d'obtenir le résultat S, correspondant selon les cas à la signature de M ou au message déchiffré.
The invention is a cryptographic method for signing or decrypting a message M, comprising a modular exponentiation comprising the steps of:
  • draw a random value s,
  • initializing variables with the help of s,
  • application of an algorithm to keep a loop invariant thanks to the properties of the Montgomery Mgt multiplier,
  • unmasking of the result in order to obtain the result S, corresponding as appropriate to the signature of M or to the decrypted message.

Dans un mode de réalisation, l'étape de pré-calcul peut comprendre l'étape d'initialisation utilise une valeur j, calculée par j=(3s)/2, un module choisi N, la variable de Montgomery R et comprend l'initialisation d'au moins cinq variables Acc, M2, M0, M1 et M3 conformément aux opérations suivantes .

  • Acc ← Rs+1. M mod N
  • M2 ← R-j+1.M mod N
  • M0 ← R-3s+1 mod N
  • M1 ← R-3s+1.M mod N
  • M3 ← R-3s+1.M3 mod N
In one embodiment, the pre-calculation step may comprise the initialization step using a value j, calculated by j = (3s) / 2, a selected module N, the Montgomery variable R and comprises the initialization of at least five variables Acc, M 2 , M 0 , M 1 and M 3 according to the following operations.
  • Acc ← R s + 1 . M mod N
  • M 2 ← R -j + 1 .M mod N
  • M 0 ← R -3s + 1 mod N
  • M 1 ← R -3s + 1 .M mod N
  • M 3 ← R -3s + 1 .M 3 mod N

Dans ce cas, l'algorithme peut comporter, pour chaque bit de l'exposant d les étapes suivantes :

  • élévation au carré, Acc ← Mgt(ACC, ACC,N)
  • initialisation d'une variable k tel que k = didi-1
  • Si k = 2
    • o Acc← Mgt (Acc, M2, N)
    • o Acc← Mgt (Acc, Acc, N)
  • Sinon
    • o Acc Mgt(Acc, Acc, N)
    • o Acc← Mgt (Acc, Mk, N)
  • On se décale de deux bits
In this case, the algorithm may comprise, for each bit of the exponent d the following steps:
  • squared, Acc ← Mgt (ACC, ACC, N)
  • initialization of a variable k such that k = d i d i-1
  • If k = 2
    • o Acc ← Mgt (Acc, M 2 , N)
    • o Acc ← Mgt (Acc, Acc, N)
  • If not
    • o Acc Mgt (Acc, Acc, N)
    • o Acc ← Mgt (Acc, M k , N)
  • We are shifting two bits

Dans un autre mode de réalisation, l'étape d'initialisation utilise un module choisi N, la variable de Montgomery R et comprend l'initialisation de au moins quatres variables Acc, M0, M1 et M3 conformément aux opérations suivantes :

  • Acc ← Rs+1 . M mod N
  • M0 ← R-s+1 mod N
  • M1 ← R-s+1. M mod N
  • M3 ← R-3s+1. M3 mod N
In another embodiment, the initialization step uses a selected module N, the Montgomery variable R and comprises initializing at least four variables Acc, M0, M1 and M3 according to the following operations:
  • Acc ← R s + 1 . M mod N
  • M 0 ← R -s + 1 mod N
  • M 1 ← R -s + 1 . M mod N
  • M 3 ← R -3s + 1 . M 3 mod N

Dans ce cas, l'algorithme comporte, pour chaque bit de l'exposant d les étapes suivantes,

  • élévation au carré Acc ← Mgt(Acc, Acc, N)
  • si le bit en cours est égal à 1 et le bit suivant aussi, alors
    • o Acc← Mgt(Acc, Acc, N),
    • o Acc← Mgt (Acc, M3, N),
    • o On se décale de deux bits.
  • si le bit en cours est égal à 1 et le bit suivant est égal à 0, alors
    • o Acc← Mgt (Acc, M1, N),
    • o On se décale d'un bit.
  • si le bit en cours est égal à 0, alors
    • o Acc ← Mgt (Acc, M0, N),
    • o On se décale d'un bit.
In this case, the algorithm comprises, for each bit of the exponent d the following steps,
  • squared Acc ← Mgt (Acc, Acc, N)
  • if the current bit is equal to 1 and the next bit too, then
    • o Acc ← Mgt (Acc, Acc, N),
    • o Acc ← Mgt (Acc, M 3 , N),
    • o We are shifting two bits.
  • if the current bit is 1 and the next bit is 0, then
    • o Acc ← Mgt (Acc, M 1 , N),
    • o We shift a bit.
  • if the current bit is 0, then
    • o Acc ← Mgt (Acc, M 0 , N),
    • o We shift a bit.

Dans tous les cas, l'opération de démasquage comporte au moins les opérations suivantes :

  • calcul de R-s ,
  • calcul de la signature S dudit message M, S = Mgt (Acc, R-s, N), correspondant selon les cas à la signature de M ou au message déchiffré.
In all cases, the unmasking operation comprises at least the following operations:
  • calculation of R -s ,
  • calculation of the signature S of said message M, S = Mgt (Acc, R -s, N), corresponding to the case according to the signing of M or to the decrypted message.

L'invention permet ainsi de protéger efficacement l'opération d'exponentiation par un masque aléatoire dont l'inverse est rapidement calculable, et sans randomiser le module.The invention thus makes it possible to effectively protect the exponentiation operation with a random mask whose inverse is rapidly calculable, and without randomizing the module.

L'invention concerne également un cryptoprocesseur comprenant notamment un multiplieur de Montgomery pour la mise en oeuvre d'un procédé tel que décrit ci-dessus.The invention also relates to a cryptoprocessor including in particular a Montgomery multiplier for the implementation of a method as described above.

L'invention concerne enfin une carte à puce comprenant un cryptoprocesseur tel que décrit ci-dessus.The invention finally relates to a smart card comprising a cryptoprocessor as described above.

Comme on l'a dit précédemment, l'invention concerne un procédé cryptographique destiné à signer ou déchiffrer un message M, comprenant une exponentiation modulaire comprenant les étapes de :

  • tirage d'une valeur aléatoire s
  • initialisation de variables avec l'aide de s
  • application d'un algorithme permettant de garder un invariant de boucle grâce aux propriétés du multiplicateur de Montgomery Mgt,
  • démasquage du résultat afin d'obtenir la signature S du message M.
As mentioned above, the invention relates to a cryptographic method for signing or decrypting a message M, comprising a modular exponentiation comprising the steps of:
  • drawing a random value s
  • initializing variables with the help of
  • application of an algorithm to keep a loop invariant thanks to the properties of the Montgomery Mgt multiplier,
  • unmasking the result to obtain the signature S of the message M.

L'invention est mise en oeuvre de préférence en utilisant un multiplieur de Montgomery.The invention is preferably implemented using a Montgomery multiplier.

Avant de décrire plus complètement le procédé de l'invention, il convient de rappeler quelques propriétés connues d'un multiplieur de Montgomery, décrites par exemple dans le document D3 ( P.L. Montgomery, Modular Multiplication without trial division, Mathematics of computation, 44(170) pp 519-521, april 1985 ).Before describing more completely the process of the invention, it is necessary to recall some known properties of a Montgomery multiplier, described for example in document D3 ( PL Montgomery, Modular Multiplication without trial division, Mathematics of computation, 44 (170) pp 519-521, april 1985 ).

Un multiplieur de Montgomery permet de réaliser des multiplications du type Mgt(M,B,N) = M.B.R-1 mod N. Un avantage de ce multiplieur est sa rapidité de calcul. Un inconvénient de ce multiplieur est qu'il introduit dans le calcul une constante R, appelée constante de Montgomery. R est une puissance de deux, co-première avec N : R = 2n avec n tel que R ait le même nombre de bits que N.A Montgomery multiplier makes it possible to carry out multiplications of the Mgt type (M, B, N) = MBR -1 mod N. One advantage of this multiplier is its computation speed. A disadvantage of this multiplier is that it introduces into the calculation a constant R, called the Montgomery constant. R is a power of two, co-prime with N: R = 2 n with n such that R has the same number of bits as N.

La constante de Montgomery est intrinsèque au multiplieur et il est nécessaire de supprimer sa contribution en amont du calcul, au cours du calcul ou à la fin. Ainsi, pour calculer S = M.B mod N, on peut par exemple calculer d'abord M.R puis Mgt(M.R,B,N) = M.B mod N. On peut également réaliser une première multiplication S0 = Mgt(M.R, B.R, N) = M.B.R mod N puis une deuxième multiplication de type S = Mgt(1,S0, N) = M.B mod N.The Montgomery constant is intrinsic to the multiplier and it is necessary to suppress its contribution upstream of the calculation, during the calculation or at the end. Thus, to calculate S = MB mod N, it is possible, for example, to calculate MR first and then Mgt (MR, B, N) = MB mod N. It is also possible to carry out a first multiplication S 0 = Mgt (MR, BR, N ) = MBR mod N then a second multiplication of type S = Mgt (1, S 0 , N) = MB mod N.

Le multiplieur de Montgomery permet également de réaliser des exponentiations modulaires de type S = MgtExp(M,B,N) = MB.R-(B-1) mod N ou S = MgtExp(M.R,B,N) = MB.R mod N (on compense dans ce cas la constante R-B introduite par le calcul en multipliant M par R en amont du calcul). Concrètement, pour réaliser une exponentiation de Montgomery, on exécute un algorithme comme par exemple celui communément appelé "square and multiply" consistant, dans une boucle indicée par i variant entre q-1 et 0, q étant la taille du nombre d, en une succession de multiplications de type Ui = Mgt (Ui-1, Ui-1, N) et éventuellement Mgt(Ui,M,N) (ou Mgt(Ui,M.R,N)), selon la valeur d'un bit di de d associé à l'indice i, Ui étant une variable de boucle initialisée à la valeur Uq = R. Cette exponentiation est expliquée plus en détails dans le document « Handbook of Applied Cryptography » par M. Menezes, P. Van Oorschot et S. Vanstone, CRC Press 1996 , chapitre 14, algorithme 14.94.The Montgomery multiplier also makes it possible to carry out modular exponentiations of the type S = MgtExp (M, B, N) = M B .R - (B-1) mod N or S = MgtExp (MR, B, N) = M B .R mod N (is compensated in this case the constant R -B introduced by the calculation by multiplying M by R upstream of the calculation). Concretely, to realize an exponentiation of Montgomery, one executes an algorithm like for example the one commonly called "square and multiply" consisting, in a loop indexed by i varying between q-1 and 0, q being the size of the number d, in one succession of multiplications of type U i = Mgt (U i-1 , U i-1 , N) and possibly Mgt (U i , M, N) (or Mgt (U i , MR, N)), according to the value of d a bit d i of d associated with the index i, U i being a loop variable initialized at the value U q = R. This exponentiation is explained in more detail in the document Handbook of Applied Cryptography by Menezes, P. Van Oorschot and S. Vanstone, CRC Press 1996 , chapter 14, algorithm 14.94.

Ce calcul d'exponentiation a l'avantage d'être particulièrement rapide.This exponentiation calculation has the advantage of being particularly fast.

Les opérations de Montgomery ont notamment les propriétés suivantes, qui seront utilisées par la suite :

  • Mgt (M,B,N) = M.B.R-1 mod N
  • Mgt (M.R,B.R,N) = M.B.R mod N
  • Mgt (1,1,N) = Mgt(N-1,N-1,N) = R-1 mod N
  • Mgt (M,1,N) = Mgt (N-M, N-1, N) = M.R-1 mod N
  • MgtExp(M.R,B,N) = MB.R mod N
Montgomery's operations include the following properties, which will be used later:
  • Mgt (M, B, N) = MBR -1 mod N
  • Mgt (MR, BR, N) = MBR mod N
  • Mgt (1.1, N) = Mgt (N-1, N-1, N) = R -1 mod N
  • Mgt (M, 1, N) = Mgt (NM, N-1, N) = MR -1 mod N
  • MgtExp (MR, B, N) = M B .R mod N

Comme on l'a vu précédemment, les multiplications et les exponentiations de Montgomery introduisent dans le résultat une contribution fonction de la constante R de Montgomery. Cette constante peut être éliminée en fin de chaque multiplication, par exemple en réalisant une multiplication de Montgomery par R2 après un calcul. Lorsque cela est possible, et notamment pour les exponentiations, il est plus facile de compenser la constante R en amont, en multipliant l'opérande par la constante R, plutôt que de compenser une puissance de R (a fortiori une puissance négative de R) en sortie.As we saw earlier, Montgomery's multiplications and exponentiations introduce into the result a contribution function of Montgomery's R constant. This constant can be eliminated at the end of each multiplication, for example by performing a Montgomery multiplication by R 2 after a calculation. Where possible, and especially for exponentiation, it is easier to compensate for the constant R upstream by multiplying the operand by the constant R rather than to compensate for a power of R (a fortiori a negative power of R). output.

A noter que, lors de la mise en oeuvre du procédé ci-dessus dans un crypto-processeur, un même registre ou une même partie de mémoire peut être utilisé pour mémoriser des variables intermédiaires dont le nom comprend la même lettre : M1, M2 peuvent être stockées successivement dans un registre M.Note that, when implementing the above method in a crypto-processor, the same register or the same part of memory can be used to store intermediate variables whose name includes the same letter: M1, M2 can to be stored successively in a register M.

Bien sûr, dans le procédé détaillé ci-dessus, certaines étapes peuvent être déplacées ou permutées par rapport aux autres. Par exemple, dans l'étape d'initialisation, les sous-étapes peuvent être réalisées dans un ordre différent.Of course, in the method detailed above, some steps can be moved or swapped with respect to others. For example, in the initialization step, the substeps can be performed in a different order.

A noter enfin que le procédé de l'invention peut être combiné avec des procédés antérieurs pour augmenter encore la sécurité du procédé.Finally, it should be noted that the process of the invention can be combined with prior methods to further increase the safety of the process.

Par exemple, en plus du masquage de M, on pourra également utiliser un aléa s2 pour masquer N, comme décrit dans le document D2 et l'art antérieur de la présente demande. Si le théorème des restes Chinois est utilisé, on pourra de même masquer p et q par s2.For example, in addition to the masking of M, it is also possible to use a randomness s2 to mask N, as described in document D2 and the prior art of the present application. If the Chinese remainder theorem is used, we can similarly hide p and q by s2.

Claims (8)

Procédé cryptographique destiné à déchiffrer ou signer un message M, comprenant une exponentiation modulaire caractérisé en ce qu'il comprend les étapes de : - tirage d'une valeur aléatoire s, - initialisation de variables avec l'aide de s, - application d'un algorithme permettant de garder un invariant de boucle grâce aux propriétés du multiplicateur de Montgomery Mgt, - démasquage du résultat afin d'obtenir le résultat S), correspondant selon les cas à la signature de M ou au message déchiffré. Cryptographic method for decrypting or signing a message M, comprising a modular exponentiation characterized in that it comprises the steps of: - drawing of a random value s, - initialization of variables with the help of s, - application of an algorithm to keep a loop invariant thanks to the properties of the Montgomery Mgt multiplier, unmasking of the result in order to obtain the result S), corresponding according to the case to the signature of M or to the decrypted message. Procédé selon la revendication 1 caractérisé en ce que l'étape d'initialisation utilise une valeur j, calculée par j=(3s)/2, un module choisi N, la variable de Montgomery R et comprend l'initialisation d'au moins cinq variables ACC, M2, M0, M1 et M3 conformément aux opérations suivantes : - ACC ← Rs+1.M mod N - M2 ← R-j+1.M mod N - M0 ← R-3s+1 mod N - M1 ← R-3s+1.M mod N - M3 ← R-3s+1 .M3 mod N Method according to claim 1 characterized in that the initialization step uses a value j, calculated by j = (3s) / 2, a selected module N, the Montgomery variable R and comprises the initialization of at least five variables ACC, M 2 , M 0 , M 1 and M 3 according to the following operations: ACC ← R s + 1 .M mod N - M 2 ← R -j + 1 .M mod N - M 0 ← R -3s + 1 mod N - M 1 ← R -3s + 1 .M mod N - M 3 ← R -3s + 1 .M 3 mod N Procédé selon la revendication 2 caractérisé en ce que l'algorithme comporte, pour chaque bit de l'exposant d les étapes suivantes, - élévation au carré, Acc ← Mgt(Acc, Acc, N), - initialisation d'une variable k tel que k = didi-1, - Si k = 2 o Acc ← Mgt (Acc, M2, N) o Acc ← Mgt (Acc, Acc, N) - Sinon o ACC Mgt (Acc, Acc, N) o ACC← Mgt (ACC, Mk, N) - On se décale de deux bits. Method according to Claim 2, characterized in that the algorithm comprises, for each bit of the exponent d, the following steps: - squared, Acc ← Mgt (Acc, Acc, N), - initialization of a variable k such that k = d i d i-1 , - If k = 2 o Acc ← Mgt (Acc, M 2 , N) o Acc ← Mgt (Acc, Acc, N) - If not o ACC Mgt (Acc, Acc, N) o ACC ← Mgt (ACC, M k , N) - We shift two bits. Procédé selon la revendication 1 caractérisé en ce que l'étape d'initialisation utilise un module choisi N, la variable de Montgomery R et comprend l'initialisation de au moins quatre variables Acc, M0, M1 et M3 conformément aux opérations suivantes : - Acc ← Rs+1. M mod N - M0 ← R-s+1 mod N - M1 ← R-s+1. M mod N - M3 ← R-3s+1. M3 mod N Method according to claim 1, characterized in that the initialization step uses a selected module N, the Montgomery variable R and comprises the initialization of at least four variables Acc, M0, M1 and M3 according to the following operations: - Acc ← R s + 1 . M mod N - M 0 ← R -s + 1 mod N - M 1 ← R -s + 1 . M mod N - M 3 ← R -3s + 1 . M 3 mod N Procédé selon la revendication 4 caractérisé en ce que l'algorithme comporte, pour chaque bit de l'exposant d les étapes suivantes : - élévation au carré Acc ← Mgt (Acc, Acc, N), - si le bit en cours est égal à 1 et le bit suivant aussi, alors o Acc ← Mgt (Acc, Acc, N), o Acc ← Mgt (Acc, M3,N), o On se décale de deux bits. - si le bit en cours est égal à 1 et le bit suivant est égal à 0, alors o Acc← Mgt (Acc, M1,N), o On se décale d'un bit. - si le bit en cours est égal à 0, alors o Acc ← Mgt (Acc, M0, N), o On se décale d'un bit. Method according to Claim 4, characterized in that the algorithm comprises, for each bit of the exponent d, the following steps: squaring Acc ← Mgt (Acc, Acc, N), - if the current bit is equal to 1 and the next bit too, then o Acc ← Mgt (Acc, Acc, N), o Acc ← Mgt (Acc, M 3 , N), o We are shifting two bits. - if the current bit is 1 and the next bit is 0, then o Acc ← Mgt (Acc, M 1 , N), o We shift a bit. - if the current bit is 0, then o Acc ← Mgt (Acc, M 0 , N), o We shift a bit. Procédé selon les revendications 3 ou 5 caractérisé en ce que l'opération de démasquage comporte au moins les opérations suivantes : - calcul de R-s, - calcul du résultat S = Mgt(Acc, R-s, N), correspondant selon les cas à la signature de M ou au message déchiffré. Method according to Claims 3 or 5, characterized in that the unmasking operation comprises at least the following operations: - calculation of R -s , - calculation result S = Mgt (Acc, R -s, N), corresponding to the case according to the signing of M or to the decrypted message. Cryptoprocesseur comprenant notamment un multiplieur de Montgomery pour la mise en oeuvre d'un procédé selon l'une des revendications 1 à 6.Cryptoprocessor comprising in particular a Montgomery multiplier for carrying out a method according to one of claims 1 to 6. Carte à puce comprenant un cryptoprocesseur selon la revendication 7.Smart card comprising a cryptoprocessor according to claim 7.
EP07301194A 2007-06-29 2007-06-29 Cryptographic method comprising secure modular exponentiation against hidden-channel attacks without the knowledge of the public exponent, cryptoprocessor for implementing the method and associated chip card Withdrawn EP2015171A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07301194A EP2015171A1 (en) 2007-06-29 2007-06-29 Cryptographic method comprising secure modular exponentiation against hidden-channel attacks without the knowledge of the public exponent, cryptoprocessor for implementing the method and associated chip card
US12/666,892 US20100177887A1 (en) 2007-06-29 2008-05-02 Montgomery-based modular exponentiation secured against hidden channel attacks
PCT/EP2008/055427 WO2009003740A1 (en) 2007-06-29 2008-05-02 Montgomξry-based modular exponentiation secured against hidden channel attacks
EP08749996A EP2162820A1 (en) 2007-06-29 2008-05-02 Montgomery-based modular exponentiation secured against hidden channel attacks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07301194A EP2015171A1 (en) 2007-06-29 2007-06-29 Cryptographic method comprising secure modular exponentiation against hidden-channel attacks without the knowledge of the public exponent, cryptoprocessor for implementing the method and associated chip card

Publications (1)

Publication Number Publication Date
EP2015171A1 true EP2015171A1 (en) 2009-01-14

Family

ID=38645771

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07301194A Withdrawn EP2015171A1 (en) 2007-06-29 2007-06-29 Cryptographic method comprising secure modular exponentiation against hidden-channel attacks without the knowledge of the public exponent, cryptoprocessor for implementing the method and associated chip card
EP08749996A Withdrawn EP2162820A1 (en) 2007-06-29 2008-05-02 Montgomery-based modular exponentiation secured against hidden channel attacks

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP08749996A Withdrawn EP2162820A1 (en) 2007-06-29 2008-05-02 Montgomery-based modular exponentiation secured against hidden channel attacks

Country Status (3)

Country Link
US (1) US20100177887A1 (en)
EP (2) EP2015171A1 (en)
WO (1) WO2009003740A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3242202A1 (en) * 2016-05-04 2017-11-08 Gemalto Sa Countermeasure to safe-error fault injection attacks on cryptographic exponentiation algorithms
EP3276880A1 (en) * 2016-07-28 2018-01-31 Gemalto Sa Efficient ecdsa signature and verification

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2972064B1 (en) * 2011-02-25 2013-03-15 Inside Secure CRYPTOGRAPHY METHOD COMPRISING AN EXPONENTIATION OPERATION
CN103207770B (en) * 2013-04-16 2016-09-28 飞天诚信科技股份有限公司 A kind of method realizing the precomputation of big number in embedded systems
CN104793919B (en) * 2015-04-15 2017-11-07 深圳国微技术有限公司 A kind of Montgomery modular quadrupler and the embedded security chip with it
US10020932B2 (en) * 2015-11-13 2018-07-10 Nxp B.V. Split-and-merge approach to protect against DFA attacks
US10243937B2 (en) * 2016-07-08 2019-03-26 Nxp B.V. Equality check implemented with secret sharing
WO2019191040A1 (en) * 2018-03-28 2019-10-03 Cryptography Research, Inc. Using cryptographic blinding for efficient use of montgomery multiplication
FR3095709B1 (en) * 2019-05-03 2021-09-17 Commissariat Energie Atomique MASKING PROCESS AND SYSTEM FOR CRYPTOGRAPHY
US11508263B2 (en) 2020-06-24 2022-11-22 Western Digital Technologies, Inc. Low complexity conversion to Montgomery domain
US11468797B2 (en) 2020-06-24 2022-10-11 Western Digital Technologies, Inc. Low complexity conversion to Montgomery domain
CN112491543B (en) * 2020-11-24 2022-06-07 杭州电子科技大学 IC card decryption method based on improved Montgomery modular exponentiation circuit
WO2023141934A1 (en) * 2022-01-28 2023-08-03 Nvidia Corporation Efficient masking of secure data in ladder-type cryptographic computations
WO2023141933A1 (en) 2022-01-28 2023-08-03 Nvidia Corporation Techniques, devices, and instruction set architecture for efficient modular division and inversion
WO2023141935A1 (en) 2022-01-28 2023-08-03 Nvidia Corporation Techniques, devices, and instruction set architecture for balanced and secure ladder computations

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239364A1 (en) * 2001-03-05 2002-09-11 Hitachi, Ltd. Tamper-resistant modular multiplication method
WO2005048008A2 (en) * 2003-11-16 2005-05-26 M-Systems Flash Disk Pioneers Ltd. Enhanced natural montgomery exponent masking

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6748410B1 (en) * 1997-05-04 2004-06-08 M-Systems Flash Disk Pioneers, Ltd. Apparatus and method for modular multiplication and exponentiation based on montgomery multiplication
US7046800B1 (en) * 2000-03-31 2006-05-16 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Scalable methods and apparatus for Montgomery multiplication
JP3785044B2 (en) * 2001-01-22 2006-06-14 株式会社東芝 Power residue calculation device, power residue calculation method, and recording medium
FR2822260A1 (en) * 2001-03-14 2002-09-20 Bull Sa METHODS AND DEVICES FOR ACCELERATING THE CALCULATION TIME OF A MONTGOMERY PRODUCT BY MODULAR MULTIPLICATION AND EXPONENTIATION
US6917956B2 (en) * 2001-08-14 2005-07-12 Sun Microsystems, Inc. Apparatus and method for efficient modular exponentiation
JP4086503B2 (en) * 2002-01-15 2008-05-14 富士通株式会社 Cryptographic operation apparatus and method, and program
FR2838210B1 (en) * 2002-04-03 2005-11-04 Gemplus Card Int CRYPTOGRAPHIC METHOD PROTECTED FROM CACHE-CHANNEL TYPE ATTACKS
KR100459732B1 (en) * 2002-12-30 2004-12-03 삼성전자주식회사 Montgomery modular multiplier by 4 to 2 compressor and multiplication method thereof
JP4616169B2 (en) * 2003-07-31 2011-01-19 富士通株式会社 Apparatus, method and program for calculating conversion parameter in Montgomery modular multiplication
JP4626148B2 (en) * 2004-01-07 2011-02-02 株式会社日立製作所 Calculation method of power-residue calculation in decryption or signature creation
FR2884005B1 (en) * 2005-04-01 2007-06-01 Thales Sa METHOD FOR IMPLEMENTING MODULAR MONTGOMERY MULTIPLICATION AND DEVICE THEREOF
FR2895609A1 (en) * 2005-12-26 2007-06-29 Gemplus Sa Cryptographic method for forming modular exponentiation, involves masking operand with random number, and forming modular exponentiation of operand masked by exponent using Montgomery multiplier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239364A1 (en) * 2001-03-05 2002-09-11 Hitachi, Ltd. Tamper-resistant modular multiplication method
WO2005048008A2 (en) * 2003-11-16 2005-05-26 M-Systems Flash Disk Pioneers Ltd. Enhanced natural montgomery exponent masking

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MENEZES ALFRED J ET AL, HANDBOOK OF APPLIED CRYPTOGRAPHY, CRC PRESS SERIES ON DISCRETE MATHEMATICES AND ITS APPLICATIONS, BOCA RATON, FL, CRC PRESS, USA, 1997, pages 613 - 629, XP002188328, ISBN: 0-8493-8523-7 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3242202A1 (en) * 2016-05-04 2017-11-08 Gemalto Sa Countermeasure to safe-error fault injection attacks on cryptographic exponentiation algorithms
WO2017191288A1 (en) * 2016-05-04 2017-11-09 Gemalto Sa Countermeasure to safe-error fault injection attacks on cryptographic exponentiation algorithms
EP3276880A1 (en) * 2016-07-28 2018-01-31 Gemalto Sa Efficient ecdsa signature and verification
WO2018019788A1 (en) * 2016-07-28 2018-02-01 Gemalto Sa Efficient ecdsa signature and verification

Also Published As

Publication number Publication date
US20100177887A1 (en) 2010-07-15
WO2009003740A1 (en) 2009-01-08
EP2162820A1 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
EP2015171A1 (en) Cryptographic method comprising secure modular exponentiation against hidden-channel attacks without the knowledge of the public exponent, cryptoprocessor for implementing the method and associated chip card
WO2007074149A1 (en) Cryptographic method comprising a modular exponentiation secured against hidden-channel attacks, cryptoprocessor for implementing the method and associated chip card
EP1166494B1 (en) Countermeasure procedures in an electronic component implementing an elliptical curve type public key encryption algorithm
WO2014111647A1 (en) Cryptography method comprising an operation of multiplication by a scalar or an exponentiation
EP3287891B1 (en) Protection of a modular calculation
WO2012041942A1 (en) Protecting modular exponentiation in cryptographic operations
EP2546737A1 (en) Protection of a modular exponentiation calculation by adding a random amount
WO2001093014A1 (en) Countermeasure method in an electronic component using a public key encryption algorithm on elliptic curve
Dupaquis et al. Redundant modular reduction algorithms
WO2009109715A2 (en) Countermeasure method and devices for asymmetrical cryptography with signature diagram
FR2941798A1 (en) APPARATUS FOR CALCULATING A RESULT OF SCALAR MULTIPLICATION
FR2880750A1 (en) MICROPROCESSOR CARD AND CRYPTOGRAPHIC METHOD FOR PROTECTING A SECRET KEY
WO2000059157A1 (en) Countermeasure method in an electric component implementing an elliptical curve type public key cryptography algorithm
FR2888690A1 (en) CRYPTOGRAPHIC PROCESS FOR THE SECURE IMPLEMENTATION OF AN EXPONENTIATION AND ASSOCIATED COMPONENT
EP1804160B1 (en) Protection of a cryptographic calculation performed by an integrated circuit
CA2257907A1 (en) Public key cryptography method
EP1839125A1 (en) Secure and compact exponentiation method for cryptography
EP2530867B1 (en) Cryptographic data-processing method
EP1639451A2 (en) Method for countermeasuring by masking the accumulator in an electronic component while using a public key cryptographic algorithm
EP1639450A1 (en) Method for countermeasuring in an electronic component
EP4024753B1 (en) Method and electronic module for calculating a cryptographic quantity with carry-less multiplications, related method and electronic device for processing data, and computer program
EP3929726A1 (en) Cryptographic processing method, associated electronic device and computer program
FR2864390A1 (en) Cryptographic process for e.g. message encryption and decryption, involves scanning bits of preset value from left to right in loop, and calculating and storing partial updated result equal to exponentiation in accumulator
FR2843507A1 (en) Modular exponentiation method for public key cryptography applications, especially for chip card implementation, whereby the method is suitable for parallel processor use and employs multiplier and multiplicand registers
WO2001006351A1 (en) Method for improving the performance of a multiplication operation on a finite characteristic 2 body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090715

RTI1 Title (correction)

Free format text: MONTGOMERY MODULAR EXPONENTIATION SECURED AGAINST HIDDEN-CHANNEL ATTACKS