EP2015171A1 - Cryptographic method comprising secure modular exponentiation against hidden-channel attacks without the knowledge of the public exponent, cryptoprocessor for implementing the method and associated chip card - Google Patents
Cryptographic method comprising secure modular exponentiation against hidden-channel attacks without the knowledge of the public exponent, cryptoprocessor for implementing the method and associated chip card Download PDFInfo
- Publication number
- EP2015171A1 EP2015171A1 EP07301194A EP07301194A EP2015171A1 EP 2015171 A1 EP2015171 A1 EP 2015171A1 EP 07301194 A EP07301194 A EP 07301194A EP 07301194 A EP07301194 A EP 07301194A EP 2015171 A1 EP2015171 A1 EP 2015171A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- acc
- mgt
- mod
- bit
- montgomery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/60—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
- G06F7/72—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
- G06F7/728—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic using Montgomery reduction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/002—Countermeasures against attacks on cryptographic mechanisms
- H04L9/003—Countermeasures against attacks on cryptographic mechanisms for power analysis, e.g. differential power analysis [DPA] or simple power analysis [SPA]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/30—Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
- H04L9/3006—Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy underlying computational problems or public-key parameters
- H04L9/302—Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy underlying computational problems or public-key parameters involving the integer factorization problem, e.g. RSA or quadratic sieve [QS] schemes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2207/00—Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F2207/72—Indexing scheme relating to groups G06F7/72 - G06F7/729
- G06F2207/7219—Countermeasures against side channel or fault attacks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/60—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
- G06F7/72—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
- G06F7/723—Modular exponentiation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/04—Masking or blinding
- H04L2209/046—Masking or blinding of operations, operands or results of the operations
Definitions
- the invention relates to a cryptographic method comprising a secure modular exponentiation against hidden channel attacks that does not require knowledge of the public exponent, a crypto processor for the implementation of the method and an associated smart card.
- M is then according to the application a message to sign or to decipher.
- d is a private key.
- S is a result, depending on the application a signed or decrypted message.
- Hiding the number M by a random number s is a known countermeasure for securing the modular exponentiation operations, especially when they are implemented in smart card microcircuits, against so-called auxiliary channel or hidden channel attacks. (Side Channel Attacks) that provide information on the number of d.
- a second countermeasure particularly known from the document by JS Coron, P. Paillier "Countermeasure method in an electronic component which uses RSA-type public key cryptography algorithm" Patent number FR 2799851. Publication date 2001-04-20 . Int Pub Numb. WO0128153 is to use two random numbers s1, s2 to perform the operation (M + s1.N) d mod (s2.N). Then, at the end of the calculation, the contribution made by s1 and s2 is removed by performing a modulo N reduction. and s2 can be small, obtaining them is easier. However, this method requires performing modulo s2.N. This requires the use of a multiplier of a size larger than the module and is not always compatible with smart card type applications.
- An object of the invention is to propose a solution for performing a modular operation of the type M d mod N more interesting than the known solutions because not requiring the knowledge of e, nor a crypto processor of size greater than that of the module.
- the invention proposes to effectively protect the operation of exponentiation by a random mask, without the knowledge of e.
- the invention thus makes it possible to effectively protect the exponentiation operation with a random mask whose inverse is rapidly calculable, and without randomizing the module.
- the invention also relates to a cryptoprocessor including in particular a Montgomery multiplier for the implementation of a method as described above.
- the invention finally relates to a smart card comprising a cryptoprocessor as described above.
- the invention is preferably implemented using a Montgomery multiplier.
- a disadvantage of this multiplier is that it introduces into the calculation a constant R, called the Montgomery constant.
- This exponentiation calculation has the advantage of being particularly fast.
- Montgomery's multiplications and exponentiations introduce into the result a contribution function of Montgomery's R constant.
- This constant can be eliminated at the end of each multiplication, for example by performing a Montgomery multiplication by R 2 after a calculation. Where possible, and especially for exponentiation, it is easier to compensate for the constant R upstream by multiplying the operand by the constant R rather than to compensate for a power of R (a fortiori a negative power of R). output.
- the same register or the same part of memory can be used to store intermediate variables whose name includes the same letter: M1, M2 can to be stored successively in a register M.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Security & Cryptography (AREA)
- Computing Systems (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Storage Device Security (AREA)
Abstract
Description
L'invention concerne un procédé cryptographique comprenant une exponentiation modulaire sécurisée contre les attaques à canaux cachés ne nécessitant pas la connaissance de l'exposant public, un crypto processeur pour la mise en oeuvre du procédé et une carte à puce associée.The invention relates to a cryptographic method comprising a secure modular exponentiation against hidden channel attacks that does not require knowledge of the public exponent, a crypto processor for the implementation of the method and an associated smart card.
L'invention porte en particulier sur un procédé cryptographique sécurisé contre les attaques à canaux cachés au cours duquel, pour réaliser une exponentiation modulaire de type S = Md mod N, où M est un opérande, d un premier exposant, N est un module et S est un résultat.The invention relates in particular to a secure cryptographic method against attacks hidden channel in which to perform a modular exponentiation type S = M d mod N, where M is an operand of a first exponent N is a module and S is a result.
De tels procédés sont notamment intéressants pour des applications asymétriques de signature et de déchiffrement. M est alors selon l'application un message à signer ou à déchiffrer. d est une clé privée. S est un résultat, selon l'application un message signé ou déchiffré.Such methods are particularly interesting for asymmetrical applications of signature and decryption. M is then according to the application a message to sign or to decipher. d is a private key. S is a result, depending on the application a signed or decrypted message.
Masquer le nombre M par un nombre aléatoire s est une contre-mesure connue pour sécuriser les opérations d'exponentiation modulaire, notamment lorsqu'elles sont implémentées dans les microcircuits de type carte à puce, contre des attaques dites par canaux auxiliaires ou à canaux cachés (en anglais Side Channel Attacks) qui permettent d'obtenir de l'information sur le nombre d. Une première contre-mesure connue du document intitulé
Une deuxième contre-mesure, connue notamment du document de J.S. Coron, P. Paillier « Countermeasure method in an electronic component which uses on RSA-type public key cryptographie algorithm » Patent number
Ces contre-mesures ont comme inconvénient majeur de nécessiter de connaître la valeur de e, exposant public, ou de nécessiter un crypto processeur de taille supérieure à celle du module.These countermeasures have the major disadvantage of requiring to know the value of e, public exponent, or to require a crypto processor of size greater than that of the module.
Un but de l'invention est de proposer une solution pour réaliser une opération modulaire de type Md mod N plus intéressante que les solutions connues car ne nécessitant pas la connaissance de e, ni un crypto processeur de taille supérieure à celle du module.An object of the invention is to propose a solution for performing a modular operation of the type M d mod N more interesting than the known solutions because not requiring the knowledge of e, nor a crypto processor of size greater than that of the module.
Pour cela, l'invention propose de protéger efficacement l'opération d'exponentiation par un masque aléatoire, sans la connaissance de e.For this, the invention proposes to effectively protect the operation of exponentiation by a random mask, without the knowledge of e.
On notera dans ce document
- Mgt (A, B, N) la multiplication modulaire de Montgomery de A par B modulo N,
- A et B deux entiers,
- N le modulo choisi, il définit l'ensemble {0, ..., N-1} des entiers dans lequel on fait les opérations,
- n = nombre de bits de N, soit la longueur de N en base 2,
- R = 2n, une constante co-prime avec N, et qui dépend de la taille de N,
- M le message à signer ou à déchiffrer,
- S la signature du message M ou le message déchiffré.
- Mgt (A, B, N) modular Montgomery multiplication of A by B modulo N,
- A and B two integers,
- N the selected modulo, it defines the set {0, ..., N-1} of the integers in which one does the operations,
- n = number of bits of N, the length of N in base 2,
- R = 2 n , a co-prime constant with N, which depends on the size of N,
- M the message to sign or decipher,
- S the signature of the message M or the decrypted message.
L'invention est un procédé cryptographique destiné à signer ou déchiffrer un message M, comprenant une exponentiation modulaire comprenant les étapes de :
- tirage d'une valeur aléatoire s,
- initialisation de variables avec l'aide de s,
- application d'un algorithme permettant de garder un invariant de boucle grâce aux propriétés du multiplicateur de Montgomery Mgt,
- démasquage du résultat afin d'obtenir le résultat S, correspondant selon les cas à la signature de M ou au message déchiffré.
- draw a random value s,
- initializing variables with the help of s,
- application of an algorithm to keep a loop invariant thanks to the properties of the Montgomery Mgt multiplier,
- unmasking of the result in order to obtain the result S, corresponding as appropriate to the signature of M or to the decrypted message.
Dans un mode de réalisation, l'étape de pré-calcul peut comprendre l'étape d'initialisation utilise une valeur j, calculée par j=(3s)/2, un module choisi N, la variable de Montgomery R et comprend l'initialisation d'au moins cinq variables Acc, M2, M0, M1 et M3 conformément aux opérations suivantes .
- Acc ← Rs+1. M mod N
- M2 ← R-j+1.M mod N
- M0 ← R-3s+1 mod N
- M1 ← R-3s+1.M mod N
- M3 ← R-3s+1.M3 mod N
- Acc ← R s + 1 . M mod N
- M 2 ← R -j + 1 .M mod N
- M 0 ← R -3s + 1 mod N
- M 1 ← R -3s + 1 .M mod N
- M 3 ← R -3s + 1 .M 3 mod N
Dans ce cas, l'algorithme peut comporter, pour chaque bit de l'exposant d les étapes suivantes :
- élévation au carré, Acc ← Mgt(ACC, ACC,N)
- initialisation d'une variable k tel que k = didi-1
- Si k = 2
- o Acc← Mgt (Acc, M2, N)
- o Acc← Mgt (Acc, Acc, N)
- Sinon
- o Acc← Mgt(Acc, Acc, N)
- o Acc← Mgt (Acc, Mk, N)
- On se décale de deux bits
- squared, Acc ← Mgt (ACC, ACC, N)
- initialization of a variable k such that k = d i d i-1
- If k = 2
- o Acc ← Mgt (Acc, M 2 , N)
- o Acc ← Mgt (Acc, Acc, N)
- If not
- o Acc ← Mgt (Acc, Acc, N)
- o Acc ← Mgt (Acc, M k , N)
- We are shifting two bits
Dans un autre mode de réalisation, l'étape d'initialisation utilise un module choisi N, la variable de Montgomery R et comprend l'initialisation de au moins quatres variables Acc, M0, M1 et M3 conformément aux opérations suivantes :
- Acc ← Rs+1 . M mod N
- M0 ← R-s+1 mod N
- M1 ← R-s+1. M mod N
- M3 ← R-3s+1. M3 mod N
- Acc ← R s + 1 . M mod N
- M 0 ← R -s + 1 mod N
- M 1 ← R -s + 1 . M mod N
- M 3 ← R -3s + 1 . M 3 mod N
Dans ce cas, l'algorithme comporte, pour chaque bit de l'exposant d les étapes suivantes,
- élévation au carré Acc ← Mgt(Acc, Acc, N)
- si le bit en cours est égal à 1 et le bit suivant aussi, alors
- o Acc← Mgt(Acc, Acc, N),
- o Acc← Mgt (Acc, M3, N),
- o On se décale de deux bits.
- si le bit en cours est égal à 1 et le bit suivant est égal à 0, alors
- o Acc← Mgt (Acc, M1, N),
- o On se décale d'un bit.
- si le bit en cours est égal à 0, alors
- o Acc ← Mgt (Acc, M0, N),
- o On se décale d'un bit.
- squared Acc ← Mgt (Acc, Acc, N)
- if the current bit is equal to 1 and the next bit too, then
- o Acc ← Mgt (Acc, Acc, N),
- o Acc ← Mgt (Acc, M 3 , N),
- o We are shifting two bits.
- if the current bit is 1 and the next bit is 0, then
- o Acc ← Mgt (Acc, M 1 , N),
- o We shift a bit.
- if the current bit is 0, then
- o Acc ← Mgt (Acc, M 0 , N),
- o We shift a bit.
Dans tous les cas, l'opération de démasquage comporte au moins les opérations suivantes :
- calcul de R-s ,
- calcul de la signature S dudit message M, S = Mgt (Acc, R-s, N), correspondant selon les cas à la signature de M ou au message déchiffré.
- calculation of R -s ,
- calculation of the signature S of said message M, S = Mgt (Acc, R -s, N), corresponding to the case according to the signing of M or to the decrypted message.
L'invention permet ainsi de protéger efficacement l'opération d'exponentiation par un masque aléatoire dont l'inverse est rapidement calculable, et sans randomiser le module.The invention thus makes it possible to effectively protect the exponentiation operation with a random mask whose inverse is rapidly calculable, and without randomizing the module.
L'invention concerne également un cryptoprocesseur comprenant notamment un multiplieur de Montgomery pour la mise en oeuvre d'un procédé tel que décrit ci-dessus.The invention also relates to a cryptoprocessor including in particular a Montgomery multiplier for the implementation of a method as described above.
L'invention concerne enfin une carte à puce comprenant un cryptoprocesseur tel que décrit ci-dessus.The invention finally relates to a smart card comprising a cryptoprocessor as described above.
Comme on l'a dit précédemment, l'invention concerne un procédé cryptographique destiné à signer ou déchiffrer un message M, comprenant une exponentiation modulaire comprenant les étapes de :
- tirage d'une valeur aléatoire s
- initialisation de variables avec l'aide de s
- application d'un algorithme permettant de garder un invariant de boucle grâce aux propriétés du multiplicateur de Montgomery Mgt,
- démasquage du résultat afin d'obtenir la signature S du message M.
- drawing a random value s
- initializing variables with the help of
- application of an algorithm to keep a loop invariant thanks to the properties of the Montgomery Mgt multiplier,
- unmasking the result to obtain the signature S of the message M.
L'invention est mise en oeuvre de préférence en utilisant un multiplieur de Montgomery.The invention is preferably implemented using a Montgomery multiplier.
Avant de décrire plus complètement le procédé de l'invention, il convient de rappeler quelques propriétés connues d'un multiplieur de Montgomery, décrites par exemple dans le document D3 (
Un multiplieur de Montgomery permet de réaliser des multiplications du type Mgt(M,B,N) = M.B.R-1 mod N. Un avantage de ce multiplieur est sa rapidité de calcul. Un inconvénient de ce multiplieur est qu'il introduit dans le calcul une constante R, appelée constante de Montgomery. R est une puissance de deux, co-première avec N : R = 2n avec n tel que R ait le même nombre de bits que N.A Montgomery multiplier makes it possible to carry out multiplications of the Mgt type (M, B, N) = MBR -1 mod N. One advantage of this multiplier is its computation speed. A disadvantage of this multiplier is that it introduces into the calculation a constant R, called the Montgomery constant. R is a power of two, co-prime with N: R = 2 n with n such that R has the same number of bits as N.
La constante de Montgomery est intrinsèque au multiplieur et il est nécessaire de supprimer sa contribution en amont du calcul, au cours du calcul ou à la fin. Ainsi, pour calculer S = M.B mod N, on peut par exemple calculer d'abord M.R puis Mgt(M.R,B,N) = M.B mod N. On peut également réaliser une première multiplication S0 = Mgt(M.R, B.R, N) = M.B.R mod N puis une deuxième multiplication de type S = Mgt(1,S0, N) = M.B mod N.The Montgomery constant is intrinsic to the multiplier and it is necessary to suppress its contribution upstream of the calculation, during the calculation or at the end. Thus, to calculate S = MB mod N, it is possible, for example, to calculate MR first and then Mgt (MR, B, N) = MB mod N. It is also possible to carry out a first multiplication S 0 = Mgt (MR, BR, N ) = MBR mod N then a second multiplication of type S = Mgt (1, S 0 , N) = MB mod N.
Le multiplieur de Montgomery permet également de réaliser des exponentiations modulaires de type S = MgtExp(M,B,N) = MB.R-(B-1) mod N ou S = MgtExp(M.R,B,N) = MB.R mod N (on compense dans ce cas la constante R-B introduite par le calcul en multipliant M par R en amont du calcul). Concrètement, pour réaliser une exponentiation de Montgomery, on exécute un algorithme comme par exemple celui communément appelé "square and multiply" consistant, dans une boucle indicée par i variant entre q-1 et 0, q étant la taille du nombre d, en une succession de multiplications de type Ui = Mgt (Ui-1, Ui-1, N) et éventuellement Mgt(Ui,M,N) (ou Mgt(Ui,M.R,N)), selon la valeur d'un bit di de d associé à l'indice i, Ui étant une variable de boucle initialisée à la valeur Uq = R. Cette exponentiation est expliquée plus en détails dans le document
Ce calcul d'exponentiation a l'avantage d'être particulièrement rapide.This exponentiation calculation has the advantage of being particularly fast.
Les opérations de Montgomery ont notamment les propriétés suivantes, qui seront utilisées par la suite :
- Mgt (M,B,N) = M.B.R-1 mod N
- Mgt (M.R,B.R,N) = M.B.R mod N
- Mgt (1,1,N) = Mgt(N-1,N-1,N) = R-1 mod N
- Mgt (M,1,N) = Mgt (N-M, N-1, N) = M.R-1 mod N
- MgtExp(M.R,B,N) = MB.R mod N
- Mgt (M, B, N) = MBR -1 mod N
- Mgt (MR, BR, N) = MBR mod N
- Mgt (1.1, N) = Mgt (N-1, N-1, N) = R -1 mod N
- Mgt (M, 1, N) = Mgt (NM, N-1, N) = MR -1 mod N
- MgtExp (MR, B, N) = M B .R mod N
Comme on l'a vu précédemment, les multiplications et les exponentiations de Montgomery introduisent dans le résultat une contribution fonction de la constante R de Montgomery. Cette constante peut être éliminée en fin de chaque multiplication, par exemple en réalisant une multiplication de Montgomery par R2 après un calcul. Lorsque cela est possible, et notamment pour les exponentiations, il est plus facile de compenser la constante R en amont, en multipliant l'opérande par la constante R, plutôt que de compenser une puissance de R (a fortiori une puissance négative de R) en sortie.As we saw earlier, Montgomery's multiplications and exponentiations introduce into the result a contribution function of Montgomery's R constant. This constant can be eliminated at the end of each multiplication, for example by performing a Montgomery multiplication by R 2 after a calculation. Where possible, and especially for exponentiation, it is easier to compensate for the constant R upstream by multiplying the operand by the constant R rather than to compensate for a power of R (a fortiori a negative power of R). output.
A noter que, lors de la mise en oeuvre du procédé ci-dessus dans un crypto-processeur, un même registre ou une même partie de mémoire peut être utilisé pour mémoriser des variables intermédiaires dont le nom comprend la même lettre : M1, M2 peuvent être stockées successivement dans un registre M.Note that, when implementing the above method in a crypto-processor, the same register or the same part of memory can be used to store intermediate variables whose name includes the same letter: M1, M2 can to be stored successively in a register M.
Bien sûr, dans le procédé détaillé ci-dessus, certaines étapes peuvent être déplacées ou permutées par rapport aux autres. Par exemple, dans l'étape d'initialisation, les sous-étapes peuvent être réalisées dans un ordre différent.Of course, in the method detailed above, some steps can be moved or swapped with respect to others. For example, in the initialization step, the substeps can be performed in a different order.
A noter enfin que le procédé de l'invention peut être combiné avec des procédés antérieurs pour augmenter encore la sécurité du procédé.Finally, it should be noted that the process of the invention can be combined with prior methods to further increase the safety of the process.
Par exemple, en plus du masquage de M, on pourra également utiliser un aléa s2 pour masquer N, comme décrit dans le document D2 et l'art antérieur de la présente demande. Si le théorème des restes Chinois est utilisé, on pourra de même masquer p et q par s2.For example, in addition to the masking of M, it is also possible to use a randomness s2 to mask N, as described in document D2 and the prior art of the present application. If the Chinese remainder theorem is used, we can similarly hide p and q by s2.
Claims (8)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07301194A EP2015171A1 (en) | 2007-06-29 | 2007-06-29 | Cryptographic method comprising secure modular exponentiation against hidden-channel attacks without the knowledge of the public exponent, cryptoprocessor for implementing the method and associated chip card |
US12/666,892 US20100177887A1 (en) | 2007-06-29 | 2008-05-02 | Montgomery-based modular exponentiation secured against hidden channel attacks |
PCT/EP2008/055427 WO2009003740A1 (en) | 2007-06-29 | 2008-05-02 | Montgomξry-based modular exponentiation secured against hidden channel attacks |
EP08749996A EP2162820A1 (en) | 2007-06-29 | 2008-05-02 | Montgomery-based modular exponentiation secured against hidden channel attacks |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07301194A EP2015171A1 (en) | 2007-06-29 | 2007-06-29 | Cryptographic method comprising secure modular exponentiation against hidden-channel attacks without the knowledge of the public exponent, cryptoprocessor for implementing the method and associated chip card |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2015171A1 true EP2015171A1 (en) | 2009-01-14 |
Family
ID=38645771
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07301194A Withdrawn EP2015171A1 (en) | 2007-06-29 | 2007-06-29 | Cryptographic method comprising secure modular exponentiation against hidden-channel attacks without the knowledge of the public exponent, cryptoprocessor for implementing the method and associated chip card |
EP08749996A Withdrawn EP2162820A1 (en) | 2007-06-29 | 2008-05-02 | Montgomery-based modular exponentiation secured against hidden channel attacks |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08749996A Withdrawn EP2162820A1 (en) | 2007-06-29 | 2008-05-02 | Montgomery-based modular exponentiation secured against hidden channel attacks |
Country Status (3)
Country | Link |
---|---|
US (1) | US20100177887A1 (en) |
EP (2) | EP2015171A1 (en) |
WO (1) | WO2009003740A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3242202A1 (en) * | 2016-05-04 | 2017-11-08 | Gemalto Sa | Countermeasure to safe-error fault injection attacks on cryptographic exponentiation algorithms |
EP3276880A1 (en) * | 2016-07-28 | 2018-01-31 | Gemalto Sa | Efficient ecdsa signature and verification |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2972064B1 (en) * | 2011-02-25 | 2013-03-15 | Inside Secure | CRYPTOGRAPHY METHOD COMPRISING AN EXPONENTIATION OPERATION |
CN103207770B (en) * | 2013-04-16 | 2016-09-28 | 飞天诚信科技股份有限公司 | A kind of method realizing the precomputation of big number in embedded systems |
CN104793919B (en) * | 2015-04-15 | 2017-11-07 | 深圳国微技术有限公司 | A kind of Montgomery modular quadrupler and the embedded security chip with it |
US10020932B2 (en) * | 2015-11-13 | 2018-07-10 | Nxp B.V. | Split-and-merge approach to protect against DFA attacks |
US10243937B2 (en) * | 2016-07-08 | 2019-03-26 | Nxp B.V. | Equality check implemented with secret sharing |
WO2019191040A1 (en) * | 2018-03-28 | 2019-10-03 | Cryptography Research, Inc. | Using cryptographic blinding for efficient use of montgomery multiplication |
FR3095709B1 (en) * | 2019-05-03 | 2021-09-17 | Commissariat Energie Atomique | MASKING PROCESS AND SYSTEM FOR CRYPTOGRAPHY |
US11508263B2 (en) | 2020-06-24 | 2022-11-22 | Western Digital Technologies, Inc. | Low complexity conversion to Montgomery domain |
US11468797B2 (en) | 2020-06-24 | 2022-10-11 | Western Digital Technologies, Inc. | Low complexity conversion to Montgomery domain |
CN112491543B (en) * | 2020-11-24 | 2022-06-07 | 杭州电子科技大学 | IC card decryption method based on improved Montgomery modular exponentiation circuit |
WO2023141934A1 (en) * | 2022-01-28 | 2023-08-03 | Nvidia Corporation | Efficient masking of secure data in ladder-type cryptographic computations |
WO2023141933A1 (en) | 2022-01-28 | 2023-08-03 | Nvidia Corporation | Techniques, devices, and instruction set architecture for efficient modular division and inversion |
WO2023141935A1 (en) | 2022-01-28 | 2023-08-03 | Nvidia Corporation | Techniques, devices, and instruction set architecture for balanced and secure ladder computations |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1239364A1 (en) * | 2001-03-05 | 2002-09-11 | Hitachi, Ltd. | Tamper-resistant modular multiplication method |
WO2005048008A2 (en) * | 2003-11-16 | 2005-05-26 | M-Systems Flash Disk Pioneers Ltd. | Enhanced natural montgomery exponent masking |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6748410B1 (en) * | 1997-05-04 | 2004-06-08 | M-Systems Flash Disk Pioneers, Ltd. | Apparatus and method for modular multiplication and exponentiation based on montgomery multiplication |
US7046800B1 (en) * | 2000-03-31 | 2006-05-16 | State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University | Scalable methods and apparatus for Montgomery multiplication |
JP3785044B2 (en) * | 2001-01-22 | 2006-06-14 | 株式会社東芝 | Power residue calculation device, power residue calculation method, and recording medium |
FR2822260A1 (en) * | 2001-03-14 | 2002-09-20 | Bull Sa | METHODS AND DEVICES FOR ACCELERATING THE CALCULATION TIME OF A MONTGOMERY PRODUCT BY MODULAR MULTIPLICATION AND EXPONENTIATION |
US6917956B2 (en) * | 2001-08-14 | 2005-07-12 | Sun Microsystems, Inc. | Apparatus and method for efficient modular exponentiation |
JP4086503B2 (en) * | 2002-01-15 | 2008-05-14 | 富士通株式会社 | Cryptographic operation apparatus and method, and program |
FR2838210B1 (en) * | 2002-04-03 | 2005-11-04 | Gemplus Card Int | CRYPTOGRAPHIC METHOD PROTECTED FROM CACHE-CHANNEL TYPE ATTACKS |
KR100459732B1 (en) * | 2002-12-30 | 2004-12-03 | 삼성전자주식회사 | Montgomery modular multiplier by 4 to 2 compressor and multiplication method thereof |
JP4616169B2 (en) * | 2003-07-31 | 2011-01-19 | 富士通株式会社 | Apparatus, method and program for calculating conversion parameter in Montgomery modular multiplication |
JP4626148B2 (en) * | 2004-01-07 | 2011-02-02 | 株式会社日立製作所 | Calculation method of power-residue calculation in decryption or signature creation |
FR2884005B1 (en) * | 2005-04-01 | 2007-06-01 | Thales Sa | METHOD FOR IMPLEMENTING MODULAR MONTGOMERY MULTIPLICATION AND DEVICE THEREOF |
FR2895609A1 (en) * | 2005-12-26 | 2007-06-29 | Gemplus Sa | Cryptographic method for forming modular exponentiation, involves masking operand with random number, and forming modular exponentiation of operand masked by exponent using Montgomery multiplier |
-
2007
- 2007-06-29 EP EP07301194A patent/EP2015171A1/en not_active Withdrawn
-
2008
- 2008-05-02 US US12/666,892 patent/US20100177887A1/en not_active Abandoned
- 2008-05-02 EP EP08749996A patent/EP2162820A1/en not_active Withdrawn
- 2008-05-02 WO PCT/EP2008/055427 patent/WO2009003740A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1239364A1 (en) * | 2001-03-05 | 2002-09-11 | Hitachi, Ltd. | Tamper-resistant modular multiplication method |
WO2005048008A2 (en) * | 2003-11-16 | 2005-05-26 | M-Systems Flash Disk Pioneers Ltd. | Enhanced natural montgomery exponent masking |
Non-Patent Citations (1)
Title |
---|
MENEZES ALFRED J ET AL, HANDBOOK OF APPLIED CRYPTOGRAPHY, CRC PRESS SERIES ON DISCRETE MATHEMATICES AND ITS APPLICATIONS, BOCA RATON, FL, CRC PRESS, USA, 1997, pages 613 - 629, XP002188328, ISBN: 0-8493-8523-7 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3242202A1 (en) * | 2016-05-04 | 2017-11-08 | Gemalto Sa | Countermeasure to safe-error fault injection attacks on cryptographic exponentiation algorithms |
WO2017191288A1 (en) * | 2016-05-04 | 2017-11-09 | Gemalto Sa | Countermeasure to safe-error fault injection attacks on cryptographic exponentiation algorithms |
EP3276880A1 (en) * | 2016-07-28 | 2018-01-31 | Gemalto Sa | Efficient ecdsa signature and verification |
WO2018019788A1 (en) * | 2016-07-28 | 2018-02-01 | Gemalto Sa | Efficient ecdsa signature and verification |
Also Published As
Publication number | Publication date |
---|---|
US20100177887A1 (en) | 2010-07-15 |
WO2009003740A1 (en) | 2009-01-08 |
EP2162820A1 (en) | 2010-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2015171A1 (en) | Cryptographic method comprising secure modular exponentiation against hidden-channel attacks without the knowledge of the public exponent, cryptoprocessor for implementing the method and associated chip card | |
WO2007074149A1 (en) | Cryptographic method comprising a modular exponentiation secured against hidden-channel attacks, cryptoprocessor for implementing the method and associated chip card | |
EP1166494B1 (en) | Countermeasure procedures in an electronic component implementing an elliptical curve type public key encryption algorithm | |
WO2014111647A1 (en) | Cryptography method comprising an operation of multiplication by a scalar or an exponentiation | |
EP3287891B1 (en) | Protection of a modular calculation | |
WO2012041942A1 (en) | Protecting modular exponentiation in cryptographic operations | |
EP2546737A1 (en) | Protection of a modular exponentiation calculation by adding a random amount | |
WO2001093014A1 (en) | Countermeasure method in an electronic component using a public key encryption algorithm on elliptic curve | |
Dupaquis et al. | Redundant modular reduction algorithms | |
WO2009109715A2 (en) | Countermeasure method and devices for asymmetrical cryptography with signature diagram | |
FR2941798A1 (en) | APPARATUS FOR CALCULATING A RESULT OF SCALAR MULTIPLICATION | |
FR2880750A1 (en) | MICROPROCESSOR CARD AND CRYPTOGRAPHIC METHOD FOR PROTECTING A SECRET KEY | |
WO2000059157A1 (en) | Countermeasure method in an electric component implementing an elliptical curve type public key cryptography algorithm | |
FR2888690A1 (en) | CRYPTOGRAPHIC PROCESS FOR THE SECURE IMPLEMENTATION OF AN EXPONENTIATION AND ASSOCIATED COMPONENT | |
EP1804160B1 (en) | Protection of a cryptographic calculation performed by an integrated circuit | |
CA2257907A1 (en) | Public key cryptography method | |
EP1839125A1 (en) | Secure and compact exponentiation method for cryptography | |
EP2530867B1 (en) | Cryptographic data-processing method | |
EP1639451A2 (en) | Method for countermeasuring by masking the accumulator in an electronic component while using a public key cryptographic algorithm | |
EP1639450A1 (en) | Method for countermeasuring in an electronic component | |
EP4024753B1 (en) | Method and electronic module for calculating a cryptographic quantity with carry-less multiplications, related method and electronic device for processing data, and computer program | |
EP3929726A1 (en) | Cryptographic processing method, associated electronic device and computer program | |
FR2864390A1 (en) | Cryptographic process for e.g. message encryption and decryption, involves scanning bits of preset value from left to right in loop, and calculating and storing partial updated result equal to exponentiation in accumulator | |
FR2843507A1 (en) | Modular exponentiation method for public key cryptography applications, especially for chip card implementation, whereby the method is suitable for parallel processor use and employs multiplier and multiplicand registers | |
WO2001006351A1 (en) | Method for improving the performance of a multiplication operation on a finite characteristic 2 body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
AKX | Designation fees paid | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20090715 |
|
RTI1 | Title (correction) |
Free format text: MONTGOMERY MODULAR EXPONENTIATION SECURED AGAINST HIDDEN-CHANNEL ATTACKS |