Nothing Special   »   [go: up one dir, main page]

EP2011963B1 - Verfahren zum Betrieb einer Gasturbine mit Axialschubausgleich - Google Patents

Verfahren zum Betrieb einer Gasturbine mit Axialschubausgleich Download PDF

Info

Publication number
EP2011963B1
EP2011963B1 EP08159584.5A EP08159584A EP2011963B1 EP 2011963 B1 EP2011963 B1 EP 2011963B1 EP 08159584 A EP08159584 A EP 08159584A EP 2011963 B1 EP2011963 B1 EP 2011963B1
Authority
EP
European Patent Office
Prior art keywords
thrust
load
pressure
turbine
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08159584.5A
Other languages
English (en)
French (fr)
Other versions
EP2011963A1 (de
Inventor
Stefan Rofka
Rene Waelchli
Sven Olmes
Thomas Zierer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia Switzerland AG
Original Assignee
Ansaldo Energia Switzerland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ansaldo Energia Switzerland AG filed Critical Ansaldo Energia Switzerland AG
Publication of EP2011963A1 publication Critical patent/EP2011963A1/de
Application granted granted Critical
Publication of EP2011963B1 publication Critical patent/EP2011963B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/04Machines or engines with axial-thrust balancing effected by working-fluid axial thrust being compensated by thrust-balancing dummy piston or the like

Definitions

  • the invention relates to a method for operating a gas turbine with axial thrust compensation and a gas turbine with apparatus for carrying out the method.
  • the axial thrust of a gas turbine is the resulting force of aerodynamic forces and compressive forces, which exert an axial force on the rotor in the compressor and turbine, as well as all acting in the axial direction of the rotor pressure forces.
  • the resulting thrust is absorbed by a thrust bearing.
  • gas turbines are designed to have a minimum thrust at idle.
  • the axial thrust increases proportionally to the load.
  • a counterforce to the thrust balance can be applied against the increasing axial load with the load.
  • the maximum thrust to be absorbed by the thrust bearing can be reduced. Accordingly, the size and the power loss of the thrust bearing can be reduced.
  • the thrust of turbines and compressors as well as the compressive forces acting on the rotor in the axial direction are determined by operating parameters, in particular the position of compressor guide vanes and compressor discharge pressure as well as the design. He is determined by the selected geometries, in particular by the geometries of the blade channels and the degrees of reaction of the turbine stages.
  • the operating parameters are of the desired Process and operating concept of the gas turbine dependent. The load-dependency of the thrust can not be changed once the design has been selected.
  • the thrust load compensation device In the US5735666 a method is described in which, via a magnetically operated thrust load compensation device, the thrust loads, which load on a thrust bearing regulated.
  • the thrust load compensation device generates a compensation thrust as soon as a sensor detects a rotational speed of the thrust bearing which is below a threshold value.
  • a pressure compensating piston is in the US4653267 shown.
  • the pressure balance piston in the middle part, that is the between compressor and turbine geiegenen part, running a two-shaft system.
  • the axial force of the piston is reduced in normal operation by a second chamber pressurized with leakage air. Air can be discharged from this second chamber via a valve and thus the pressure level in this chamber can be reduced. By changing the pressure level in the second chamber, the resulting axial force of the pressure compensating piston is regulated.
  • the advantage of this arrangement is that the air discharged from the second chamber for control can continue to be used for turbine cooling.
  • Additional structural parts are needed to generate the pressure compensation piston.
  • the object of the present invention is to provide a controllable thrust balance in gas turbines without the use of additional structural components, which at high load and in particular at the design point has no additional cooling air consumption for acting on pressure equalizing piston or the like result.
  • the controllable thrust balance in gas turbines to be retrofitted, the one accordingly EP0447886 have executed middle part.
  • the invention relates to a method according to claim 1.
  • a gas turbine is designed with respect to aerodynamic forces and compressive forces exerting an axial force on the rotor so that it has a negative thrust at idle and deep part load.
  • a negative thrust is a thrust that points from the turbine towards the compressor. Further, it is designed so that it has a positive thrust at high gas turbine load and especially at full load.
  • an additional thrust in the main thrust direction that is to say a positive thrust in the direction of the compressor to the turbine, is applied at idle and part load.
  • the resulting maximum thrust force to be absorbed by the at least one thrust bearing is consequently smaller than in a conventionally designed gas turbine without thrust balance.
  • a thrust reversal in loading or unloading of the gas turbine is prevented by the additional thrust.
  • the load range in which an additional thrust is applied is, for example, in the range from idle to about 60% full load.
  • the part load range in which an additional boost is applied for example, to about 90% full load range.
  • the partial load range in which additional thrust is applied for example, only up to about 10% full load range.
  • the additional thrust is generated by a method for regulating the pressure on the end face or on a partial surface of the end face of the turbine rotor.
  • a substantially annular space between the drum cover and the first turbine disk which is closed by a rotor seal a turbine blade root seal, divided by a seal in an outer and an inner annulus.
  • the turbine rotor is supplied with high-pressure cooling air from the outer annular space, which is fed into this annular space with the highest possible tangential velocity.
  • the static pressure in the outer annulus is due to the strong acceleration to the highest possible tangential velocity significantly below the compressor end pressure.
  • a swirl nozzle is used, for example.
  • the ratio of the pressure drop across the rotor seal and turbine disk seal is inversely proportional to the ratio of the equivalent areas of both seals.
  • the rotor seal has a significantly smaller equivalent area than the turbine disk seal.
  • the pressure drop across the rotor seal is correspondingly much larger than that over the turbine disk seal. The pressure in the inner annular space is therefore determined when the control valve is closed essentially by the pressure in the outer annular space.
  • the inner annular space is acted upon by at least one line from Kompressorplenum or other suitable extraction point with compressed air.
  • at least one control valve is provided to control the pressurization.
  • pressurize for example, externally supplied compressed air or steam can be used or an externally supplied medium can be used in combination with compressor air.
  • the advantage of this method is that in the high load range no additional pressurization is required and thus no compressed air is consumed under performance andumblesgradeinbusse. Even if the pressurization is active at partial load, the air escaping via the seal between the inner and outer annular space is usefully added to the rotor cooling air.
  • the at least one control valve may be open at low load and closed when a discrete limit is exceeded. Conversely, the at least one control valve is opened again when it falls below the discrete limit value.
  • a hysteresis can be provided.
  • Another control option is, for example, a closure of the control valve proportional to the load.
  • the position of the control valve is not specified as a function of the load, but the pressure ratio between the inner annular space and compressor discharge pressure is predetermined and this ratio is regulated via the control valve.
  • the target value is not necessarily constant, but is, for example, a function of the load.
  • the function can, for example, be determined in such a way that a constant axial thrust is achieved over the widest possible operating range.
  • the position of the control valve or the target value of the pressure conditions in the inner annular space can for example also be provided as a function of the Ver Whyreintrittsleitschaufelwinkel or the relative load. Regulations depending on combinations of parameters or other relevant parameters are also possible.
  • a special case is the application in connection with the upgrade of a gas turbine.
  • a change in one of the main components turbine or compressor can lead to a reduction of the axial thrust. This will be the case, for example, when the compressor thrust increases due to an upgrade compressor with virtually unchanged intake mass flow and thus virtually unchanged compressor discharge pressure and turbine thrust.
  • the increase in compressor thrust can cause a thrust reverser after the upgrade.
  • the method according to the invention can be used and a controlled additional thrust can be applied.
  • One embodiment is a gas turbine with a seal that divides the substantially annular space between the drum cover and the first turbine disk into an outer and an inner annular space. It has at least one line from the compressor plenum to the drum cover, at least one control valve in this line and at least one inlet into the inner annulus.
  • a labyrinth seal is an example of a suitable seal.
  • the introduction into the inner annulus of the drum cover is a generally annular plenum connected to the inner annulus through a plurality of orifices.
  • At least one pressure gauge is also provided in the inner annulus and in the compressor plenum.
  • the at least one supply line for pressurizing the inner plenum is not connected to the Kompressplplenum, but another suitable extraction point for compressor air via at least one control valve.
  • the invention is based on embodiments in the Fig. 1 to 4 shown schematically.
  • a gas turbine with a device for carrying out the method according to the invention essentially has at least one compressor, at least one combustion chamber and at least one turbine, which drives the compressor and a generator via at least one shaft.
  • Fig. 1 shows a section through the middle part of a gas turbine, that is, the area between the compressor and turbine and the final stage of the compressor and the first stage of the turbine.
  • the compressor 1 compresses the air. Most of the air is introduced via the Kompressplplenum 2 in a combustion chamber 3 and mixed with fuel, which burns there. From there, the hot fuel gases flow under labor output through a turbine 4. Turbine 4 and compressor 1 are arranged on a common shaft 18, wherein the part of the shaft located between compressor 1 and turbine 4 is designed as a drum 6.
  • the high-pressure part of the rotor cooling air is swirled after the last compressor blade discharged through an annular channel 7 between the rotor drum 6 and drum cover 5 and introduced via the rotor cooling air supply 12 and a swirl grille 13 in an annular space between the drum cover and a first turbine disk.
  • This annulus is divided by a seal 9 in an inner annulus 10 and an outer annulus 11.
  • the outer annular space is bounded, for example, by the rear side of a drum cover 5, an inner platform of a first turbine guide vane facing the rotor 18, a first turbine disk and the seal 9.
  • the inner annular space is bounded, for example, by the rear side of a drum cover 5, a seal 9, a first turbine disk of a rotor seal 8 and the walls of a part of an annular channel 7 lying downstream of a rotor seal 8.
  • the seal 9 can be performed, for example, as a labyrinth seal 21.
  • a labyrinth seal 21 For receiving the labyrinth seal 21, for example, as in Fig. 2 shown, offset from each other, referred to as balconies projections on a drum cover 19 and a first turbine disk 20 are provided.
  • the rotor cooling air supply 12 may be connected, for example via a swirl grille 13 with an outer annular space 11 that accelerates the rotor cooling air tangentially and thus lowers the static pressure in an outer annular space 11. From the one outer annular space 11, the rotor cooling air enters a first turbine disk.
  • An annular space is divided by a seal 9 into an inner 10 and outer annular space 11 in front of a first turbine disk, ie the substantially annular space between the drum cover 5 and the first turbine disk, which is closed by a rotor seal 8, a turbine blade root seal 24. This division makes it possible to pressurize the inner annulus 10 via a pressure line 14 and a control valve 15 with compressed air from the Kompressplplenum 2.
  • the introduction 16 of the compressed air into the inner annular space 10 can take place via holes through the drum cover or, as in Fig. 1 represented, via a plenum 17.
  • the compressed air is fed via the at least one pressure line 14 into the plenum 17. From there it passes via the introduction 16, which is designed, for example, as a plurality of holes in the inner annular space 10th
  • the inner annular space 10 is applied at partial load to increase the thrust by opening the control valve 15 via the pressure line 14 and the introduction 16 with pressure.
  • This air passes together with the leakage air of the rotor seal 8 in the outer annular space 11.
  • Fig. 3 the resulting axial thrust for control is shown as a function of the gas turbine load in regulation with a limit value and hysteresis.
  • the control valve 15 is initially open at low load of the gas turbine. After exceeding a limit value ⁇ , the control valve is closed and remains closed in the upper load range (solid line). When reducing the load, the control valve 15 when falling below the load ⁇ is opened again (dashed line).
  • dashed lines show the thrust profile with thrust reversal, which would result without additional thrust in the lower load range.
  • Fig. 4 shows the idealized thrust curve (solid line) over gas turbine load when controlling the load-dependent pressure ratio between pressure in the inner annulus and compressor end pressure.
  • the control valve 15 is initially open at low load of the gas turbine. From reaching a target thrust, for example, at the load ⁇ , the thrust is kept constant by changing the pressure in the inner annulus. Only when the control valve 15 is completely closed, which is the case, for example, at the load ⁇ , the thrust continues to increase to reach its maximum value at full load.
  • the dependence of the pressure ratio of load can be determined by model calculations or from experiments and programmed in the gas turbine controller.
  • dashed lines show the thrust curve with thrust reversal, which would result without additional thrust.
  • seals (8 and / or 9) can be designed as a brush seal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Control Of Turbines (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

    Technisches Gebiet
  • Die Erfindung betrifft ein Verfahren zum Betrieb einer Gasturbine mit Axialschubausgleich sowie eine Gasturbine mit Vorrichtung zur Ausführung des Verfahrens.
  • Stand der Technik
  • Der Axialschub einer Gasturbine ist die resultierende Kraft aus aerodynamischen Kräften und Druckkräften, die in Kompressor und Turbine eine Axialkraft auf den Rotor ausüben, sowie aller in axialer Richtung auf den Rotor wirkenden Druckkräfte. Der resultierende Schub wird von einem Axiallager aufgenommen. Typischerweise werden Gasturbinen so ausgelegt, dass sie bei Leerlauf einen Minimalschub aufweisen. Der Axialschub steigt proportional zur Last. Um den Axialschub auszugleichen, kann gegen den mit der Last zunehmenden Axialschub eine Gegenkraft zum Schubausgleich aufgebracht werden. Dadurch kann der maximale, von dem Axiallager aufzunehmende Schub reduziert werden. Entsprechend kann die Baugrösse und die Verlustleistung des Axiallagers reduziert werden.
  • Der Schub von Turbinen und Kompressoren sowie die in axialer Richtung auf den Rotor wirkenden Druckkräfte werden von Betriebsparametern, insbesondere der Stellung von Verdichterleitschaufeln und Kompressoraustrittsdruck sowie durch das Design bestimmt. Dabei ist er von den gewählten Geometrien, insbesondere durch die Geometrien der Schaufelkanäle und den Reaktionsgraden der Turbinenstufen bestimmt. Die Betriebsparameter sind von dem gewünschten Prozess und Betriebskonzept der Gasturbine abhängig. Die Lastabhängigkeit des Schubes kann bei einmal gewähltem Design nicht mehr verändert werden.
  • Das Problem des Schubausgleiches bei Gasturbinen ist lange bekannt und eine grosse Zahl von Lösungsansätzen wurde in der Literatur vorgeschlagen. Insbesondere sind verschiedene Möglichkeiten den Axialschub über Druckausgleichszylinder zu kompensieren und damit die Last auf die Axiallager zu reduzieren bekannt. Zur Regelung des Schubausgleiches mittels einer Gegenkraft in einer Gasturbine sind ebenfalls verschiedene Verfahren entwickelt worden.
  • In der US4730977 wird ein Verfahren zum Betrieb einer Gasturbine mit Schubausgleich beschrieben. Das Verfahren basiert darauf, dass bei Leerlauf und tiefer Teillast Druckluft über Einlassventile in einen Hohlraum eingebracht wird, so dass eine axiale Kraft auf den Turbinenrotor ausgeübt wird. Dies erlaubt es einen negativen Schub, der bei Leerlauf und tiefer Teillast entsteht, auszugleichen. Bei höherer Last oder Vollast werden die Einlassventile geschlossen, so dass keine Druckluft in den Hohlraum eingelassen und kein zusätzlicher Schub ausgeübt wird.
  • In der US5735666 wird ein Verfahren beschrieben, bei welchem über eine magnetisch betriebene Schublastausgleichsvorrichtung die Schubkräfte, welche auf ein Schublager lasten, geregelt werden. Insbesondere erzeugt die Schublastausgleichsvorrichtung einen Ausgleichsschub, sobald ein Sensor eine Rotationsgeschwindigkeit des Schublagers ermittelt, welche unterhalb eines Schwellenwertes liegt.
  • In der US5760289 wird zum Schubausgleich vorgeschlagen, stromab der Turbine einen Druckausgleichskolben vorzusehen und diesen mit Druckluft zu beaufschlagen. Um den Druck im Ausgleichskolben und damit die Ausgleichskraft abhängig von dem Betriebszustand zu regeln wird ein komplexer Algorithmus benötigt. Ausserdem wird in eine periodische Kalibrierung des Algorithmus, um Alterung oder mögliche Modifikationen an der Gasturbine zu kompensieren, vorgeschlagen.
  • Eine andere Ausführung eines Druckausgleichskolbens ist in der US4653267 dargestellt. Hier ist der Druckausgleichskolben in der Mittelpartie, das heisst dem zwischen Kompressor und Turbine geiegenen Teil, einer Zweiwellenanlage ausgeführt. Die Axialkraft des Kolbens wird im Normalbetrieb durch eine mit Leckageluft druckbeaufschlagte zweite Kammer reduziert. Luft kann aus dieser zweiten Kammer über ein Ventil abgelassen werden und damit das Druckniveau in dieser Kammer reduziert werden. Durch Änderung des Druckniveaus in der zweiten Kammer wird die resultierende Axialkraft des Druckausgleichskolbens geregelt. Vorteil dieser Anordnung ist, dass die aus der zweiten Kammer zur Regelung abgelassene Luft zur Turbinenkühlung weiter verwendet werden kann. In US5760289 und in US4653267 werden zur Erzeugung des Druckausgleichskolbens zusätzliche Strukturteile benötigt. Ausserdem geht komprimierte Luft, ohne Leistungsabgabe, über Dichtungen aus dem Druckausgleichskolben verloren oder kann erst auf deutlich tieferem Druckniveau verwendet werden. Zur Unterbringung des Druckausgleichskolbens wird ausserdem teurer Bauraum in Anspruch genommen
    und insbesondere bei Ausführungen gemäss der US5760289 wird eine Verlängerung der Achse notwendig.
  • Ein anderer Ansatz zur Reduktion der Axialkräfte wird in der EP0447886 dargelegt. In dem dort dargestellten Gasturbinendesign, bei welchem der zwischen der Turbine und dem Verdichter liegende Wellenteil eine Trommel ist, die von einer Trommelabdeckung umgeben ist und bei welcher der zwischen Trommel und Trommelabdeckung gebildete Ringkanal die Führung der aus dem Verdichter entnommenen Kühlluft zur Stirnseite des Turbinenrotors übernimmt, wird ein erheblicher Anteil der Axialkräfte durch den Druck auf der ersten Turbinenscheibe aufgebracht. In der EP0447886 wird die Axialkraft dadurch reduziert, dass der statische Druck vor der Stirnseite des Turbinenrotors reduziert wird. Dies wird erreicht, indem rotorseitige Kühlluft innerhalb des Ringkanals durch ein Drallgitter umgelenkt wird und auf höchst mögliche Tangentialgeschwindigkeit, in Drehrichtung des Rotors, beschleunigt wird. Neben den Vorteilen dieser Ausführung, die in der EP0447886 selber dargestellt sind, ist im Vergleich zu der Verwendung von Druckausgleichskolben zu bemerken, dass keine zusätzlichen Strukturteile oder axiale Baulänge zur Erstellung eines Druckausgleichskolbens benötigt werden. Ausserdem geht keine komprimierte Luft über Druckausgleichskolben verloren. Es gibt aber bei dieser Ausführung keine Möglichkeit zur Regelung des Axialschubes. Dies hat zur Folge, dass bei Volllast ein erheblicher Restschub über die Axiallager aufzunehmen ist oder bei tiefer Last eine Schubumkehr in Kauf zu nehmen ist. Je nach Design und Anordnung der Axiallager kann es bei einer Schubumkehr zu erhöhten Vibrationen kommen und im ungünstigsten Fall bei noch tieferer Last zu einer Überlastung des Gegenlagers kommen. Ausserdem sind bei diesem Design bei Modifikationen an der Gasturbine, die einen Einfluss auf den Schub haben, wie zum Beispiel einem Upgrade durch einen neuen Kompressor oder eine neue Turbine, keine Möglichkeiten gegeben, diesen veränderten Schub zu kompensieren.
  • Darstellung der Erfindung
  • Der vorliegenden Erfindung ist die Aufgabe gestellt, einen regelbaren Schubausgleich bei Gasturbinen ohne Verwendung zusätzlicher Strukturbauteile zu schaffen, der bei hoher Last und insbesondere im Auslegungspunkt keinen zusätzlichen Kühlluftverbrauch zur Beaufschlagung von Druckausgleichskolben oder ähnlichem zur Folge hat. Ausserdem soll der regelbare Schubausgleich in Gasturbinen nachrüstbar sein, die einen entsprechend EP0447886 ausgeführten Mittelteil haben.
  • Die Erfindung betrifft ein Verfahren gemäß Anspruch 1.
  • Zur Lösung der oben gegebenen Aufgabe wird eine Gasturbine in bezug auf aerodynamische Kräfte und Druckkräfte, die eine Axialkraft auf den Rotor ausüben, so ausgelegt, dass sie bei Leerlauf und tiefer Teillast einen negativen Schub hat. Ein negativer Schub ist ein Schub, der von der Turbine in Richtung Kompressor weist. Weiter wird sie so ausgelegt, dass sie bei hoher Gasturbinenlast und insbesondere bei Volllast einen positiven Schub aufweist. Um im gesamten Lastbereich der Gasturbine eine resultierende positive Kraft auf das mindestens eine Axiallager zu gewährleisten, wird bei Leerlauf und Teillast geregelt ein Zusatzschub in Hauptschubrichtung, das heisst ein positiver Schub in Richtung von Kompressor zur Turbine, aufgebracht.
  • Die resultierende maximale Schubkraft, die von dem mindestens einen Axiallager aufzunehmen ist, ist in Konsequenz kleiner als bei einer herkömmlich ausgelegten Gasturbine ohne Schubausgleich. Ausserdem wird durch den Zusatzschub eine Schubumkehr bei Belasten oder Entlasten der Gasturbine verhindert. Der Lastbereich in dem ein Zusatzschub aufgebracht wird, liegt beispielsweise im Bereich von Leerlauf bis etwa 60% Volllast. Bei einer Gasturbine, die für Volllastbetrieb optimiert wird, kann der Teillastbereich, in dem ein Zusatzschub aufgebracht wird, beispielsweise bis etwa 90% Volllast reichen. Bei einer Nachrüstung kann der Teillastbereich, in dem Zusatzschub aufgebracht wird, beispielsweise nur bis etwa 10% Volllast reichen.
  • Der Zusatzschub wird durch ein Verfahren zur Regelung des Druckes an der Stirnseite oder an einer Teilfläche der Stirnseite des Turbinenrotors erzeugt.
  • Zu diesem Zweck wird ein im wesentlichen ringförmiger Raum zwischen Trommelabdeckung und erster Turbinenscheibe, der durch eine Rotordichtung eine Turbinenschaufelfussdichtung abgeschlossen ist, durch eine Dichtung in einen äusseren und einen inneren Ringraum geteilt. Beispielsweise wird von dem äusseren Ringraum der Turbinenrotor mit Hochdruckkühlluft versorgt, die in diesen Ringraum mit einer möglichst hohen Tangentialgeschwindigkeit eingespeist wird. Dabei liegt der statische Druck in dem äusseren Ringraum infolge der starken Beschleunigung auf die möglichst hohe Tangentialgeschwindigkeit deutlich unter Kompressorenddruck. Zur Beschleunigung der Kühlluft auf eine möglichst hohe Tangentialgeschwindigkeit wird beispielsweise eine Dralldüse verwendet. Es können aber auch beispielsweise gerichtete Bohrungen, zur Beschleunigung in Tangentialrichtung verwendet werden.
  • Bei geschlossenem Regelventil, wenn keine zusätzliche Druckluft in den inneren Ringraum zugeführt wird, ist das Verhältnis des Druckabfalls über Rotordichtung und Turbinenscheibendichtung umgekehrt proportional zu dem Verhältnis der äquivalenten Flächen beider Dichtungen. Typischerweise weist die Rotordichtung eine deutlich kleinere äquivalente Fläche als die Turbinenscheibendichtung auf. Der Druckabfall über die Rotordichtung ist entsprechend viel grösser als der über die Turbinenscheibendichtung. Der Druck in dem inneren Ringraum ist daher bei geschlossenem Regelventil im wesentlichen durch den Druck im äusseren Ringraum bestimmt.
  • Um einen Zusatzschub in Hauptschubrichtung zu erzeugen, wird der innere Ringraum über mindestens eine Leitung vom Kompressorplenum oder einer anderen geeigneten Entnahmestelle mit Druckluft beaufschlagt. Zur Regelung der Druckbeaufschlagung ist mindestens ein Regelventil vorgesehen. Durch die Druckbeaufschlagung wird eine Zusatzkraft in Hauptschubrichtung aufgebracht, so dass im gesamten Betriebsbereich der Gasturbine ein positiver resultierender Schub auf das mindestens eine Axiallager sichergestellt ist und eine Schubumkehr vermieden wird.
  • Je tiefer der statische Druck im Ringraum bei geschlossenem Regelventil ist, desto grösser wird bei Verwendung von Kompressorendluft der Regelbereich der Zusatzschubkraft. Die oben erwähnte Absenkung des statischen Drucks durch Einspeisung der Kühlluft über eine Dralldüse führt also zu einer Vergrösserung des Regelbereichs.
  • Zur Druckbeaufschlagung kann beispielsweise auch extern zugeführte Druckluft oder Dampf verwendet werden oder ein extern zugeführtes Medium in Kombination mit Kompressorluft verwendet werden.
  • Neben der Nutzung bestehender Strukturteile besteht der Vorteil dieses Verfahrens darin, dass im hohen Lastbereich keine zusätzliche Druckbeaufschlagung erforderlich ist und damit keine komprimierte Luft unter Leistungs- und Wirkungsgradeinbusse verbraucht wird. Selbst wenn die Druckbeaufschlagung bei Teillast aktiv ist, wird die über die Dichtung zwischen innerem und äusseren Ringraum entweichende Luft nutzbringend der Rotorkühlluft beigemischt.
  • Zur Regelung der Druckbeaufschlagung sind verschiedene Verfahren denkbar. Beispielsweise kann das mindestens eine Regelventil bei tiefer Last geöffnet sein und beim Überschreiten eines diskreten Grenzwerts geschlossen werden. Umgekehrt wird das mindestens eine Regelventil beim Unterschreiten des diskreten Grenzwertes wieder geöffnet. Um bei Lasten nahe des Grenzwertes ständiges Schalten des mindestens einen Regelventils zu vermeiden, kann eine Hysterese vorgesehen werden.
  • Eine andere Regelungsmöglichkeit ist beispielsweise ein Schliessen des Regelventils proportional zur Last.
  • In einer weitern Regelung wird nicht die Stellung des Regelventils in Abhängigkeit der Last vorgegeben, sondern das Druckverhältnis zwischen innerem Ringraum und Kompressorenddruck vorgegeben und dies Verhältnis über das Regelventil geregelt. Dabei ist der Zielwert nicht notwendig konstant, sondern ist beispielsweise eine Funktion der Last. Die Funktion kann beispielsweise so bestimmt werden, dass über einen möglichst weiten Betriebsbereich ein konstanter Axialschub erreicht wird.
  • Die Stellung des Regelventils oder der Zielwert der Druckverhältnisse im inneren Ringraum kann beispielsweise auch in Abhängigkeit von dem Verdichtereintrittsleitschaufelwinkel oder der relativen Last vorgesehen werden. Regelungen abhängig von Kombinationen von Parametern oder weiteren relevanten Parametern sind ebenfalls möglich.
  • Neben der Anwendung des Verfahrens für die Auslegung und Entwicklung von Neuanlagen, ist ein Spezialfall die Anwendung in Verbindung mit dem Upgrade einer Gasturbine. Bei dem Upgrade einer Gasturbine kann es durch Änderung an einer der Hauptkomponenten Turbine oder Kompressor zu einer Reduktion des Axialschubes kommen. Dies wird zum Beispiel der Fall sein, wenn durch einen Upgrade- Kompressor bei praktisch unverändertem Ansaugmassenstrom und damit praktisch unverändertem Kompressoraustrittsdruck und Turbinenschub der Kompressorschub zunimmt. Durch die Zunahme des Kompressorschubes kann es nach dem Upgrade zu einer Schubumkehr kommen. Um diese zu vermeiden, kann das erfindungsgemässe Verfahren angewandt werden und ein geregelter Zusatzschub aufgebracht werden.
  • Neben dem Verfahren ist eine Gasturbine mit reduziertem maximalen Axialschub, mit wenigstens einer mit Druck beaufschlagbare Teilfläche des Turbinenrotors, beschrieben.
  • Eine Ausführung ist eine Gasturbine mit einer Dichtung, die den im wesentlichen ringförmigen Raum zwischen Trommelabdeckung und erster Turbinenscheibe in einen äusseren und einen inneren Ringraum teilt. Sie verfügt über mindestens eine Leitung vom Kompressorplenum zur Trommelabdeckung, mindestens ein Regelventil in dieser Leitung und mindestens eine Einleitung in den inneren Ringraum. Es gibt verschiedene, dem Fachmann bekannte Möglichkeiten eine Dichtung zwischen der Stirnfläche des Turbinenrotors und Trommelabdeckung auszuführen. Eine Labyrinthdichtung ist ein Beispiel für eine geeignete Dichtung.
  • Bei einer Gasturbine mit mehr als einer Turbine sind Ringräume zur Druckbeaufschlagung an der Stirnfläche mindestens einer Turbine oder in Kombination bei mehreren oder allen Turbinen geteilt und mit mindestens einer regelbaren Druckluftversorgung ausgeführt.
  • Für die Einleitung der Druckluft in den inneren Ringraum sind ebenfalls verschiedene Möglichkeiten bekannt. Dies kann beispielsweise eine Bohrung durch die Trommelabdeckung sein. In einer weiteren beispielhaften Ausführung ist die Einleitung in den inneren Ringraum der Trommelabdeckung ein im wesentlichen ringförmiges Plenum, das durch eine Vielzahl von Öffnung mit dem inneren Ringraum verbunden ist.
  • In einer weiteren Ausführung ist ausserdem mindestens ein Druckmessgerät in dem inneren Ringraum und im Kompressorplenum vorgesehen.
  • In einer weiteren Ausführung ist die mindestens eine Zuleitung für Druckbeaufschlagung des inneren Plenums nicht mit dem Kompressorplenum, sondern einer anderen geeigneten Entnahmestelle für Kompressorluft über mindestens ein Regelventil verbunden.
  • Kurze Beschreibung der Zeichnungen
  • Die Erfindung ist anhand von Ausführungsbeispielen in den Fig. 1 bis 4 schematisch dargestellt.
  • Es zeigen:
    • Fig. 1 Schnitt durch die Mittelpartie einer Gasturbine mit innerem und äusserem Ringraum sowie einer Zuführung für Druckbeaufschlagung des inneren Ringraumes.
    • Fig. 2 Detailsauschnitt des Schnittes der Mittelpartie für eine Ausführung der Turbinenscheibendichtung als Labyrinthdichtung.
    • Fig. 3 Schubverlauf über Last bei Regelung über einen Grenzwert mit Hysterese.
    • Fig. 4 Idealisierter Schubverlauf über Last bei Regelung auf das lastabhängige Druckverhältnis zwischen Druck im inneren Ringraum und Kompressorenddruck.
    Ausführung der Erfindung
  • Eine Gasturbine mit einer Vorrichtung zur Durchführung des erfindungsgemässen Verfahrens weist im wesentlichen mindestens einen Verdichter, mindestens eine Brennkammer und mindestens eine Turbine auf, die über mindestens eine Welle den Verdichter und einen Generator antreibt.
  • Fig. 1 zeigt einen Schnitt durch die Mittelpartie einer Gasturbine, das heisst den Bereich zwischen Kompressor und Turbine sowie die Endstufe des Kompressors und die erste Stufe der Turbine.
  • Der Verdichter 1 verdichtet die Luft. Der grösste Teil der Luft wird über das Kompressorplenum 2 in eine Brennkammer 3 eingeleitet und mit Brennstoff vermischt, der dort verbrennt. Von dort fliessen die heissen Brenngase unter Arbeitsabgabe durch eine Turbine 4 ab. Turbine 4 und Verdichter 1 sind auf einer gemeinsamen Welle 18 angeordnet, wobei der zwischen Verdichter 1 und Turbine 4 gelegene Teil der Welle als Trommel 6 ausgeführt ist.
  • Der Hochdruckteil der Rotorkühlluft wird nach der letzten Kompressorschaufel drallbehaftet durch einen Ringkanal 7 zwischen Rotor- Trommel 6 und Trommelabdeckung 5 abgeleitet und über die Rotorkühlluftzuführung 12 und ein Drallgitter 13 in einen Ringraum zwischen Trommelabdeckung und einer ersten Turbinenscheibe eingeleitet. Dieser Ringraum wird durch eine Dichtung 9 in einen inneren Ringraum 10 und einen äusseren Ringraum 11 geteilt.
  • Der äussere Ringraum wird beispielsweise durch die Hinterseite einer Trommelabdeckung 5, einer dem Rotor 18 zugewandten innere Plattform einer ersten Turbinenleitschaufel, einer ersten Turbinenscheibe sowie der Dichtung 9 begrenzt.
  • Der innere Ringraum wird beispielsweise durch die Hinterseite einer Trommelabdeckung 5, einer Dichtung 9, einer ersten Turbinenscheibe einer Rotordichtung 8 sowie den Wänden eines stromab einer Rotordichtung 8 liegenden Teils eines Ringkanals 7 begrenzt.
  • Die Dichtung 9 kann beispielsweise als Labyrinthdichtung 21 ausgeführt werden. Zur Aufnahme der Labyrinthdichtung 21 können beispielsweise, wie in Fig. 2 dargestellt, gegeneinander versetzte, als Balkone bezeichnete Vorsprünge auf einer Trommelabdeckung 19 und einer ersten Turbinenscheibe 20 vorgesehen werden.
  • Die Rotorkühlluftzuführung 12 kann beispielsweise über ein Drallgitter 13 mit einem äusseren Ringraum 11 verbunden sein, dass die Rotorkühlluft tangential beschleunigt und damit den statischen Druck in einem äusseren Ringraum 11 absenkt. Von dem einen äusseren Ringraum 11 tritt die Rotorkühlluft in eine erste Turbinenscheibe ein. Ein Ringraum wird vor einer ersten Turbinenscheibe, d.h. der im wesentlichen ringförmige Raum zwischen Trommelabdeckung 5 und erster Turbinenscheibe, der durch eine Rotordichtung 8 eine Turbinenschaufelfussdichtung 24 abgeschlossen ist, durch eine Dichtung 9 in einen inneren 10 und äusseren Ringraum 11 geteilt. Diese Teilung erlaubt es, den inneren Ringraum 10 über eine Druckleitung 14 und ein Regelventil 15 mit Druckluft aus dem Kompressorplenum 2 zu beaufschlagen. Die Einleitung 16 der Druckluft in den inneren Ringraum 10 kann dabei über Bohrungen durch die Trommelabdeckung erfolgen oder, wie in Fig. 1 dargestellt, über ein Plenum 17. In diesem Fall wird die Druckluft über die mindestens eine Druckleitung 14 in das Plenum 17 eingespiesen. Von dort gelangt sie über die Einleitung 16, die beispielsweise als eine Vielzahl von Bohrungen ausgeführt ist, in den inneren Ringraum 10.
  • Der innere Ringraum 10 wird bei Teillast zur Erhöhung der Schubkraft durch öffnen des Regelventils 15 über die Druckleitung 14 und die Einleitung 16 mit Druck beaufschlagt. Über die Turbinenscheibendichtung 9 gelangt diese Luft zusammen mit der Leckageluft der Rotordichtung 8 in den äusseren Ringraum 11. Für die Regelung der Druckbeaufschlagung sind mehrere Möglichkeiten gegeben.
  • In Fig. 3 ist der resultierende Axialschub für Regelung in Abhängigkeit von der Gasturbinenlast bei Regelung mit einem Grenzwert und Hysterese dargestellt. Dabei ist das Regelventil 15 bei tiefer Last der Gasturbine zunächst geöffnet. Nach Überschreitung eines Grenzwertes α wird das Regelventil geschlossen und bleibt im oberen Lastbereich geschlossen (durchgezogene Linie). Bei Reduktion der Last wird das Regelventil 15 beim Unterschreiten der Last β wieder geöffnet (gestrichelte Linie). Strichpunktiert ist ausserdem der Schubverlauf mit Schubumkehr dargestellt, der sich ohne Zusatzschub im tieferen Lastbereich ergeben würde.
  • Fig. 4 zeigt den idealisierten Schubverlauf (durchgezogene Linie) über Gasturbinenlast bei Regelung auf das lastabhängige Druckverhältnis zwischen Druck im inneren Ringraum und Kompressorenddruck. Auch hier ist das Regelventil 15 bei tiefer Last der Gasturbine zunächst geöffnet. Ab Erreichen eines Zielschubes, beispielsweise bei der Last γ, wird der Schub über Änderung des Druckes im inneren Ringraum konstant gehalten. Erst wenn das Regelventil 15 völlig geschlossen ist, was beispielsweise bei der Last δ der Fall ist, steigt der Schub weiter, um bei Volllast seinen Maximalwert zu erreichen. Die Abhängigkeit des Druckverhältnisses von Last kann über Modellrechnungen oder aus Versuchen bestimmt werden und im Gasturbinenkontroller einprogrammiert werden. Strichpunktiert ist ausserdem der Schubverlauf mit Schubumkehr dargestellt, der sich ohne Zusatzschub ergeben würde.
  • Selbstverständlich ist die Erfindung nicht auf die hier gezeigten und beschriebenen Ausführungen beschränkt. Beispielsweise können die Dichtungen (8 und/ oder 9) als Bürstendichtung ausgeführt sein.
  • Bezugszeichenliste
  • 1
    Verdichter (nur die zwei letzten Stufen dargestellt)
    2
    Kompressorplenum
    3
    Brennkammer
    4
    Turbine (nur die erste Stufe dargestellt)
    5
    Trommelabdeckung
    6
    Rotor- Trommel
    7
    Ringkanal
    8
    Rotordichtung
    9
    Turbinenscheibendichtung
    10
    Innerer Ringraum
    11
    Äusserer Ringraum
    12
    Rotorkühlluftzuführung
    13
    Drallgitter
    14
    Druckleitung
    15
    Regelventil
    16
    Einleitung
    17
    Plenum
    18
    Welle
    19
    Vorsprung der Wellenabdeckung
    20
    Vorsprung der ersten Turbinenscheibe
    21
    Labyrinthdichtung
    22
    Schaufelfuss
    23
    Laufschaufel
    24
    Turbinenschaufelfussdichtung

Claims (8)

  1. Verfahren zum Betrieb einer Gasturbine mit Schubausgleich, wobei die Gasturbine in bezug auf aerodynamische Kräfte und Druckkräfte, die eine Axialkraft auf den Rotor ausüben so ausgelegt wird, dass diese Kräfte bei Leerlauf und tiefer Teillast in einen negativen Schub und bei hoher Last und Volllast in einen positiven Schub resultieren, dass geregelt ein positiver Zusatzschub aufgebracht wird, mit dem die resultierende axiale Lagerkraft im gesamten Lastbereich positiv gehalten wird und dass im hohen Lastbereich keine komprimierte Luft zur Druckbeaufschlagung verbraucht wird, dadurch gekennzeichnet, dass der Zusatzschub durch Regelung des Druckes an der Stirnseite oder an einer Teilfläche der Stirnseite des Turbinenrotors erzeugt wird, wobei ein im wesentlichen ringförmiger Raum zwischen Trommelabdeckung und erster Turbinenscheibe durch eine Dichtung in einen äusseren Ringraum (11) und einen inneren Ringraum (10) geteilt wird und einer dieser beiden Räume zur Schubregelung mit Druck beaufschlagt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der äussere Ringraum (11) zur Kühlluftversorgung des Turbinenrotors und der innere Ringraum (10) zur Schubregelung verwendet wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass zur Schubregelung
    - Druckluft aus einem Kompressorplenum (2) verwendet wird und/ oder
    - Druckluft aus einer Kompressorentnahme vor dem Verdichterende verwendet wird und/ oder
    - Druckluft aus einer externen Quelle verwendet wird und/ oder
    - Dampf aus einer extern Quelle verwendet wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Schubkraft über mindestens ein Regelventil (15) zur Druckbeaufschlagung geregelt wird, und dass dies bei tiefer Last geöffnet ist und beim Überschreiten eines diskreten Grenzwerts geschlossen wird und das Regelventil (15) beim Unterschreiten des diskreten Grenzwertes wieder geöffnet wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Grenzwert zum Öffnen des mindestens einen Regelventils (15) höher ist als der Grenzwert zum Schliessen.
  6. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das mindestens eine Regelventil (15) zur Einstellung des Zusatzschubes proportional zur Last geschlossen wird.
  7. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zur Regelung des Zusatzschubes das Druckverhältnis zwischen innerem Ringraum (10) und Kompressorenddruck (2) vorgegeben wird, und dass dies Verhältnis über das mindestens eine Regelventil (15) geregelt wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Druckverhältnis zwischen innerem Ringraum und Kompressorenddruck
    - eine Funktion der Last ist oder
    - eine Funktion eines anderen relevanten Betriebsparameters oder einer Kombination von Betriebsparametern der Gasturbine ist.
EP08159584.5A 2007-07-04 2008-07-03 Verfahren zum Betrieb einer Gasturbine mit Axialschubausgleich Active EP2011963B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH10792007 2007-07-04

Publications (2)

Publication Number Publication Date
EP2011963A1 EP2011963A1 (de) 2009-01-07
EP2011963B1 true EP2011963B1 (de) 2018-04-04

Family

ID=38658614

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08159584.5A Active EP2011963B1 (de) 2007-07-04 2008-07-03 Verfahren zum Betrieb einer Gasturbine mit Axialschubausgleich

Country Status (3)

Country Link
US (1) US8092150B2 (de)
EP (1) EP2011963B1 (de)
JP (1) JP5511158B2 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8182201B2 (en) * 2009-04-24 2012-05-22 Pratt & Whitney Canada Corp. Load distribution system for gas turbine engine
US20130195627A1 (en) 2012-01-27 2013-08-01 Jorn A. Glahn Thrust balance system for gas turbine engine
EP2901082B1 (de) * 2012-09-28 2019-11-06 United Technologies Corporation Innenstreben eines diffusorgehäuses für einen verbrenner eines gasturbinenmotors
ITCO20120066A1 (it) * 2012-12-20 2014-06-21 Nuovo Pignone Srl Metodo per bilanciare la spinta, turbina e motore a turbina
US9869190B2 (en) 2014-05-30 2018-01-16 General Electric Company Variable-pitch rotor with remote counterweights
US10072510B2 (en) 2014-11-21 2018-09-11 General Electric Company Variable pitch fan for gas turbine engine and method of assembling the same
EP3037674A1 (de) * 2014-12-22 2016-06-29 Alstom Technology Ltd Motor und Verfahren zum Betrieb des besagten Motors
US10100653B2 (en) 2015-10-08 2018-10-16 General Electric Company Variable pitch fan blade retention system
EP3397843A1 (de) * 2016-02-04 2018-11-07 Siemens Aktiengesellschaft Gasturbine mit axialschubkolben und radiallager
DE102016201685A1 (de) 2016-02-04 2017-08-10 Siemens Aktiengesellschaft Verfahren für den Axialkraftausgleich eines Rotors einer Gasturbine
US10325061B2 (en) * 2016-03-29 2019-06-18 Mentor Graphics Corporation Automatic axial thrust analysis of turbomachinery designs
DE102017205055A1 (de) 2017-03-24 2018-09-27 Siemens Aktiengesellschaft Verfahren zur Axialschubregelung eines Rotors einer Strömungsmaschine
US10801549B2 (en) * 2018-05-31 2020-10-13 General Electric Company Axial load management system
US11674435B2 (en) 2021-06-29 2023-06-13 General Electric Company Levered counterweight feathering system
US11795964B2 (en) 2021-07-16 2023-10-24 General Electric Company Levered counterweight feathering system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH246779A (de) * 1945-10-13 1947-01-31 Bbc Brown Boveri & Cie Turbomaschine mit Axialschub-Ausgleichvorrichtung.
US2647684A (en) 1947-03-13 1953-08-04 Rolls Royce Gas turbine engine
US3704077A (en) * 1970-11-03 1972-11-28 Barber Colman Co Thrust controller for propulsion systems with commonly driven, controllable pitch propellers
US4018045A (en) * 1971-06-25 1977-04-19 Motoren- Und Turbinen-Union Munchen Gmbh Regulating device for a prime mover, more particularly for a single-spool gas turbine
US3989410A (en) * 1974-11-27 1976-11-02 General Electric Company Labyrinth seal system
DE3475548D1 (en) * 1983-05-31 1989-01-12 United Technologies Corp Thrust balancing and cooling system
US4653267A (en) 1983-05-31 1987-03-31 United Technologies Corporation Thrust balancing and cooling system
US4730977A (en) * 1986-12-31 1988-03-15 General Electric Company Thrust bearing loading arrangement for gas turbine engines
US4864810A (en) * 1987-01-28 1989-09-12 General Electric Company Tractor steam piston balancing
DE59102139D1 (de) 1990-03-23 1994-08-18 Asea Brown Boveri Axialdurchströmte Gasturbine.
DE4433289A1 (de) * 1994-09-19 1996-03-21 Abb Management Ag Axialdurchströmte Gasturbine
US5760289A (en) 1996-01-02 1998-06-02 General Electric Company System for balancing loads on a thrust bearing of a gas turbine engine rotor and process for calibrating control therefor
US5735666A (en) 1996-12-31 1998-04-07 General Electric Company System and method of controlling thrust forces on a thrust bearing in a rotating structure of a gas turbine engine
SE514159C2 (sv) * 1998-05-25 2001-01-15 Abb Ab Gasturbininrättning innefattande ett balanseringsorgan
DE10358625A1 (de) * 2003-12-11 2005-07-07 Rolls-Royce Deutschland Ltd & Co Kg Anordnung zur Lagerentlastung in einer Gasturbine
US20070122265A1 (en) * 2005-11-30 2007-05-31 General Electric Company Rotor thrust balancing apparatus and method
US8147178B2 (en) * 2008-12-23 2012-04-03 General Electric Company Centrifugal compressor forward thrust and turbine cooling apparatus
US8682562B2 (en) * 2009-05-08 2014-03-25 Rolls-Royce Corporation Turbine engine thrust scheduling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US8092150B2 (en) 2012-01-10
US20090067984A1 (en) 2009-03-12
JP2009041559A (ja) 2009-02-26
JP5511158B2 (ja) 2014-06-04
EP2011963A1 (de) 2009-01-07

Similar Documents

Publication Publication Date Title
EP2011963B1 (de) Verfahren zum Betrieb einer Gasturbine mit Axialschubausgleich
DE60133629T2 (de) Verfahren zum betrieb einer gasturbine mit verstellbaren leitschaufeln
EP1611315B1 (de) Turbomaschine
EP2271827B1 (de) Turbomaschine mit schubausgleichskolben
DE2042478A1 (de) Gasturbinenstrahltriebwerk für Flugzeuge mit Einrichtungen zur Bauteilkühlung und Verdichterregelung
EP1502010B1 (de) Dampfturbine
WO2003038243A1 (de) Turbomaschine
EP1904717B1 (de) HEIßGASFÜHRENDES GEHÄUSEELEMENT, WELLENSCHUTZMANTEL UND GASTURBINENANLAGE
DE3801914A1 (de) Zugdampfkolben-ausgleichseinrichtung
WO2012007341A1 (de) Gasturbine mit einem sekundärluftsystem und verfahren zum betreiben einer solchen gasturbine
DE102006040757A1 (de) Fluidrückführung im Trennkörper von Strömungsarbeitsmaschinen mit Nebenstromkonfiguration
DE10062252A1 (de) Verfahren zur Regelung von Fluggasturbinen
DE102008014681A1 (de) Verfahren zum Entgegenwirken eines Abfalls des Ladedrucks und ein Turbolader mit einer Steuerungseinrichtung zum Durchführen des Verfahrens
WO2003076780A1 (de) Verfahren zum betreiben einer turbine
DE3940248A1 (de) Verfahren und einrichtung zum regeln eines gasturbinentriebwerkes
EP2721258B1 (de) Verfahren zum betrieb einer rotationsmaschine
EP3397843A1 (de) Gasturbine mit axialschubkolben und radiallager
DE1274852B (de) Ausgleichsvorrichtung fuer mehrere parallel arbeitende Gasturbinenanlagen
EP2268925B1 (de) Gasturbinenverdichter
WO2012097798A1 (de) Zwischengehäuse einer gasturbine mit einer aussen liegenden begrenzungswand welches stromaufwärts einer stützrippe eine in umfangrichtung verändernde kontur aufweist zur verringerung der sekundärströmungsverluste
DE69913688T2 (de) Konzept einer gasturbine
EP2382410B1 (de) Schnellschlussventil
DE102011087824A1 (de) Turbine
EP1632650A1 (de) Dampfturbine
DE102010017380A1 (de) System zur Milderung eines Übergangsvorgangs eines Brennstoffsystems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20090708

AKX Designation fees paid

Designated state(s): DE

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20091120

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ANSALDO ENERGIA SWITZERLAND AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171023

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 985819

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008016002

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180404

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180705

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008016002

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20190107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 985819

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231214

Year of fee payment: 16