EP2006951B1 - Mechanical temperature compensation device for a waveguide with phase stability - Google Patents
Mechanical temperature compensation device for a waveguide with phase stability Download PDFInfo
- Publication number
- EP2006951B1 EP2006951B1 EP08158032A EP08158032A EP2006951B1 EP 2006951 B1 EP2006951 B1 EP 2006951B1 EP 08158032 A EP08158032 A EP 08158032A EP 08158032 A EP08158032 A EP 08158032A EP 2006951 B1 EP2006951 B1 EP 2006951B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- waveguide
- coefficient
- thermal expansion
- ribs
- braces
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052782 aluminium Inorganic materials 0.000 claims description 21
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 20
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 239000004411 aluminium Substances 0.000 claims description 6
- 125000006850 spacer group Chemical group 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 230000000295 complement effect Effects 0.000 claims description 4
- 229910001374 Invar Inorganic materials 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000010363 phase shift Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 230000008602 contraction Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/30—Auxiliary devices for compensation of, or protection against, temperature or moisture effects ; for improving power handling capability
Definitions
- the present invention relates to a mechanical compensation device for waveguide. More specifically, the present invention provides a solution using a technology to ensure phase stability in a waveguide subjected to expansion and contraction due to temperature variations.
- the temperature variations can be significant.
- These manifolds can typically be made of aluminum, whose coefficient of thermal expansion (or CTE for Coefficient of Thermal Expansion) is 23 ppm, the deformations induced by these temperature variations are such that phase shifts are introduced into the guided waves. These phase shifts cause a malfunction of the equipment; for example, channel mismatches can occur in Omux.
- the first method consists in producing the waveguide and the manifold in a material whose thermal expansion coefficient is as small as possible. Indeed, materials such as Invar TM have a coefficient of thermal expansion that can go down to 0.5 ppm, which makes them very little deformable vis-à-vis temperature variations.
- materials such as Invar TM have a coefficient of thermal expansion that can go down to 0.5 ppm, which makes them very little deformable vis-à-vis temperature variations.
- Invar TM have a coefficient of thermal expansion that can go down to 0.5 ppm, which makes them very little deformable vis-à-vis temperature variations.
- Mechanical compensation solutions are sought, in particular to work with aluminum waveguides. Indeed, a too large difference between the coefficient of thermal expansion of the manifold and that of the complete equipment on which it is mounted induces constraints important mechanical To reduce these constraints, it is necessary to homogenize the coefficients of thermal expansion.
- the waveguide typically aluminum, high coefficient of thermal expansion
- a frame typically Invar, low coefficient of thermal expansion
- the straps / ribs are connected to said frame.
- the difference between the thermal expansion coefficients of the waveguide and the frame causes the shoulder straps / ribs to deform the sides of the waveguide to reduce its volume.
- the invention proposes the use of Invar TM actuators (or other material with a low coefficient of thermal expansion) which, under the effect of a temperature variation, set longitudinal, off-axis ribs into rotation. , cut in the mass and integral with the waveguide, deforming the short sides of the waveguide.
- the waveguide has a rectangular section and therefore comprises two small sides and two long sides.
- the means for rotating the longitudinal rib comprise at least one element that is not very heat-deformable, having a second coefficient of thermal expansion less than the first coefficient of thermal expansion.
- the second coefficient of thermal expansion is less than the first coefficient of thermal expansion by a factor of at least five.
- the means for rotating the longitudinal rib consist of a bimetallic strip comprising at least the low thermodeformable element having the second coefficient of thermal expansion, and a complementary element having a third coefficient of thermal expansion greater than the second coefficient. thermal expansion.
- the low thermodeformable element of the bimetallic strip is in Invar TM and the complementary element of the bimetallic strip is made of aluminum.
- the means for rotating the longitudinal rib comprise a first type of strap pair corresponding to the low thermodeformable element, and a spacer having the first coefficient of thermal expansion, integral with the waveguide, and interposing between said straps.
- the shoulder straps are made of Invar TM, the waveguide and the aluminum spacer.
- the means for rotating the longitudinal rib comprise a chassis having a fourth coefficient of thermal expansion greater than the second coefficient of thermal expansion and a second type of pair of shoulder straps corresponding to the low thermo-deformable element and further ensuring the connection. between said longitudinal rib and said frame.
- the device comprises two longitudinal ribs, opposite, and separated by a long side of the waveguide, and two pairs of straps of the second type of pairs of straps connected to the ends of said longitudinal ribs.
- the pairs of straps are made of Invar TM, the aluminum or titanium frame and the waveguide made of aluminum or titanium.
- the pairs of straps are made of titanium, the frame and the aluminum waveguide.
- the figure 1 represents a simulation of the deformations to be applied to the short sides of an aluminum waveguide of rectangular section in order to ensure phase stability.
- the curve of the figure 1 indicates the sum of deformations to be applied to the short sides according to the size of the flat profile, and this at 85 ° C, for a temperature having passed from 20 ° C to 85 ° C.
- the worst case, corresponding to a flat profile zero, that is to say a triangular deformation, would impose a total compensation of 142 microns, or 71 microns on each of the short sides.
- the deformation is rather curved, the need for compensation is typically of the order of 50 microns on both short sides. Such deformations are achieved through the mechanical compensation device described below.
- the figure 2a shows a diagram of the device according to the invention at normal temperature. There is no deformation.
- the waveguide 1 has a rectangular section. It includes two long sides 6 and 7 and two small 4 and 5 sides. Two longitudinal ribs 2 and 3 are also cut into the mass and integral with the waveguide 1. These longitudinal ribs 2 and 3 have a common surface with respectively the small sides 4 and 5 of the waveguide 1 on approximately half the width of these small sides. They are also parallel to each other and offset with respect to the median axis of the short sides 4 and 5.
- the figure 2b presents the behavior of the device according to the invention during a heating.
- the principle consists in causing a deformation of the short sides 4 and 5 of the waveguide by rotation of the longitudinal ribs 2 and 3.
- actuators such as bimetals. These typically consist of two material plates having very different thermal expansion coefficients, such as Invar TM and aluminum. Under the effect of a temperature variation, the bimetal is deformed and judiciously positioned in contact with a longitudinal rib, rotates it. But other, preferred means can also be implemented, such as those described below.
- the figures 3a and 3b explain how the longitudinal ribs can be rotated.
- the figure 3a illustrates the device mounted on any Omux (not completely shown); the frame 12 is typically aluminum.
- Each end of the two longitudinal ribs 2 and 3 is connected to the frame 12 of the Omux via straps 8, 9, 10 and 11 made of a material having a low coefficient of thermal expansion, such as the Invar TM for example.
- Straps 8 and 9 on the one hand and 10 and 11 on the other hand meet at the chassis in a common base, the same material as the straps themselves.
- the spacing between the straps is almost constant, regardless of the temperature.
- the waveguide 1 expands or contracts when the temperature increases or decreases, being made of a material with a high coefficient of thermal expansion, such as aluminum.
- figure 3b which is an enlargement of the waveguide area 1 of the figure 3a when the waveguide 1 expands, the spacing being constant between the straps 8 and 9 on the one hand and 10 and 11 on the other hand, the traction and pressure forces exerted on the straps 8, 9, 10 and 11 are transmitted to the ribs 2 and 3 which rotate on themselves and deform the small sides 4 and 5 of the waveguide 1.
- the principle is to adjust the electrical lengths of the waveguide 1 in order to correct the phase shifts introduced by its expansion.
- the figure 4 presents another example of implementation of the device according to the invention. More specifically, the figure 4 presents the diagram of a section of a compensated waveguide according to the invention.
- the main advantage of the invention is to ensure a phase stability within a waveguide of potentially high thermal expansion coefficient and subjected to significant temperature variations by means of a mechanical device .
Landscapes
- Non-Reversible Transmitting Devices (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Waveguides (AREA)
- Waveguide Switches, Polarizers, And Phase Shifters (AREA)
- Waveguide Aerials (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
La présente invention concerne un dispositif mécanique de compensation pour guide d'onde. Plus précisément, la présente invention propose une solution utilisant une technologie permettant d'assurer une stabilité de phase dans un guide d'onde soumis à des dilatations et à des contractions du fait de variations de températures.The present invention relates to a mechanical compensation device for waveguide. More specifically, the present invention provides a solution using a technology to ensure phase stability in a waveguide subjected to expansion and contraction due to temperature variations.
En particulier, dans le cas de multiplexeurs-démultiplexeurs (ou Omux) intégrés par exemple à des instruments spatiaux, et comprenant des guides d'onde spécifiques couramment appelés manifolds, les variations de températures peuvent être importantes. Ces manifolds pouvant typiquement être constitués d'aluminium, dont le coefficient de dilation thermique (ou CTE pour Coefficient of Thermal Expansion) vaut 23 ppm, les déformations induites par ces variations de températures sont telles que des déphasages sont introduits dans les ondes guidées. Ces déphasages entraînent un dysfonctionnement de l'équipement; il peut par exemple survenir des désadaptations de canaux dans des Omux.In particular, in the case of multiplexer-demultiplexers (or Omux) integrated for example with spatial instruments, and comprising specific waveguides commonly called manifolds, the temperature variations can be significant. These manifolds can typically be made of aluminum, whose coefficient of thermal expansion (or CTE for Coefficient of Thermal Expansion) is 23 ppm, the deformations induced by these temperature variations are such that phase shifts are introduced into the guided waves. These phase shifts cause a malfunction of the equipment; for example, channel mismatches can occur in Omux.
Pour corriger ce problème, plusieurs technologies ont été mises au point. La première méthode consiste à réaliser le guide d'onde et le manifold dans un matériau dont le coefficient de dilatation thermique est le plus petit possible. En effet, des matériaux tels que l'Invar™ ont un coefficient de dilatation thermique qui peut descendre à 0,5 ppm, ce qui les rend très peu déformable vis-à-vis de variations de températures. Cependant, pour des raisons pratiques, liées en particulier au fait que les guides d'onde sont montés dans des équipements spatiaux généralement réalisés dans des matériaux légers, dont les coefficients de dilatation thermique sont souvent élevés, comme de l'aluminium par exemple, des solutions de compensation mécanique sont recherchées, notamment pour fonctionner avec des guides d'onde en aluminium. En effet, un écart trop important entre le coefficient de dilatation thermique du manifold et celui de l'équipement complet sur lequel il est monté induit des contraintes mécaniques importantes. Pour réduire ces contraintes, il faut homogénéiser les coefficients de dilatation thermique.To correct this problem, several technologies have been developed. The first method consists in producing the waveguide and the manifold in a material whose thermal expansion coefficient is as small as possible. Indeed, materials such as Invar ™ have a coefficient of thermal expansion that can go down to 0.5 ppm, which makes them very little deformable vis-à-vis temperature variations. However, for practical reasons, particularly related to the fact that the waveguides are mounted in space equipment generally made of lightweight materials, whose thermal expansion coefficients are often high, such as aluminum, for example, Mechanical compensation solutions are sought, in particular to work with aluminum waveguides. Indeed, a too large difference between the coefficient of thermal expansion of the manifold and that of the complete equipment on which it is mounted induces constraints important mechanical To reduce these constraints, it is necessary to homogenize the coefficients of thermal expansion.
Ainsi, il est aujourd'hui connu qu'il est possible de compenser la dilatation thermique d'un guide d'onde de section rectangulaire en appliquant une déformation sur ses petits côtés de façon à assurer une stabilité de phase. Une technologie existante consiste à déformer les petits côtés du guide d'onde en venant appuyer ou tirer sur ses petits côtés par l'intermédiaire de pièces d'écartement se déplaçant selon un axe orthogonal aux petits côtés du guide d'onde. Le
Cependant, ces technologies connues nécessitent généralement l'utilisation de vastes plaques en Invar™ (ou autre matériau à coefficient de dilatation thermique similaire), parallèles aux grands côtés du guide d'onde et venant maintenir l'écartement entre elles. La présence de ces plaques augmente la masse du dispositif lié au guide d'onde.However, these known technologies generally require the use of large plates Invar ™ (or other material with similar coefficient of thermal expansion), parallel to the long sides of the waveguide and maintaining the spacing between them. The presence of these plates increases the mass of the device connected to the waveguide.
Pour pallier cet inconvénient, l'invention propose l'utilisation d'actionneurs en Invar™ (ou autre matériau à coefficient de dilatation thermique faible) qui, sous l'effet d'une variation de température, mettent en rotation des nervures longitudinales, désaxées, taillées dans la masse et solidaires du guide d'onde, venant déformer les petits côtés du guide d'onde.To overcome this drawback, the invention proposes the use of Invar ™ actuators (or other material with a low coefficient of thermal expansion) which, under the effect of a temperature variation, set longitudinal, off-axis ribs into rotation. , cut in the mass and integral with the waveguide, deforming the short sides of the waveguide.
A cet effet, l'invention a pour objet un dispositif de guide d'onde compensé comportant un guide d'onde présentant :
- un premier coefficient de dilatation thermique,
- au moins un grand côté et au moins un petit côté,
- a first coefficient of thermal expansion,
- at least one big side and at least one small side,
Avantageusement, le guide d'onde présente une section rectangulaire et comprend donc deux petits côtés et deux grands côtés.
Avantageusement, les moyens de mise en rotation de la nervure longitudinale comportent au moins un élément peu thermodéformable, présentant un deuxième coefficient de dilatation thermique inférieur au premier coefficient de dilatation thermique.
Avantageusement, le deuxième coefficient de dilatation thermique est inférieur au premier coefficient de dilatation thermique d'un facteur au moins égal à cinq.
Avantageusement, les moyens de mise en rotation de la nervure longitudinale sont constitués d'un bilame comprenant au moins l'élément peu thermodéformable, présentant le deuxième coefficient de dilatation thermique, et un élément complémentaire présentant un troisième coefficient de dilatation thermique supérieur au deuxième coefficient de dilatation thermique.
Avantageusement, l'élément peu thermodéformable du bilame est en Invar™ et l'élément complémentaire du bilame est en aluminium.
Avantageusement, les moyens de mise en rotation de la nervure longitudinale comprennent un premier type de paire de bretelles correspondant à l'élément peu thermodéformable, et une entretoise présentant le premier coefficient de dilatation thermique, solidaire du guide d'onde, et s'interposant entre lesdites bretelles.
Avantageusement, les bretelles sont en Invar™, le guide d'onde et l'entretoise en aluminium.
Avantageusement, les moyens de mise en rotation de la nervure longitudinale comprennent un châssis présentant un quatrième coefficient de dilatation thermique supérieur au deuxième coefficient de dilatation thermique et un second type de paire de bretelles correspondant à l'élément peu thermodéformable et assurant en outre la liaison entre ladite nervure longitudinale et ledit châssis.
Avantageusement, le dispositif comprend deux nervures longitudinales, opposées, et séparées par un grand côté du guide d'onde, et deux paires de bretelles du second type de paires de bretelles reliées aux extrémités desdites nervures longitudinales.
Avantageusement, les paires de bretelles sont en Invar™, le châssis en aluminium ou en titane et le guide d'onde en aluminium ou en titane.
Avantageusement, les paires de bretelles sont en titane, le châssis et le guide d'onde en aluminium.Advantageously, the waveguide has a rectangular section and therefore comprises two small sides and two long sides.
Advantageously, the means for rotating the longitudinal rib comprise at least one element that is not very heat-deformable, having a second coefficient of thermal expansion less than the first coefficient of thermal expansion.
Advantageously, the second coefficient of thermal expansion is less than the first coefficient of thermal expansion by a factor of at least five.
Advantageously, the means for rotating the longitudinal rib consist of a bimetallic strip comprising at least the low thermodeformable element having the second coefficient of thermal expansion, and a complementary element having a third coefficient of thermal expansion greater than the second coefficient. thermal expansion.
Advantageously, the low thermodeformable element of the bimetallic strip is in Invar ™ and the complementary element of the bimetallic strip is made of aluminum.
Advantageously, the means for rotating the longitudinal rib comprise a first type of strap pair corresponding to the low thermodeformable element, and a spacer having the first coefficient of thermal expansion, integral with the waveguide, and interposing between said straps.
Advantageously, the shoulder straps are made of Invar ™, the waveguide and the aluminum spacer.
Advantageously, the means for rotating the longitudinal rib comprise a chassis having a fourth coefficient of thermal expansion greater than the second coefficient of thermal expansion and a second type of pair of shoulder straps corresponding to the low thermo-deformable element and further ensuring the connection. between said longitudinal rib and said frame.
Advantageously, the device comprises two longitudinal ribs, opposite, and separated by a long side of the waveguide, and two pairs of straps of the second type of pairs of straps connected to the ends of said longitudinal ribs.
Advantageously, the pairs of straps are made of Invar ™, the aluminum or titanium frame and the waveguide made of aluminum or titanium.
Advantageously, the pairs of straps are made of titanium, the frame and the aluminum waveguide.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard des dessins annexés qui représentent :
- la
figure 1 : la courbe des déformations à appliquer à un guide d'onde en aluminium à 85°C en vue d'assurer une stabilité de phase au sein du guide d'onde ; - la
figure 2a : le schéma du principe de l'invention à température nominale (pas de déformation) ; - la
figure 2b : le schéma du principe de l'invention à température élevée (déformation du guide d'onde) ; - la
figure 3a : l'illustration schématique d'un exemple de dispositif selon l'invention à température nominale (pas de déformation) ; - la
figure 3b : l'illustration schématique d'un exemple de dispositif selon l'invention mettant en avant la déformation du guide d'onde par rotation de nervures sur elles-mêmes ; - La
figure 4 : le schéma d'un autre exemple de dispositif selon l'invention.
- the
figure 1 : the curve of the deformations to be applied to an aluminum waveguide at 85 ° C in order to ensure a phase stability within the waveguide; - the
figure 2a : the diagram of the principle of the invention at nominal temperature (no deformation); - the
figure 2b : the diagram of the principle of the invention at high temperature (deformation of the waveguide); - the
figure 3a : the schematic illustration of an exemplary device according to the invention at nominal temperature (no deformation); - the
figure 3b : the schematic illustration of an exemplary device according to the invention highlighting the deformation of the waveguide by rotation of ribs on themselves; - The
figure 4 : the diagram of another example of device according to the invention.
La
La
La
Pour mettre en rotation ces nervures longitudinales 2 et 3, il est par exemple possible d'utiliser des actionneurs tels que des bilames. Ceux-ci sont typiquement constitués de deux plaques de matériaux présentant des coefficients de dilatation thermique très différents, tels que de l'Invar™ et de l'aluminium. Sous l'effet d'une variation de température, le bilame se déforme et, judicieusement positionné au contact d'une nervure longitudinale, la met en rotation. Mais d'autres moyens, préférés, peuvent également être mis en oeuvre, tels que ceux décrits ci-après.The
To rotate these
Les
La
En conséquence, comme le montre la
En venant déformant les petits côtés 4 et 5 du guide d'onde 1, on parvient à compenser mécaniquement le déphasage introduit par la dilatation du guide d'onde. Le principe est de régler les longueurs électriques du guide d'onde 1 afin de corriger les déphasages introduits par sa dilatation.Coming deforming the
La
En résumé, l'invention a pour principal avantage d'assurer une stabilité de phase au sein d'un guide d'onde de coefficient de dilatation thermique potentiellement élevé et soumis à des variations de températures importantes par l'intermédiaire d'un dispositif mécanique.In summary, the main advantage of the invention is to ensure a phase stability within a waveguide of potentially high thermal expansion coefficient and subjected to significant temperature variations by means of a mechanical device .
Claims (11)
- A compensated waveguide device comprising a waveguide (1) having:- a first coefficient of thermal expansion,- two large sides (6, 7) and two small sides (4, 5),said small sides (4, 5) having a median axis and said waveguide (1) further comprising two longitudinal ribs (2, 3) having a surface area that is at least partially shared with the small sides (4, 5) of the waveguide (1) over approximately half the width of the small sides (4, 5), said longitudinal ribs (2, 3) being offset relative to the median axis of the small sides (4, 5) of the waveguide (1), and being machined into the mass of the waveguide (1), characterised in that it comprises, in contact with the longitudinal ribs (2, 3), means for rotating said longitudinal ribs (2, 3) about themselves around an axis of rotation that approximately corresponds to the intersection between the small side (4, 5) and the large side (6, 7) of the waveguide, causing the deformation of the small sides (4, 5) of the waveguide (1), said means for rotating the longitudinal ribs being fixed to the ends of said ribs, and comprising at least one element of low thermal deformability having a second coefficient of thermal expansion that is lower than the first coefficient of thermal expansion.
- The device according to claim 1, characterised in that the waveguide (1) has a rectangular cross section.
- The device according to any one of claims 1 to 2, characterised in that the second coefficient of thermal expansion is lower than the first coefficient of thermal expansion by a factor that is at least equal to five.
- The device according to any one of claims 1 to 3, characterised in that the means for rotating the longitudinal rib (2, 3) are constituted by a bimetallic element that is fixed to each end of said longitudinal rib, said ribs at least comprising the element of low thermal deformability having the second coefficient of thermal expansion and a complementary element having a third coefficient of thermal expansion that is higher than the second coefficient of thermal expansion.
- The device according to claim 4, characterised in that the element of low thermal deformability of said bimetallic elements is made from Invar™ and the complementary bimetallic element is made from aluminium.
- The device according to any one of claims 1 to 3, characterised in that the means for rotating the longitudinal rib (2, 3) comprise a first type of pair of braces (13, 14) that corresponds to the element of low thermal deformability, each brace being fixed to one end of said longitudinal rib, and a spacer (15) having the first coefficient of thermal expansion, which is integral with the waveguide (1) and is interposed between said braces (13, 14).
- The device according to claim 6, characterised in that the braces (13, 14) are made from Invar™ and the waveguide (1) and the spacer (15) are made from aluminium.
- The device according to any one of claims 1 to 3, characterised in that the means for rotating the longitudinal rib (2, 3) comprise a frame (12) having a fourth coefficient of thermal expansion that is higher than the second coefficient of thermal expansion and a second type of pair of braces (8-9, 10-11) that corresponds to the element of low thermal deformability and that further provides the link between said longitudinal rib (2, 3) and said frame (12).
- The device according to claim 8, characterised in that it comprises two longitudinal ribs (2, 3), which ribs are opposite each other and separated by a large side (6, 7) of the waveguide (1), and two pairs of braces (8-9, 10-11) of the second type of pairs of braces connected to the ends of said longitudinal ribs.
- The device according to any one of claims 8 to 9, characterised in that the pairs of braces (8-9, 10-11) are made from Invar™, the frame is made from aluminium or titanium and the waveguide (1) is made from aluminium or titanium.
- The device according to any one of claims 8 to 9, characterised in that the pairs of braces (8-9, 10-11) are made from titanium and the frame and the waveguide (1) are made from aluminium.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0704504A FR2917904B1 (en) | 2007-06-22 | 2007-06-22 | MECHANICAL TEMPERATURE COMPENSATION DEVICE FOR WAVEGUIDE WITH PHASE STABILITY |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2006951A1 EP2006951A1 (en) | 2008-12-24 |
EP2006951B1 true EP2006951B1 (en) | 2012-03-07 |
Family
ID=39004777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08158032A Active EP2006951B1 (en) | 2007-06-22 | 2008-06-11 | Mechanical temperature compensation device for a waveguide with phase stability |
Country Status (8)
Country | Link |
---|---|
US (1) | US7671708B2 (en) |
EP (1) | EP2006951B1 (en) |
JP (1) | JP5630728B2 (en) |
CN (1) | CN101329003B (en) |
AT (1) | ATE548778T1 (en) |
CA (1) | CA2635177C (en) |
ES (1) | ES2380725T3 (en) |
FR (1) | FR2917904B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2576589C2 (en) * | 2009-12-23 | 2016-03-10 | Таль | Compact thermoelastic waveguide actuator, waveguide with phase stability and multiplexer with such actuator |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2945673B1 (en) * | 2009-05-15 | 2012-04-06 | Thales Sa | MULTI-MEMBRANE FLEXIBLE WALL DEVICE FOR FILTERS AND MULTIPLEXERS OF THERMO-COMPENSATED TECHNOLOGY |
US20230163439A1 (en) * | 2020-04-15 | 2023-05-25 | Telefonaktiebolaget Lm Ericsson (Publ) | A tunable waveguide resonator |
CN115007089B (en) * | 2022-05-27 | 2024-08-09 | 扬州宏远新材料股份有限公司 | Organosilicon emulsion temperature control polymerization reaction device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4057772A (en) * | 1976-10-18 | 1977-11-08 | Hughes Aircraft Company | Thermally compensated microwave resonator |
DE4238136C1 (en) * | 1992-11-12 | 1994-02-17 | Ant Nachrichtentech | Waveguide absorber |
DE4319886C1 (en) * | 1993-06-16 | 1994-07-28 | Ant Nachrichtentech | Arrangement for compensating temperature-dependent changes in volume of a waveguide |
US6535087B1 (en) * | 2000-08-29 | 2003-03-18 | Com Dev Limited | Microwave resonator having an external temperature compensator |
FR2877773B1 (en) * | 2004-11-09 | 2007-05-04 | Cit Alcatel | ADJUSTABLE TEMPERATURE COMPENSATION SYSTEM FOR MICROWAVE RESONATOR |
US7564327B2 (en) * | 2006-10-05 | 2009-07-21 | Com Dev International Ltd. | Thermal expansion compensation assemblies |
-
2007
- 2007-06-22 FR FR0704504A patent/FR2917904B1/en not_active Expired - Fee Related
-
2008
- 2008-06-11 EP EP08158032A patent/EP2006951B1/en active Active
- 2008-06-11 ES ES08158032T patent/ES2380725T3/en active Active
- 2008-06-11 AT AT08158032T patent/ATE548778T1/en active
- 2008-06-16 CA CA2635177A patent/CA2635177C/en active Active
- 2008-06-18 JP JP2008158644A patent/JP5630728B2/en not_active Expired - Fee Related
- 2008-06-20 CN CN2008101446315A patent/CN101329003B/en active Active
- 2008-06-20 US US12/143,723 patent/US7671708B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2576589C2 (en) * | 2009-12-23 | 2016-03-10 | Таль | Compact thermoelastic waveguide actuator, waveguide with phase stability and multiplexer with such actuator |
Also Published As
Publication number | Publication date |
---|---|
ES2380725T3 (en) | 2012-05-17 |
FR2917904A1 (en) | 2008-12-26 |
CN101329003A (en) | 2008-12-24 |
CA2635177C (en) | 2012-10-16 |
JP2009005354A (en) | 2009-01-08 |
US20080315974A1 (en) | 2008-12-25 |
CA2635177A1 (en) | 2008-12-22 |
EP2006951A1 (en) | 2008-12-24 |
US7671708B2 (en) | 2010-03-02 |
JP5630728B2 (en) | 2014-11-26 |
CN101329003B (en) | 2011-09-28 |
FR2917904B1 (en) | 2009-09-18 |
ATE548778T1 (en) | 2012-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2006951B1 (en) | Mechanical temperature compensation device for a waveguide with phase stability | |
EP0720224B1 (en) | Method and device for fixing two elements such as an integrated circuit radiator to a printed circuit card | |
EP2019038B1 (en) | Solar protection device for a spatial instrument | |
EP2824777B1 (en) | Crystalline laser comprising a system for cooling the crystal by a liquid | |
EP1604900B1 (en) | Aircraft comprising a fairing at the intersection between the fuselage and the wing | |
EP1849032B1 (en) | Actuating device comprising bimetal disks | |
EP0750114A1 (en) | Double element thermal actuator with big stroke | |
EP2948644B1 (en) | Device for securing and retaining at least one electrical harness in a turbomachine | |
EP1955100B1 (en) | Optical instrument comprising an input cavity wherein is arranged a mirror | |
FR3057332A1 (en) | METHOD FOR ATTACHING A CONDUIT TO A SUPPORT USING FREE ADJUSTABLE CAPTIVE FLANGES | |
EP1692428B1 (en) | Support device for fire-detection system | |
EP3203299B1 (en) | Deformable mirror | |
FR2574879A1 (en) | TOLERANCE RETRACTION JOINT AND METHOD FOR JOINING TWO STRUCTURE ELEMENTS OF A MACHINE | |
FR2524654A1 (en) | OPTICAL FIBER CONNECTION DEVICE AND METHOD OF IMPLEMENTING SAME | |
EP3804116B1 (en) | Vibration energy harvester | |
WO2019115123A1 (en) | Support for shaping a flexible portion of a flexible printed circuit board | |
EP2025835A1 (en) | Floating shutter | |
FR2855141A1 (en) | DEFORMABLE METAL CAPSULE DEVICE OF A POWER ABSORPTION SYSTEM OF A STEERING COLUMN OF A MOTOR VEHICLE | |
EP3624255B1 (en) | Guiding set of radio-electric waves and antenna comprising such a set | |
EP3540359B1 (en) | Heat conduction device and associated heat dissipation system | |
EP1886545A2 (en) | Expandable wedge and system comprising a module, a receptacle and such a wedge interposed between them | |
EP2633775B1 (en) | Hinged bracelet | |
EP0269522A1 (en) | Electrical connection device, particularly for liquid-crystal displays | |
EP4215791B1 (en) | Device for connecting two double-walled pipes and hydrogen pipeline comprising said connection device | |
FR3093594A1 (en) | Thermal compensated resonator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LAGORSSE, JOEL Inventor name: BUGADA, DOMINIQUE |
|
17P | Request for examination filed |
Effective date: 20090415 |
|
17Q | First examination report despatched |
Effective date: 20090513 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LAGROSSE, JOEL Inventor name: BUGADA, DOMINIQUE |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BUGADA, DOMINIQUE Inventor name: LAGORSSE, JOEL |
|
GRAC | Information related to communication of intention to grant a patent modified |
Free format text: ORIGINAL CODE: EPIDOSCIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 548778 Country of ref document: AT Kind code of ref document: T Effective date: 20120315 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008013886 Country of ref document: DE Effective date: 20120503 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2380725 Country of ref document: ES Kind code of ref document: T3 Effective date: 20120517 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120607 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20120307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120608 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 548778 Country of ref document: AT Kind code of ref document: T Effective date: 20120307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120707 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120709 |
|
BERE | Be: lapsed |
Owner name: THALES Effective date: 20120630 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120630 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20121210 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008013886 Country of ref document: DE Effective date: 20121210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120611 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120630 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120611 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080611 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20230707 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240516 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240514 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240524 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240702 Year of fee payment: 17 |