Nothing Special   »   [go: up one dir, main page]

EP2006951B1 - Mechanical temperature compensation device for a waveguide with phase stability - Google Patents

Mechanical temperature compensation device for a waveguide with phase stability Download PDF

Info

Publication number
EP2006951B1
EP2006951B1 EP08158032A EP08158032A EP2006951B1 EP 2006951 B1 EP2006951 B1 EP 2006951B1 EP 08158032 A EP08158032 A EP 08158032A EP 08158032 A EP08158032 A EP 08158032A EP 2006951 B1 EP2006951 B1 EP 2006951B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
coefficient
thermal expansion
ribs
braces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08158032A
Other languages
German (de)
French (fr)
Other versions
EP2006951A1 (en
Inventor
Joël Lagorsse
Dominique Bugada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2006951A1 publication Critical patent/EP2006951A1/en
Application granted granted Critical
Publication of EP2006951B1 publication Critical patent/EP2006951B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/30Auxiliary devices for compensation of, or protection against, temperature or moisture effects ; for improving power handling capability

Definitions

  • the present invention relates to a mechanical compensation device for waveguide. More specifically, the present invention provides a solution using a technology to ensure phase stability in a waveguide subjected to expansion and contraction due to temperature variations.
  • the temperature variations can be significant.
  • These manifolds can typically be made of aluminum, whose coefficient of thermal expansion (or CTE for Coefficient of Thermal Expansion) is 23 ppm, the deformations induced by these temperature variations are such that phase shifts are introduced into the guided waves. These phase shifts cause a malfunction of the equipment; for example, channel mismatches can occur in Omux.
  • the first method consists in producing the waveguide and the manifold in a material whose thermal expansion coefficient is as small as possible. Indeed, materials such as Invar TM have a coefficient of thermal expansion that can go down to 0.5 ppm, which makes them very little deformable vis-à-vis temperature variations.
  • materials such as Invar TM have a coefficient of thermal expansion that can go down to 0.5 ppm, which makes them very little deformable vis-à-vis temperature variations.
  • Invar TM have a coefficient of thermal expansion that can go down to 0.5 ppm, which makes them very little deformable vis-à-vis temperature variations.
  • Mechanical compensation solutions are sought, in particular to work with aluminum waveguides. Indeed, a too large difference between the coefficient of thermal expansion of the manifold and that of the complete equipment on which it is mounted induces constraints important mechanical To reduce these constraints, it is necessary to homogenize the coefficients of thermal expansion.
  • the waveguide typically aluminum, high coefficient of thermal expansion
  • a frame typically Invar, low coefficient of thermal expansion
  • the straps / ribs are connected to said frame.
  • the difference between the thermal expansion coefficients of the waveguide and the frame causes the shoulder straps / ribs to deform the sides of the waveguide to reduce its volume.
  • the invention proposes the use of Invar TM actuators (or other material with a low coefficient of thermal expansion) which, under the effect of a temperature variation, set longitudinal, off-axis ribs into rotation. , cut in the mass and integral with the waveguide, deforming the short sides of the waveguide.
  • the waveguide has a rectangular section and therefore comprises two small sides and two long sides.
  • the means for rotating the longitudinal rib comprise at least one element that is not very heat-deformable, having a second coefficient of thermal expansion less than the first coefficient of thermal expansion.
  • the second coefficient of thermal expansion is less than the first coefficient of thermal expansion by a factor of at least five.
  • the means for rotating the longitudinal rib consist of a bimetallic strip comprising at least the low thermodeformable element having the second coefficient of thermal expansion, and a complementary element having a third coefficient of thermal expansion greater than the second coefficient. thermal expansion.
  • the low thermodeformable element of the bimetallic strip is in Invar TM and the complementary element of the bimetallic strip is made of aluminum.
  • the means for rotating the longitudinal rib comprise a first type of strap pair corresponding to the low thermodeformable element, and a spacer having the first coefficient of thermal expansion, integral with the waveguide, and interposing between said straps.
  • the shoulder straps are made of Invar TM, the waveguide and the aluminum spacer.
  • the means for rotating the longitudinal rib comprise a chassis having a fourth coefficient of thermal expansion greater than the second coefficient of thermal expansion and a second type of pair of shoulder straps corresponding to the low thermo-deformable element and further ensuring the connection. between said longitudinal rib and said frame.
  • the device comprises two longitudinal ribs, opposite, and separated by a long side of the waveguide, and two pairs of straps of the second type of pairs of straps connected to the ends of said longitudinal ribs.
  • the pairs of straps are made of Invar TM, the aluminum or titanium frame and the waveguide made of aluminum or titanium.
  • the pairs of straps are made of titanium, the frame and the aluminum waveguide.
  • the figure 1 represents a simulation of the deformations to be applied to the short sides of an aluminum waveguide of rectangular section in order to ensure phase stability.
  • the curve of the figure 1 indicates the sum of deformations to be applied to the short sides according to the size of the flat profile, and this at 85 ° C, for a temperature having passed from 20 ° C to 85 ° C.
  • the worst case, corresponding to a flat profile zero, that is to say a triangular deformation, would impose a total compensation of 142 microns, or 71 microns on each of the short sides.
  • the deformation is rather curved, the need for compensation is typically of the order of 50 microns on both short sides. Such deformations are achieved through the mechanical compensation device described below.
  • the figure 2a shows a diagram of the device according to the invention at normal temperature. There is no deformation.
  • the waveguide 1 has a rectangular section. It includes two long sides 6 and 7 and two small 4 and 5 sides. Two longitudinal ribs 2 and 3 are also cut into the mass and integral with the waveguide 1. These longitudinal ribs 2 and 3 have a common surface with respectively the small sides 4 and 5 of the waveguide 1 on approximately half the width of these small sides. They are also parallel to each other and offset with respect to the median axis of the short sides 4 and 5.
  • the figure 2b presents the behavior of the device according to the invention during a heating.
  • the principle consists in causing a deformation of the short sides 4 and 5 of the waveguide by rotation of the longitudinal ribs 2 and 3.
  • actuators such as bimetals. These typically consist of two material plates having very different thermal expansion coefficients, such as Invar TM and aluminum. Under the effect of a temperature variation, the bimetal is deformed and judiciously positioned in contact with a longitudinal rib, rotates it. But other, preferred means can also be implemented, such as those described below.
  • the figures 3a and 3b explain how the longitudinal ribs can be rotated.
  • the figure 3a illustrates the device mounted on any Omux (not completely shown); the frame 12 is typically aluminum.
  • Each end of the two longitudinal ribs 2 and 3 is connected to the frame 12 of the Omux via straps 8, 9, 10 and 11 made of a material having a low coefficient of thermal expansion, such as the Invar TM for example.
  • Straps 8 and 9 on the one hand and 10 and 11 on the other hand meet at the chassis in a common base, the same material as the straps themselves.
  • the spacing between the straps is almost constant, regardless of the temperature.
  • the waveguide 1 expands or contracts when the temperature increases or decreases, being made of a material with a high coefficient of thermal expansion, such as aluminum.
  • figure 3b which is an enlargement of the waveguide area 1 of the figure 3a when the waveguide 1 expands, the spacing being constant between the straps 8 and 9 on the one hand and 10 and 11 on the other hand, the traction and pressure forces exerted on the straps 8, 9, 10 and 11 are transmitted to the ribs 2 and 3 which rotate on themselves and deform the small sides 4 and 5 of the waveguide 1.
  • the principle is to adjust the electrical lengths of the waveguide 1 in order to correct the phase shifts introduced by its expansion.
  • the figure 4 presents another example of implementation of the device according to the invention. More specifically, the figure 4 presents the diagram of a section of a compensated waveguide according to the invention.
  • the main advantage of the invention is to ensure a phase stability within a waveguide of potentially high thermal expansion coefficient and subjected to significant temperature variations by means of a mechanical device .

Landscapes

  • Non-Reversible Transmitting Devices (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguides (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Waveguide Aerials (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

A compensated waveguide device comprises waveguide having first coefficient of thermal expansion (CTE) comprising long sides (6, 7), short sides (4, 5) having median axis and longitudinal ribs (2, 3) having surface common with over 1/2 width of short side and being off-axis relative to median axis to cut in body of waveguide, and rotation unit in contact with longitudinal rib to deform short side. The rotation unit comprises prongs (8, 9, 10, 11) of low thermal deformability having second CTE smaller than first CTE by a factor >= 5 and a brace and frame (12) having CTE larger than second CTE.

Description

La présente invention concerne un dispositif mécanique de compensation pour guide d'onde. Plus précisément, la présente invention propose une solution utilisant une technologie permettant d'assurer une stabilité de phase dans un guide d'onde soumis à des dilatations et à des contractions du fait de variations de températures.The present invention relates to a mechanical compensation device for waveguide. More specifically, the present invention provides a solution using a technology to ensure phase stability in a waveguide subjected to expansion and contraction due to temperature variations.

En particulier, dans le cas de multiplexeurs-démultiplexeurs (ou Omux) intégrés par exemple à des instruments spatiaux, et comprenant des guides d'onde spécifiques couramment appelés manifolds, les variations de températures peuvent être importantes. Ces manifolds pouvant typiquement être constitués d'aluminium, dont le coefficient de dilation thermique (ou CTE pour Coefficient of Thermal Expansion) vaut 23 ppm, les déformations induites par ces variations de températures sont telles que des déphasages sont introduits dans les ondes guidées. Ces déphasages entraînent un dysfonctionnement de l'équipement; il peut par exemple survenir des désadaptations de canaux dans des Omux.In particular, in the case of multiplexer-demultiplexers (or Omux) integrated for example with spatial instruments, and comprising specific waveguides commonly called manifolds, the temperature variations can be significant. These manifolds can typically be made of aluminum, whose coefficient of thermal expansion (or CTE for Coefficient of Thermal Expansion) is 23 ppm, the deformations induced by these temperature variations are such that phase shifts are introduced into the guided waves. These phase shifts cause a malfunction of the equipment; for example, channel mismatches can occur in Omux.

Pour corriger ce problème, plusieurs technologies ont été mises au point. La première méthode consiste à réaliser le guide d'onde et le manifold dans un matériau dont le coefficient de dilatation thermique est le plus petit possible. En effet, des matériaux tels que l'Invar™ ont un coefficient de dilatation thermique qui peut descendre à 0,5 ppm, ce qui les rend très peu déformable vis-à-vis de variations de températures. Cependant, pour des raisons pratiques, liées en particulier au fait que les guides d'onde sont montés dans des équipements spatiaux généralement réalisés dans des matériaux légers, dont les coefficients de dilatation thermique sont souvent élevés, comme de l'aluminium par exemple, des solutions de compensation mécanique sont recherchées, notamment pour fonctionner avec des guides d'onde en aluminium. En effet, un écart trop important entre le coefficient de dilatation thermique du manifold et celui de l'équipement complet sur lequel il est monté induit des contraintes mécaniques importantes. Pour réduire ces contraintes, il faut homogénéiser les coefficients de dilatation thermique.To correct this problem, several technologies have been developed. The first method consists in producing the waveguide and the manifold in a material whose thermal expansion coefficient is as small as possible. Indeed, materials such as Invar ™ have a coefficient of thermal expansion that can go down to 0.5 ppm, which makes them very little deformable vis-à-vis temperature variations. However, for practical reasons, particularly related to the fact that the waveguides are mounted in space equipment generally made of lightweight materials, whose thermal expansion coefficients are often high, such as aluminum, for example, Mechanical compensation solutions are sought, in particular to work with aluminum waveguides. Indeed, a too large difference between the coefficient of thermal expansion of the manifold and that of the complete equipment on which it is mounted induces constraints important mechanical To reduce these constraints, it is necessary to homogenize the coefficients of thermal expansion.

Ainsi, il est aujourd'hui connu qu'il est possible de compenser la dilatation thermique d'un guide d'onde de section rectangulaire en appliquant une déformation sur ses petits côtés de façon à assurer une stabilité de phase. Une technologie existante consiste à déformer les petits côtés du guide d'onde en venant appuyer ou tirer sur ses petits côtés par l'intermédiaire de pièces d'écartement se déplaçant selon un axe orthogonal aux petits côtés du guide d'onde. Le brevet US 5 428 323 décrit un tel dispositif, comprenant un guide d'onde compensé en température. Pour compenser la dilatation volumique d'un guide d'onde lors d'une élévation de température, ce brevet décrit un système de compensation du volume dudit guide d'onde reposant sur l'utilisation de deux bretelles 1 nervures qui viennent déformer des côtés du guide d'onde. Pour cela, le guide d'onde, typiquement en aluminium, de coefficient de dilatation thermique élevé, est entouré d'un cadre, typiquement en Invar, de coefficient de dilatation thermique faible, et les bretelles / nervures sont reliées audit cadre. En cas d'élévation de la température, la différence entre les coefficients de dilatation thermique du guide d'onde et du cadre fait que les bretelles / nervures déforment les côtés du guide d'onde pour en réduire le volumeThus, it is now known that it is possible to compensate the thermal expansion of a waveguide of rectangular section by applying a deformation on its short sides so as to ensure phase stability. An existing technology consists in deforming the short sides of the waveguide by pressing or pulling on its short sides by means of spacers moving along an axis orthogonal to the short sides of the waveguide. The US Patent 5,428,323 describes such a device, comprising a waveguide compensated in temperature. To compensate for the volume expansion of a waveguide during a temperature rise, this patent describes a system for compensating the volume of said waveguide based on the use of two straps 1 ribs which deform the sides of the waveguide. waveguide. For this, the waveguide, typically aluminum, high coefficient of thermal expansion, is surrounded by a frame, typically Invar, low coefficient of thermal expansion, and the straps / ribs are connected to said frame. In the event of a rise in temperature, the difference between the thermal expansion coefficients of the waveguide and the frame causes the shoulder straps / ribs to deform the sides of the waveguide to reduce its volume.

Cependant, ces technologies connues nécessitent généralement l'utilisation de vastes plaques en Invar (ou autre matériau à coefficient de dilatation thermique similaire), parallèles aux grands côtés du guide d'onde et venant maintenir l'écartement entre elles. La présence de ces plaques augmente la masse du dispositif lié au guide d'onde.However, these known technologies generally require the use of large plates Invar (or other material with similar coefficient of thermal expansion), parallel to the long sides of the waveguide and maintaining the spacing between them. The presence of these plates increases the mass of the device connected to the waveguide.

Pour pallier cet inconvénient, l'invention propose l'utilisation d'actionneurs en Invar (ou autre matériau à coefficient de dilatation thermique faible) qui, sous l'effet d'une variation de température, mettent en rotation des nervures longitudinales, désaxées, taillées dans la masse et solidaires du guide d'onde, venant déformer les petits côtés du guide d'onde.To overcome this drawback, the invention proposes the use of Invar actuators (or other material with a low coefficient of thermal expansion) which, under the effect of a temperature variation, set longitudinal, off-axis ribs into rotation. , cut in the mass and integral with the waveguide, deforming the short sides of the waveguide.

A cet effet, l'invention a pour objet un dispositif de guide d'onde compensé comportant un guide d'onde présentant :

  • un premier coefficient de dilatation thermique,
  • au moins un grand côté et au moins un petit côté,
ledit petit côté présentant un axe médian et le guide d'onde comportant en outre au moins une nervure longitudinale présentant une surface au moins partiellement commune avec le petit côté du guide d'onde sur environ la moitié de la largeur dudit petit côté, ladite nervure longitudinale étant désaxée par rapport à l'axe médian du petit côté du guide d'onde, et taillée dans la masse du guide d'onde, caractérisé en ce qu'il comprend, au contact de la nervure longitudinale, des moyens de mise en rotation de ladite nervure longitudinale sur elle-même, entraînant une déformation du petit côté du guide d'onde.For this purpose, the subject of the invention is a compensated waveguide device comprising a waveguide having:
  • a first coefficient of thermal expansion,
  • at least one big side and at least one small side,
said small side having a median axis and the waveguide further comprising at least one longitudinal rib having a surface at least partially common with the short side of the waveguide about half the width of said short side, said rib longitudinal axis being off-axis with respect to the median axis of the short side of the waveguide, and cut in the mass of the waveguide, characterized in that it comprises, in contact with the longitudinal rib, means for setting rotation of said rib longitudinal on itself, causing a deformation of the short side of the waveguide.

Avantageusement, le guide d'onde présente une section rectangulaire et comprend donc deux petits côtés et deux grands côtés.
Avantageusement, les moyens de mise en rotation de la nervure longitudinale comportent au moins un élément peu thermodéformable, présentant un deuxième coefficient de dilatation thermique inférieur au premier coefficient de dilatation thermique.
Avantageusement, le deuxième coefficient de dilatation thermique est inférieur au premier coefficient de dilatation thermique d'un facteur au moins égal à cinq.
Avantageusement, les moyens de mise en rotation de la nervure longitudinale sont constitués d'un bilame comprenant au moins l'élément peu thermodéformable, présentant le deuxième coefficient de dilatation thermique, et un élément complémentaire présentant un troisième coefficient de dilatation thermique supérieur au deuxième coefficient de dilatation thermique.
Avantageusement, l'élément peu thermodéformable du bilame est en Invar™ et l'élément complémentaire du bilame est en aluminium.
Avantageusement, les moyens de mise en rotation de la nervure longitudinale comprennent un premier type de paire de bretelles correspondant à l'élément peu thermodéformable, et une entretoise présentant le premier coefficient de dilatation thermique, solidaire du guide d'onde, et s'interposant entre lesdites bretelles.
Avantageusement, les bretelles sont en Invar™, le guide d'onde et l'entretoise en aluminium.
Avantageusement, les moyens de mise en rotation de la nervure longitudinale comprennent un châssis présentant un quatrième coefficient de dilatation thermique supérieur au deuxième coefficient de dilatation thermique et un second type de paire de bretelles correspondant à l'élément peu thermodéformable et assurant en outre la liaison entre ladite nervure longitudinale et ledit châssis.
Avantageusement, le dispositif comprend deux nervures longitudinales, opposées, et séparées par un grand côté du guide d'onde, et deux paires de bretelles du second type de paires de bretelles reliées aux extrémités desdites nervures longitudinales.
Avantageusement, les paires de bretelles sont en Invar™, le châssis en aluminium ou en titane et le guide d'onde en aluminium ou en titane.
Avantageusement, les paires de bretelles sont en titane, le châssis et le guide d'onde en aluminium.
Advantageously, the waveguide has a rectangular section and therefore comprises two small sides and two long sides.
Advantageously, the means for rotating the longitudinal rib comprise at least one element that is not very heat-deformable, having a second coefficient of thermal expansion less than the first coefficient of thermal expansion.
Advantageously, the second coefficient of thermal expansion is less than the first coefficient of thermal expansion by a factor of at least five.
Advantageously, the means for rotating the longitudinal rib consist of a bimetallic strip comprising at least the low thermodeformable element having the second coefficient of thermal expansion, and a complementary element having a third coefficient of thermal expansion greater than the second coefficient. thermal expansion.
Advantageously, the low thermodeformable element of the bimetallic strip is in Invar ™ and the complementary element of the bimetallic strip is made of aluminum.
Advantageously, the means for rotating the longitudinal rib comprise a first type of strap pair corresponding to the low thermodeformable element, and a spacer having the first coefficient of thermal expansion, integral with the waveguide, and interposing between said straps.
Advantageously, the shoulder straps are made of Invar ™, the waveguide and the aluminum spacer.
Advantageously, the means for rotating the longitudinal rib comprise a chassis having a fourth coefficient of thermal expansion greater than the second coefficient of thermal expansion and a second type of pair of shoulder straps corresponding to the low thermo-deformable element and further ensuring the connection. between said longitudinal rib and said frame.
Advantageously, the device comprises two longitudinal ribs, opposite, and separated by a long side of the waveguide, and two pairs of straps of the second type of pairs of straps connected to the ends of said longitudinal ribs.
Advantageously, the pairs of straps are made of Invar ™, the aluminum or titanium frame and the waveguide made of aluminum or titanium.
Advantageously, the pairs of straps are made of titanium, the frame and the aluminum waveguide.

D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard des dessins annexés qui représentent :

  • la figure 1: la courbe des déformations à appliquer à un guide d'onde en aluminium à 85°C en vue d'assurer une stabilité de phase au sein du guide d'onde ;
  • la figure 2a : le schéma du principe de l'invention à température nominale (pas de déformation) ;
  • la figure 2b : le schéma du principe de l'invention à température élevée (déformation du guide d'onde) ;
  • la figure 3a : l'illustration schématique d'un exemple de dispositif selon l'invention à température nominale (pas de déformation) ;
  • la figure 3b : l'illustration schématique d'un exemple de dispositif selon l'invention mettant en avant la déformation du guide d'onde par rotation de nervures sur elles-mêmes ;
  • La figure 4 : le schéma d'un autre exemple de dispositif selon l'invention.
Other characteristics and advantages of the invention will become apparent with the aid of the following description made with reference to the appended drawings which represent:
  • the figure 1 : the curve of the deformations to be applied to an aluminum waveguide at 85 ° C in order to ensure a phase stability within the waveguide;
  • the figure 2a : the diagram of the principle of the invention at nominal temperature (no deformation);
  • the figure 2b : the diagram of the principle of the invention at high temperature (deformation of the waveguide);
  • the figure 3a : the schematic illustration of an exemplary device according to the invention at nominal temperature (no deformation);
  • the figure 3b : the schematic illustration of an exemplary device according to the invention highlighting the deformation of the waveguide by rotation of ribs on themselves;
  • The figure 4 : the diagram of another example of device according to the invention.

La figure 1 représente une simulation des déformations à appliquer aux petits côtés d'un guide d'onde en aluminium de section rectangulaire afin d'y assurer une stabilité de phase. De façon simplifiée, on considère un profil de déformation de forme trapézoïdale isocèle dont la petite base est appelée profil plat. Alors, pour une compensation théoriquement parfaite, la courbe de la figure 1 indique la somme des déformations à appliquer aux petits côtés en fonction de la taille du profil plat, et ce à 85°C, pour une température étant passée de 20°C à 85°C. Le pire cas, correspondant à un profil plat nul, c'est-à-dire à une déformation triangulaire, imposerait une compensation totale de 142 µm, soit 71 µm sur chacun des petits côtés. En pratique, la déformation étant plutôt courbe, le besoin en compensation est typiquement de l'ordre de 50 µm sur les deux petits côtés. De telles déformations sont atteintes grâce au dispositif de compensation mécanique décrit ci-après.The figure 1 represents a simulation of the deformations to be applied to the short sides of an aluminum waveguide of rectangular section in order to ensure phase stability. In a simplified way, we consider an isosceles trapezoidal shape of deformation whose small base is called flat profile. So, for theoretically perfect compensation, the curve of the figure 1 indicates the sum of deformations to be applied to the short sides according to the size of the flat profile, and this at 85 ° C, for a temperature having passed from 20 ° C to 85 ° C. The worst case, corresponding to a flat profile zero, that is to say a triangular deformation, would impose a total compensation of 142 microns, or 71 microns on each of the short sides. In practice, the deformation is rather curved, the need for compensation is typically of the order of 50 microns on both short sides. Such deformations are achieved through the mechanical compensation device described below.

La figure 2a présente un schéma du dispositif selon l'invention à température normale. Il n'y a pas de déformation. Le guide d'onde 1 présente une section rectangulaire. Il comprend deux grands côtés 6 et 7 et deux petits 4 et 5 côtés. Deux nervures longitudinales 2 et 3 sont par ailleurs taillées dans la masse et solidaire du guide d'onde 1. Ces nervures longitudinales 2 et 3 possèdent une surface commune avec respectivement les petits côtés 4 et 5 du guide d'onde 1 sur approximativement la moitié de la largeur de ces petits côtés. Elles sont en outre parallèles entre elles et désaxées par rapport à l'axe médian des petits côtés 4 et 5.The figure 2a shows a diagram of the device according to the invention at normal temperature. There is no deformation. The waveguide 1 has a rectangular section. It includes two long sides 6 and 7 and two small 4 and 5 sides. Two longitudinal ribs 2 and 3 are also cut into the mass and integral with the waveguide 1. These longitudinal ribs 2 and 3 have a common surface with respectively the small sides 4 and 5 of the waveguide 1 on approximately half the width of these small sides. They are also parallel to each other and offset with respect to the median axis of the short sides 4 and 5.

La figure 2b présente le comportement du dispositif selon l'invention lors d'un échauffement. Le principe consiste à provoquer une déformation des petits côtés 4 et 5 du guide d'onde par rotation des nervures longitudinales 2 et 3.
Pour mettre en rotation ces nervures longitudinales 2 et 3, il est par exemple possible d'utiliser des actionneurs tels que des bilames. Ceux-ci sont typiquement constitués de deux plaques de matériaux présentant des coefficients de dilatation thermique très différents, tels que de l'Invar™ et de l'aluminium. Sous l'effet d'une variation de température, le bilame se déforme et, judicieusement positionné au contact d'une nervure longitudinale, la met en rotation. Mais d'autres moyens, préférés, peuvent également être mis en oeuvre, tels que ceux décrits ci-après.
The figure 2b presents the behavior of the device according to the invention during a heating. The principle consists in causing a deformation of the short sides 4 and 5 of the waveguide by rotation of the longitudinal ribs 2 and 3.
To rotate these longitudinal ribs 2 and 3, it is for example possible to use actuators such as bimetals. These typically consist of two material plates having very different thermal expansion coefficients, such as Invar ™ and aluminum. Under the effect of a temperature variation, the bimetal is deformed and judiciously positioned in contact with a longitudinal rib, rotates it. But other, preferred means can also be implemented, such as those described below.

Les figures 3a et 3b permettent d'expliquer comment les nervures longitudinales peuvent être mises en rotation.The figures 3a and 3b explain how the longitudinal ribs can be rotated.

La figure 3a illustre le dispositif monté sur un quelconque Omux (non complètement représenté) ; le châssis 12 est typiquement en aluminium. Chaque extrémité des deux nervures longitudinales 2 et 3 est reliée au châssis 12 de l'Omux par l'intermédiaire de bretelles 8, 9, 10 et 11 constituées d'un matériau présentant un coefficient de dilatation thermique faible, tel que de l'Invar™ par exemple. Les bretelles 8 et 9 d'une part et 10 et 11 d'autre part se rejoignent au niveau du châssis en une base commune, du même matériau que les bretelles proprement dites. Ainsi, l'écartement entre les bretelles est quasiment constant, quelle que soit la température. En revanche, le guide d'onde 1 se dilate ou se contracte lorsque la température augmente ou diminue, étant constitué d'un matériau à coefficient de dilatation thermique élevé, tel que de l'aluminiumThe figure 3a illustrates the device mounted on any Omux (not completely shown); the frame 12 is typically aluminum. Each end of the two longitudinal ribs 2 and 3 is connected to the frame 12 of the Omux via straps 8, 9, 10 and 11 made of a material having a low coefficient of thermal expansion, such as the Invar ™ for example. Straps 8 and 9 on the one hand and 10 and 11 on the other hand meet at the chassis in a common base, the same material as the straps themselves. Thus, the spacing between the straps is almost constant, regardless of the temperature. On the other hand, the waveguide 1 expands or contracts when the temperature increases or decreases, being made of a material with a high coefficient of thermal expansion, such as aluminum.

En conséquence, comme le montre la figure 3b, qui est un agrandissement de la zone du guide d'onde 1 de la figure 3a, lorsque le guide d'onde 1 se dilate, l'écartement étant constant entre les bretelles 8 et 9 d'une part et 10 et 11 d'autre part, les efforts de traction et de pression s'exerçant sur les bretelles 8, 9, 10 et 11 sont transmis aux nervures 2 et 3 qui effectuent une rotation sur elles-mêmes et viennent déformer les petits côtés 4 et 5 du guide d'onde 1.As a result, as shown in figure 3b which is an enlargement of the waveguide area 1 of the figure 3a when the waveguide 1 expands, the spacing being constant between the straps 8 and 9 on the one hand and 10 and 11 on the other hand, the traction and pressure forces exerted on the straps 8, 9, 10 and 11 are transmitted to the ribs 2 and 3 which rotate on themselves and deform the small sides 4 and 5 of the waveguide 1.

En venant déformant les petits côtés 4 et 5 du guide d'onde 1, on parvient à compenser mécaniquement le déphasage introduit par la dilatation du guide d'onde. Le principe est de régler les longueurs électriques du guide d'onde 1 afin de corriger les déphasages introduits par sa dilatation.Coming deforming the short sides 4 and 5 of the waveguide 1, it is possible to mechanically compensate the phase shift introduced by the expansion of the waveguide. The principle is to adjust the electrical lengths of the waveguide 1 in order to correct the phase shifts introduced by its expansion.

La figure 4 présente un autre exemple de mise en oeuvre du dispositif selon l'invention. Plus précisément, la figure 4 présente le schéma d'une section d'un guide d'onde compensé selon l'invention. Le différentiel thermoélastique entre les bretelles 13 et 14, typiquement en Invar™ et l'ensemble entretoise 15 - guide d'onde 1, typiquement en aluminium, entraîne une rotation des nervures 2 et 3 sur elle-même lors d'une variation de température. Du fait d'un coefficient de dilatation thermique plus élevé, le guide d'onde 1 et l'entretoise 15 vont en effet se contracter ou se dilater beaucoup plus que les bretelles 13 et 14. Des efforts de traction et de pression vont donc naître et mettre les nervures 2 et 3 en rotation. En conséquence, les nervures 2 et 3 vont venir déformer les petits côtés 4 et 5 du guide d'onde 1. En réglant correctement cette déformation, le dispositif garantit une stabilité de phase au sein du guide d'onde 1.The figure 4 presents another example of implementation of the device according to the invention. More specifically, the figure 4 presents the diagram of a section of a compensated waveguide according to the invention. The thermoelastic differential between the straps 13 and 14, typically Invar ™ and the spacer assembly 15 - waveguide 1, typically made of aluminum, causes the ribs 2 and 3 to rotate on itself during a temperature variation. . Because of a higher coefficient of thermal expansion, the waveguide 1 and the spacer 15 will indeed contract or expand much more than the straps 13 and 14. Traction efforts and pressure will be born and put the ribs 2 and 3 in rotation. As a result, the ribs 2 and 3 will deform the short sides 4 and 5 of the waveguide 1. By correctly adjusting this deformation, the device guarantees a phase stability within the waveguide 1.

En résumé, l'invention a pour principal avantage d'assurer une stabilité de phase au sein d'un guide d'onde de coefficient de dilatation thermique potentiellement élevé et soumis à des variations de températures importantes par l'intermédiaire d'un dispositif mécanique.In summary, the main advantage of the invention is to ensure a phase stability within a waveguide of potentially high thermal expansion coefficient and subjected to significant temperature variations by means of a mechanical device .

Claims (11)

  1. A compensated waveguide device comprising a waveguide (1) having:
    - a first coefficient of thermal expansion,
    - two large sides (6, 7) and two small sides (4, 5),
    said small sides (4, 5) having a median axis and said waveguide (1) further comprising two longitudinal ribs (2, 3) having a surface area that is at least partially shared with the small sides (4, 5) of the waveguide (1) over approximately half the width of the small sides (4, 5), said longitudinal ribs (2, 3) being offset relative to the median axis of the small sides (4, 5) of the waveguide (1), and being machined into the mass of the waveguide (1), characterised in that it comprises, in contact with the longitudinal ribs (2, 3), means for rotating said longitudinal ribs (2, 3) about themselves around an axis of rotation that approximately corresponds to the intersection between the small side (4, 5) and the large side (6, 7) of the waveguide, causing the deformation of the small sides (4, 5) of the waveguide (1), said means for rotating the longitudinal ribs being fixed to the ends of said ribs, and comprising at least one element of low thermal deformability having a second coefficient of thermal expansion that is lower than the first coefficient of thermal expansion.
  2. The device according to claim 1, characterised in that the waveguide (1) has a rectangular cross section.
  3. The device according to any one of claims 1 to 2, characterised in that the second coefficient of thermal expansion is lower than the first coefficient of thermal expansion by a factor that is at least equal to five.
  4. The device according to any one of claims 1 to 3, characterised in that the means for rotating the longitudinal rib (2, 3) are constituted by a bimetallic element that is fixed to each end of said longitudinal rib, said ribs at least comprising the element of low thermal deformability having the second coefficient of thermal expansion and a complementary element having a third coefficient of thermal expansion that is higher than the second coefficient of thermal expansion.
  5. The device according to claim 4, characterised in that the element of low thermal deformability of said bimetallic elements is made from Invar™ and the complementary bimetallic element is made from aluminium.
  6. The device according to any one of claims 1 to 3, characterised in that the means for rotating the longitudinal rib (2, 3) comprise a first type of pair of braces (13, 14) that corresponds to the element of low thermal deformability, each brace being fixed to one end of said longitudinal rib, and a spacer (15) having the first coefficient of thermal expansion, which is integral with the waveguide (1) and is interposed between said braces (13, 14).
  7. The device according to claim 6, characterised in that the braces (13, 14) are made from Invar™ and the waveguide (1) and the spacer (15) are made from aluminium.
  8. The device according to any one of claims 1 to 3, characterised in that the means for rotating the longitudinal rib (2, 3) comprise a frame (12) having a fourth coefficient of thermal expansion that is higher than the second coefficient of thermal expansion and a second type of pair of braces (8-9, 10-11) that corresponds to the element of low thermal deformability and that further provides the link between said longitudinal rib (2, 3) and said frame (12).
  9. The device according to claim 8, characterised in that it comprises two longitudinal ribs (2, 3), which ribs are opposite each other and separated by a large side (6, 7) of the waveguide (1), and two pairs of braces (8-9, 10-11) of the second type of pairs of braces connected to the ends of said longitudinal ribs.
  10. The device according to any one of claims 8 to 9, characterised in that the pairs of braces (8-9, 10-11) are made from Invar™, the frame is made from aluminium or titanium and the waveguide (1) is made from aluminium or titanium.
  11. The device according to any one of claims 8 to 9, characterised in that the pairs of braces (8-9, 10-11) are made from titanium and the frame and the waveguide (1) are made from aluminium.
EP08158032A 2007-06-22 2008-06-11 Mechanical temperature compensation device for a waveguide with phase stability Active EP2006951B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0704504A FR2917904B1 (en) 2007-06-22 2007-06-22 MECHANICAL TEMPERATURE COMPENSATION DEVICE FOR WAVEGUIDE WITH PHASE STABILITY

Publications (2)

Publication Number Publication Date
EP2006951A1 EP2006951A1 (en) 2008-12-24
EP2006951B1 true EP2006951B1 (en) 2012-03-07

Family

ID=39004777

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08158032A Active EP2006951B1 (en) 2007-06-22 2008-06-11 Mechanical temperature compensation device for a waveguide with phase stability

Country Status (8)

Country Link
US (1) US7671708B2 (en)
EP (1) EP2006951B1 (en)
JP (1) JP5630728B2 (en)
CN (1) CN101329003B (en)
AT (1) ATE548778T1 (en)
CA (1) CA2635177C (en)
ES (1) ES2380725T3 (en)
FR (1) FR2917904B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2576589C2 (en) * 2009-12-23 2016-03-10 Таль Compact thermoelastic waveguide actuator, waveguide with phase stability and multiplexer with such actuator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2945673B1 (en) * 2009-05-15 2012-04-06 Thales Sa MULTI-MEMBRANE FLEXIBLE WALL DEVICE FOR FILTERS AND MULTIPLEXERS OF THERMO-COMPENSATED TECHNOLOGY
US20230163439A1 (en) * 2020-04-15 2023-05-25 Telefonaktiebolaget Lm Ericsson (Publ) A tunable waveguide resonator
CN115007089B (en) * 2022-05-27 2024-08-09 扬州宏远新材料股份有限公司 Organosilicon emulsion temperature control polymerization reaction device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057772A (en) * 1976-10-18 1977-11-08 Hughes Aircraft Company Thermally compensated microwave resonator
DE4238136C1 (en) * 1992-11-12 1994-02-17 Ant Nachrichtentech Waveguide absorber
DE4319886C1 (en) * 1993-06-16 1994-07-28 Ant Nachrichtentech Arrangement for compensating temperature-dependent changes in volume of a waveguide
US6535087B1 (en) * 2000-08-29 2003-03-18 Com Dev Limited Microwave resonator having an external temperature compensator
FR2877773B1 (en) * 2004-11-09 2007-05-04 Cit Alcatel ADJUSTABLE TEMPERATURE COMPENSATION SYSTEM FOR MICROWAVE RESONATOR
US7564327B2 (en) * 2006-10-05 2009-07-21 Com Dev International Ltd. Thermal expansion compensation assemblies

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2576589C2 (en) * 2009-12-23 2016-03-10 Таль Compact thermoelastic waveguide actuator, waveguide with phase stability and multiplexer with such actuator

Also Published As

Publication number Publication date
ES2380725T3 (en) 2012-05-17
FR2917904A1 (en) 2008-12-26
CN101329003A (en) 2008-12-24
CA2635177C (en) 2012-10-16
JP2009005354A (en) 2009-01-08
US20080315974A1 (en) 2008-12-25
CA2635177A1 (en) 2008-12-22
EP2006951A1 (en) 2008-12-24
US7671708B2 (en) 2010-03-02
JP5630728B2 (en) 2014-11-26
CN101329003B (en) 2011-09-28
FR2917904B1 (en) 2009-09-18
ATE548778T1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
EP2006951B1 (en) Mechanical temperature compensation device for a waveguide with phase stability
EP0720224B1 (en) Method and device for fixing two elements such as an integrated circuit radiator to a printed circuit card
EP2019038B1 (en) Solar protection device for a spatial instrument
EP2824777B1 (en) Crystalline laser comprising a system for cooling the crystal by a liquid
EP1604900B1 (en) Aircraft comprising a fairing at the intersection between the fuselage and the wing
EP1849032B1 (en) Actuating device comprising bimetal disks
EP0750114A1 (en) Double element thermal actuator with big stroke
EP2948644B1 (en) Device for securing and retaining at least one electrical harness in a turbomachine
EP1955100B1 (en) Optical instrument comprising an input cavity wherein is arranged a mirror
FR3057332A1 (en) METHOD FOR ATTACHING A CONDUIT TO A SUPPORT USING FREE ADJUSTABLE CAPTIVE FLANGES
EP1692428B1 (en) Support device for fire-detection system
EP3203299B1 (en) Deformable mirror
FR2574879A1 (en) TOLERANCE RETRACTION JOINT AND METHOD FOR JOINING TWO STRUCTURE ELEMENTS OF A MACHINE
FR2524654A1 (en) OPTICAL FIBER CONNECTION DEVICE AND METHOD OF IMPLEMENTING SAME
EP3804116B1 (en) Vibration energy harvester
WO2019115123A1 (en) Support for shaping a flexible portion of a flexible printed circuit board
EP2025835A1 (en) Floating shutter
FR2855141A1 (en) DEFORMABLE METAL CAPSULE DEVICE OF A POWER ABSORPTION SYSTEM OF A STEERING COLUMN OF A MOTOR VEHICLE
EP3624255B1 (en) Guiding set of radio-electric waves and antenna comprising such a set
EP3540359B1 (en) Heat conduction device and associated heat dissipation system
EP1886545A2 (en) Expandable wedge and system comprising a module, a receptacle and such a wedge interposed between them
EP2633775B1 (en) Hinged bracelet
EP0269522A1 (en) Electrical connection device, particularly for liquid-crystal displays
EP4215791B1 (en) Device for connecting two double-walled pipes and hydrogen pipeline comprising said connection device
FR3093594A1 (en) Thermal compensated resonator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LAGORSSE, JOEL

Inventor name: BUGADA, DOMINIQUE

17P Request for examination filed

Effective date: 20090415

17Q First examination report despatched

Effective date: 20090513

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LAGROSSE, JOEL

Inventor name: BUGADA, DOMINIQUE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BUGADA, DOMINIQUE

Inventor name: LAGORSSE, JOEL

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 548778

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008013886

Country of ref document: DE

Effective date: 20120503

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2380725

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120517

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120607

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120608

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 548778

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120707

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120709

BERE Be: lapsed

Owner name: THALES

Effective date: 20120630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20121210

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008013886

Country of ref document: DE

Effective date: 20121210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120611

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230707

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240516

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240514

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240524

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240702

Year of fee payment: 17