Nothing Special   »   [go: up one dir, main page]

EP2001607B1 - Device and method for the flexible classification of polycrystalline silicon fragments - Google Patents

Device and method for the flexible classification of polycrystalline silicon fragments Download PDF

Info

Publication number
EP2001607B1
EP2001607B1 EP07727441A EP07727441A EP2001607B1 EP 2001607 B1 EP2001607 B1 EP 2001607B1 EP 07727441 A EP07727441 A EP 07727441A EP 07727441 A EP07727441 A EP 07727441A EP 2001607 B1 EP2001607 B1 EP 2001607B1
Authority
EP
European Patent Office
Prior art keywords
fraction
sorting
optoelectronic
parameters
fractions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07727441A
Other languages
German (de)
French (fr)
Other versions
EP2001607A2 (en
Inventor
Marcus SCHÄFER
Reiner Pech
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38443096&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2001607(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of EP2001607A2 publication Critical patent/EP2001607A2/en
Application granted granted Critical
Publication of EP2001607B1 publication Critical patent/EP2001607B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • B07B13/003Separation of articles by differences in their geometrical form or by difference in their physical properties, e.g. elasticity, compressibility, hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • B07B13/04Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices according to size

Definitions

  • the invention relates to an apparatus and method for flexibly classifying polycrystalline silicon fragments.
  • High purity silicon is produced by chemical vapor deposition of a high purity chlorosilane gas on a heated substrate.
  • the silicon is polycrystalline in the form of rods. These bars must be shredded for further use.
  • breaking tools for example made of metal baking or roll crushers, hammers or chisel are used.
  • the resulting fragments of polycrystalline silicon hereinafter referred to as Polybruch, are then classified according to defined breaking sizes.
  • a targeted separation according to length and / or surface can be achieved by optoelectronic sorting.
  • Such methods are for polysilicon z. B. off US 6,265,683 B1 .
  • the methods described herein are always limited to the separation of certain and previously known feed streams.
  • An optoelectronic separation of Polysilicon fragments is problematic when a high fines content (> 1 wt.% Fragments ⁇ 20mm) is present in the feedstock, as this significantly disturbs the image recognition of larger fragments. It is therefore not possible with the known devices, flexibly different input fractions into several grain classes in high accuracy after z. B. length and / or area to separate. In addition, no regulation is described, which leads to an even more accurate sorting result.
  • the object of the invention was to provide a device which allows a flexible classification of broken polycrystalline silicon (polysilicon), preferably according to the length and / or surface of the Polybruchs.
  • the length of a fragment is defined as the longest straight line between two points on the surface of a fragment.
  • the area of a fragment is defined as the largest shadow area of the fragment projected in a plane.
  • the invention relates to a device which is characterized in that it comprises a mechanical sieve and an optoelectronic sorting system, wherein the poly fraction is separated by the mechanical sieve into a silicon fines and a silicon remainder and the remaining silicon via an optoelectronic sorting is separated into further fractions.
  • the device allows a sorting of the poly rupture according to length, area, shape, morphology, color and weight in any combination.
  • the sorting plant consists of a multi-stage mechanical screening plant and a multi-stage optoelectronic sorting plant.
  • the mechanical and / or optoelectronic separation devices are arranged in a tree structure (see Fig. 1 ).
  • the arrangement of the screening and optoelectronic sorting system in a tree structure allows in comparison to a serial arrangement a more accurate sorting, as fewer separation stages must be run through and with each separation module, the rejection amount is lower.
  • the tree structure has shorter paths, whereby the wear of the system and the regrinding of large fragments are lower and there is a lower contamination of Polybruch. All this enhances the economy of the device and associated method.
  • the fine fraction of the polybrot to be classified is first separated by a mechanical sieve from the silicon residue and then separated by several mechanical sieving into other fractions.
  • any known mechanical screening machine can be used. Preference Schwingsiebmaschinen that are driven by an unbalance motor used. As Siebbelag mesh and perforated sieves are preferred.
  • the mechanical sieve system is used to separate fines in the product stream. The fine fraction contains grain sizes up to a maximum grain size of up to 25 mm, preferably of up to 10 mm.
  • the mechanical sieve therefore preferably has a mesh size which separates the mentioned grain sizes. Since the mechanical sieves therefore only have small holes at the beginning, in order to separate only the small breakage types ( ⁇ BG1), there is less blockage of the sieve, which increases the productivity of the system. The problematic large poly fragments can not settle in the small Siebmaschenweiten.
  • the fine fraction can be separated into further fractions.
  • the screening plants can successively or in another structure, such as. B. a tree structure, be arranged.
  • the sieves are preferably arranged in more than one stage, particularly preferably in three stages in a tree structure. For example, in an intended split of the poly-break into four grain fractions (eg, fraction 1, 2, 3, 4), in a first stage, fractions 1 and 2 are separated from fraction 3 and 4. In a second stage then fraction 1 of fraction 2 and a parallel third stage fraction 3 of fraction 4 are separated.
  • the sorting of the residual polysilicon content can be carried out according to all criteria that are state of the art in image and sensor technology.
  • an optoelectronic sorting is used. It preferably takes one or more, more preferably one to three, of the criteria selected from the group length, area, shape, morphology, color and weight of the polysilicon fragments. It is particularly preferably carried out according to the length and area of the polysilicon fragments.
  • the residual silicon content is separated by one or more optoelectronic sorting into further fractions.
  • 2, 3 or more optoelectronic sorting systems which are arranged in a tree structure, are used.
  • the optical image recognition of the optoelectronic sorting system has the advantage that "real" lengths or areas are measured. This allows a comparison with conventional mechanical screening method more accurate separation of the fragments according to the particular desired parameters.
  • an optoelectronic sorting system is preferably a device, as in US 6,265,683 B1 or in US 6,040,544 A is described. Reference is therefore made to these documents with regard to the details of the optoelectronic sorting system.
  • This optoelectronic sorting system comprises a device for separating the poly-break and a sliding surface for the poly-fracture, wherein the angle of the sliding surface is adjustable to the horizontal, and a radiation source through the beam path of the poly break falls and a shape detection device, which forwards the shape of the Klassierguts to a control unit, which controls a deflection device.
  • the product stream is separated via an integrated vibrating conveyor trough and passed over a slide in free fall one or more CCD Farzeilenmentss, the classification of one or more sorting parameters selected from the group length, area, volume (weight), shape , Morphology and color makes.
  • CCD Farzeilenments the classification of one or more sorting parameters selected from the group length, area, volume (weight), shape , Morphology and color makes.
  • all known in the art electronic sensor techniques can be used for the parameter recognition of the fragments.
  • the measured values are transmitted to the higher-level control and regulating device and z. B. evaluated by microprocessor. It is decided by comparison with the stored in the recipe sort criterion, whether a fragment is discharged from the product stream or transmitted.
  • the discharge preferably takes place via nozzles by compressed air pulses, wherein the pressure on the recipe in the higher-level control is adjustable.
  • the pressure on the recipe in the higher-level control is adjustable.
  • via a arranged under the image recognition valve strip separating channels (compressed air strips) are controlled and metered with compressed air pulses, which are dependent on the grain size.
  • the device according to the invention is therefore provided with a higher-level control, which makes it possible, the Sorting parameters, according to which the poly-break is sorted and / or the system parameters that influence the promotion of the Polybruchs (eg the conveying speed), flexibly adjust to the individual parts of the devices.
  • the sorting parameters by which the polybranch is sorted are preferably the abovementioned parameters, more preferably selected from the group length, area, morphology, color or shape of the fragments.
  • the sizes of the sorting parameters, according to which the poly-break is sorted, are preferably stored in the form of recipes in the higher-level control, and a variation of the selection criteria in the mechanical screening device and / or the opto-electronic sorting takes place via the selection of a recipe, which then selects the associated sorting parameters in the individual parts of the device according to the invention causes.
  • the device according to the invention after the sorting system comprises scales for determining the weight yields of the classified fractions.
  • the device according to the sorting system comprises a fully automatic Kistenab spall- and box transport device.
  • a preferred embodiment of the device is characterized in that the mechanical screen and / or the optoelectronic sorting system is provided with a measuring device for defined parameters of classified polysilicon fracture and this measuring device is connected to a higher-level control and regulating device, which statistically the measured parameters evaluates and compares with predetermined parameters and in a deviation between measured parameters and predetermined parameters, the setting of the sorting parameters of the optoelectronic sorting system or the entire sorting system (eg frequency of the mechanical screen or conveyor speeds of the poly fragments) or the selection of recipes can change in that the parameter then measured adjusts to the given parameter.
  • the mechanical screen and / or the optoelectronic sorting system is provided with a measuring device for defined parameters of classified polysilicon fracture and this measuring device is connected to a higher-level control and regulating device, which statistically the measured parameters evaluates and compares with predetermined parameters and in a deviation between measured parameters and predetermined parameters, the setting of the sorting parameters of the optoelectronic sorting system or the entire sort
  • a parameter is measured from the group length, area, shape, morphology, color and weight of the polysilicon fragments.
  • the length or the area of the polysilicon fragments within the respective fraction is particularly preferably measured and evaluated in the form of lengths or area distributions (eg 5%, 50% or 95% quantile).
  • the weight yields of the individual sieve fractions are determined by the scales at the sieve sheds.
  • Another measuring parameter is the mass and particle throughput determined at the individual optoelectronic sorting plants.
  • the conveying speed can be adjusted, for example, on the basis of the measured number of particles so as not to overload the system and / or to select a different sorting recipe.
  • the sorting parameters (for example length average value of a fraction) of the classified polysilicon fraction determined in the optoelectronic sorting system as part of the on-line monitoring according to the sorting criteria (eg length distribution, weight distribution) are transmitted to the higher-level control and regulating device and compared there with predetermined setpoints.
  • the variable sorting parameters (for example the separation limits between two fractions or the driving mode through the modules) are changed by the control and regulating device in such a way that the measured parameter adjusts to the predetermined parameter.
  • control device regulates the separation boundaries between the fractions, the flow rate through the conveyor troughs or the pressure at the outlet nozzles.
  • magnetic separators for example plate magnets, drum magnets or strip magnets
  • plate magnets for example plate magnets, drum magnets or strip magnets
  • the control and regulating device preferably consists of a control system in the form of a programmable logic controller (PLC) via which the controls of all units (eg mechanical and optoelectronic sorting system, automated box handling with recipe management and management of the control logic) are managed and controlled.
  • PLC programmable logic controller
  • the cross-plant visualization and operation is carried out by a higher-level control system.
  • the fault and operating messages of all units are evaluated and visualized together in a fault or operating message database.
  • the device according to the invention allows a flexible separation with different particle size distribution of the feed material. Both very small (length ⁇ 45 mm) and very large cubic fraction (length> 45 - 250 mm) can be classified without mechanical modifications by simple software control.
  • the inventive device allows a higher separation accuracy with respect to length and / or area of the fragments in comparison to a purely mechanical screening.
  • the device can be regulated by feedback of the sorting parameters (eg mean value of the grain fraction (BG) measured in the optoelectronic screening plant) as reference variables for the sorting plants (eg separation limits at the individual optoelectronic sorting stages).
  • the control and regulation can also be adapted via the recipes.
  • the device according to the invention enables on-line monitoring of the quality of the feed material (eg via the statistical evaluation of the particle size distribution after breaking) in accordance with the sorting criteria (eg length distribution, weight distribution).
  • the sorting criteria eg length distribution, weight distribution.
  • the invention further relates to a method in which a poly-fracture is classified by means of a device according to the invention.
  • the poly-break is separated by a mechanical sieve in a sieved fine and a residual fraction, wherein the screened fine fraction by means of another mechanical sieve is separated into a target fraction 1 and a target fraction 2 and the residual fraction is separated by means of an optoelectronic sorting into two fractions, these two fractions are divided by means of a further optoelectronic sorting into 4 other target fractions (target fractions 3 to 6) ,
  • the inventive method has a high productivity, since the set-up times are lower than in known classifiers and it is less likely to become clogged as mechanical sieves.
  • the screened fine fraction has a particle size of less than 20 mm
  • the residual fraction has a particle size of greater than 5 mm
  • the target fraction 1 has a particle size of less than 10 mm
  • the target fraction 2 has a particle size of from 2 mm to 20 mm
  • the Target fraction 3 has a particle size of 5 mm to 50 mm
  • the target fraction 4 has a particle size of 15 mm to 70 mm
  • the target fraction 5 has a particle size of 30 mm to 120 mm
  • the target fraction 6 has a particle size of greater than 60 mm.
  • the input of the sorting parameters of the desired target fractions into a higher-level control and regulating device which causes a corresponding adjustment of the parameters of the sorting systems to achieve the desired target fractions of Polybruch.
  • the setting of the parameters of the sorting systems is carried out as described for the device according to the invention.
  • the fraction with the larger number of particles with respect to the respective sorting parameter is preferably rejected or blown out in each case.
  • a preset recipe is selected at the higher-level controller of the device according to the invention.
  • the recipes contain all the parameters of the sorting system and the manipulated variables of the control system.
  • the measurement of the product parameters as well as the classification of the polysilicon fracture is preferably carried out as described below:
  • the oversize grain of the first mechanical screening stage is fed to a multi-stage optoelectronic separation plant.
  • the product stream is separated via an integrated vibrating conveyor trough and passed over a slide in free fall one (or more) CCD color line camera (s), the classification according to one or more of the parameters length, area, volume, shape, morphology and color in any combination.
  • CCD color line camera Alternatively, all known in the art electronic sensor techniques can be used for the parameter recognition of the fragments.
  • the measured values are transmitted to the higher-level control and regulating device and z. B. evaluated by microprocessor. It is decided by comparison with the stored in the recipe sort criterion, whether a fragment is discharged from the product stream or transmitted.
  • the discharge is preferably carried out by compressed air pulses, wherein the pressure on the recipe in the higher-level control is adjustable.
  • the pressure on the recipe in the higher-level control is adjustable.
  • the discharge can also be done hydraulically or mechanically. Surprisingly, it has been found that a higher sorting accuracy is achieved when the smaller fraction in terms of length is blown out, although this Fraction has a higher number of particles.
  • the recognition by means of a sensor preferably by means of an optical image recognition, has the advantage that "real" lengths, areas or shapes of the fragments are measured. This allows for a comparison with conventional mechanical screening method more accurate separation, z. B. regarding. The length of the fragments. The overlap between two fractions to be separated is less.
  • the cut-off limits can be set as required via the specified parameters (the recipe) of the higher-level control without making any changes to the machine itself (such as changing the screen coverings).
  • the inventive combination of mechanical sieve and optoelectronic sorting system for the first time a separation in both small and large fraction size range, regardless of the composition of the feed, possible.
  • the entire plant can be controlled via the "on-line measurement", in which, for example, the separation limits are directly corrected according to the feedstock.
  • the optoelectronic sorting in the device according to the invention offers the advantage that a more precise separation of the fragments according to the respective requirements (eg high cubicity of the fragments) is possible due to the combination of area and length.
  • the lengths refer to the maximum length of the fragments, with 85% by weight of the fragments having a maximum length within the specified limits.
  • Polysilicon was deposited by the Siemens method in the form of rods.
  • the rods were removed from the Siemens reactor and crushed by methods known in the art (eg, by manual comminution) to polysilicon coarse fracture.
  • This rough fracture with fragments of an edge length of 0 to 250 mm was emptied via a feeder, preferably a funnel, onto a conveyor trough which conveys the material to the device according to the invention.
  • the parameters for the fractions to be produced were entered into the higher-level measuring and control device. Since a particular desired particle size distribution in the different fractions is in each case given by the respective further use of the fracture to be produced, the fractions are usually stored as recipes in the higher-level measuring and control device and are selected accordingly. In the present example, the device was used for the production of 6 different fractions (BG 0, 1, 2, 3, 4 and 5).
  • the recipes contain all the parameters of the optoelectronic and mechanical sorting system and the conveyor system.
  • the fines (BG 0 and 1) of the Polybruchs was separated on a mechanical sieve with a mesh size of about 10 mm and then the separated portion with a further mechanical Sieve, or another sieve with a mesh size of approx. 4 mm, separated into BG 0 and 1.
  • the coarse fraction (BG 2, 3, 4 and 5) was conveyed via a conveyor trough whose conveying characteristics, such as, for example, B. Frequency, also stored in the recipe, fed to the optical sorting system and separated over two tree levels, or three optical stages as follows: In the first stage BG 3 & 2 was separated from BG 4 & 5. As a separation limit, the recipe has a maximum length of 55 mm. BG 3 & 2 was separated into BG 3 and 2 in a second stage or a separation limit of 27 mm stored in the recipe. The BG 4 & 5 in a third stage and a separation limit of 100 mm in the BG 4 and 5.
  • Fig. 2 shows the result of this classification compared to an optopneumatic separation with the same optopneumatic separator without prior sieving. It is clear that the feed material could be sorted into the selected length classes. The opposite to conventional screening more accurate separation (example length) is visible. So z.
  • BG2 / BG3 overlap in conventional separation it can be seen that the BG2 distribution ends at only about 45 mm, whereas the BG3 distribution already starts at 20 mm. The overlap is therefore 25 mm.
  • the BG2er distribution already ends at about 40 mm while the BG3er distribution starts only at 25 mm at the same time. The overlap is thus only 15mm and thus 40% less than in the prior art.
  • the software parameters were slightly varied with respect to separation limits of the individual fractions.
  • the values for the maximum or minimum permissible length of the fragments in the individual fractions have been changed by a few millimeters (see Fig. 3 ).
  • the separation limit for blow-out between BG 2 and 3 was changed from 27 mm to 31 mm and between BG 3 and 4 from 55 mm to 57 mm.
  • This program parameter change of just a few millimeters is already evident in the product properties (eg length distribution), ie the separation boundaries between the individual fractions can be flexibly adapted to the respective specification with high accuracy by simple recipe selection, or The online control system to achieve desired target values.

Landscapes

  • Sorting Of Articles (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Silicon Compounds (AREA)

Description

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum flexiblen Klassieren von polykristallinen Silicium-Bruchstücken.The invention relates to an apparatus and method for flexibly classifying polycrystalline silicon fragments.

Silicium hoher Reinheit wird durch chemische Gasphasenabscheidung eines hochreinen Chlorsilangases auf einem aufgeheizten Substrat erzeugt. Das Silicium fällt dabei polykristallin in Form von Stäben an. Diese Stäbe müssen für die weitere Verwendung zerkleinert werden. Als Brechwerkzeuge werden beispielsweise aus Metall gefertigte Backen- oder Walzenbrecher, Hämmer oder Meißel verwendet. Die so erhaltenen Bruchstücke von polykristallinem Silicium, nachfolgend als Polybruch bezeichnet, werden anschließend nach definierten Bruchgrößen klassiert.High purity silicon is produced by chemical vapor deposition of a high purity chlorosilane gas on a heated substrate. The silicon is polycrystalline in the form of rods. These bars must be shredded for further use. As breaking tools, for example made of metal baking or roll crushers, hammers or chisel are used. The resulting fragments of polycrystalline silicon, hereinafter referred to as Polybruch, are then classified according to defined breaking sizes.

Es sind verschiedene mechanische Siebverfahren, z. B. aus EP 1391252 A1 , US 6,874,713 B2 , EP 1338682 A2 , oder EP 1553214 A2 zum Klassieren von Polybruch bekannt. Ferner ist aus EP 1043249 B1 ein Schwingförderer mit Klassierung bekannt. Derartige Siebanlagen ermöglichen aufgrund ihres mechanischen Funktionsprinzips nur eine Trennung nach der Kornform, jedoch keine genaue Trennung nach einer jeweils erwünschten Länge und/oder Fläche. Sie erlauben keine flexible Einstellung der Fraktionsgrenzen ohne mechanische Umbauten.There are various mechanical screening method, z. B. off EP 1391252 A1 . US 6,874,713 B2 . EP 1338682 A2 , or EP 1553214 A2 known for classifying Polybruch. Furthermore, it is off EP 1043249 B1 a vibrating conveyor with classification known. Due to their mechanical operating principle, such screening systems only permit separation according to the grain shape, but no exact separation according to a respective desired length and / or surface. They do not allow for flexible adjustment of fraction limits without mechanical modifications.

Eine gezielte Trennung nach Länge und/oder Fläche kann durch optoelektronische Sortierverfahren erreicht werden. Solche Verfahren sind für Polysilicium z. B. aus US 6,265,683 B1 , EP-A-0876851 und US 6,040,544 bekannt. Die hierin beschriebenen Verfahren sind jedoch immer auf die Trennung bestimmter und vorher bekannter Aufgabeströme limitiert. Eine optoelektronische Trennung von Polysilicium-Bruchstücken ist allerdings dann problematisch, wenn ein hoher Feinanteil (> 1 Gew. % Bruchstücke < 20mm) im Aufgabegut vorhanden ist, da hierdurch die Bilderkennung größerer Bruchstücke erheblich gestört wird. Es ist mit den bekannten Vorrichtungen somit nicht möglich, flexibel unterschiedlichste Eingangsfraktionen in mehrere Kornklassen in hoher Genauigkeit nach z. B. Länge- und/oder Fläche zu trennen. Zudem ist keine Regelung beschrieben, die zu einem noch genaueren Sortierergebnis führt.A targeted separation according to length and / or surface can be achieved by optoelectronic sorting. Such methods are for polysilicon z. B. off US 6,265,683 B1 . EP-A-0876851 and US 6,040,544 known. However, the methods described herein are always limited to the separation of certain and previously known feed streams. An optoelectronic separation of Polysilicon fragments, however, is problematic when a high fines content (> 1 wt.% Fragments <20mm) is present in the feedstock, as this significantly disturbs the image recognition of larger fragments. It is therefore not possible with the known devices, flexibly different input fractions into several grain classes in high accuracy after z. B. length and / or area to separate. In addition, no regulation is described, which leads to an even more accurate sorting result.

Aufgabe der Erfindung war es, eine Vorrichtung zur Verfügung zu stellen, die eine flexible Klassierung von gebrochenem polykristallinem Silicium (Polysilicium) vorzugsweise nach Länge-und/oder Fläche des Polybruchs ermöglicht. Die Länge eines Bruchstücks ist dabei definiert als die längste gerade Linie zwischen zwei Punkten auf der Oberfläche eines Bruchstücks. Die Fläche eines Bruchstücks ist dabei definiert als die größte in eine Ebene projizierte Schattenfläche des Bruchstücks.The object of the invention was to provide a device which allows a flexible classification of broken polycrystalline silicon (polysilicon), preferably according to the length and / or surface of the Polybruchs. The length of a fragment is defined as the longest straight line between two points on the surface of a fragment. The area of a fragment is defined as the largest shadow area of the fragment projected in a plane.

Die Erfindung betrifft eine Vorrichtung, die dadurch gekennzeichnet ist, dass sie eine mechanische Siebanlage und eine optoelektronische Sortieranlage umfasst, wobei der Polybruch durch die mechanische Siebanlage in einen Silicium-Feinanteil und einen Silicium-Restanteil getrennt wird und der Silicium-Restanteil über eine optoelektronische Sortieranlage in weitere Fraktionen aufgetrennt wird.The invention relates to a device which is characterized in that it comprises a mechanical sieve and an optoelectronic sorting system, wherein the poly fraction is separated by the mechanical sieve into a silicon fines and a silicon remainder and the remaining silicon via an optoelectronic sorting is separated into further fractions.

Die Vorrichtung erlaubt eine Sortierung des Polybruchs nach Länge, Fläche, Form, Morphologie, Farbe und Gewicht in beliebigen Kombinationen.The device allows a sorting of the poly rupture according to length, area, shape, morphology, color and weight in any combination.

Bevorzugt besteht die Sortieranlage aus einer mehrstufigen mechanischen Siebanlage und einer mehrstufigen optoelektronischen Sortieranlage.Preferably, the sorting plant consists of a multi-stage mechanical screening plant and a multi-stage optoelectronic sorting plant.

Vorzugsweise sind die mechanischen und/oder optoelektronischen Trennvorrichtungen in einer Baumstruktur angeordnet (Siehe Fig. 1). Die Anordnung der Siebanlagen und optoelektonischen Sortieranlage in einer Baumstruktur erlaubt im Vergleich zu einer seriellen Anordnung eine genauere Sortierung, da weniger Trennstufen durchlaufen werden müssen und bei jedem Trennmodul die abzuweisende Menge geringer ist. Zudem weist die Baumstruktur kürzere Wege auf, wodurch der Verschleiß der Anlage und die Nachzerkleinerung von großen Bruchstücken geringer sind und es zu einer geringeren Kontamination des Polybruchs kommt. Dies alles erhöht die Wirtschaftlichkeit der Vorrichtung und des zugehörigen Verfahrens.Preferably, the mechanical and / or optoelectronic separation devices are arranged in a tree structure (see Fig. 1 ). The arrangement of the screening and optoelectronic sorting system in a tree structure allows in comparison to a serial arrangement a more accurate sorting, as fewer separation stages must be run through and with each separation module, the rejection amount is lower. In addition, the tree structure has shorter paths, whereby the wear of the system and the regrinding of large fragments are lower and there is a lower contamination of Polybruch. All this enhances the economy of the device and associated method.

Vorzugsweise wird der Feinanteil des zu klassierenden Polybruchs zunächst durch eine mechanische Siebanlage vom Silicium-Restanteil getrennt und anschließend durch mehrere, mechanische Siebanlagen in weitere Fraktionen aufgetrennt.Preferably, the fine fraction of the polybrot to be classified is first separated by a mechanical sieve from the silicon residue and then separated by several mechanical sieving into other fractions.

Als mechanische Siebanlage kann jede bekannte mechanische Siebmaschine eingesetzt werden. Bevorzugt werden Schwingsiebmaschinen, die über einen Unwuchtmotor angetrieben werden, eingesetzt. Als Siebbelag sind Maschen- und Lochsiebe bevorzugt. Die mechanische Siebanlage dient zur Abtrennung von Feinanteilen im Produktstrom. Der Feinanteil enthält Korngrößen bis zu einer maximalen Korngröße von bis zu 25 mm, bevorzugt von bis zu 10 mm. Die mechanische Siebanlage hat daher vorzugsweise eine Maschenweite die die genannten Korngrößen abtrennt. Da die mechanischen Siebe daher am Anfang nur kleine Löcher haben, um nur die kleinen Bruchsorten (≤ BG1) abzutrennen, kommt es seltener zu einer Verstopfung des Siebes, was die Produktivität der Anlage erhöht. Die problematischen großen Poly-Bruchstücke können sich in den kleinen Siebmaschenweiten nicht festsetzen.As a mechanical screening machine, any known mechanical screening machine can be used. Preference Schwingsiebmaschinen that are driven by an unbalance motor used. As Siebbelag mesh and perforated sieves are preferred. The mechanical sieve system is used to separate fines in the product stream. The fine fraction contains grain sizes up to a maximum grain size of up to 25 mm, preferably of up to 10 mm. The mechanical sieve therefore preferably has a mesh size which separates the mentioned grain sizes. Since the mechanical sieves therefore only have small holes at the beginning, in order to separate only the small breakage types (≤ BG1), there is less blockage of the sieve, which increases the productivity of the system. The problematic large poly fragments can not settle in the small Siebmaschenweiten.

Durch eine mehrstufige mechanische Siebanlage kann der Feinanteil noch in weitere Fraktionen aufgetrennt werden.By means of a multi-stage mechanical screening system, the fine fraction can be separated into further fractions.

Die Siebanlagen (Siebstufen) können hintereinander oder auch in einer anderen Struktur, wie z. B. einer Baumstruktur, angeordnet sein. Bevorzugt sind die Siebe in mehr als einer Stufe, besonders bevorzugt in drei Stufen in einer Baumstruktur angeordnet. So werden beispielsweise bei einer beabsichtigten Aufteilung des Poly-Bruchs in vier Kornfraktionen (z. B. Fraktion 1, 2, 3, 4) in einer ersten Stufe Fraktion 1 und 2 von Fraktion 3 und 4 getrennt. In einer zweiten Stufe werden dann Fraktion 1 von Fraktion 2 und einer parallel angeordneten dritten Stufe Fraktion 3 von Fraktion 4 getrennt.The screening plants (screening stages) can successively or in another structure, such as. B. a tree structure, be arranged. The sieves are preferably arranged in more than one stage, particularly preferably in three stages in a tree structure. For example, in an intended split of the poly-break into four grain fractions (eg, fraction 1, 2, 3, 4), in a first stage, fractions 1 and 2 are separated from fraction 3 and 4. In a second stage then fraction 1 of fraction 2 and a parallel third stage fraction 3 of fraction 4 are separated.

Die Sortierung des Polysilicium-Restanteils kann nach allen Kriterien, die Stand der Technik in der Bild- und Sensortechnik sind, erfolgen. Bevorzugt wird eine optoelektronische Sortierung eingesetzt. Sie erfolgt vorzugsweise nach einem oder mehreren, besonders bevorzugt ein bis drei, der Kriterien ausgewählt aus der Gruppe Länge, Fläche, Form, Morphologie, Farbe und Gewicht der Polysilicium-Bruchstücke. Besonders bevorzugt erfolgt sie nach Länge und Fläche der Polysilicium-Bruchstücke. Vorzugsweise wird der Silicium-Restanteil durch eine oder mehrere optoelektronische Sortieranlagen in weitere Fraktionen aufgetrennt. Vorzugsweise werden 2, 3 oder mehr optoelektronische Sortieranlagen, die in einer Baumstruktur angeordnet sind, eingesetzt. Die optische Bilderkennung der optoelektronischen Sortieranlage hat den Vorteil, dass "wirkliche" Längen oder Flächen gemessen werden. Dies erlaubt eine gegenüber herkömmlichen mechanischen Siebverfahren genauere Trennung der Bruchstücke nach den jeweils erwünschten Parametern. Als optoelektronische Sortieranlage wird vorzugsweise eine Vorrichtung, wie sie in US 6,265,683 B1 oder in US 6,040,544 A beschrieben ist, verwendet. Auf diese Schriften wird bezüglich der Einzelheiten der optoelektronischen Sortieranlage daher verwiesen. Diese optoelektronische Sortieranlage umfasst eine Vorrichtung zum Vereinzeln des Polybruches und eine Gleitfläche für den Polybruch, wobei der Winkel der Gleitfläche zur Horizontalen verstellbar ist, sowie eine Strahlenquelle durch deren Strahlengang der Polybruch fällt und eine Formerfassungsvorrichtung, die die Form des Klassierguts an eine Kontrolleinheit weiterleitet, die eine Ablenkvorrichtung steuert.The sorting of the residual polysilicon content can be carried out according to all criteria that are state of the art in image and sensor technology. Preferably, an optoelectronic sorting is used. It preferably takes one or more, more preferably one to three, of the criteria selected from the group length, area, shape, morphology, color and weight of the polysilicon fragments. It is particularly preferably carried out according to the length and area of the polysilicon fragments. Preferably, the residual silicon content is separated by one or more optoelectronic sorting into further fractions. Preferably, 2, 3 or more optoelectronic sorting systems, which are arranged in a tree structure, are used. The optical image recognition of the optoelectronic sorting system has the advantage that "real" lengths or areas are measured. This allows a comparison with conventional mechanical screening method more accurate separation of the fragments according to the particular desired parameters. As an optoelectronic sorting system is preferably a device, as in US 6,265,683 B1 or in US 6,040,544 A is described. Reference is therefore made to these documents with regard to the details of the optoelectronic sorting system. This optoelectronic sorting system comprises a device for separating the poly-break and a sliding surface for the poly-fracture, wherein the angle of the sliding surface is adjustable to the horizontal, and a radiation source through the beam path of the poly break falls and a shape detection device, which forwards the shape of the Klassierguts to a control unit, which controls a deflection device.

Vorzugsweise wird in jeder optoelektronischen Sortierstufe der Produktstrom über eine integrierte Schwingförderrinne vereinzelt und passiert über eine Rutsche im freien Fall eine oder mehrere CCD-Farzeilenkameras, die eine Klassifizierung nach einem oder mehreern Sortierparametern ausgewählt aus der Gruppe Länge, Fläche, Volumen (Gewicht), Form, Morphologie und Farbe vornimmt. Für die Parametererkennung der Bruchstücke können alternativ alle dem Stand der Technik bekannten elektronischen Sensortechniken eingesetzt werden. Die Messwerte werden an die übergeordnete Steuer- und Regeleinrichtung übermittelt und z. B. mittels Mikroprozessor ausgewertet. Dabei wird durch Vergleich mit dem im Rezept hinterlegten Sortierkriterium entschieden, ob ein Bruchstück aus dem Produktstrom ausgeschleust oder durchgelassen wird. Die Ausschleusung erfolgt vorzugsweise über Düsen durch Druckluftimpulse, wobei der Druck über das Rezept in der übergeordneten Steuerung einstellbar ist. Dabei werden beispielsweise über eine unter der Bilderkennung angeordnete Ventilleiste Trennkanäle (Druckluftleisten) angesteuert und mit dosierten Druckluftimpulsen, die von der Korngröße abhängig sind, beaufschlagt.Preferably, in each optoelectronic sorting stage, the product stream is separated via an integrated vibrating conveyor trough and passed over a slide in free fall one or more CCD Farzeilenkameras, the classification of one or more sorting parameters selected from the group length, area, volume (weight), shape , Morphology and color makes. Alternatively, all known in the art electronic sensor techniques can be used for the parameter recognition of the fragments. The measured values are transmitted to the higher-level control and regulating device and z. B. evaluated by microprocessor. It is decided by comparison with the stored in the recipe sort criterion, whether a fragment is discharged from the product stream or transmitted. The discharge preferably takes place via nozzles by compressed air pulses, wherein the pressure on the recipe in the higher-level control is adjustable. In this case, for example, via a arranged under the image recognition valve strip separating channels (compressed air strips) are controlled and metered with compressed air pulses, which are dependent on the grain size.

Vorzugsweise ist die erfindungsgemäße Vorrichtung daher mit einer übergeordneten Steuerung versehen, welche es ermöglicht, die Sortierparameter, nach denen der Polybruch sortiert wird und/oder die Anlagenparameter, die die Förderung des Polybruchs beeinflussen (z. B. die Fördergeschwindigkeit), flexibel an den einzelnen Teilen der Vorrichtungen einzustellen. Die Sortierparameter, nach denen der Polybruch sortiert wird sind vorzugsweise die o. g. Parameter, besonders bevorzugt ausgewählt aus der Gruppe Länge, Fläche, Morphologie, Farbe oder Form der Bruchstücke.Preferably, the device according to the invention is therefore provided with a higher-level control, which makes it possible, the Sorting parameters, according to which the poly-break is sorted and / or the system parameters that influence the promotion of the Polybruchs (eg the conveying speed), flexibly adjust to the individual parts of the devices. The sorting parameters by which the polybranch is sorted are preferably the abovementioned parameters, more preferably selected from the group length, area, morphology, color or shape of the fragments.

Die übergeordnete Steuerung variiert vorzugsweise einen oder mehrere der im Folgenden genannten Teile der Vorrichtung:

  • den Durchsatz der Förderrinnen (z. B. über Variation der Frequenz der Umwuchtmotoren)
  • Schwingfrequenz der mechanischen Siebe
  • Parameter der Sortierung (Grenzen für Fläche, Länge, Farbe oder Morphologie, bevorzugt Länge und/oder Fläche der Bruchstücke)
  • Vordruck an den Ausblaseeinheiten
The higher-level controller preferably varies one or more of the following parts of the device:
  • the throughput of the conveyors (eg via variation of the frequency of the recirculation motors)
  • Oscillation frequency of the mechanical sieves
  • Parameters of the sorting (limits for area, length, color or morphology, preferably length and / or area of the fragments)
  • Form on the blow-out units

Die Größen der Sortierparameter, nach denen der Polybruch sortiert wird, sind vorzugsweise in Form von Rezepten in der übergeordneten Steuerung gespeichert und eine Variation der Selektionskriterien in der mechanischen Siebvorrichtung und /oder der optoelektronischen Sortierung erfolgt über die Auswahl eines Rezeptes, welches dann die Anwahl der zugehörigen Sortierparameter in den einzelnen Teilen der erfindungsgemäßen Vorrichtung bewirkt.The sizes of the sorting parameters, according to which the poly-break is sorted, are preferably stored in the form of recipes in the higher-level control, and a variation of the selection criteria in the mechanical screening device and / or the opto-electronic sorting takes place via the selection of a recipe, which then selects the associated sorting parameters in the individual parts of the device according to the invention causes.

In einer bevorzugten Ausführungsform umfasst die erfindungsgemäße Vorrichtung nach der Sortieranlage Waagen zur Bestimmung der Gewichtsausbeuten der klassierten Fraktionen. Vorzugsweise umfasst die Vorrichtung nach der Sortieranlage eine vollautomatische Kistenabfüll- und Kistentransportvorrichtung.In a preferred embodiment, the device according to the invention after the sorting system comprises scales for determining the weight yields of the classified fractions. Preferably The device according to the sorting system comprises a fully automatic Kistenabfüll- and box transport device.

Eine bevorzugte Ausführungsform der Vorrichtung ist dadurch gekennzeichnet, dass die mechanische Siebanlage und/oder die optoelektronische Sortieranlage mit einer Messeinrichtung für definierte Parameter des klassierten Polysilicium-Bruchs versehen ist und diese Messeinrichtung mit einer übergeordneten Steuer- und Regeleinrichtung verbunden ist, welche die gemessenen Parameter statistisch auswertet und mit vorgegebenen Parametern vergleicht und bei einer Abweichung zwischen gemessenen Parameter und vorgegebenen Parameter die Einstellung der Sortierparameter der optoelektronischen Sortieranlage bzw. der gesamten Sortieranlage (z. B. Frequenz der mechanischen Siebanlage oder Fördergeschwindigkeiten der Polybruchstücke) oder die Auswahl der Rezepte derart verändern kann, dass sich der dann gemessene Parameter dem vorgegebenen Parameter angleicht.A preferred embodiment of the device is characterized in that the mechanical screen and / or the optoelectronic sorting system is provided with a measuring device for defined parameters of classified polysilicon fracture and this measuring device is connected to a higher-level control and regulating device, which statistically the measured parameters evaluates and compares with predetermined parameters and in a deviation between measured parameters and predetermined parameters, the setting of the sorting parameters of the optoelectronic sorting system or the entire sorting system (eg frequency of the mechanical screen or conveyor speeds of the poly fragments) or the selection of recipes can change in that the parameter then measured adjusts to the given parameter.

Vorzugsweise wird ein Parameter aus der Gruppe Länge, Fläche, Form, Morphologie, Farbe und Gewicht der Polysilicium-Bruchstücke gemessen. Besonders bevorzugt wird die Länge oder die Fläche der Polysilicium-Bruchstücke innerhalb der jeweiligen Fraktion gemessen und in Form von Längen oder Flächenverteilungen ausgewertet (z. B. 5 %, 50 % oder 95 % Quantil). Alternativ werden die Gewichtsausbeuten der einzelnen SiebFraktionen von den Waagen an den Siebausgängen bestimmt. Ein weiterer Messparameter ist der an den einzelnen optoelektronischen Sortieranlagen ermittelte Massen- und Teilchendurchsatz.Preferably, a parameter is measured from the group length, area, shape, morphology, color and weight of the polysilicon fragments. The length or the area of the polysilicon fragments within the respective fraction is particularly preferably measured and evaluated in the form of lengths or area distributions (eg 5%, 50% or 95% quantile). Alternatively, the weight yields of the individual sieve fractions are determined by the scales at the sieve sheds. Another measuring parameter is the mass and particle throughput determined at the individual optoelectronic sorting plants.

Zur Stabilisierung der gewünschten Ausbeuten, können entweder die mit einer Waage erfassten Gewichte der einzelnen Fraktionen, oder die in der optoelektronischen Trennanlage gemessenen Längenverteilungen der einzelnen Bruchfraktionen herangezogen werden. Ist z. B. der Mengenanfall an großen Bruchstücken zu groß oder der an einer optischen Trennstufe ermittelte Längenmittelwert (Ist-Wert) der Bruchverteilung größer als der Soll-Wert, so können Trenngrenzen entsprechend einer im Rezept festgelegten Logik verschoben werden, so dass sich die Bruchverteilung zum Ziel hin verschiebt.To stabilize the desired yields, either the weights recorded with a balance of the individual Fractions, or measured in the optoelectronic separation system length distributions of the individual fraction fractions are used. Is z. B. the amount of large fragments to large or the determined at an optical separation step length average (actual value) of the fractional distribution greater than the target value, separation limits can be moved according to a set logic in the recipe, so that the fractional distribution to the goal shifts.

Ist umgekehrt der Anteil an kleinen Bruchstücken zu groß, kann zum Beispiel anhand der gemessenen Teilchenanzahl die Fördergeschwindigkeit angepasst werden, um die Anlage nicht zu überlasten und/oder ein anderes Sortierrezept ausgewählt werden.Conversely, if the proportion of small fragments is too large, the conveying speed can be adjusted, for example, on the basis of the measured number of particles so as not to overload the system and / or to select a different sorting recipe.

Die beispielsweise in der optoelektronischen Sortieranlage im Rahmen des On-Line Monitorings gemäß den Sortierkriterien (z. B. Längenverteilung, Gewichtsverteilung) bestimmten Sortierparameter (z. B. Längenmittelwert einer Fraktion) des klassierten Polysilicium-Bruchs werden an die übergeordnete Steuer-und Regeleinrichtung übermittelt und dort mit vorgegebenen Sollwerten verglichen. Bei einer Abweichung zwischen gemessenen und vorgegebenen Parametern werden die variablen Sortierparameter (z. B. die Trenngrenzen zwischen zwei Fraktionen oder die Fahrweise durch die Module) durch die Steuer- und Regeleinrichtung derart verändert, dass sich der gemessene Parameter dem vorgegebenen Parameter angleicht.The sorting parameters (for example length average value of a fraction) of the classified polysilicon fraction determined in the optoelectronic sorting system as part of the on-line monitoring according to the sorting criteria (eg length distribution, weight distribution) are transmitted to the higher-level control and regulating device and compared there with predetermined setpoints. In the event of a deviation between measured and predefined parameters, the variable sorting parameters (for example the separation limits between two fractions or the driving mode through the modules) are changed by the control and regulating device in such a way that the measured parameter adjusts to the predetermined parameter.

Vorzugsweise regelt die Regeleinrichtung die Trenngrenzen zwischen den Fraktionen, den Durchsatz über die Förderrinnen oder den Druck an den Ausblasdüsen.Preferably, the control device regulates the separation boundaries between the fractions, the flow rate through the conveyor troughs or the pressure at the outlet nozzles.

In einer Variante der erfindungsgemäßen Vorrichtung sind zwischen den einzelnen Sortierstufen Magnetabscheider (z. B. Plattenmagneten, Trommelmagneten oder Bandmagneten) angeordnet, um metallische Fremdkörper aus dem Polysilicium-Bruch zu entfernen und die Metallkontamination des Polysilicium-Bruchs zu reduzieren.In a variant of the device according to the invention, magnetic separators (for example plate magnets, drum magnets or strip magnets) are arranged between the individual sorting stages in order to remove metallic foreign bodies from the polysilicon break and to reduce the metal contamination of the polysilicon break.

Die Steuer- und Regelvorrichtung besteht vorzugsweise aus einem Leitsystem in Form einer speicherprogrammierbaren Steuerung (SPS) über die die Steuerungen aller Teilanlagen (z. B. mechanische und optoelektronische Sortieranlage, automatisiertes Kistenhandling mit Rezeptverwaltung und Verwaltung der Regellogik) verwaltet und geregelt werden. Die teilanlagenübergreifende Visualisierung und Bedienung erfolgt von einem übergeordneten Leitsystem. Die Stör- und Betriebsmeldungen aller Teilanlagen werden in einer Stör- bzw. Betriebsmeldungs-Datenbank zusammenkopiert ausgewertet und visualisiert.The control and regulating device preferably consists of a control system in the form of a programmable logic controller (PLC) via which the controls of all units (eg mechanical and optoelectronic sorting system, automated box handling with recipe management and management of the control logic) are managed and controlled. The cross-plant visualization and operation is carried out by a higher-level control system. The fault and operating messages of all units are evaluated and visualized together in a fault or operating message database.

Durch die Kombination der Einzelanlagen zur erfindungsgemäßen Vorrichtung und die logische Verknüpfung mittels einer übergeordneten Steuerung wird es erstmals möglich, verschiedene Sortierprozesse, d. h. Sortierprozesse nach verschiedenen Sortierparametern, durchzuführen, ohne dass mechanische Umbauten an der Vorrichtung notwendig sind.By combining the individual systems for the device according to the invention and the logical linkage by means of a higher-level control, it becomes possible for the first time to perform various sorting processes, ie. H. Sorting processes according to different sorting parameters, perform without mechanical modifications to the device are necessary.

Insbesondere erlaubt die erfindungsgemäße Vorrichtung eine flexible Trennung bei unterschiedlicher Korngrößenverteilung des Aufgabegutes. Sowohl sehr kleiner (Länge < 45 mm) als auch sehr großer kubischer Bruch (Länge > 45 - 250 mm) kann ohne mechanische Umbauten durch einfache Softwareansteuerung klassiert werden.In particular, the device according to the invention allows a flexible separation with different particle size distribution of the feed material. Both very small (length <45 mm) and very large cubic fraction (length> 45 - 250 mm) can be classified without mechanical modifications by simple software control.

Im Rahmen der vorliegenden Erfindung wurde festgestellt, dass die Funktion der optoelektronischen Sortierung bei einem beliebigen Polysilicumbruch erst durch Vorschaltung einer mechanischen Siebung zur Abtrennung des Feinanteils in der erforderlichen Genauigkeit ermöglicht wird. Ein hoher Feinanteil im Aufgabematerial, welches auf die optoelektronische Sortieranlage aufgegeben wird, beeinträchtigt die Genauigkeit der Sortierung sehr stark und stellt im Extremfall sogar die optoelektronische Sortierung in Frage.In the context of the present invention, it has been found that the function of the optoelectronic sorting in the case of any polysilicon breakup is made possible only by connecting a mechanical sieve to separate the fine fraction to the required accuracy. A high fines content in the feed material, which is placed on the optoelectronic sorting system, the accuracy of the sorting is very strong and in extreme cases even the optoelectronic sorting in question.

Die erfindungsgemäße Vorrichtung ermöglicht eine höhere Trenngenauigkeit bezüglich Länge und/oder Fläche der Bruchstücke im Vergleich zu einer rein mechanischen Siebanlage. Die Vorrichtung ist regelbar über Rückmeldung der Sortierparameter (z. B. Mittelwert der Kornfraktion (BG) gemessen in der optoelektronischen Siebanlage) als Führungsgrößen für die Sortieranlagen (z. B. Trenngrenzen an den einzelnen optoelektronischen Sortierstufen). Anhand der gemessenen Gewichtsausbeuten kann auch die Steuerung und Regelung über die Rezepte angepasst werden.The inventive device allows a higher separation accuracy with respect to length and / or area of the fragments in comparison to a purely mechanical screening. The device can be regulated by feedback of the sorting parameters (eg mean value of the grain fraction (BG) measured in the optoelectronic screening plant) as reference variables for the sorting plants (eg separation limits at the individual optoelectronic sorting stages). On the basis of the measured weight yields, the control and regulation can also be adapted via the recipes.

Die erfindungsgemäße Vorrichtung ermöglicht ein On-Line Monitoring der Qualität des Aufgabematerials (z. B. über die statistische Auswertung der Korngrößenverteilung nach dem Brechen) gemäß den Sortierkriterien (z. B. Längenverteilung, Gewichtsverteilung).The device according to the invention enables on-line monitoring of the quality of the feed material (eg via the statistical evaluation of the particle size distribution after breaking) in accordance with the sorting criteria (eg length distribution, weight distribution).

Die Erfindung betrifft ferner ein Verfahren, bei dem ein Polybruch mittels einer erfindungsgemäßen Vorrichtung klassiert wird.The invention further relates to a method in which a poly-fracture is classified by means of a device according to the invention.

Vorzugsweise wird dazu der Polybruch durch eine mechanische Siebanlage in eine abgesiebte Fein- und eine Rest-Fraktion getrennt, wobei die abgesiebte Feinfraktion mittels einer weiteren mechanische Siebanlage in eine Zielfraktion 1 und in eine Zielfraktion 2 getrennt wird und die Rest-Fraktion mittels einer optoelektronischen Sortierung in zwei Fraktionen getrennt wird, wobei diese zwei Fraktionen mittels jeweils einer weiteren optoelektronischen Sortierung in 4 weitere Zielfraktionen (Zielfraktionen 3 bis 6) unterteilt werden.Preferably, the poly-break is separated by a mechanical sieve in a sieved fine and a residual fraction, wherein the screened fine fraction by means of another mechanical sieve is separated into a target fraction 1 and a target fraction 2 and the residual fraction is separated by means of an optoelectronic sorting into two fractions, these two fractions are divided by means of a further optoelectronic sorting into 4 other target fractions (target fractions 3 to 6) ,

Das erfindungsgemäße Verfahren weist eine hohe Produktivität auf, da die Rüstzeiten geringer sind als bei bekannten Klassiervorrichtungen und es seltener zu einer Verstopfung kommt wie bei mechanischen Sieben.The inventive method has a high productivity, since the set-up times are lower than in known classifiers and it is less likely to become clogged as mechanical sieves.

Vorzugsweise weist die abgesiebte Feinfraktion eine Korngröße von kleiner 20 mm auf, die Rest-Fraktion eine Korngröße von größer 5 mm auf, die Zielfraktion 1 eine Korngröße von kleiner 10 mm auf, die Zielfraktion 2 eine Korngröße von 2 mm bis 20 mm auf, die Zielfraktion 3 eine Korngröße von 5 mm bis 50 mm auf, die Zielfraktion 4 eine Korngröße von 15 mm bis 70 mm auf, die Zielfraktion 5 eine Korngröße von 30 mm bis 120 mm auf und die Zielfraktion 6 eine Korngröße von größer 60 mm auf.Preferably, the screened fine fraction has a particle size of less than 20 mm, the residual fraction has a particle size of greater than 5 mm, the target fraction 1 has a particle size of less than 10 mm, the target fraction 2 has a particle size of from 2 mm to 20 mm, the Target fraction 3 has a particle size of 5 mm to 50 mm, the target fraction 4 has a particle size of 15 mm to 70 mm, the target fraction 5 has a particle size of 30 mm to 120 mm and the target fraction 6 has a particle size of greater than 60 mm.

Vorzugsweise erfolgt die Eingabe der Sortierparameter der gewünschten Zielfraktionen in eine übergeordnete Steuer- und Regelvorrichtung, welche eine entsprechende Einstellung der Parameter der Sortieranlagen zur Erzielung der gewünschten Zielfraktionen des Polybruchs bewirkt. Die Einstellung der Parameter der Sortieranlagen erfolgt wie für die erfindungsgemäße Vorrichtung beschrieben.Preferably, the input of the sorting parameters of the desired target fractions into a higher-level control and regulating device, which causes a corresponding adjustment of the parameters of the sorting systems to achieve the desired target fractions of Polybruch. The setting of the parameters of the sorting systems is carried out as described for the device according to the invention.

Vorzugsweise wird in der optoelektronischen Sortierung die Fraktion mit der bezüglich des jeweiligen Sortierparameters größeren Teilchenanzahl jeweils abgewiesen bzw. ausgeblasen.In the optoelectronic sorting, the fraction with the larger number of particles with respect to the respective sorting parameter is preferably rejected or blown out in each case.

Vorzugsweise wird ein voreingestelltes Rezept an der übergeordneten Steuerung der erfindungsgemäßen Vorrichtung ausgewählt. In den Rezepten sind alle Parameter der Sortieranlage und die Stellgrößen der Regelung hinterlegt. Die Messung der Produktparameter sowie der Klassierung des Polysilicium-Bruchs erfolgt vorzugsweise wie im Folgenden beschrieben:Preferably, a preset recipe is selected at the higher-level controller of the device according to the invention. The recipes contain all the parameters of the sorting system and the manipulated variables of the control system. The measurement of the product parameters as well as the classification of the polysilicon fracture is preferably carried out as described below:

Das Überkorn der ersten mechanischen Siebstufe wird einer mehrstufigen optoelektronischen Trennanlage zugeführt. In jeder optoelektronischen Sortierstufe wird der Produktstrom über eine integrierte Schwingförderrinne vereinzelt und passiert über eine Rutsche im freien Fall eine (oder mehrere) CCD-Farbzeilenkamera(s), die eine Klassifizierung nach einem oder mehreren der Parameter Länge, Fläche, Volumen, Form, Morphologie und Farbe in beliebiger Kombination vornimmt. Für die Parametererkennung der Bruchstücke können alternativ alle dem Stand der Technik bekannten elektronischen Sensortechniken eingesetzt werden. Die Messwerte werden an die übergeordnete Steuer- und Regeleinrichtung übermittelt und z. B. mittels Mikroprozessor ausgewertet. Dabei wird durch Vergleich mit dem im Rezept hinterlegten Sortierkriterium entschieden, ob ein Bruchstück aus dem Produktstrom ausgeschleust oder durchgelassen wird. Die Ausschleusung erfolgt vorzugsweise durch Druckluftimpulse, wobei der Druck über das Rezept in der übergeordneten Steuerung einstellbar ist. Dabei werden beispielsweise über eine unter der Bilderkennung angeordnete Ventilleiste Trennkanäle (Druckluftleisten) angesteuert und mit dosierten Druckluftimpulsen, die von der Korngröße abhängig sind, beaufschlagt. Der Durchlassstrom und der Abweisstrom werden danach getrennt abgeführt und der nächsten optoelektronischen Sortierstufe zugeführt. Alternativ kann die Ausschleusung auch hydraulisch oder mechanisch erfolgen. Überraschenderweise wurde festgestellt, dass eine höhere Sortiergenauigkeit erzielt wird, wenn die bezüglich Länge jeweils kleinere Fraktion ausgeblasen wird, obwohl diese Fraktion eine höhere Teilchenanzahl besitzt. Es ist nämlich aus dem Stand der Technik zu erwarten, dass die Sortiergenauigkeit mit zunehmendem Abweisanteil sinkt, d. h., dass das Ausblasen (hydraulische/mechanische Entfernen) auf die bzgl. Teilchenanzahl "kleinere" Fraktion eine genauere Trennung der Bruchstücke bewirken sollte. Überraschenderweise wird allerdings bzgl. Längen, oder Flächentrennung der Bruchstücke mit der umgekehrten Fahrweise eine genauere Trennung der Bruchstücke erreicht.The oversize grain of the first mechanical screening stage is fed to a multi-stage optoelectronic separation plant. In each optoelectronic sorting stage, the product stream is separated via an integrated vibrating conveyor trough and passed over a slide in free fall one (or more) CCD color line camera (s), the classification according to one or more of the parameters length, area, volume, shape, morphology and color in any combination. Alternatively, all known in the art electronic sensor techniques can be used for the parameter recognition of the fragments. The measured values are transmitted to the higher-level control and regulating device and z. B. evaluated by microprocessor. It is decided by comparison with the stored in the recipe sort criterion, whether a fragment is discharged from the product stream or transmitted. The discharge is preferably carried out by compressed air pulses, wherein the pressure on the recipe in the higher-level control is adjustable. In this case, for example, via a arranged under the image recognition valve strip separating channels (compressed air strips) and acted upon with metered pulses of compressed air, which are dependent on the grain size. The forward current and the reject current are then removed separately and fed to the next optoelectronic sorting stage. Alternatively, the discharge can also be done hydraulically or mechanically. Surprisingly, it has been found that a higher sorting accuracy is achieved when the smaller fraction in terms of length is blown out, although this Fraction has a higher number of particles. Namely, it is to be expected from the prior art that the sorting accuracy decreases with increasing Abweisanteil, ie, that the blowing (hydraulic / mechanical removal) on the. Particle number "smaller" fraction should cause a more accurate separation of the fragments. Surprisingly, however, with respect to length, or area separation of the fragments with the reverse driving a more accurate separation of the fragments achieved.

Die Erkennung mittels eines Sensors, bevorzugt mittels einer optischen Bilderkennung, hat den Vorteil, dass "wirkliche" Längen, Flächen oder Formen der Bruchstücke gemessen werden. Dies erlaubt zum einen eine gegenüber herkömmlichen mechanischen Siebverfahren genauere Trennung, z. B. bzgl. der Länge der Bruchstücke. Der Überlapp zwischen zwei zu trennenden Fraktionen ist geringer. Zum anderen können die Trenngrenzen beliebig über die vorgegebenen Parameter (das Rezept) der übergeordneten Steuerung eingestellt werden, ohne dass Änderungen an der Maschine selber vorzunehmen sind (wie z. B. Wechsel der Siebbeläge). Durch die erfindungsgemäße Kombination von mechanischem Sieb und optoelektronischer Sortieranlage ist erstmals eine Trennung im kleinen wie im großen Bruchgrößenbereich, unabhängig von der Zusammensetzung des Aufgabegutes, möglich.The recognition by means of a sensor, preferably by means of an optical image recognition, has the advantage that "real" lengths, areas or shapes of the fragments are measured. This allows for a comparison with conventional mechanical screening method more accurate separation, z. B. regarding. The length of the fragments. The overlap between two fractions to be separated is less. On the other hand, the cut-off limits can be set as required via the specified parameters (the recipe) of the higher-level control without making any changes to the machine itself (such as changing the screen coverings). The inventive combination of mechanical sieve and optoelectronic sorting system for the first time a separation in both small and large fraction size range, regardless of the composition of the feed, possible.

Darüber hinaus kann über die "on-line-Messung" die Gesamtanlage geregelt werden, in dem zum Beispiel die Trenngrenzen dem Aufgabegut entsprechend unmittelbar korrigiert werden.In addition, the entire plant can be controlled via the "on-line measurement", in which, for example, the separation limits are directly corrected according to the feedstock.

Des Weiteren bietet die optoelektronische Sortierung in der erfindungsgemäßen Vorrichtung den Vorteil, dass durch die Kombination aus Fläche und Länge eine genauere Trennung der Bruchstücke nach den jeweiligen Anforderungen (z. B. hohe Kubizität der Bruchstücke) möglich ist.Furthermore, the optoelectronic sorting in the device according to the invention offers the advantage that a more precise separation of the fragments according to the respective requirements (eg high cubicity of the fragments) is possible due to the combination of area and length.

Die mittels der erfindungsgemäßen Vorrichtung klassierten Fraktionen des Siliciumbruchs werden gesammelt und bevorzugt in Kisten abgefüllt. Vorzugsweise ist die Abfüllung automatisiert, wie beispielsweise in EP 1 334 907 B beschrieben.

  • Fig. 1 zeigt das Verfahrensprinzip der in den Beispielen verwendeten erfindungsgemäßen Vorrichtung.
  • Fig. 2 zeigt das Ergebnis der Sortierung aus Bsp. 1 im Vergleich zu einer optopneumatischen Tennung mit der gleichen optopneumatischen Trennvorrichtung ohne vorherige Siebung (Stand der Technik)
  • Fig. 3 zeigt den Einfluss der bei der optoelektronischen Trennanlage eingestellten Sortiergrenzen (hier Länge eines Bruchstückes) auf die Bruchgrößenverteilung der so gewonnenen Fraktionen, wie in Bsp. 2 beschrieben.
The fractions of the silicon fraction classified by means of the device according to the invention are collected and preferably filled into boxes. Preferably, the filling is automated, such as in EP 1 334 907 B described.
  • Fig. 1 shows the process principle of the device according to the invention used in the examples.
  • Fig. 2 1 shows the result of the sorting from Ex. 1 in comparison with an optopneumatic separation with the same optopneumatic separation device without prior sieving (prior art)
  • Fig. 3 shows the influence of the sorting limits set in the optoelectronic separation plant (here length of a fragment) on the fractional size distribution of the fractions thus obtained, as described in Example 2.

Die folgenden Beispiele dienen der weiteren Erläuterung der Erfindung.The following examples serve to further illustrate the invention.

In den Beispielen wurden folgende Bruchgrößen des Polybruches hergestellt:

  • BG 0: Bruchgrößen mit einer Verteilung von kleiner 5 mm
  • BG 1: Bruchgrößen mit einer Verteilung von ca. 2 mm bis 12 mm
  • BG 2: Bruchgrößen mit einer Verteilung von ca. 8 mm bis 40 mm
  • BG 3: Bruchgrößen mit einer Verteilung von ca. 25 mm bis 65 mm
  • BG 4: Bruchgrößen mit einer Verteilung von ca. 50 mm bis 110 mm
  • BG 5: Bruchgrößen mit einer Verteilung von ca. 90 mm bis 250 mm.
In the examples the following fracture sizes of the poly-break were prepared:
  • BG 0: fraction sizes with a distribution of less than 5 mm
  • BG 1: fraction sizes with a distribution of approx. 2 mm to 12 mm
  • BG 2: Fraction sizes with a distribution of approx. 8 mm to 40 mm
  • BG 3: Fractional sizes with a distribution of approx. 25 mm to 65 mm
  • BG 4: Fraction sizes with a distribution of approx. 50 mm to 110 mm
  • BG 5: Fractional sizes with a distribution of approx. 90 mm to 250 mm.

Die Längenangaben beziehen sich auf die maximale Länge der Bruchstücke, wobei 85 Gew-% der Bruchstücke eine maximale Länge innerhalb der angegebenen Grenzen haben.The lengths refer to the maximum length of the fragments, with 85% by weight of the fragments having a maximum length within the specified limits.

Beispiel 1:Example 1:

Polysilicum wurde durch das Siemensverfahren in Form von Stangen abgeschieden. Die Stangen wurden aus dem Siemensreaktor ausgebaut und nach Stand der Technik bekannten Methoden (z. B. durch händische Zerkleinerung) zu Polysilicium-Grobbruch gebrochen. Dieser Grobbruch mit Bruchstücken einer Kantenlänge von 0 bis 250 mm wurde über eine Aufgabevorrichtung, vorzugsweise einen Trichter, auf eine Förderrinne entleert, die das Material zur erfindungsgemäßen Vorrichtung fördert. In die übergeordnete Mess- und Steuervorrichtung wurden die Parameter für die herzustellenden Fraktionen eingegeben. Da durch die jeweilige Weiterverwendung des herzustellenden Bruchs eine jeweils gewünschte Korngrößenverteilung in den verschiedenen Fraktionen jeweils vorgegeben wird, sind die Fraktionen in der Regel als Rezepte in der übergeordneten Mess- und Steuervorrichtung hinterlegt und werden dementsprechend ausgewählt. Im vorliegenden Beispiel wurde die Vorrichtung für die Herstellung von 6 verschiedenen Fraktionen (BG 0, 1, 2, 3, 4 und 5) eingesetzt. In den Rezepten sind jeweils alle Parameter der optoelektronischen und mechanischen Sortieranlage und der Fördertechnik hinterlegt.Polysilicon was deposited by the Siemens method in the form of rods. The rods were removed from the Siemens reactor and crushed by methods known in the art (eg, by manual comminution) to polysilicon coarse fracture. This rough fracture with fragments of an edge length of 0 to 250 mm was emptied via a feeder, preferably a funnel, onto a conveyor trough which conveys the material to the device according to the invention. The parameters for the fractions to be produced were entered into the higher-level measuring and control device. Since a particular desired particle size distribution in the different fractions is in each case given by the respective further use of the fracture to be produced, the fractions are usually stored as recipes in the higher-level measuring and control device and are selected accordingly. In the present example, the device was used for the production of 6 different fractions (BG 0, 1, 2, 3, 4 and 5). The recipes contain all the parameters of the optoelectronic and mechanical sorting system and the conveyor system.

Für die Sortierung eines Polybruchs mit Anteilen an großen Stücken (BG 5) wurden folgende Parameter im Rezept hinterlegt:The following parameters are stored in the recipe for sorting a polyfraction with fractions of large pieces (BG 5):

Der Feinanteil (BG 0 und 1) des Polybruchs wurde am mechanischen Sieb mit einer Maschenweite von etwa 10 mm abgetrennt und anschließend der abgetrennte Anteil mit einer weiteren mechanischen Siebanlage, bzw. einem weiteren Sieb mit ca. 4 mm Maschenweite in die BG 0 und 1 getrennt.The fines (BG 0 and 1) of the Polybruchs was separated on a mechanical sieve with a mesh size of about 10 mm and then the separated portion with a further mechanical Sieve, or another sieve with a mesh size of approx. 4 mm, separated into BG 0 and 1.

Der Grobanteil (BG 2,3,4 und 5) wurde über eine Förderrinne, deren Fördercharakteristiken, wie z. B. Frequenz, ebenfalls im Rezept hinterlegt sind, der optischen Sortieranlage zugeführt und über zwei Baumebenen, bzw. drei optische Stufen wie folgt getrennt: In der ersten Stufe wurde BG 3&2 von BG 4&5 getrennt. Als Trenngrenze wurde im Rezept eine maximale Länge von 55 mm hinterlegt. Die BG 3&2 wurde in einer zweiten Stufe, bzw. einer im Rezept hinterlegten Trenngrenze von 27 mm in die BG 3 und 2 getrennt. Die BG 4&5 in einer dritten Stufe und einer Trenngrenze von 100 mm in die BG 4 und 5.The coarse fraction (BG 2, 3, 4 and 5) was conveyed via a conveyor trough whose conveying characteristics, such as, for example, B. Frequency, also stored in the recipe, fed to the optical sorting system and separated over two tree levels, or three optical stages as follows: In the first stage BG 3 & 2 was separated from BG 4 & 5. As a separation limit, the recipe has a maximum length of 55 mm. BG 3 & 2 was separated into BG 3 and 2 in a second stage or a separation limit of 27 mm stored in the recipe. The BG 4 & 5 in a third stage and a separation limit of 100 mm in the BG 4 and 5.

Es wurde eine höhere Sortiergenauigkeit erzielt, wenn die bezüglich Länge jeweils kleinere Fraktion ausgeblasen wurde, obwohl diese Fraktion eine höhere Teilchenanzahl besaß. Bei der Trennung von einem Aufgabematerial mit einem überwiegenden Gewichtsanteil an BG 5 und BG4 wurde im ersten Modul die bzgl. Teilchenanzahl größte Fraktion "BG2 + BG3" aus der Gesamtfraktion ausgeblasen und nicht die Fraktion "BG4 + BG5". Analog wurde aus dem Gemisch "BG2 + BG3", der bzgl. Teilchenanzahl größere Anteil "BG2" ausgeblasen und nicht "BG3".A higher sorting accuracy was achieved when the smaller fraction was blown out in terms of length, although this fraction had a higher number of particles. In the separation of a feed material with a predominant weight fraction of BG 5 and BG4, the largest fraction "BG2 + BG3" was blown out of the total fraction in the first module and not the fraction "BG4 + BG5". Analogously, the mixture "BG2 + BG3" was blown out of the mixture, the larger part "BG2" with regard to the number of particles and not "BG3".

Zwischen den verschiedenen Anlagenteilen, wie z. B. Förderrinnen sind Magneten zur Abscheidung von metallischen Kontaminationen eingebaut.Between the different plant parts, such as. B. conveyors are installed magnets for the deposition of metallic contaminants.

Fig. 2 zeigt das Ergebnis dieser Klassierung im Vergleich zu einer optopneumatischen Trennung mit der gleichen optopneumatischen Trennvorrichtung ohne vorherige Siebung. Es ist gut ersichtlich, dass das Aufgabegut in die gewählten Längenklassen sortiert werden konnte. Die gegenüber herkömmlichen Siebverfahren genauere Trennung (Beispiel Länge) ist sichtbar. So ist z. B. beim BG2/BG3-Überlapp beim herkömmlichen Trennen ersichtlich, dass die BG2er Verteilung erst bei etwa 45 mm endet, während die BG3er Verteilung aber bereits bei 20 mm startet. Der Überlapp ist also 25 mm. Beim erfindungsgemäßen Verfahren endet die BG2er Verteilung bereits bei etwa 40 mm während die BG3er Verteilung gleichzeitig erst bei 25 mm startet. Der Überlapp ist somit nur 15mm und damit 40 % geringer als beim Stand der Technik. Fig. 2 shows the result of this classification compared to an optopneumatic separation with the same optopneumatic separator without prior sieving. It is clear that the feed material could be sorted into the selected length classes. The opposite to conventional screening more accurate separation (example length) is visible. So z. For example, in the case of BG2 / BG3 overlap in conventional separation, it can be seen that the BG2 distribution ends at only about 45 mm, whereas the BG3 distribution already starts at 20 mm. The overlap is therefore 25 mm. In the method according to the invention the BG2er distribution already ends at about 40 mm while the BG3er distribution starts only at 25 mm at the same time. The overlap is thus only 15mm and thus 40% less than in the prior art.

Beispiel 2:Example 2:

Zur Stabilisierung der gewünschten Ausbeuten, wurden die Softwareparameter bzgl. Trenngrenzen der einzelnen Fraktionen leicht variiert. Im Rezept zur Steuerung der optoelektronischen Trennanlage wurden die Werte bzgl. maximal oder minimal erlaubter Länge der Bruchstücke in den einzelnen Fraktionen um wenige Millimeter geändert (siehe Fig. 3). So wurde die Trenngrenze für das Ausblasen zwischen den BG 2 und 3 von 27 mm auf 31 mm und zwischen den BG 3 und 4 von 55 mm auf 57 mm verändert. Diese Programm-Parameter-Änderung von nur wenigen Millimetern ist bereits in den Produkt-Eigenschaften (z. B. Längenverteilung) ersichtlich, d. h. die Trenngrenzen zwischen den einzelnen Fraktionen können mit hoher Genauigkeit durch einfache Rezeptwahl flexibel an die jeweilige Spezifikation angepasst werden, oder im Rahmen der online Regelung zur Erzielung gewünschter Soll-Werte herangezogen werden.To stabilize the desired yields, the software parameters were slightly varied with respect to separation limits of the individual fractions. In the recipe for controlling the optoelectronic separation system, the values for the maximum or minimum permissible length of the fragments in the individual fractions have been changed by a few millimeters (see Fig. 3 ). Thus, the separation limit for blow-out between BG 2 and 3 was changed from 27 mm to 31 mm and between BG 3 and 4 from 55 mm to 57 mm. This program parameter change of just a few millimeters is already evident in the product properties (eg length distribution), ie the separation boundaries between the individual fractions can be flexibly adapted to the respective specification with high accuracy by simple recipe selection, or The online control system to achieve desired target values.

Beispiel 3:Example 3:

Klassieren unterschiedlicher Korngrößenverteilung des Poly-bruchs mittels einer erfindungsgemäßen Vorrichtung.

  1. a) Sortierung eines Polybruchs mit einer Hauptfraktion > 100 mm in 6 Fraktionen (z. B. BG0 bis BG5). Zuerst wurde mittels eines mechanischen Siebes der Feinanteil (< 12 mm bzw. BG0 + BG1) vom Grobanteil abgetrennt. Diese abgetrennte Fraktion wurde durch ein nachfolgendes zweites mechanisches Sieb weiter in die Fraktionen BG0 und BG1 getrennt. Der Grobanteil (≥BG2) wurde der optoelektronischen Sortieranlage zugeführt und an einer ersten Trennstufe (Modul 1, bzw. erste Baumebene) in eine größere (≥BG4) und in eine kleinere (≤BG3) Fraktion getrennt (Trenngrenze BG3/BG4 zw. ∼50 bis 70 mm). Diese beiden Fraktionen wurden in einer zweiten Baumebene jeweils einer weiteren Trennstufe (Modul 2 und Modul 3) zugeführt und wiederum in je zwei Fraktionen getrennt. (Trenngrenze BG2/BG3 ca. 25 bis 45 mm und BG4/BG5 ca. 85 bis 120 mm). So wurden die Fraktionen BG2, BG3, BG4 und BG5 erhalten. Weitere Trennstufen (bzw. Module) in dritter oder höherer Baumebene können folgen, wenn eine Aufteilung in mehr oder engere Fraktionen gewünscht wird.
  2. b) Sortierung eines Polybruchs mit einer Hauptfraktion ∼80 mm durch Teilung in 5 Fraktionen (BG0 bis BG4).
    • α) Das Verfahren entsprach Beispiel 3a) mit dem Unterschied, dass in der zweiten Baumebene das Modul für die größere Fraktion deaktiviert war und daher die Fraktion ≥BG4 nicht weiter aufgetrennt (ausgeblasen) wurde.
    • β) Alternativ wurde im ersten Modul das Gemisch BG2 bis BG4 in eine Fraktion ≥BG3 und eine Fraktion BG2 aufgetrennt. BG2 wurde dann in zweiter Baumebene nicht weiter getrennt, während die Fraktion ≥BG3 in zweiter Ebene in die Fraktionen BG3 und BG4 aufgetrennt werden.
  3. c) Sortierung eines Polybruchs mit einer Hauptfraktion ∼45 mm durch Teilung in 4 Fraktionen (BG0 bis BG3).
    • α) Die Abtrennung des Feinanteils (BG0 + BG1) erfolgte analog Bsp. 3a). Anschließend wurde der Rest, d. h. das Gemisch aus BG2 + BG3, bereits im ersten optischen Modul in BG2 und BG3 getrennt und die folgenden, deaktivierten Module in zweiter Baumebene werden nur passiert.
    • β) Alternativ wurde die erste Ebene (Modul) deaktiviert und die Trennung BG2 - BG3 wurde erst in der zweiten Baumebene durchgeführt.
  4. d) Sortierung eines Polybruchs mit einer Hauptfraktion ∼25 mm durch Teilung in 3 Fraktionen (BG0 bis BG2).
    Die Abtrennung des Feinanteils (BG0 + BG1) erfolgte analog Bsp. 3a). Anschließend wurde der Rest, d. h. z. B. BG2 durch die deaktivierten Module 1 und 2 durchgeleitet, bzw. in keiner Baumebene ausgeblasen.
  5. e) Sortierung eines Polybruchs mit einer Hauptfraktion < 25 mm durch Teilung in 2 Fraktionen (BG0 und BG1).
    Die Abtrennung des Feinanteils (BG0 + BG1) erfolgte analog Bsp. 3a). Kein Material gelangt zur optischen Sortieranlage.
Classifying different particle size distribution of the poly-break by means of a device according to the invention.
  1. a) Sorting of a polybrominate with a main fraction> 100 mm in 6 fractions (eg BG0 to BG5). First, the fine fraction (<12 mm or BG0 + BG1) was separated from the coarse fraction by means of a mechanical sieve. This separated fraction was further separated into fractions BG0 and BG1 by a subsequent second mechanical sieve. The coarse fraction (≥BG2) was fed to the optoelectronic sorting system and separated at a first separation stage (module 1, or first tree level) into a larger (≥BG4) and a smaller (≤BG3) fraction (separation boundary BG3 / BG4 zw 50 to 70 mm). These two fractions were each fed to a further separation stage (module 2 and module 3) in a second tree level and in turn separated into two fractions. (Separation limit BG2 / BG3 approx. 25 to 45 mm and BG4 / BG5 approx. 85 to 120 mm). Thus, fractions BG2, BG3, BG4 and BG5 were obtained. Further separation stages (or modules) in the third or higher tree level can follow, if a division into more or narrower fractions is desired.
  2. b) Sorting of a polybrot with a main fraction ~80 mm by division into 5 fractions (BG0 to BG4).
    • α) The procedure corresponded to Example 3a) with the difference that in the second tree level the module for the larger fraction was deactivated and therefore the fraction ≥BG4 was not further separated (blown out).
    • β) Alternatively, in the first module, the mixture BG2 to BG4 was separated into a fraction ≥BG3 and a fraction BG2. BG2 was then not further separated in the second tree level, while the fraction ≥BG3 in the second level is split into the fractions BG3 and BG4.
  3. c) Sorting of a polybrot with a main fraction ~45 mm by division into 4 fractions (BG0 to BG3).
    • α) The separation of the fine fraction (BG0 + BG1) was carried out analogously to Example 3a). Subsequently, the remainder, ie the mixture of BG2 + BG3, was already separated in the first optical module in BG2 and BG3, and the following, deactivated modules in the second tree level are only passed.
    • β) Alternatively, the first level (module) was deactivated and the separation BG2 - BG3 was only performed in the second tree level.
  4. d) Sorting of a polybrot with a main fraction ~25 mm by division into 3 fractions (BG0 to BG2).
    The separation of the fine fraction (BG0 + BG1) was carried out analogously to Example 3a). Subsequently, the remainder, ie, for example, BG2 was passed through the deactivated modules 1 and 2, or blown out in any tree level.
  5. e) Sorting of a polybrot with a main fraction <25 mm by division into 2 fractions (BG0 and BG1).
    The separation of the fine fraction (BG0 + BG1) was carried out analogously to Example 3a). No material reaches the optical sorting system.

Die Klassierungen a) bis e) sind mit ein- und derselben erfindungsgemäßen Vorrichtung möglich, ohne dass Umbauten an der Vorrichtung notwendig sind.The classifications a) to e) are possible with one and the same device according to the invention without the need for modifications to the device.

Claims (16)

  1. Device which permits flexible classification of crushed polycrystalline silicon, wherein it comprises a mechanical screening system and an optoelectronic sorting system, the poly fragments being separated into a fine silicon component and a residual silicon component by the mechanical screening system and the residual silicon component being separated into further fractions by means of an optoelectronic sorting system.
  2. Device according to Claim 1, characterized in that it comprises a multistage mechanical screening system and a multistage optoelectronic sorting system.
  3. Device according to Claim 1 or 2, characterized in that the mechanical and/or optoelectronic separating devices are arranged in a tree structure.
  4. Device according to one of Claims 1 to 3,
    characterized in that the mechanical screening system is an oscillatory screening machine which is driven by an unbalance motor.
  5. Device according to one of Claims 1 to 4,
    characterized in that the screens of the mechanical screening system are arranged in more than one stage.
  6. Device according to one of Claims 1 to 5,
    characterized in that two optoelectronic sorting systems are used.
  7. Device according to one of Claims 1 to 5,
    characterized in that three or more optoelectronic sorting systems are used.
  8. Device according to one of Claims 1 to 7,
    characterized in that it is provided with a superordinate controller that makes it possible for sorting parameters according to which the poly fragments are sorted, and/or system parameters which affect the delivery of the poly fragments, to be adapted flexibly for the individual parts of the device.
  9. Device according to Claim 8, characterized in that the parameters according to which the poly fragments are sorted are selected from the group length, area, morphology, color or shape.
  10. Device according to one of Claims 8 and 9,
    characterized in that it varies one or more of the below-mentioned parts of the device by means of the controller:
    - the throughput of the delivery troughs
    - the oscillating frequency of the mechanical screens
    - the parameters of the sorting
    - pressure at the ejection blower nozzles.
  11. Device according to one of Claims 8, 9 and 10, characterized in that the mechanical screening system and/or the optoelectronic sorting system are provided with a measuring instrument for defined parameters of the classified polysilicon fragments, this measuring instrument being connected by the controller to a control and regulating instrument which statistically evaluates the measured parameters and compares them with predetermined parameters, and which in the event of a discrepancy between a measured parameter and a predetermined parameter can modify the setting of the sorting parameters of the optoelectronic sorting system or the entire sorting system so that the parameter then measured approximates the predetermined parameter.
  12. Device according to one of Claims 1 to 11,
    characterized in that magnetic extractors (for example plate magnets, drum magnets or strip magnets) are arranged between the individual sorting stages.
  13. Method for the flexible classification of crushed polycrystalline silicon (poly fragments), characterized in that a device according to Claim 1 to 12 is used.
  14. Method according to Claim 13, characterized in that the poly fragments are separated into a screened fine fraction and a residual fraction by a mechanical screening system, the screened fine fraction being separated into a fraction 1 and a fraction 2 by means of a further mechanical screening system and the residual fraction being separated into two fractions by means of optoelectronic sorting, these two fractions respectively being subdivided into 4 further fractions (fractions 3 to 6) by means of further optoelectronic sorting.
  15. Method according to Claim 14, characterized in that the screened fine fraction has a particle size of less than 20 mm, the residual fraction has a particle size of more than 5 mm, fraction 1 has a particle size of less than 10 mm, fraction 2 has a particle size of from 2 mm to 20 mm, fraction 3 has a particle size of from 5 mm to 50 mm, fraction 4 has a particle size of from 15 mm to 70 mm, fraction 5 has a particle size of from 30 mm to 120 mm and fraction 6 has a particle size of more than 60 mm.
  16. Method according to one of Claims 13 to 15,
    characterized in that the fraction with the larger particle number in relation to the respective sorting parameter is in each case blown out in the optoelectronic sorting.
EP07727441A 2006-04-06 2007-03-28 Device and method for the flexible classification of polycrystalline silicon fragments Active EP2001607B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006016324A DE102006016324A1 (en) 2006-04-06 2006-04-06 Apparatus and method for flexibly classifying polycrystalline silicon fragments
PCT/EP2007/052969 WO2007115937A2 (en) 2006-04-06 2007-03-28 Device and method for the flexible classification of polycrystalline silicon fragments

Publications (2)

Publication Number Publication Date
EP2001607A2 EP2001607A2 (en) 2008-12-17
EP2001607B1 true EP2001607B1 (en) 2009-07-22

Family

ID=38443096

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07727441A Active EP2001607B1 (en) 2006-04-06 2007-03-28 Device and method for the flexible classification of polycrystalline silicon fragments

Country Status (9)

Country Link
US (1) US10478860B2 (en)
EP (1) EP2001607B1 (en)
JP (1) JP4988821B2 (en)
KR (1) KR101068488B1 (en)
CN (1) CN101415503B (en)
CA (1) CA2647721C (en)
DE (2) DE102006016324A1 (en)
ES (1) ES2328295T3 (en)
WO (1) WO2007115937A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023102854B3 (en) 2023-02-06 2024-05-02 Alztec GmbH Device and method for flexible classification of poly- and/or monocrystalline silicon

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008040231A1 (en) 2008-07-07 2008-12-18 Wacker Chemie Ag Polysilicon break, comprises similar structure grown in siemens process, where structure contains pores, splices, fissures, crack and chasms
JP5751748B2 (en) * 2009-09-16 2015-07-22 信越化学工業株式会社 Polycrystalline silicon lump group and method for producing polycrystalline silicon lump group
KR101182163B1 (en) * 2010-08-16 2012-09-12 한국메탈실리콘 주식회사 Manufacturing method of silicon powder and manufacturing device for the same
DE102010039754B4 (en) * 2010-08-25 2013-06-06 Wacker Chemie Ag Method for determining the concentration of particulate matter in bulk silicon materials
DE102012204050B4 (en) * 2012-03-15 2017-03-23 Solarworld Industries Sachsen Gmbh Apparatus and method for processing silicon pieces
US20150299826A1 (en) * 2012-12-10 2015-10-22 Showa Denko K.K. Method of producing silicon-containing aluminum alloy ingot
DE102013207251A1 (en) * 2013-04-22 2014-10-23 Wacker Chemie Ag Process for producing polycrystalline silicon
DE102013218003A1 (en) 2013-09-09 2015-03-12 Wacker Chemie Ag Classifying polysilicon
TWI551399B (en) * 2014-01-20 2016-10-01 中國砂輪企業股份有限公司 Chemical mechanical polishing conditioner with high quality abrasive particles
KR102317256B1 (en) 2014-02-14 2021-10-22 가부시키가이샤 도쿠야마 Device for producing cleaned crushed product of polycrystalline silicon blocks, and method for producing cleaned crushed product of polycrystalline silicon blocks using same
EP3208236B1 (en) 2014-10-14 2024-11-13 Tokuyama Corporation Polycrystalline silicon fragment, method for manufacturing polycrystalline silicon fragment, and polycrystalline silicon block fracture device
DE102015211351A1 (en) 2015-06-19 2016-12-22 Siltronic Ag Sieve plate for screening equipment for the mechanical classification of polysilicon
CN106216250B (en) * 2016-10-12 2018-12-21 绍兴柯桥标马化纤有限公司 A kind of device that can quickly distinguish chopsticks concentric reducer and collect
JP7129921B2 (en) 2018-03-05 2022-09-02 株式会社パイロットコーポレーション mechanical pencil
CN109225943B (en) * 2018-10-30 2024-05-24 无锡欧龙宇自动化科技有限公司 Automatic silicon wafer sorting and metering device
KR102657489B1 (en) * 2019-12-17 2024-04-12 와커 헤미 아게 Methods of making and classifying polycrystalline silicon
WO2022123080A2 (en) 2020-12-11 2022-06-16 Zadient Technologies SAS Method and device for producing a sic solid material
CN116234759A (en) 2021-03-24 2023-06-06 瓦克化学股份公司 Transport container for silicon blocks
WO2023222787A1 (en) 2022-05-18 2023-11-23 Zadient Technologies SAS METHOD FOR PRODUCING AT LEAST ONE CRACK-FREE SiC PIECE

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2612997A (en) * 1946-05-22 1952-10-07 Link Belt Co Jig for treating materials of different specific gravities
US4384957A (en) * 1980-09-08 1983-05-24 Amf Incorporated Molecular separation column and use thereof
FR2498489A1 (en) 1981-01-28 1982-07-30 Saint Gobain Emballage Sa METHOD AND DEVICE FOR PURIFICATION OF RECOVERY GLASS
US4492629A (en) * 1983-01-28 1985-01-08 Kinergy Corporation Sifter stroke screening unit
US4795651A (en) * 1987-05-04 1989-01-03 The Procter & Gamble Company Flotation separation of aflatoxin-contaminated grain or nuts
DE3811091A1 (en) * 1988-03-31 1989-10-12 Heliotronic Gmbh METHOD FOR COMMANDING LOW CONTAMINATION OF SOLID, PIECE OF SILICONE
US5165548A (en) * 1990-04-23 1992-11-24 Hemlock Semiconductor Corporation Rotary silicon screen
DE4113093C2 (en) * 1990-04-23 1998-08-27 Hemlock Semiconductor Corp Apparatus and method for the size separation of silicon pieces suitable for semiconductor applications
US5199574A (en) * 1991-10-31 1993-04-06 J & H Equipment, Inc. Vibrating screen separator
US5263591A (en) * 1991-12-12 1993-11-23 Taormina Industries, Inc. Refuse recycling system
DE69323425T2 (en) * 1992-06-08 1999-09-02 Valtion Teknillinen Tutkimuskeskus METHOD FOR PRODUCING WOODCHIPS WITH LOW Bark Content FROM TREES
DE4321261A1 (en) 1992-06-29 1994-02-24 Strebel Engineering Kleindoett Optical shape testing system e.g. for diameter of rotationally-symmetric screw - feeds separated components along inclined path to accelerate components under gravity and tests in free-flight path between flash lamp and high-resolution light-barrier-type camera
US5699724A (en) * 1992-12-02 1997-12-23 Buhler Ag Cleaning and sorting bulk material
US5659624A (en) * 1995-09-01 1997-08-19 Fazzari; Rodney J. High speed mass flow food sorting appartus for optically inspecting and sorting bulk food products
US20010055812A1 (en) * 1995-12-05 2001-12-27 Alec Mian Devices and method for using centripetal acceleration to drive fluid movement in a microfluidics system with on-board informatics
US5941395A (en) * 1996-04-17 1999-08-24 Eastman Kodak Company Method and apparatus for conveying single use camera bodies while separating loose parts therefrom
US5921401A (en) * 1997-04-16 1999-07-13 Johnston; Rafe Mobile screening apparatus
DE19719698A1 (en) * 1997-05-09 1998-11-12 Wacker Chemie Gmbh Optoelectronic classifying device
FR2773736B1 (en) * 1998-01-22 2000-05-26 Galloo Plastics PROCESS AND INSTALLATION FOR SEPARATING ALL CATEGORIES OF POLYMERIC MATERIALS
DE19840200A1 (en) 1998-09-03 2000-03-09 Wacker Chemie Gmbh Classifier
DE19914998A1 (en) 1999-04-01 2000-10-12 Wacker Chemie Gmbh Vibratory conveyor and method for promoting silicon breakage
AU2277001A (en) * 1999-12-20 2001-07-03 Penn State Research Foundation, The Deposited thin films and their use in detection, attachment, and bio-medical applications
DE10024309A1 (en) * 2000-05-17 2001-11-29 Der Gruene Punkt Duales Syst Method and device for the dry separation of collective waste with packaging waste
US7351376B1 (en) * 2000-06-05 2008-04-01 California Institute Of Technology Integrated active flux microfluidic devices and methods
AU2001273057A1 (en) * 2000-06-27 2002-01-08 Fluidigm Corporation A microfluidic design automation method and system
EP1322936A2 (en) * 2000-10-03 2003-07-02 California Institute Of Technology Microfluidic devices and methods of use
JP3924432B2 (en) * 2001-01-17 2007-06-06 株式会社日立製作所 Metal sorting and recovery system
DE10204176A1 (en) 2002-02-01 2003-08-14 Wacker Chemie Gmbh Device and method for the automatic, low-contamination packaging of broken polysilicon
JP3749946B2 (en) 2002-02-07 2006-03-01 国立大学法人 東京大学 Joint mechanism, double-arm robot and biped robot using it
US8021483B2 (en) * 2002-02-20 2011-09-20 Hemlock Semiconductor Corporation Flowable chips and methods for the preparation and use of same, and apparatus for use in the methods
EP1553214B1 (en) 2002-02-20 2011-11-23 Hemlock Semiconductor Corporation Flowable chips and methods for using them
US7351929B2 (en) * 2002-08-12 2008-04-01 Ecullet Method of and apparatus for high speed, high quality, contaminant removal and color sorting of glass cullet
US6874713B2 (en) 2002-08-22 2005-04-05 Dow Corning Corporation Method and apparatus for improving silicon processing efficiency
EP1673656B1 (en) * 2003-10-03 2007-01-17 Invisia Ltd. Multifocal lens
US7341156B2 (en) * 2003-11-17 2008-03-11 Casella Waste Systems, Inc. Systems and methods for sorting, collecting data pertaining to and certifying recyclables at a material recovery facility
US7893378B2 (en) * 2004-08-10 2011-02-22 Mss, Inc. Materials recovery facility process optimization via unit operation feedback
JP4682971B2 (en) * 2006-02-10 2011-05-11 マツダ株式会社 Method and apparatus for coating film peeling and selection of resin material with coating film
DE102006016323A1 (en) 2006-04-06 2007-10-11 Wacker Chemie Ag Method and apparatus for chopping and sorting polysilicon
US20080277319A1 (en) * 2007-05-11 2008-11-13 Wyrsta Michael D Fine particle carbon dioxide transformation and sequestration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023102854B3 (en) 2023-02-06 2024-05-02 Alztec GmbH Device and method for flexible classification of poly- and/or monocrystalline silicon

Also Published As

Publication number Publication date
ES2328295T3 (en) 2009-11-11
CA2647721A1 (en) 2007-10-18
JP4988821B2 (en) 2012-08-01
KR20080108273A (en) 2008-12-12
CA2647721C (en) 2011-08-30
DE102006016324A1 (en) 2007-10-25
CN101415503A (en) 2009-04-22
EP2001607A2 (en) 2008-12-17
WO2007115937A3 (en) 2007-11-29
US20090120848A1 (en) 2009-05-14
WO2007115937A2 (en) 2007-10-18
JP2009532319A (en) 2009-09-10
KR101068488B1 (en) 2011-09-28
US10478860B2 (en) 2019-11-19
DE502007001136D1 (en) 2009-09-03
CN101415503B (en) 2012-11-14

Similar Documents

Publication Publication Date Title
EP2001607B1 (en) Device and method for the flexible classification of polycrystalline silicon fragments
EP1842595B1 (en) Method and device for comminuting and sorting polysilicon
EP0917828B1 (en) Method and device for regulating the output humidity of tobacco
DE10007485A1 (en) Method and device for recycling tobacco dust
EP2903755B1 (en) Apparatus and method for classifying polydisperse materials
EP2521462B1 (en) Method and device for separating foreign bodies from a flow of tobacco
EP0982081B1 (en) Pneumatic classification for polysilicon
EP2730510B1 (en) Method for packaging of polycrystalline silicon
EP1782893A2 (en) Sorting of wood chips
EP3283237A1 (en) Device and method for classifying and dedusting polysilicon granular material
DE112019004566T5 (en) System for feeding a granulated material and the feeding method used
EP1786573B1 (en) Apparatus for classifying charge material
DE69315519T2 (en) Process for the manufacture and packaging of filter cigarettes
EP0774302B1 (en) Method and device for separating a material comprising particles of different form, size and/or density in at least two components
EP1397964B1 (en) Method and device for adjusting the sorting out of winnowings
DE102023102854B3 (en) Device and method for flexible classification of poly- and/or monocrystalline silicon
EP1261770B1 (en) Method and device for adjusting the whiteness degree of a bulk material consisting of comminuted paper fractions
DE10042268C1 (en) Recovery of broken glass comprises separating the broken glass into two fractions, separating out the faulty pieces from the first fraction, crushing the whole second fraction
DE102022119138B3 (en) Method for predicting a actually achievable particle size of interest of a grain distribution curve of a substance and the classifying device carrying out the method
BE1029729B1 (en) Device and method for processing old concrete
EP0923996A2 (en) Method for sifting bulk material
AT513285B1 (en) Apparatus / method for classifying polydisperse feedstock
DE20014898U1 (en) Device for processing a broken glass batch and broken glass batch
DE102015213092A1 (en) Visual device for viewing a material flow and method for operating a visual device
DE102014015654A1 (en) Plant for grinding and sifting cement clinker

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080924

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

DAX Request for extension of the european patent (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007001136

Country of ref document: DE

Date of ref document: 20090903

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2328295

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091122

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091122

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

26N No opposition filed

Effective date: 20100423

BERE Be: lapsed

Owner name: WACKER CHEMIE A.G.

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110501

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100328

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 437011

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120328

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190418

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200319

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200319

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200318

Year of fee payment: 14

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210811

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007001136

Country of ref document: DE

Owner name: WACKER CHEMIE AG, DE

Free format text: FORMER OWNER: WACKER CHEMIE AG, 81737 MUENCHEN, DE