EP2081258B1 - Secondary reflector of an antenna with double reflector - Google Patents
Secondary reflector of an antenna with double reflector Download PDFInfo
- Publication number
- EP2081258B1 EP2081258B1 EP09150680A EP09150680A EP2081258B1 EP 2081258 B1 EP2081258 B1 EP 2081258B1 EP 09150680 A EP09150680 A EP 09150680A EP 09150680 A EP09150680 A EP 09150680A EP 2081258 B1 EP2081258 B1 EP 2081258B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reflector
- antenna
- axis
- secondary reflector
- primary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/18—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
- H01Q19/19—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/18—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
- H01Q19/19—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
- H01Q19/193—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface with feed supported subreflector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
- H01Q15/141—Apparatus or processes specially adapted for manufacturing reflecting surfaces
- H01Q15/142—Apparatus or processes specially adapted for manufacturing reflecting surfaces using insulating material for supporting the reflecting surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/12—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
- H01Q19/13—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
- H01Q19/134—Rear-feeds; Splash plate feeds
Definitions
- the present invention relates to Radio Frequency (RF) antennas with dual reflectors.
- RF Radio Frequency
- These antennas generally comprise a large-diameter concave primary reflector having a surface of revolution, and a convex smaller-diameter secondary reflector ("sub-reflector") located near the focus of the primary reflector.
- sub-reflector convex smaller-diameter secondary reflector located near the focus of the primary reflector.
- These antennas operate indifferently in transmitter mode or in receiver mode, corresponding to two opposite directions of RF wave propagation.
- the description is given either in transmission mode or in reception mode of the antenna, according to which allows to better illustrate the described phenomena. It should be noted that all the reasonings apply to the antennas as well in reception as in emission.
- the first antennas had only one reflector, most often parabolic.
- the end of the radiofrequency waveguide is at the focus of the reflector.
- the waveguide is inserted into an orifice on the axis of the reflector, and its end is bent 180 ° to face the reflector.
- the maximum half-angle of radiation at the folded end of the waveguide to illuminate the reflector is small, of the order of 70 °.
- the distance between the reflector and the end of the waveguide must be large enough to illuminate the entire surface of the reflector.
- the F / D ratio is of the order of 0.36. In this report, F is the focal length of the reflector (distance between the top of the reflector and its focus) and D is the diameter of the reflector.
- the value of the diameter D is determined by the central working frequency of the antenna.
- dual reflector antennas are used, in particular those referred to as Cassegrain type.
- the double reflectors comprise a concave primary reflector, frequently parabolic, and a convex secondary reflector having a much smaller diameter and placed in the vicinity of the focus on the same axis of revolution as the primary reflector.
- a secondary reflector of dual reflector antenna is for example described in the document GB-973,583 .
- the primary reflector is pierced at its top and the waveguide is inserted on the axis of the primary reflector. The end of the waveguide is no longer folded, but faces the secondary reflector. In transmission mode, the RF waves transmitted by the waveguide are reflected by the secondary reflector to the primary reflector.
- secondary reflectors having a half-angle of illumination of the primary reflector much greater than 70 °.
- an illumination half-angle of 105 ° can be used.
- the secondary reflector can thus be axially very close to the primary reflector.
- the secondary reflector may be located within the volume defined by the primary reflector which reduces the size of the antenna.
- the F / D ratio used is often less than or equal to 0.25.
- These antenna are said to deep reflector ("deep reflector" in English).
- An F / D ratio of the order of 0.25 corresponds, for the same value of the working center frequency D, to a shorter focal length than in the case where the F / D ratio is close to 0.36.
- the size of a double reflector antenna can therefore be smaller than that of a single reflector antenna by eliminating the absorbing screen which is no longer essential.
- the dual reflector antennas are well suited to the production of compact antennas, for example by using double reflectors whose F / D ratio is close to 0.2, it may be preferable to use F / D values other than to optimize also other characteristics that congestion, such as the radiation pattern of the antenna for example.
- the secondary reflector In a dual reflector antenna, the secondary reflector must be maintained in the vicinity of the focus of the primary reflector.
- the secondary reflector usually comprises a dielectric body (frequently plastic) of generally conical shape and transparent to RF waves.
- the substantially conical outer surface of the secondary reflector faces the primary reflector.
- the convex inner surface of the secondary reflector is coated with a treatment to reflect the RF waves towards the primary reflector through the dielectric body. This coating is most often metal.
- annular reliefs on the outer surface of the dielectric body reduces the multiple reflections of RF waves that occur between the waveguide and the primary reflector via the metallized inner surface of the secondary reflector.
- these reliefs have a lesser effect on two other important characteristics of the double reflector: the antenna gain, expressed in dBi or isotropic decibel, and the spillover losses, expressed in dB.
- the overflow losses correspond to the energy reflected by the secondary reflector towards the primary reflector, and whose path ends beyond the outer diameter of the primary reflector. These losses lead to pollution of the environment by RF waves. These overflow losses should be limited to levels defined by standards.
- a conventional solution is to attach to the periphery of the primary reflector a skirt which has the shape of a cylinder, of diameter close to that of the primary reflector and of suitable height, lined internally with a layer absorbing RF radiation.
- this known solution has the inconvenient today inconvenient cost of the material of the skirt, as well as the cost of assembling this skirt on the primary reflector.
- the present invention aims to provide a dual reflector antenna whose losses overflow are significantly reduced.
- the invention consists in proposing a secondary reflector whose outer surface has a profile according to a particular curve.
- the secondary reflector is a volume of axial symmetry having a surface whose generator is a curve described by a polynomial equation of degree 6. Numerical optimizations make it possible to adapt the coefficients of this polynomial equation of degree 6 according to the type of double reflector used. and the possible presence of a skirt.
- the outer surface of the secondary reflector further comprises a single ring-shaped relief surrounding the dielectric body.
- the section of this relief may be a portion of a disk or a parallelogram (square or rectangle for example).
- the relief has a rectangular section.
- the relief is projected in a direction perpendicular to the axis of revolution of the secondary reflector.
- This unique raised ring is placed on the outer surface of the secondary reflector to reduce the multiple reflections of the RF wave. At the same time, a reduction in overflow losses and multiple reflections of the RF waves is achieved simultaneously.
- the relief is disposed on the half of the outer surface closest to the second end.
- the present invention makes it possible to dispense with the skirt, or at least to reduce the height of the skirt of the primary reflector, which provides a cost and space advantage.
- the improvement afforded by the invention makes it possible to use a skirt of low height which can be made in one piece with the primary reflector, that is to say that a single mechanical part having a reflector is produced in the central part and a skirt in the peripheral part.
- This entails an additional cost reduction compared to the conventional solution of a skirt attached to a primary reflector by any known method such as welding, screwing, etc. This saves the cost of assembly.
- the invention can be used in applications such as, for example, the production of terrestrial antennas for receiving a radiofrequency signal emitted by a satellite or the link between two terrestrial antennas, and more generally in any application concerning radiofrequency links.
- point-to-point in the frequency band from 7 GHz to 40 GHz.
- the typical central frequencies of operation of these systems are 7.1 GHz, 8.5 GHz, 10 GHz, etc.
- the bandwidth around each frequency is in general of the order of 5% to 20%.
- Each central frequency corresponds to a suitable secondary reflector diameter: the higher the frequency, the shorter the wavelength, and the smaller the diameter of the secondary reflector.
- the amplitude in dBi of the radiation V in the vertical plane and the radiation H in the horizontal plane respectively of the secondary reflector are given on the ordinate, and on the abscissa the half-angle of illumination ⁇ in degrees.
- the radiation T of the primary reflector is expressed in dB on the ordinate and on the abscissa the half-angle ⁇ expressed in degrees.
- the T radiation of the primary reflector is normalized to 0 dB for a half-angle ⁇ equal to zero degrees.
- an RF antenna is shown according to a first embodiment of the invention.
- This antenna comprises an assembly consisting of a concave primary reflector 1 and a secondary reflector 2 , as well as a waveguide 3 also serving as a mechanical support for the secondary reflector 2 .
- the set has a symmetry of revolution around the axis 4 .
- the primary reflector 1 may be metal reflective surface, for example aluminum.
- the waveguide 3 may be, for example, a metal hollow tube, also of aluminum, of circular section having an outside diameter of 26 mm or 3.6 mm for transmission / reception frequencies of 7 GHz and 60 GHz, respectively.
- the waveguide could have a different section, rectangular or square, for example.
- the focal point 5 (also called the phase center) is represented on the axis of revolution 4 , and the focal length F 6 which separates the focus from the top of the primary reflector 1 .
- the primary reflector 1 is for example a paraboloid of revolution about the axis 4 with a depth P 7 and a diameter D 8 .
- the focal length F is for example 246 mm and the diameter D is 1230 mm (4 feet).
- the limiting illumination angle 2 ⁇ p of the primary reflector is 210 °.
- the figure 2 represents the secondary reflector 10 of an antenna according to the first embodiment of the invention.
- the dielectric body 11 of the secondary reflector may be of a dielectric material such as plastic.
- the inner surface 12 of the secondary reflector 10 may be a surface of revolution described by a polynomial equation around an axis of revolution 13 .
- the inner surface 12 may be covered with a reflective metal, such as silver.
- the outer surface 14 of the secondary reflector 10 is the surface placed opposite the primary reflector.
- the outer surface 14 is a surface of revolution about the axis of revolution 13 .
- y ax 6 + bx 5 + cx 4 + dx 3 + ex 2 + fx + g.
- the shape of the inner surface of the secondary reflector influences the intensity and phase of the electromagnetic wave from the waveguide and received by the primary reflector.
- the figure 3 represents the secondary reflector 20 of an antenna according to a second embodiment of the invention.
- a relief 21 forming a ring is formed on the outer surface 22 of the reflector 20 .
- the outer surface 22 of the reflector 20 consists of three successive portions 22a , 21 , 22b .
- the portions 22a and 22b each have a profile described by a portion of the sixth degree curve.
- the parts 22a and 22b and the relief 21 have a symmetry of revolution about the axis of revolution 23.
- overflow losses for the transmission mode of an RF antenna according to the first embodiment of the invention are explained on the figure 4 . These losses correspond to values of the illumination angle 2 ⁇ of the primary reflector by the secondary reflector for which the RF waves coming from the waveguide 3 are reflected by the secondary reflector 2 in a direction which is outside the perimeter of the primary reflector 1 .
- This figure shows the illumination half-angle ⁇ (theta) 30 and the half-angle ⁇ (beta) 31 , which is the half-angle complementary to the half-angle 0.
- the two half-angles 0 and ⁇ are measured by relative to the axis of revolution 4 of the secondary reflector 2 , and they have the focal point 5 of the primary reflector 1.
- the overflow losses are therefore due to all the rays 33 reflected by the secondary reflector 2 within the angular range 34 .
- the angular range 34 is defined by two radii 35 , coming from the focus 5 and symmetrical with respect to the axis of revolution 4 , which are tangent to the edges of the primary reflector 1 .
- the figure 5 represents an axial sectional view of an RF antenna according to a variant of the first embodiment of the invention.
- the primary reflector 50 is provided with a skirt 51 in order to limit the losses by overflow.
- the skirt 51 is a screen covered with a material 52 absorbing RF waves.
- the skirt 51 is made of aluminum and the absorbent layer 52 consists of a foam loaded with carbon oxides.
- the skirt 51 is of less height than the skirts used in the prior art, because the overflow losses are significantly reduced by the use of a secondary reflector 53 provided with an external surface 54 having a profile according to a curve described by a polynomial equation of the sixth degree.
- the parameters of the sixth-degree equation describing the profile of the outer surface 54 can be optimized. This optimization makes it possible to reduce the height of the skirt 51 to allow the production of a single piece of the primary reflector 50 and the skirt 51 , as shown in FIG. figure 5 .
- the skirt 51 thus constitutes an extension of the primary reflector 50 . This can be achieved for example by stamping a single aluminum plate so as to define successively or simultaneously the shape, preferably paraboloid of revolution, of the primary reflector 50 and the shape, preferably cylindrical, of the skirt 51 .
- the figure 6 represents an exemplary profile 60 of the outer surface of the secondary reflector according to a particular embodiment of the invention, which was obtained by digitizing the level of overflow losses.
- the reference (X, Y) originates from a point of the axis of revolution 13 located at the second end of the secondary reflector 10.
- the X axis is aligned on the axis of revolution 13 and the Y axis has a direction perpendicular to the axis of revolution 13 . Distances are expressed in centimeters.
- the numerical values given here for the parameters a, b, c, d, e, f, g of the sixth degree equation depend on the numerical values chosen for the focal length F, the depth P and the diameter D of the primary reflector. as well as the level of overflow losses that we allow our. If we change these numerical values, we can find another set of values for the parameters a, b, c, d, e, t, g to minimize overflow losses. Thus the parameters a, b, c, d, e, f, g of the sixth degree equation can take different values.
- the radiation pattern is represented by the amplitude of the radiation V expressed as a function of the illumination half-angle ⁇ . This radiation pattern is relative to the antenna in transmission mode.
- the best antenna design is that which makes it possible to obtain a radiation, or emitted electric field, as small as possible for the illumination half-angle values ⁇ greater than the limit value ⁇ p represented here by the vertical line 73 .
- the vertical line 73 represents the value ⁇ p of the half-angle ⁇ which tangents the outer edge of the primary reflector as shown in FIG. figure 4 .
- the rays are reflected in the angular range 34 and participate in overflow losses.
- the curve 71 associated with the first embodiment according to the invention, shows a lower radiation for values of the angle ⁇ greater than the value ⁇ p that the radiation given by the curve 70 associated with a profile of the prior art.
- the curve 72 associated with a second embodiment according to the invention further improves the result obtained with the curve 71 .
- the vertical line 83 represents the value ⁇ p of the half-angle ⁇ which tangents the outer edge of the primary reflector as shown in FIG. figure 4 .
- the best antenna design is that which makes it possible to obtain the lowest radiation for the half-angles 0, greater than the value ⁇ p , situated to the right of the vertical line 83 . It is observed that the curve 81 associated with the first embodiment according to the invention shows radiation values lower than the values given by the curve 80 associated with a profile of the prior art. Curve 82 associated with a second embodiment according to the invention further improves the result obtained with curve 81 .
- the figure 9 shows the radiation pattern of the primary reflector as a function of the half-angle ⁇ of a double-reflector antenna according to the prior art.
- the power levels reflected in the vertical and horizontal planes of the antenna as a function of the half-angle ⁇ are represented on the ordinate.
- the curve 90 corresponds to the power reflected in the vertical plane
- the curve 91 corresponds to the power reflected in the horizontal plane.
- a broken line 92 indicates for each value of the half-angle ⁇ the reflectivity limits allowed by the ETSI standard R1C3 Co.
- the difference 93 between the value of the radiation of the primary reflector and the limit value imposed by the standard is here of the order of 5 dB.
- the figure 10 relates to a dual reflector antenna using a secondary reflector according to a first embodiment of the invention.
- the outer surface of the antenna has a profile described by a polynomial equation of the sixth degree.
- the reflected power levels in the vertical and horizontal planes of the antenna are represented as a function of the half-angle ⁇ .
- the curve 100 corresponds to the power reflected in the vertical plane and the curve 101 corresponds to the power reflected in the horizontal plane.
- a broken line 102 indicates, for each value of the half-angle ⁇ the reflectivity limits authorized by the ETSI R1C3 Co. standard.
- the difference 103 is here of the order of 7 dB, increasing with respect to the difference of 5 dB obtained for an antenna of the prior art.
- the figure 11 relates to a double reflector antenna using a secondary reflector according to a second embodiment of the invention.
- the outer surface of the secondary reflector has a profile described by a polynomial equation of the sixth degree on which has been added an annular relief.
- the reflected power levels in the vertical and horizontal planes of the antenna are represented as a function of the half-angle ⁇ .
- the curve 110 corresponds to the power reflected in the vertical plane and the curve 111 corresponds to the power reflected in the horizontal plane.
- a broken line 112 indicates, for each value of the half-angle ⁇ the reflectivity limits allowed by the ETSI R1C3 Co. standard.
- the difference 113 is of the order of 9 dB, much higher than the 93 dB difference of 5 dB obtained for a prior art antenna and improved with respect to the difference 103 of 7 dB obtained according to the first embodiment of FIG. embodiment of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Aerials With Secondary Devices (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
La présente invention se rapporte aux antennes Radio Fréquences (RF) à double réflecteur. Ces antennes comportent en général un réflecteur primaire concave de grand diamètre présentant une surface de révolution, et un réflecteur secondaire (« sub-reflector » en anglais) convexe de diamètre moindre situé à proximité du foyer du réflecteur primaire. Ces antennes fonctionnent indifféremment en mode transmetteur ou en mode récepteur, correspondant à deux sens opposés de propagation des ondes RF. Dans ce qui suit, la description est donnée soit en mode émission, soit en mode réception de l'antenne, selon ce qui permet de mieux illustrer les phénomènes décrits. Il faut noter que tous les raisonnements s'appliquent aux antennes aussi bien en réception qu'en émission.The present invention relates to Radio Frequency (RF) antennas with dual reflectors. These antennas generally comprise a large-diameter concave primary reflector having a surface of revolution, and a convex smaller-diameter secondary reflector ("sub-reflector") located near the focus of the primary reflector. These antennas operate indifferently in transmitter mode or in receiver mode, corresponding to two opposite directions of RF wave propagation. In what follows, the description is given either in transmission mode or in reception mode of the antenna, according to which allows to better illustrate the described phenomena. It should be noted that all the reasonings apply to the antennas as well in reception as in emission.
Les premières antennes ne possédaient qu'un seul réflecteur, le plus souvent parabolique. L'extrémité du guide d'onde radiofréquence se trouve au foyer du réflecteur. Le guide d'onde est inséré dans un orifice situé sur l'axe du réflecteur, et son extrémité est repliée à 180° afin de faire face au réflecteur. Le demi-angle maximum de rayonnement à l'extrémité repliée du guide d'onde pour éclairer le réflecteur est faible, de l'ordre de 70°. La distance entre le réflecteur et l'extrémité du guide d'onde doit être suffisamment importante pour permettre d'éclairer la totalité de la surface du réflecteur. Pour ces antennes à réflecteur peu profond (« shallow reflector » en anglais), le rapport F/D est de l'ordre de 0,36. Dans ce rapport, F est la distance focale du réflecteur (distance entre le sommet du réflecteur et son foyer) et D est le diamètre du réflecteur.The first antennas had only one reflector, most often parabolic. The end of the radiofrequency waveguide is at the focus of the reflector. The waveguide is inserted into an orifice on the axis of the reflector, and its end is bent 180 ° to face the reflector. The maximum half-angle of radiation at the folded end of the waveguide to illuminate the reflector is small, of the order of 70 °. The distance between the reflector and the end of the waveguide must be large enough to illuminate the entire surface of the reflector. For these shallow reflector antennas ("shallow reflector" in English), the F / D ratio is of the order of 0.36. In this report, F is the focal length of the reflector (distance between the top of the reflector and its focus) and D is the diameter of the reflector.
Dans ces antennes, la valeur du diamètre D est déterminée par la fréquence centrale de travail de l'antenne. Plus la fréquence de travail de l'antenne est basse (par exemple 7,1 GHz ou 10 GHz) et plus le diamètre du réflecteur est important à gain d'antenne équivalent : il faut alors que l'extrémité du guide d'onde soit très éloignée du réflecteur pour bien l'éclairer (mode émission), et l'antenne devient donc d'autant plus encombrante que la fréquence de travail est basse. Pour ces antennes à réflecteur peu profonds, il indispensable d'ajouter un écran absorbant afin de minimiser les pertes de rayonnement par débordement et améliorer les performances radioélectriques.In these antennas, the value of the diameter D is determined by the central working frequency of the antenna. The lower the working frequency of the antenna (for example 7.1 GHz or 10 GHz) and the greater the diameter of the reflector is important at equivalent antenna gain: it is then necessary that the end of the waveguide is very far from the reflector to illuminate it well (emission mode), and the antenna becomes more cumbersome as the working frequency is low. For these shallow reflector antennas, it is essential to add an absorbing shield to minimize over-flow loss and improve radio performance.
Afin de réaliser des systèmes plus compacts, on utilise des antennes à double réflecteur, notamment celles dites de type Cassegrain. Les doubles réflecteurs comportent un réflecteur primaire concave, fréquemment parabolique, ainsi qu'un réflecteur secondaire convexe ayant un diamètre très inférieur et placé au voisinage du foyer sur le même axe de révolution que le réflecteur primaire. Un réflecteur secondaire d'antenne à double réflecteur est par exemple décrit dans le document
Il est possible de réaliser des réflecteurs secondaires présentant un demi-angle d'éclairement du réflecteur primaire bien supérieur à 70°. On peut utiliser par exemple un demi-angle limite d'éclairement de 105°. Dans une antenne à double réflecteur, le réflecteur secondaire peut ainsi être axialement très proche du réflecteur primaire. En pratique, le réflecteur secondaire peut être situé à l'intérieur du volume défini par le réflecteur primaire ce qui réduit l'encombrement de l'antenne.It is possible to make secondary reflectors having a half-angle of illumination of the primary reflector much greater than 70 °. For example, an illumination half-angle of 105 ° can be used. In a double reflector antenna, the secondary reflector can thus be axially very close to the primary reflector. In practice, the secondary reflector may be located within the volume defined by the primary reflector which reduces the size of the antenna.
Dans ces antennes à double réflecteur, le rapport F/D utilisé est souvent inférieur ou égal à 0,25. Ces antenne sont dites à réflecteur profond (« deep reflector » en anglais). Un rapport F/D de l'ordre de 0,25 correspond, pour une même valeur de la fréquence centrale de travail D, à une distance focale plus courte que dans le cas où le rapport F/D est voisin de 0,36. L'encombrement d'une antenne à double réflecteur peut donc être inférieur à celui d'une antenne à simple réflecteur grâce à la suppression de l'écran absorbant qui n'est plus indispensable.In these dual reflector antennas, the F / D ratio used is often less than or equal to 0.25. These antenna are said to deep reflector ("deep reflector" in English). An F / D ratio of the order of 0.25 corresponds, for the same value of the working center frequency D, to a shorter focal length than in the case where the F / D ratio is close to 0.36. The size of a double reflector antenna can therefore be smaller than that of a single reflector antenna by eliminating the absorbing screen which is no longer essential.
Bien que les antennes à double réflecteur soient bien adaptées à la réalisation d'antennes compactes, par exemple en utilisant des doubles réflecteurs dont le rapport F/D est voisin de 0,2, on peut préférer utiliser des valeurs de F/D différentes de manière à optimiser aussi d'autres caractéristiques que l'encombrement, comme le diagramme de rayonnement de l'antenne par exemple.Although the dual reflector antennas are well suited to the production of compact antennas, for example by using double reflectors whose F / D ratio is close to 0.2, it may be preferable to use F / D values other than to optimize also other characteristics that congestion, such as the radiation pattern of the antenna for example.
Dans une antenne à double réflecteur, le réflecteur secondaire doit être maintenu au voisinage du foyer du réflecteur primaire. Un des moyens possibles est de fixer le réflecteur secondaire à l'extrémité du guide d'onde. Dans ce cas, le réflecteur secondaire comporte habituellement un corps diélectrique (fréquemment en plastique) de forme générale sensiblement conique et transparent aux ondes RF. La surface externe sensiblement conique du réflecteur secondaire fait face au réflecteur primaire. La surface interne convexe du réflecteur secondaire est revêtue d'un traitement permettant de réfléchir les ondes RF en direction du réflecteur primaire en traversant le corps diélectrique. Ce revêtement est le plus souvent en métal.In a dual reflector antenna, the secondary reflector must be maintained in the vicinity of the focus of the primary reflector. One of the possible ways is to fix the secondary reflector at the end of the waveguide. In this case, the secondary reflector usually comprises a dielectric body (frequently plastic) of generally conical shape and transparent to RF waves. The substantially conical outer surface of the secondary reflector faces the primary reflector. The convex inner surface of the secondary reflector is coated with a treatment to reflect the RF waves towards the primary reflector through the dielectric body. This coating is most often metal.
De multiples réflexions des ondes RF surviennent entre l'extrémité du guide d'onde et le réflecteur primaire, en impliquant le réflecteur secondaire. De manière à réduire ces réflexions, on a proposé d'introduire des perturbations locales sur la surface externe du réflecteur secondaire faisant face au réflecteur primaire. Ces perturbations ont la forme de reliefs formant des anneaux autour du corps diélectrique. Ces reliefs annelés sont des reliefs de révolution autour de l'axe du réflecteur secondaire. Le profil de ces reliefs annelés est constitué de crêtes et saillies de différentes hauteurs et profondeurs. Ces reliefs peuvent être distribués de manière périodique sur toute la surface externe du réflecteur secondaire. Toutefois des reliefs annelés non périodiques peuvent être utilisés pour modifier les caractéristiques de réflexion du réflecteur secondaire, afin de réduire encore les multiples réflexions des ondes RF pour les deux plans de polarisation de l'onde électromagnétique.Multiple reflections of RF waves occur between the end of the waveguide and the primary reflector, involving the secondary reflector. In order to reduce these reflections, it has been proposed to introduce local disturbances on the outer surface of the secondary reflector facing the primary reflector. These disturbances have the form of reliefs forming rings around the dielectric body. These corrugated reliefs are reliefs of revolution around the axis of the secondary reflector. The profile of these corrugated reliefs consists of ridges and projections of different heights and depths. These reliefs may be distributed periodically over the entire external surface of the secondary reflector. However, non-periodic corrugated reliefs can be used to modify the reflection characteristics of the secondary reflector, in order to further reduce the multiple reflections of the RF waves for the two polarization planes of the electromagnetic wave.
L'introduction de reliefs annelés sur la surface externe du corps diélectrique permet de réduire les réflexions multiples des ondes RF qui se produisent entre le guide d'onde et le réflecteur primaire via la surface interne métallisée du réflecteur secondaire. Par contre, ces reliefs ont un effet moindre sur deux autres caractéristiques importantes du double réflecteur : le gain d'antenne, exprimé en dBi ou décibel isotrope, et les pertes par débordement (« spillover » en anglais), exprimées en dB.The introduction of annular reliefs on the outer surface of the dielectric body reduces the multiple reflections of RF waves that occur between the waveguide and the primary reflector via the metallized inner surface of the secondary reflector. On the other hand, these reliefs have a lesser effect on two other important characteristics of the double reflector: the antenna gain, expressed in dBi or isotropic decibel, and the spillover losses, expressed in dB.
En mode émission de l'antenne, par exemple, les pertes par débordement correspondent à l'énergie réfléchie par le réflecteur secondaire en direction du réflecteur primaire, et dont le trajet se termine au-delà du diamètre externe du réflecteur primaire. Ces pertes conduisent à une pollution de l'environnement par les ondes RF. Ces pertes par débordement doivent être limitées à des niveaux définis par des normes.In the antenna transmission mode, for example, the overflow losses correspond to the energy reflected by the secondary reflector towards the primary reflector, and whose path ends beyond the outer diameter of the primary reflector. These losses lead to pollution of the environment by RF waves. These overflow losses should be limited to levels defined by standards.
Une solution habituelle est d'attacher à la périphérie du réflecteur primaire une jupe qui a la forme d'un cylindre, de diamètre voisin de celui du réflecteur primaire et de hauteur convenable, revêtu intérieurement d'une couche absorbant le rayonnement RF. Outre l'encombrement qui en résulte, cette solution connue présente l'inconvénient aujourd'hui gênant du coût du matériau de la jupe, ainsi que du coût d'assemblage de cette jupe sur le réflecteur primaire.A conventional solution is to attach to the periphery of the primary reflector a skirt which has the shape of a cylinder, of diameter close to that of the primary reflector and of suitable height, lined internally with a layer absorbing RF radiation. In addition to the resulting congestion, this known solution has the inconvenient today inconvenient cost of the material of the skirt, as well as the cost of assembling this skirt on the primary reflector.
La présente invention a pour but de proposer une antenne à double réflecteur dont les pertes par débordement sont notablement réduites.The present invention aims to provide a dual reflector antenna whose losses overflow are significantly reduced.
L'objet de la présente invention est un réflecteur secondaire d'antenne à double réflecteur comprenant
- une première extrémité ayant une jonction d'un premier diamètre, adaptée pour le couplage à l'extrémité d'un guide d'onde,
- une seconde extrémité, ayant un second diamètre plus grand que le premier diamètre,
- une surface interne convexe réfléchissante placée à la seconde extrémité ayant un axe de révolution,
- une surface externe de même axe, reliant les deux extrémités,
- un corps diélectrique s'étendant entre la première et la seconde extrémité et limité par la surface interne et la surface externe,
- a first end having a junction of a first diameter, adapted for coupling to the end of a waveguide,
- a second end, having a second diameter larger than the first diameter,
- a convex inner reflective surface placed at the second end having an axis of revolution,
- an outer surface of the same axis, connecting the two ends,
- a dielectric body extending between the first and second ends and bounded by the inner surface and the outer surface,
Selon l'invention, la surface externe a un profil convexe décrit par une équation polynomiale du sixième degré de la forme : y = ax6 + bx5 + cx4 + dx3 + ex2 + fx + g où a n'est pas nul.According to the invention, the outer surface has a convex profile described by a polynomial equation of the sixth degree of the form: y = ax 6 + bx 5 + cx 4 + dx 3 + ex 2 + fx + g where a is not no.
L'invention consiste à proposer un réflecteur secondaire dont la surface externe présente un profil selon une courbe particulière. Le réflecteur secondaire est un volume de symétrie axiale ayant une surface dont la génératrice est une courbe décrite par une équation polynomiale de degré 6. Des optimisations numériques permettent d'adapter les coefficients de cette équation polynomiale de degré 6 selon le type de double réflecteur utilisé et la présence éventuelle d'une jupe.The invention consists in proposing a secondary reflector whose outer surface has a profile according to a particular curve. The secondary reflector is a volume of axial symmetry having a surface whose generator is a curve described by a polynomial equation of
Dans l'équation y = ax6 + bx5 + cx4 + dx3 + ex2 + fx + g les coefficients b, c, d, e, f, et/ou g peuvent être nuls.In the equation y = ax 6 + bx 5 + cx 4 + dx 3 + ex 2 + fx + g the coefficients b, c, d, e, f, and / or g can be zero.
Dans une variante de l'invention, la surface externe du réflecteur secondaire comporte en outre un relief unique en forme d'anneau entourant le corps diélectrique.In a variant of the invention, the outer surface of the secondary reflector further comprises a single ring-shaped relief surrounding the dielectric body.
La section de ce relief peut être une portion d'un disque ou d'un parallélogramme (carré ou rectangle par exemple). De préférence le relief a une section rectangulaire.The section of this relief may be a portion of a disk or a parallelogram (square or rectangle for example). Preferably the relief has a rectangular section.
De préférence encore le relief se projette dans une direction perpendiculaire à l'axe de révolution du réflecteur secondaire.More preferably the relief is projected in a direction perpendicular to the axis of revolution of the secondary reflector.
Cet unique anneau en relief est placé sur la surface externe du réflecteur secondaire pour réduire les réflexions multiples de l'onde RF. On obtient ainsi simultanément une réduction des pertes par débordement et des réflexions multiples des ondes RF. De préférence le relief est disposé sur la moitié de la surface externe la plus proche de la seconde extrémité.This unique raised ring is placed on the outer surface of the secondary reflector to reduce the multiple reflections of the RF wave. At the same time, a reduction in overflow losses and multiple reflections of the RF waves is achieved simultaneously. Preferably the relief is disposed on the half of the outer surface closest to the second end.
La présente invention a aussi pour objet une antenne à double réflecteur comportant un réflecteur primaire et un réflecteur secondaire associé. Le réflecteur secondaire comprend :
- une première extrémité ayant une jonction d'un premier diamètre, adaptée pour le couplage à l'extrémité d'un guide d'onde,
- une seconde extrémité, ayant un second diamètre plus grand que le premier diamètre,
- une surface interne convexe réfléchissante placée à la seconde extrémité ayant un axe de révolution,
- un corps diélectrique s'étendant entre la première et la seconde extrémité et limité par la surface interne et la surface externe,
- une surface externe de même axe, placée au plus près du réflecteur primaire, ayant un profil convexe décrit par une équation polynomiale du sixième degré de la forme : y = ax6 + bx5 + cx4 + dx3 + ex2 + fx + g où a n'est pas nul.
- a first end having a junction of a first diameter, adapted for coupling to the end of a waveguide,
- a second end, having a second diameter larger than the first diameter,
- a convex inner reflective surface placed at the second end having an axis of revolution,
- a dielectric body extending between the first and second ends and bounded by the inner surface and the outer surface,
- an outer surface of the same axis, placed closest to the primary reflector, having a convex profile described by a polynomial equation of the sixth degree of the form: y = ax 6 + bx 5 + cx 4 + dx 3 + ex 2 + fx + where a is not zero.
Du fait de la réduction des pertes par débordement, la présente invention permet de se passer de la jupe, ou à tout Ic moins de réduire la hauteur de la jupe du réflecteur primaire, ce qui procure un avantage de coût et d'encombrement.Because of the reduction of overflow losses, the present invention makes it possible to dispense with the skirt, or at least to reduce the height of the skirt of the primary reflector, which provides a cost and space advantage.
L'amélioration apportée par l'invention permet d'utiliser une jupe de faible hauteur qui peut être réalisée d'un seul tenant avec le réflecteur primaire, c'est-à-dire qu'on réalise une seule pièce mécanique présentant un réflecteur dans la partie centrale et une jupe dans la partie périphérique. Ceci entraîne une réduction de coût supplémentaire par rapport à la solution classique d'une jupe rapportée sur un réflecteur primaire par toute méthode connue telle que soudure, vissage, etc.. On économise ainsi le coût de l'assemblage.The improvement afforded by the invention makes it possible to use a skirt of low height which can be made in one piece with the primary reflector, that is to say that a single mechanical part having a reflector is produced in the central part and a skirt in the peripheral part. This entails an additional cost reduction compared to the conventional solution of a skirt attached to a primary reflector by any known method such as welding, screwing, etc. This saves the cost of assembly.
L'invention est utilisable dans des applications telles que, par exemple, la réalisation d'antennes terrestres permettant de recevoir un signal radiofréquence émis par un satellite ou la liaison entre deux antennes terrestres, et de façon plus générale dans toute application concernant les liaisons radiofréquence point à point dans la bande de fréquence de 7 GHz à 40 GHz. Les fréquences centrales typiques de fonctionnement de ces systèmes sont 7,1 GHz, 8,5 GHz, 10 GHz, etc.... La bande passante autour de chaque fréquence est en général de l'ordre de 5 % à 20 %. A chaque fréquence centrale correspond un diamètre de réflecteur secondaire adapté : plus la fréquence est élevée, plus la longueur d'onde est faible et plus le diamètre du réflecteur secondaire est réduit.The invention can be used in applications such as, for example, the production of terrestrial antennas for receiving a radiofrequency signal emitted by a satellite or the link between two terrestrial antennas, and more generally in any application concerning radiofrequency links. point-to-point in the frequency band from 7 GHz to 40 GHz. The typical central frequencies of operation of these systems are 7.1 GHz, 8.5 GHz, 10 GHz, etc. The bandwidth around each frequency is in general of the order of 5% to 20%. Each central frequency corresponds to a suitable secondary reflector diameter: the higher the frequency, the shorter the wavelength, and the smaller the diameter of the secondary reflector.
L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture de la description qui va suivre de modes de réalisation, donnés à titre illustratif et non limitatif, accompagnée des dessins annexés parmi lesquels
- la
figure 1 représente une vue schématique en coupe axiale d'une antenne radiofréquence selon un premier mode de réalisation de l'invention, - la
figure 2 montre une vue schématique en coupe axiale du réflecteur secondaire d'une l'antenne RF selon un premier mode de réalisation de l'invention, - la
figure 3 montre une vue schématique en coupe axiale du réflecteur secondaire d'une antenne RF selon un deuxième mode de réalisation de l'invention, - la
figure 4 est une vue générale schématique des paramètres de rayonnement d'une antenne à double réflecteur analogue à celle de lafigure 1 , - la
figure 5 représente une vue schématique en coupe axiale d'une antenne RF dont le réflecteur primaire comprend une jupe selon un troisième mode de réalisation de l'invention, - la
figure 6 est un exemple de profil de la surface externe du réflecteur secondaire selon un mode particulier de réalisation de l'invention, - la
figure 7 est le diagramme de rayonnement du réflecteur secondaire dans le plan vertical en fonction du demi-angle d'éclairement θ pour trois profils différents de la surface externe du réflecteur secondaire, - la
figure 8 , analogue à lafigure 7 , est le diagramme de rayonnement du réflecteur secondaire dans le plan horizontal en fonction du demi-angle d'éclairement θ pour trois profils différents de la surface externe du réflecteur secondaire. - la
figure 9 représente le diagramme de rayonnement du réflecteur primaire en fonction du demi-angle β, complémentaire du demi-angle de rayonnement θ, d'une antenne à double réflecteur selon l'art antérieur, - la
figure 10 , analogue à lafigure 9 , représente le diagramme de rayonnement du réflecteur primaire en fonction du demi-angle β d'une antenne à double réflecteur selon le premier mode de réalisation de l'invention, - la
figure 11 , analogue à lafigure 9 , représente le diagramme de rayonnement du réflecteur primaire en fonction du demi-angle β d'une antenne à double réflecteur selon le deuxième mode de réalisation de l'invention.
- the
figure 1 represents a schematic view in axial section of a radiofrequency antenna according to a first embodiment of the invention, - the
figure 2 shows a schematic view in axial section of the secondary reflector of an RF antenna according to a first embodiment of the invention, - the
figure 3 shows a schematic view in axial section of the secondary reflector of an RF antenna according to a second embodiment of the invention, - the
figure 4 is a schematic overview of the radiation parameters of a dual reflector antenna similar to that of thefigure 1 , - the
figure 5 represents a schematic view in axial section of an RF antenna whose primary reflector comprises a skirt according to a third embodiment of the invention, - the
figure 6 is an example of a profile of the external surface of the secondary reflector according to a particular embodiment of the invention, - the
figure 7 is the radiation pattern of the secondary reflector in the vertical plane as a function of the half illumination angle θ for three different profiles of the external surface of the secondary reflector, - the
figure 8 , analogous to thefigure 7 , is the radiation pattern of the secondary reflector in the horizontal plane as a function of the illumination half-angle θ for three different profiles of the external surface of the secondary reflector. - the
figure 9 represents the radiation pattern of the primary reflector as a function of the half-angle β, complementary to the half-radiation angle θ, of a double-reflector antenna according to the prior art, - the
figure 10 , analogous to thefigure 9 , represents the radiation pattern of the primary reflector as a function of the half-angle β of a double-reflector antenna according to the first embodiment of the invention, - the
figure 11 , analogous to thefigure 9 , represents the radiation pattern of the primary reflector as a function of the half-angle β of a double-reflector antenna according to the second embodiment of the invention.
Sur les
Sur les
Sur la
Le réflecteur primaire 1 peut être en métal à surface réfléchissante, par exemple de l'aluminium. Le guide d'onde 3 peut être par exemple un tube creux métallique, également en aluminium, de section circulaire ayant un diamètre extérieur de 26 mm ou 3,6 mm pour des fréquences d'émission/réception respectivement de 7 GHz et 60 GHz. Bien entendu le guide d'onde pourrait avoir une section différente, rectangulaire ou carrée par exemple.The
On a représenté le foyer 5 (aussi appelé centre de phase) placé sur l'axe de révolution 4, et la distance focale F 6 qui sépare le foyer du sommet du réflecteur primaire 1. Le réflecteur primaire 1 est par exemple un paraboloïde de révolution autour de l'axe 4 avec une profondeur P 7 et un diamètre D 8.The focal point 5 (also called the phase center) is represented on the axis of
Pour une telle antenne présentant un rapport F/D de l'ordre de 0,2, la distance focale F est par exemple de 246 mm et le diamètre D est de 1230 mm (4 pieds). Dans ce cas, l'angle d'éclairement limite 2θp du réflecteur primaire vaut 210°.For such an antenna having an F / D ratio of the order of 0.2, the focal length F is for example 246 mm and the diameter D is 1230 mm (4 feet). In this case, the limiting illumination angle 2θ p of the primary reflector is 210 °.
La
La surface externe 14 du réflecteur secondaire 10 est la surface placée en regard du réflecteur primaire. La surface externe 14 est une surface de révolution autour de l'axe de révolution 13.The
Selon le premier mode de réalisation de l'invention, la surface externe 14 du réflecteur secondaire 10 présente un profil qui est une courbe décrite par une équation polynomiale du sixième degré de la forme : y = ax6 + bx5 + cx4 + dx3 + ex2 + fx + g. Les calculs permettent de montrer que le choix d'un tel profil courbe pour la surface externe 14 permet de réduire les pertes par débordement du double réflecteur.According to the first embodiment of the invention, the
La forme de la surface interne du réflecteur secondaire influence l'intensité et la phase de l'onde électromagnétique issue du guide d'onde et reçue par le réflecteur primaire.The shape of the inner surface of the secondary reflector influences the intensity and phase of the electromagnetic wave from the waveguide and received by the primary reflector.
La
Dans le deuxième mode de réalisation de l'invention, la surface externe 22 du réflecteur 20 est donc constituée de trois parties successives 22a, 21, 22b. Les parties 22a et 22b présentent chacune un profil décrit par une portion de la courbe du sixième degré. Les parties 22a et 22b et le relief 21 présentent une symétrie de révolution autour de l'axe de révolution 23.In the second embodiment of the invention, the
Les pertes par débordement pour le mode émission d'une antenne RF selon le premier mode de réalisation de l'invention sont explicitées sur la
Cette figure montre le demi-angle d'éclairement θ (theta) 30 et le demi-angle β (beta) 31, qui est le demi-angle complémentaire du demi-angle 0. Les deux demi-angles 0 et β sont mesurés par rapport à l'axe de révolution 4 du réflecteur secondaire 2, et ils ont pour sommet le foyer 5 du réflecteur primaire 1. Il y a perte par débordement pour des valeurs du demi-angle θ supérieures à la valeur limite θp 32 pour laquelle les rayons réfléchis 33 par le réflecteur secondaire viennent à être tangents au bord du réflecteur primaire.This figure shows the illumination half-angle θ (theta) 30 and the half-angle β (beta) 31 , which is the half-angle complementary to the half-
Les pertes par débordement sont donc dues à tous les rayons 33 réfléchis par le réflecteur secondaire 2 à l'intérieur de la plage angulaire 34. La plage angulaire 34 est définie par deux rayons 35, issus du foyer 5 et symétriques par rapport à l'axe de révolution 4, qui sont tangents aux bords du réflecteur primaire 1.The overflow losses are therefore due to all the
La
La jupe 51 est de hauteur moindre que les jupes utilisées dans l'art antérieur, car les pertes par débordement sont notablement réduites par l'utilisation d'un réflecteur secondaire 53 muni d'une surface externe 54 présentant un profil selon une courbe décrite par une équation polynomiale du sixième degré. On peut optimiser les paramètres de l'équation du sixième degré décrivant le profil de la surface externe 54. Cette optimisation permet de réduire la hauteur de la jupe 51 jusqu'à permettre la réalisation d'une seule pièce du réflecteur primaire 50 et de la jupe 51, comme le montre la
La
L'exemple décrit sur cette figure correspond à une antenne à double réflecteur dont le réflecteur primaire est de type parabolique répondant à l'équation : P/D = D/(16F) dans laquelle P est la profondeur du réflecteur primaire, D est le diamètre du réflecteur primaire, et F est la distance focale du réflecteur primaire.The example described in this figure corresponds to a double reflector antenna whose primary reflector is of parabolic type corresponding to the equation: P / D = D / (16F) in which P is the depth of the primary reflector, D is the diameter of the primary reflector, and F is the focal length of the primary reflector.
Dans cet exemple, F/D=0,25 et le demi-angle d'éclairement limite θp est tel que 0p = 90°, car dans toute parabole θp = 2 arc-tangente (D/4F).In this example, F / D = 0.25 and the limiting half-angle of illumination θ p is such that 0 p = 90 °, because in any parabola θ p = 2 arc-tangent (D / 4F).
Dans cet exemple de réalisation de l'invention, l'équation polynomiale définissant le profil de la surface externe du réflecteur secondaire est la suivante :
Les valeurs numériques indiquées ici pour les paramètres a, b, c, d, e, f, g de l'équation du sixième degré dépendent des valeurs numériques choisies pour la distance focale F, la profondeur P et le diamètre D du réflecteur primaire, ainsi que du niveau de pertes par débordement que l'on s'autorise. Si l'on change ces valeurs numériques, on peut trouver une autre ensemble de valeurs pour les paramètres a, b, c, d, e, t, g permettant de minimiser les pertes par débordement. Ainsi les paramètres a, b, c, d, e, f, g de l'équation du sixième degré peuvent prendre des valeurs différentes.The numerical values given here for the parameters a, b, c, d, e, f, g of the sixth degree equation depend on the numerical values chosen for the focal length F, the depth P and the diameter D of the primary reflector. as well as the level of overflow losses that we allow ourselves. If we change these numerical values, we can find another set of values for the parameters a, b, c, d, e, t, g to minimize overflow losses. Thus the parameters a, b, c, d, e, f, g of the sixth degree equation can take different values.
La
- un profil conique connu de l'art antérieur (courbe de référence 70),
- un profil correspondant au premier mode de réalisation de l'invention (courbe 71), et
- un profil comprenant un relief annelé selon le deuxième mode de réalisation de l'invention (courbe 72).
- a conical profile known from the prior art (reference curve 70 ),
- a profile corresponding to the first embodiment of the invention (curve 71 ), and
- a profile comprising a corrugated relief according to the second embodiment of the invention (curve 72 ).
Le diagramme de rayonnement est représenté par l'amplitude du rayonnement V exprimée en fonction du demi-angle d'éclairement θ. Ce diagramme de rayonnement est relatif à l'antenne en mode émission. La meilleure conception d'antenne est celle qui permet d'obtenir un rayonnement, ou champ électrique émis, le plus faible possible pour les valeurs de demi-angle d'éclairement θ supérieures à la valeur limite θp représentée ici par la ligne verticale 73. La ligne verticale 73 représente la valeur θp du demi-angle θ qui tangente le bord externe du réflecteur primaire comme montré sur la
On observe que la courbe 71, associée au premier mode de réalisation selon l'invention, montre un rayonnement plus faible pour des valeurs de l'angle θ supérieures à la valeur θp que le rayonnement données par la courbe 70 associée à un profil de l'art antérieur. La courbe 72 associée à un deuxième mode de réalisation selon l'invention améliore encore le résultat obtenu avec la courbe 71.It is observed that the
La
- un profil conique connu de l'art antérieur (courbe de référence 80),
- un profil correspondant au premier mode de réalisation de l'invention (courbe 81), et
- un profil comprenant un relief annelé selon le deuxième mode de réalisation de l'invention (courbe 82).
- a conical profile known from the prior art (reference curve 80 ),
- a profile corresponding to the first embodiment of the invention (curve 81 ), and
- a profile comprising a corrugated relief according to the second embodiment of the invention (curve 82 ).
Sur cette figure, la ligne verticale 83 représente la valeur θp du demi-angle θ qui tangente le bord externe du réflecteur primaire comme montré sur la
Comme dans le cas précédent, la meilleure conception d'antenne est celle permettant d'obtenir le rayonnement le plus faible pour les demi-angles 0, supérieurs à la valeur θp, situés à droite de la ligne verticale 83. On observe que la courbe 81 associée au premier mode de réalisation selon l'invention montre des valeurs de rayonnement plus faibles que les valeurs données par la courbe 80 associée à un profil de l'art antérieur. La courbe 82 associée à un deuxième mode de réalisation selon l'invention améliore encore le résultat obtenu avec la courbe 81.As in the previous case, the best antenna design is that which makes it possible to obtain the lowest radiation for the half-
La
Une ligne brisée 92 indique pour chaque valeur du demi-angle β les limites de réflectivité autorisées par la norme ETSI R1C3 Co. Pour une valeur du demi-angle β voisin de 65°, qui est la valeur limite correspondant à la diffraction de l'onde RF sur le bord du réflecteur primaire, l'écart 93 entre la valeur du rayonnement du réflecteur primaire et la valeur limite imposée par la norme est ici de l'ordre de 5 dB.A
La
L'écart 103 est ici de l'ordre de 7 dB, en augmentation par rapport à l'écart de 5 dB obtenue pour une antenne de l'art antérieur.The
La
L'écart 113 est de l'ordre de 9 dB, bien supérieure à l'écart 93 de 5 dB obtenu pour une antenne de l'art antérieur et amélioré par rapport à l'écart 103 de 7 dB obtenu selon le premier mode de réalisation de l'invention.The
Plus cet écart entre la valeur du rayonnement du réflecteur primaire et la valeur limite imposée par la norme ETSI R1C3 Co est élevé, plus l'intensité du rayonnement de l'antenne est faible dans cette zone angulaire. Cette qualité de l'antenne est importante pour l'utilisateur car elle assure une pollution électromagnétique moindre des antennes voisines.The greater the difference between the value of the radiation of the primary reflector and the limit value imposed by the ETSI R1C3 Co standard, the lower the intensity of the radiation of the antenna in this angular zone. This quality of the antenna is important for the user because it ensures less electromagnetic pollution of neighboring antennas.
Claims (5)
- A secondary reflector for a dual-reflector antenna, comprising:- a first end having a junction with a first diameter, suitable for coupling to the end of a waveguide (3),- a second end, having a second diameter greater than the first diameter,- an internal convex reflective surface (12) placed at the second end, having an axis of revolution (13),- an external surface (14) of the same axis (13), connecting the two ends,- a dielectric body (11) extending between the first and second end and limited by the internal surface (12) and external surface (14),characterized in that the external surface (14) has a convex profile described by a sixth-degree polynomial equation whose form is: y = ax6 + bx5 + cx4 + dx3 + ex2 + fx + g, where a is non-zero and where x is the axis aligned on the axis of revolution (13) and y is the axis whose direction is perpendicular to the axis of revolution (13).
- A secondary reflector according to claim 1, wherein the external surface (22) further comprises a single ring-shaped relief (21) surrounding the dielectric body (11).
- A secondary reflector according to claim 2, wherein the relief (21) projects out in a direction perpendicular to said axis of revolution (23).
- A dual-reflector antenna comprising a secondary reflector (2, 10), according to one of the preceding claims, combined with a primary reflector (1), characterized in that the external surface (14) of the secondary reflector (2, 10) is placed as close as possible to the primary reflector (1) and has a convex profile described by a sixth-degree polynomial equation whose form is: y = ax6 + bx5 + cx4 + dx3 + ex2 + fx + g, where a is non-zero.
- A dual-reflector antenna according to claim 4, comprising a primary reflector (50) comprising a shroud, the shroud (51) and the primary reflector (50) being constructed from a single piece.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0850301A FR2926680B1 (en) | 2008-01-18 | 2008-01-18 | REFLECTOR-SECONDARY OF A DOUBLE REFLECTOR ANTENNA |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2081258A1 EP2081258A1 (en) | 2009-07-22 |
EP2081258B1 true EP2081258B1 (en) | 2011-05-04 |
Family
ID=39700156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09150680A Not-in-force EP2081258B1 (en) | 2008-01-18 | 2009-01-15 | Secondary reflector of an antenna with double reflector |
Country Status (9)
Country | Link |
---|---|
US (1) | US8102324B2 (en) |
EP (1) | EP2081258B1 (en) |
JP (2) | JP5679820B2 (en) |
KR (1) | KR101468889B1 (en) |
CN (1) | CN101488606B (en) |
AT (1) | ATE508495T1 (en) |
DE (1) | DE602009001193D1 (en) |
FR (1) | FR2926680B1 (en) |
WO (1) | WO2009090195A1 (en) |
Families Citing this family (164)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5488620B2 (en) * | 2010-02-15 | 2014-05-14 | 日本電気株式会社 | Radio wave absorber and parabolic antenna |
CN101841082A (en) * | 2010-05-19 | 2010-09-22 | 广东通宇通讯设备有限公司 | Feed source for microwave antenna and microwave antenna |
US8373589B2 (en) * | 2010-05-26 | 2013-02-12 | Detect, Inc. | Rotational parabolic antenna with various feed configurations |
CN102790288B (en) * | 2011-05-18 | 2015-03-11 | 深圳光启创新技术有限公司 | Directional antenna |
US8914258B2 (en) * | 2011-06-28 | 2014-12-16 | Space Systems/Loral, Llc | RF feed element design optimization using secondary pattern |
US8581795B2 (en) | 2011-09-01 | 2013-11-12 | Andrew Llc | Low sidelobe reflector antenna |
US20130057444A1 (en) * | 2011-09-01 | 2013-03-07 | Andrew Llc | Controlled illumination dielectric cone radiator for reflector antenna |
US9019164B2 (en) * | 2011-09-12 | 2015-04-28 | Andrew Llc | Low sidelobe reflector antenna with shield |
CN103296481B (en) * | 2012-02-29 | 2017-03-22 | 深圳光启创新技术有限公司 | Microwave antenna system |
CN102868027B (en) * | 2012-04-28 | 2015-04-22 | 深圳光启高等理工研究院 | Offset satellite television antenna and satellite television receiving system thereof |
CN102683881B (en) * | 2012-04-28 | 2015-05-27 | 深圳光启高等理工研究院 | Positive feedback satellite television antenna and satellite television transceiver system |
CN102810765B (en) * | 2012-07-31 | 2016-02-10 | 深圳光启创新技术有限公司 | One is just presenting horn antenna system |
US9113347B2 (en) | 2012-12-05 | 2015-08-18 | At&T Intellectual Property I, Lp | Backhaul link for distributed antenna system |
US10009065B2 (en) | 2012-12-05 | 2018-06-26 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US9246233B2 (en) * | 2013-03-01 | 2016-01-26 | Optim Microwave, Inc. | Compact low sidelobe antenna and feed network |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9525524B2 (en) | 2013-05-31 | 2016-12-20 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US8897697B1 (en) | 2013-11-06 | 2014-11-25 | At&T Intellectual Property I, Lp | Millimeter-wave surface-wave communications |
US9692101B2 (en) | 2014-08-26 | 2017-06-27 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire |
US9768833B2 (en) | 2014-09-15 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US10063280B2 (en) | 2014-09-17 | 2018-08-28 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9615269B2 (en) | 2014-10-02 | 2017-04-04 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9503189B2 (en) | 2014-10-10 | 2016-11-22 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9762289B2 (en) | 2014-10-14 | 2017-09-12 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting or receiving signals in a transportation system |
US9973299B2 (en) | 2014-10-14 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9627768B2 (en) | 2014-10-21 | 2017-04-18 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9520945B2 (en) | 2014-10-21 | 2016-12-13 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9653770B2 (en) | 2014-10-21 | 2017-05-16 | At&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
US9312919B1 (en) | 2014-10-21 | 2016-04-12 | At&T Intellectual Property I, Lp | Transmission device with impairment compensation and methods for use therewith |
US9577306B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US9544006B2 (en) | 2014-11-20 | 2017-01-10 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US9461706B1 (en) | 2015-07-31 | 2016-10-04 | At&T Intellectual Property I, Lp | Method and apparatus for exchanging communication signals |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US10144036B2 (en) | 2015-01-30 | 2018-12-04 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium |
US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
US10224981B2 (en) | 2015-04-24 | 2019-03-05 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US9948354B2 (en) | 2015-04-28 | 2018-04-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US9490869B1 (en) | 2015-05-14 | 2016-11-08 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US10812174B2 (en) | 2015-06-03 | 2020-10-20 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US10103801B2 (en) | 2015-06-03 | 2018-10-16 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US9608692B2 (en) | 2015-06-11 | 2017-03-28 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US10142086B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9667317B2 (en) | 2015-06-15 | 2017-05-30 | At&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
EP3109941B1 (en) * | 2015-06-23 | 2019-06-19 | Alcatel- Lucent Shanghai Bell Co., Ltd | Microwave antenna with dual reflector |
US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US9509415B1 (en) | 2015-06-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US10320586B2 (en) | 2015-07-14 | 2019-06-11 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US10033108B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
US10170840B2 (en) | 2015-07-14 | 2019-01-01 | At&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
US10341142B2 (en) | 2015-07-14 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
US10033107B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9608740B2 (en) | 2015-07-15 | 2017-03-28 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9793951B2 (en) | 2015-07-15 | 2017-10-17 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US10009063B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal |
US10079661B2 (en) | 2015-09-16 | 2018-09-18 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a clock reference |
US10136434B2 (en) | 2015-09-16 | 2018-11-20 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US10665942B2 (en) | 2015-10-16 | 2020-05-26 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting wireless communications |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
US9912419B1 (en) | 2016-08-24 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for managing a fault in a distributed antenna system |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US10291311B2 (en) | 2016-09-09 | 2019-05-14 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating a fault in a distributed antenna system |
US11032819B2 (en) | 2016-09-15 | 2021-06-08 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a control channel reference signal |
US10135147B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
US10135146B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
US10340600B2 (en) | 2016-10-18 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
US9876605B1 (en) | 2016-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US10374316B2 (en) | 2016-10-21 | 2019-08-06 | At&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
US9991580B2 (en) | 2016-10-21 | 2018-06-05 | At&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
US11075466B2 (en) | 2017-08-22 | 2021-07-27 | Commscope Technologies Llc | Parabolic reflector antennas that support low side lobe radiation patterns |
US11283187B2 (en) * | 2019-02-19 | 2022-03-22 | California Institute Of Technology | Double reflector antenna for miniaturized satellites |
USD904359S1 (en) * | 2019-03-19 | 2020-12-08 | Telefrontier Co., Ltd. | Dual reflector antenna |
US11594822B2 (en) | 2020-02-19 | 2023-02-28 | Commscope Technologies Llc | Parabolic reflector antennas with improved cylindrically-shaped shields |
US11791562B2 (en) * | 2021-02-04 | 2023-10-17 | Orbit Communication Systems Ltd. | Ring focus antenna system with an ultra-wide bandwidth |
US12183975B2 (en) * | 2022-10-31 | 2024-12-31 | Agency For Defense Development | Antenna apparatus |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US973583A (en) * | 1910-02-12 | 1910-10-25 | William Teeter | Mouse and rat trap. |
GB973583A (en) * | 1962-04-11 | 1964-10-28 | Post Office | Improvements in or relating to microwave aerials |
JPS56152301A (en) * | 1980-04-25 | 1981-11-25 | Nec Corp | Dielectric wave director type primary radiator of multiple reflection mirror antenna |
DE3108758A1 (en) * | 1981-03-07 | 1982-09-16 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | MICROWAVE RECEIVER |
DE3579308D1 (en) * | 1984-07-02 | 1990-09-27 | Marconi Co Ltd | CASSEGRAIN ANTENNA SYSTEM. |
JPS62202605A (en) * | 1986-02-28 | 1987-09-07 | Nec Corp | Primary radiator for reflection mirror antenna |
US5175562A (en) * | 1989-06-23 | 1992-12-29 | Northeastern University | High aperture-efficient, wide-angle scanning offset reflector antenna |
JP2710416B2 (en) * | 1989-07-13 | 1998-02-10 | 日本電気株式会社 | Elliptical aperture double reflector antenna |
JPH0344318U (en) * | 1989-08-31 | 1991-04-24 | ||
DE4002913A1 (en) * | 1990-02-01 | 1991-08-08 | Ant Nachrichtentech | DOUBLE REFLECTOR ANTENNA |
JPH06222284A (en) * | 1993-01-22 | 1994-08-12 | Mitsubishi Electric Corp | Form estimating device for plate structure and active supporting device |
JPH07321544A (en) * | 1994-05-19 | 1995-12-08 | Nec Corp | Antenna in common use of multi-frequency |
US6020859A (en) * | 1996-09-26 | 2000-02-01 | Kildal; Per-Simon | Reflector antenna with a self-supported feed |
ES2267156T3 (en) * | 1997-02-14 | 2007-03-01 | Andrew A.G. | MICROWAVE ANTENNA WITH DOUBLE REFLECTOR. |
FR2793073B1 (en) * | 1999-04-30 | 2003-04-11 | France Telecom | CONTINUOUS REFLECTOR ANTENNA FOR MULTIPLE RECEPTION OF SATELLITE BEAMS |
US6522305B2 (en) * | 2000-02-25 | 2003-02-18 | Andrew Corporation | Microwave antennas |
US20030184486A1 (en) * | 2002-03-29 | 2003-10-02 | Lotfollah Shafai | Waveguide back-fire reflector antenna feed |
US6724349B1 (en) * | 2002-11-12 | 2004-04-20 | L-3 Communications Corporation | Splashplate antenna system with improved waveguide and splashplate (sub-reflector) designs |
FR2856525B1 (en) * | 2003-06-17 | 2005-09-02 | Cit Alcatel | POWER SUPPLY FOR A REFLECTOR ANTENNA. |
US6985120B2 (en) * | 2003-07-25 | 2006-01-10 | Andrew Corporation | Reflector antenna with injection molded feed assembly |
US6919855B2 (en) * | 2003-09-18 | 2005-07-19 | Andrew Corporation | Tuned perturbation cone feed for reflector antenna |
JP2005249859A (en) * | 2004-03-01 | 2005-09-15 | Olympus Corp | Eccentric optical system, light transmitting device, light receiving device, and optical system |
-
2008
- 2008-01-18 FR FR0850301A patent/FR2926680B1/en not_active Expired - Fee Related
-
2009
- 2009-01-14 KR KR1020107018231A patent/KR101468889B1/en active IP Right Grant
- 2009-01-14 WO PCT/EP2009/050393 patent/WO2009090195A1/en active Application Filing
- 2009-01-14 JP JP2010542620A patent/JP5679820B2/en not_active Expired - Fee Related
- 2009-01-15 AT AT09150680T patent/ATE508495T1/en not_active IP Right Cessation
- 2009-01-15 EP EP09150680A patent/EP2081258B1/en not_active Not-in-force
- 2009-01-15 DE DE602009001193T patent/DE602009001193D1/en active Active
- 2009-01-16 US US12/355,114 patent/US8102324B2/en not_active Expired - Fee Related
- 2009-01-19 CN CN2009100048298A patent/CN101488606B/en not_active Expired - Fee Related
-
2014
- 2014-01-24 JP JP2014010919A patent/JP2014112909A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP2081258A1 (en) | 2009-07-22 |
KR20100119550A (en) | 2010-11-09 |
WO2009090195A1 (en) | 2009-07-23 |
JP2011510550A (en) | 2011-03-31 |
FR2926680B1 (en) | 2010-02-12 |
CN101488606B (en) | 2012-07-18 |
ATE508495T1 (en) | 2011-05-15 |
KR101468889B1 (en) | 2014-12-10 |
FR2926680A1 (en) | 2009-07-24 |
US20090184886A1 (en) | 2009-07-23 |
CN101488606A (en) | 2009-07-22 |
US8102324B2 (en) | 2012-01-24 |
DE602009001193D1 (en) | 2011-06-16 |
JP5679820B2 (en) | 2015-03-04 |
JP2014112909A (en) | 2014-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2081258B1 (en) | Secondary reflector of an antenna with double reflector | |
EP2264832B1 (en) | Secondary reflector for a double reflector antenna | |
FR2986376A1 (en) | SECONDARY REFLECTOR OF DOUBLE REFLECTOR ANTENNA | |
EP3109941B1 (en) | Microwave antenna with dual reflector | |
EP1445829B1 (en) | Subreflector for Cassegrain microwave antenna | |
EP1489688B1 (en) | Feeding for reflector antenna | |
FR2963487A1 (en) | PARABOLIC REFLECTOR ANTENNA | |
FR2939970A1 (en) | RADOME FOR BROADBAND PARABOLIC ANTENNA. | |
FR2845829A1 (en) | MULTI-BAND RING FIREPLACE DUAL REFLECTOR ANTENNA SYSTEM | |
EP2658032B1 (en) | Corrugated horn antenna | |
EP0131512B1 (en) | Dual reflector antenna with quasitoroidal coverage | |
FR2814614A1 (en) | DIVERGENT DOME LENS FOR MICROWAVE WAVES AND ANTENNA COMPRISING SUCH A LENS | |
FR2954858A1 (en) | ANTENNA RADIANT A SIGNAL IN A DIRECTION OF THE SPACE DEPENDENT OF THE FREQUENCY OF THIS SIGNAL | |
EP2076937A2 (en) | Antenna using a pfb (photonic forbidden band) material, and system and method using this antenna | |
EP2264833B1 (en) | Secondary reflector of a parabolic antenna | |
WO2007006951A1 (en) | Dielectric lens | |
FR2594260A1 (en) | HYPERFREQUENCY PRIMARY SOURCE FOR CONCEALED SCANNING ANTENNA AND INCORPORATING ANTENNA. | |
FR3046301A1 (en) | ANTENNA SYSTEM | |
FR2968848A1 (en) | PARABOLIC REFLECTOR ANTENNA | |
EP3264531A1 (en) | Microwave antenna with dual reflector | |
WO2008065148A2 (en) | Device for feeding a reflector antenna | |
EP3075032B1 (en) | Compact antenna structure for satellite telecommunications | |
EP3075031B1 (en) | Arrangement of antenna structures for satellite telecommunications | |
EP4148902A1 (en) | Electromagnetic system with angular deviation of the main dispersion lobe of an antenna. | |
EP1821366B1 (en) | Mechanical scanning antenna scanning a broad spatial range with reduced bulk |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17P | Request for examination filed |
Effective date: 20100122 |
|
17Q | First examination report despatched |
Effective date: 20100216 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: TUAU, DENIS Inventor name: LE BAYON, ARMEL |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REF | Corresponds to: |
Ref document number: 602009001193 Country of ref document: DE Date of ref document: 20110616 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009001193 Country of ref document: DE Effective date: 20110616 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20110504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110804 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110905 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110815 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110805 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110904 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ALCATEL LUCENT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCOW Free format text: ALCATEL LUCENT;3, AVENUE OCTAVE GREARD;75007 PARIS (FR) |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20120207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111123 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009001193 Country of ref document: DE Effective date: 20120207 |
|
BERE | Be: lapsed |
Owner name: ALCATEL LUCENT Effective date: 20120131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20130926 AND 20131002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130131 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: GC Effective date: 20131018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090115 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: RG Effective date: 20141016 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20170120 Year of fee payment: 9 Ref country code: DE Payment date: 20170120 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170119 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602009001193 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180131 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180801 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R073 Ref document number: 602009001193 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602009001193 Country of ref document: DE Ref country code: DE Ref legal event code: R081 Ref document number: 602009001193 Country of ref document: DE Owner name: PROVENANCE ASSET GROUP LLC, PITTSFORD, US Free format text: FORMER OWNER: ALCATEL LUCENT, PARIS, FR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R124 Ref document number: 602009001193 Country of ref document: DE |