Nothing Special   »   [go: up one dir, main page]

EP2079443B1 - Dual action, inhaled formulations providing both an immediate and sustained release profile - Google Patents

Dual action, inhaled formulations providing both an immediate and sustained release profile Download PDF

Info

Publication number
EP2079443B1
EP2079443B1 EP07867260.7A EP07867260A EP2079443B1 EP 2079443 B1 EP2079443 B1 EP 2079443B1 EP 07867260 A EP07867260 A EP 07867260A EP 2079443 B1 EP2079443 B1 EP 2079443B1
Authority
EP
European Patent Office
Prior art keywords
ciprofloxacin
liposomes
encapsulated
drug
liposome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07867260.7A
Other languages
German (de)
French (fr)
Other versions
EP2079443A2 (en
EP2079443A4 (en
Inventor
David C. Cipolla
James Blanchard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aradigm Corp
Original Assignee
Aradigm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aradigm Corp filed Critical Aradigm Corp
Priority to PL07867260T priority Critical patent/PL2079443T3/en
Priority to EP14175442.4A priority patent/EP2789330A1/en
Priority to SI200731557T priority patent/SI2079443T1/en
Priority to EP14165088.7A priority patent/EP2759292A1/en
Publication of EP2079443A2 publication Critical patent/EP2079443A2/en
Publication of EP2079443A4 publication Critical patent/EP2079443A4/en
Application granted granted Critical
Publication of EP2079443B1 publication Critical patent/EP2079443B1/en
Priority to CY20141100958T priority patent/CY1115890T1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0043Nose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0078Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a nebulizer such as a jet nebulizer, ultrasonic nebulizer, e.g. in the form of aqueous drug solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/02Nasal agents, e.g. decongestants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/08Bronchodilators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • A61P31/06Antibacterial agents for tuberculosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to pharmaceutical compositions for inhalation such as for treating respiratory tract infections caused by a variety of microorganisms.
  • the present invention relates to a bi-phasic release formulation which provides for immediate and sustained release of a drug such as anti-infectives delivered by inhalation for the treatment of cystic fibrosis.
  • Respiratory tract infections are caused by a variety of microorganisms. Infections which are persistent have a myriad of consequences for the health care community including increased treatment burden and cost, and for the patient in terms of more invasive treatment paradigms and potential for serious illness or even death. It would be beneficial if an improved treatment paradigm were available to provide prophylactic treatment to prevent susceptible patients from acquiring respiratory tract infections as well as increasing the rate or effectiveness of eradicating the infections in patients already infected with the microorganisms.
  • cystic fibrosis is one example of a disease in which patients often acquire persistent or tenacious respiratory tract infections.
  • CF is a life-threatening genetic disease affecting approximately 30,000 people in the United States with a frequency of approximately one in every 2,500 live births (Fitzsimmons SC, 1993).
  • the name cystic fibrosis refers to the characteristic scarring (fibrosis) and cyst formation within the pancreas, first recognized in the 1930s.
  • About 1,000 new cases of CF are diagnosed each year. More than 80 percent of patients are diagnosed by age three; however, nearly 10 percent of newly diagnosed cases are age 18 or older.
  • the primary CF defect is expressed as altered ion transport via the cystic fibrosis transmembrane conductance regulator (CFTR), which is the protein regulating cyclic-AMP-mediated chloride conductance at the apical membranes of secretory epithelia (Schroeder SA et al., 1995).
  • CFTR cystic fibrosis transmembrane conductance regulator
  • the normal release of intracellular chloride into extracellular fluids fails to respond to normal cAMP elevation.
  • This impaired release of chloride results in the dehydration of surrounding respiratory and intestinal mucosal linings and impaired sodium reabsorption of the sudoriferous glands.
  • This mucosal dehydration coupled with inflammatory and infective by-products, creates a thick and tenacious mucus that clogs and damages airways. Prompt, aggressive treatment of CF symptoms can extend the lives of those with the disease.
  • Pulmozyme® an inhaled mucolytic agent shown to reduce the number of lung infections and improve lung function
  • TOBI® tobramycin solution for inhalation
  • aerosolized aminoglycoside antibiotic used to treat lung infections and also shown to improve lung function
  • oral azithromycin a macrolide antibiotic shown to reduce the number of respiratory exacerbations and the rate of decline of lung function (Wolter J et al., 2002).
  • azithromycin possesses activity against Staphylococcus aureus, Haemophilus influenzae , and Streptococcus pneumoniae, it has no direct activity against Pseudomonas aeruginosa, Burkholderia cepacia, or other gram-negative non-fermenters (Lode H et al., 1996).
  • Tobramycin possesses activity against P . aeruginosa; however, the increase in the number of patients with resistant isolates on continuous therapy from ⁇ 10% to 80% after 3 months (Smith AL et al., 1989) has led to the intermittent dosing regimen of 28-days-on followed by 28-days-off therapy.
  • P. aeruginosa In CF airways, P. aeruginosa initially has a non-mucoid phenotype, but ultimately produces mucoid exopolysaccharide and organizes into a biofilm, which indicates the airway infection has progressed from acute to chronic. Bacteria in biofilms are very slow growing due to an anaerobic environment and are inherently resistant to antimicrobial agents, since sessile cells are much less susceptible than cells growing planktonically. It has been reported that biofilm cells are at least 500 times more resistant to antibacterial agents (Costerton JW et al., 1995). Thus, the transition to the mucoid phenotype and production of a biofilm contribute to the persistence of P. aeruginosa in CF patients with chronic infection by protecting the bacteria from host defenses and interfering with the delivery of antibiotics to the bacterial cell.
  • Ciprofloxacin is a fluoroquinolone antibiotic that is indicated for the treatment of lower respiratory tract infections due to P. aeruginosa, which is common in patients with cystic fibrosis. Ciprofloxacin is broad spectrum and, in addition to P. aeruginosa, is active against several other types of gram-negative and gram-positive bacteria. It acts by inhibition of topoisomerase II (DNA gyrase) and topoisomerase IV, which are enzymes required for bacterial replication, transcription, repair, and recombination.
  • DNA gyrase DNA gyrase
  • topoisomerase IV enzymes required for bacterial replication, transcription, repair, and recombination.
  • ciprofloxacin does produce bothersome side effects, such as GI intolerance (vomiting, diarrhea, abdominal discomfort), as well as dizziness, insomnia, irritability and increased levels of anxiety.
  • GI intolerance vomiting, diarrhea, abdominal discomfort
  • insomnia dizziness
  • irritability irritability and increased levels of anxiety.
  • Delivering ciprofloxacin as an inhaled aerosol has the potential to address these concerns by compartmentalizing the delivery and action of the drug in the respiratory tract, which is the primary site of infection.
  • liposomes Phospholipid vehicles as drug delivery systems were rediscovered as "liposomes" in 1965 (Bangham et al., 1965).
  • APIs active pharmaceutical ingredients
  • the general term liposome covers a wide variety of structures, but generally all are composed of one or more lipid bilayers enclosing an aqueous space in which drugs can be encapsulated.
  • the liposomes applied in this program are known in the drug delivery field as large unilamellar vesicles (LUV), which are the preferred liposomal structures for IV drug administration.
  • LUV large unilamellar vesicles
  • Liposome encapsulation improves biopharmaceutical characteristics through a number of mechanisms including altered drug pharmacokinetics and biodistribution, sustained drug release from the carrier, enhanced delivery to disease sites, and protection of the active drug species from degradation.
  • Liposome formulations of the anticancer agents doxorubicin (Myocet®lEvacet®, Doxyl®/Caelyx®), daunorubicin (DaunoXome®) the anti-fungal agent amphotericin B (Abelcet®, AmBisome®, Amphotec®) and a benzoporphyrin (Visudyne®) are examples of successful products introduced into the US, European and Japanese markets over the last decade.
  • lipid-based carriers have been in late-stage clinical trials, including Inex's vincristine sulphate liposomes injection (VSLI).
  • VSLI Inex's vincristine sulphate liposomes injection
  • a liposomal ciprofloxacin aerosol formulation should offer several benefits: 1) higher drug concentrations, 2) increased drug residence time via sustained release at the site of infection, 3) decreased side effects, 4) increased palatability, 5) better penetration into the bacteria, and 6) better penetration into the cells infected by bacteria. It has previously been shown that inhalation of liposome-encapsulated fluoroquinolone antibiotics may be effective in treatment of lung infections. In a mouse model of F.
  • tularensis liposomal encapsulated fluoroquinolone antibiotics were shown to be superior to the free or unencapsulated fluoroquinolone by increasing survival ( CA2,215,716 , CA2,174,803 , and CA2,101,241 ).
  • EP1083881B1 describes liposomes containing a drug-conjugate comprising a quinolone compound covalently attached to an amino acid.
  • U.S. Publication No. 20004142026 also describes the use of liposome-encapsulated antibiotics and the potential for administration of a lower dose of a liposome-encapsulated anti-infective, by a factor of 10 or 100, than for the free unencapsulated anti-infective.
  • the application WO2004/110493 describes a liposonal ciprofloxacin formulation composed of 55% HSPC and 45% cholesterol.
  • An aspect of the invention is an aerosolized, bi-phasic, composition of particles.
  • the particles comprise a free drug which drug is not encapsulated and which is ciprofloxacin.
  • the particles further include a liposome which encapsulates a drug which is also ciprofloxin.
  • the free and liposome encapsulated drug are included within a pharmaceutically acceptable excipient which is formulated for aerosolized delivery.
  • One aspect of the invention is a formulation comprising liposomes which are delivered via an aerosol to the lungs of a human patient, the liposomes comprising free and encapsulated ciprofloxacin.
  • a further aspect of the invention is a method for treating cystic fibrosis in a patient, the method comprising administering a formulation comprising the anti-infection ciprofloxacin, encapsulated in liposomes to the patient.
  • the formulation is preferably administered by inhalation to the patient.
  • a formulation comprising both a free and encapsulated anti-infective provides an initially high therapeutic level of the anti-infective in the lungs to overcome the barrier to eradicate the difficult to treat biofilm bacteria, while maintaining a sustained release of anti-infective over time.
  • biofilm resistance While some aspects of biofilm resistance are poorly understood, the dominant mechanisms are thought to be related to: (i) modified nutrient environments and suppression of growth rate within the biofilm; (ii) direct interactions between the exopolymer matrices, and their constituents, and antimicrobials, affecting diffusion and availability; and (iii) the development of biofilm/attachment-specific phenotypes (Gilbert P et al., 1997).
  • the intent of the immediate-release anti-infective is thus to rapidly increase the antibiotic concentration in the lung to therapeutic levels around the difficult to eradicate biofilm bacteria to address the challenges of lower diffusion rate of antibiotic to and within the biofilm.
  • the sustained-release anti-infective e.g., ciprofloxacin, serves to maintain a therapeutic level of antibiotic in the lung thereby providing continued therapy over a longer time frame, increasing efficacy, reducing the frequency of administration, and reducing the potential for resistant colonies to form.
  • the immediate release of high levels of an anti-infective may allow enhanced penetration of the glycocalyx.
  • the sustained release of the anti-infective may ensure that the anti-infective agent never falls below the sub-inhibitory concentration and so reduces the likelihood of forming resistance to the anti-infective.
  • anti-infective refers to agents that act against infections, such as bacterial, viral, fungal, mycobacterial, or protozoal infections.
  • Formulation refers to the liposome-encapsulated anti-infective, with any excipients or additional active ingredients, either as a dry powder or suspended or dissolved in a liquid.
  • subject refers to any vertebrate, particularly any mammal and most particularly including human subjects, farm animals, and mammalian pets.
  • the subject may be, but is not necessarily under the care of a health care professional such as a doctor.
  • a “stable" formulation is one in which the protein or enzyme therein essentially retains its physical and chemical stability and integrity upon storage and exposure to relatively high temperatures.
  • Various analytical techniques for measuring peptide stability are available in the art and are reviewed in Peptide and Protein Drug Delivery, 247-301, Vincent Lee Ed., Marcel Dekker, Inc., New York, N.Y., Pubs. (1991 ), and Jones, A. (1993) Adv. Drug Delivery Rev. 10:29-90 . Stability can be measured at a selected temperature for a selected time period.
  • mammal for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, etc. Preferably, the mammal is human.
  • a “disorder” is any condition that would benefit from treatment with the claimed methods and compositions.
  • a method for formulating ciprofloxacin and other anti-infectives by encapsulating these drugs in liposomes is provided.
  • Composed of naturally-occurring materials which are biocompatible and biodegradable, liposomes are used to encapsulate biologically active materials for a variety of purposes. Having a variety of layers, sizes, surface charges and compositions, numerous procedures for liposomal preparation and for drug encapsulation within them have been developed, some of which have been scaled up to industrial levels.
  • Liposomes can be designed to act as sustained release drug depots and, in certain applications, aid drug access across cell membranes.
  • the sustained release property of the liposomes may be regulated by the nature of the lipid membrane and by the inclusion of other excipients in the composition of the liposomes.
  • Extensive research in liposome technology over many years has yielded a reasonable prediction of the rate of drug release based on the composition of the liposome formulation.
  • the rate of drug release is primarily dependent on the nature of the phospholipids, e.g. hydrogenated (--H) or unhydrogenated (--G), or the phospholipid/cholesterol ratio (the higher this ratio, the faster the rate of release), the hydrophilic/lipophilic properties of the active ingredients and by the method of liposome manufacturing.
  • the number and surface density of the discrete sites on the liposomal surfaces for covalent bonding are dictated by the liposome formulation and the liposome type.
  • the liposomal surfaces also have sites for noncovalent association. Covalent binding is preferred as noncovalent binding might result in dissociation of the recognizing substances from the liposomes at the site of administration since the liposomes and the bioadhesive counterparts of the target site (that is, the bioadhesive matter) compete for the recognizing substances. Such dissociation would reverse the administered modified liposomes into regular, non-modified liposomes, thereby defeating the purpose of administration of the modified liposomes.
  • crosslinking reagents have been studied for effectiveness and biocompatibility.
  • GAD glutaraldehyde
  • the crosslinking reagents can include glutaraldehyde (GAD) and a water soluble carbodiimide, preferably, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC).
  • GCD glutaraldehyde
  • EDC 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
  • recognizing substances include gelatin, collagen, and hyaluronic acid (HA). Following these methodologies, recognizing substances may be utilized as an adhesive or glue to attach the liposomes onto a target area, such as the lung.
  • bioadhesive liposomes particularly those having hyaluronic acid as the bioadhesive ligand, will potentially increase residence time in pulmonary sites, and reduce mucociliary clearance and macrophage uptake.
  • ciprofloxacin is preferably used in the formulations of the instant invention, although other antibiotics or anti-infectives known to those skilled in the art may be used.
  • Multilamellar vesicles are prepared according to techniques well known in the art. Briefly, in an embodiment, lipids are weighed and dissolved in a suitable organic solvent (such as chloroform or chloroform-methanol mixtures). The organic solvent is evaporated to complete dryness in a rotary evaporator, under low pressure, and at a temperature range of about 37-40 °C. Following evaporation, the ciprofloxacin solution is added to the dry lipid film. The system is vigorously mixed, then incubated for about two hours in, for example, a shaker bath at a temperature range appropriate for the lipid composition. The preparation is then preferably buffered, for example, by adding about a one tenth volume of ten-fold concentrated phosphate buffered saline (PBS), of pH 7.4.
  • PBS ten-fold concentrated phosphate buffered saline
  • MLV generated as described above serve as the source material for acidic unilamellar vesicles (ULV).
  • MLV are prepared as described above and subjected to extrusion in a device such as, for example, that manufactured by Lipex Biomembranes, Inc. (Vancouver, British Columbia). Extrusion is performed through a series of membranes with progressively-smaller pore sizes, such as, for example, starting with pore sizes in the range of 0.8 to 1.0 ⁇ m (one to two extrusion cycles per pore size) and ending at the pore size range selected according to the desired liposome size (e.g., about seven cycles of extrusion at the final pore size).
  • Exemplary liposome compositions and methods of making them are disclosed in US Patents 6,890,555 ; 6,855,296 ; 6,770,291 ; 6,759,057 ; 6,623,671 ; 6,534,018 ; 6,355,267 ; 6,316,024 ; 6,221,385 and 6,197,333 .
  • the liposomes of the invention may be multilamellar, unilamellar, or any configuration known such as described in the above patents.
  • the liposomes of the instant invention are preferably made from biocompatible lipids. In general, the size of the liposomes generated is over a wide range depending on mode of delivery, e.g. 1 nm to 10 ⁇ m or 20 nm to 1 ⁇ m or about 100 nm in diameter ⁇ 20% for pulmonary delivery.
  • the liposome-encapsulated ciprofloxacin is administered to a patient in an aerosol inhalation device but could be administered by the IV route.
  • the liposomes are administered in combination with ciprofloxacin that is not encapsulated.
  • droplets or particles for inhalation in the range of about 0.5 ⁇ m to 12 ⁇ m, preferably 1 ⁇ m to 6 ⁇ m, and more preferably about 2-4 ⁇ m.
  • the particles not only have a size in the range of 0.5 ⁇ m to 12 ⁇ m or 2 ⁇ m to 6 ⁇ m or about 3-4 ⁇ m but that the mean particle size be within a narrow range so that 80% or more of the particles being delivered to a patient have a particle diameter which is within ⁇ 20% of the average particle size, preferably ⁇ 10% and more preferably ⁇ 5% of the average particle size.
  • the formulations of the invention may be administered to a patient using a disposable package and portable, hand-held, battery-powered device, such as the AERx device ( US Patent No. 5,823,178 , Aradigm, Hayward, CA).
  • the formulations of the instant invention may be carried out using a mechanical (non-electronic) device.
  • Other inhalation devices may be used to deliver the formulations including conventional jet nebulizers, ultrasonic nebulizers, soft mist inhalers, dry powder inhalers (DPIs), metered dose inhalers (MDIs), condensation aerosol generators, and other systems.
  • An aerosol may be created by forcing drug through pores of a membrane which pores have a size in the range of about 0.25 to 6 microns ( US Patent 5,823,178 ). When the pores have this size the particles which escape through the pores to create the aerosol will have a diameter in the range of 0.5 to 12 microns. Drug particles may be released with an air flow intended to keep the particles within this size range.
  • the creation of small particles may be facilitated by the use of the vibration device which provides a vibration frequency in the range of about 800 to about 4000 kilohertz.
  • an object of some embodiments is to provide aerosolized particles having a diameter in the range of about 0.5 to 12 microns.
  • the liposome formulation may be a low viscosity liquid formulation.
  • the viscosity of the drug by itself or in combination with a carrier should be sufficiently low so that the formulation can be forced out of openings to form an aerosol, e.g., using 20 to 200 psi to form an aerosol preferably having a particle size in the range of about 0.5 to 12 microns.
  • a low boiling point, highly volatile propellant is combined with the liposomes of the invention and a pharmaceutically acceptable excipient.
  • the liposomes may be provided as a suspension or dry powder in the propellant, or, in another embodiment, the liposomes are dissolved in solution within the propellant. Both of these formulations may be readily included within a container which has a valve as its only opening. Since the propellant is highly volatile, i.e. has a low boiling point, the contents of the container will be under pressure.
  • the ciprofloxacin-containing liposomes are provided as a dry powder by itself, and in accordance with still another formulation, the ciprofloxacin-containing liposomes are provided in a solution formulation.
  • the dry powder may be directly inhaled by allowing inhalation only at the same measured inspiratory flow rate and inspiratory volume for each delivery.
  • the powder may be dissolved in an aqueous solvent to create a solution which is moved through a porous membrane to create an aerosol for inhalation.
  • Any formulation which makes it possible to produce aerosolized forms of ciprofloxacin-containing liposomes which can be inhaled and delivered to a patient via the intrapulmonary route may be used in connection with the present invention.
  • a plurality of different treatments and means of administration can be used to treat a single patient.
  • patients already receiving such medications for example, as intravenous ciprofloxacin or antibiotics, etc.
  • Some patients may benefit from inhalation of the formulations of the present invention.
  • Some patients may receive only ciprofloxacin-containing liposome formulations by inhalation.
  • Such patients may have symptoms of cystic fibrosis, be diagnosed as having lung infections, or have symptoms of a medical condition, which symptoms may benefit from administration to the patient of an antibiotic such as ciprofloxacin.
  • the formulations of the invention may also be used diagnostically.
  • a patient may receive a dose of a formulation of the invention as part of a procedure to diagnose lung infections, wherein one of more of the patient's symptoms improves in response to the formulation.
  • a patient will typically receive a dose of about 0.01 to 10 mg/kg/day of ciprofloxacin ⁇ 20% or ⁇ 10%.
  • This dose will typically be administered by at least one, preferably several "puffs" from the aerosol device.
  • the total dose per day is preferably administered at least once per day, but may be divided into two or more doses per day.
  • Some patients may benefit from a period of "loading" the patient with ciprofloxacin with a higher dose or more frequent administration over a period of days or weeks, followed by a reduced or maintenance dose.
  • cystic fibrosis is typically a chronic condition, patients are expected to receive such therapy over a prolonged period of time.
  • liposome-encapsulated fluoroquinolone antibiotics may be effective in treatment of lung infections and were shown to be superior to the free or unencapsulated fluoroquinolone in a mouse model of F. tularensis ( CA 2,215,716 , CA 2,174,803 and CA 2,101,241 ). However, they did not anticipate the potential benefit of combining the free and encapsulated fluoroquinolone antibiotics to treat those lung infections. According to one aspect of the present invention, high concentrations of an antibiotic are delivered immediately while also providing a sustained release of the therapeutic over hours or a day.
  • EP1083881B1 describes liposomes containing a drug-conjugate comprising a quinolone compound covalently attached to an amino acid. That application does not foresee the requirement to have both an immediate release and sustained release component to treat those lung infections.
  • the formulations according to some aspects of the invention include free or non-encapsulated ciprofloxacin in combination with the liposome-encapsulated ciprofloxacin.
  • Such formulations may provide an immediate benefit with the free ciprofloxacin resulting in a rapid increase in the antibiotic concentration in the lung fluid surrounding the bacterial colonies or biofilm and reducing their viability, followed by a sustained benefit from the encapsulated ciprofloxacin which continues to kill the bacteria or decrease its ability to reproduce, or reducing the possibility of antibiotic resistant colonies arising.
  • the skilled practitioner will understand that the relative advantages of the formulations of the invention in treating medical conditions on a patient-by-patient basis.
  • This method of treatment applies to other disease states which involve infections of the nasal passages, airways, inner ear, or lungs; including but not limited to: bronchiectasis, tuberculosis, pneumonia; including but not limited to ventilator associated pneumonia, community acquired pneumonia, bronchial pneumonia, lobar pneumonia; infections by Streptococcus pneumoniae, Chlamydia, Mycoplasma pneumonia, staphylococci, prophylactive treatment or preventation for conditions in which infection might arise, e.g., intubated or ventilated patients, infections in lung transplant patient, bronchitis, pertussis (whooping cough), inner ear infections, streptococal throat infections, inhalation anthrax, tularemia, or sinusitis.
  • Ciprofloxacin (50 mg/mL) is encapsulated into liposomes consisting of hydrogenated soy phosphatidyl-choline (HSPC) (70.6 mg/mL), a semi-synthetic fully hydrogenated derivative of natural soy lecithin (SPC), and cholesterol (29.4 mg/mL).
  • HSPC hydrogenated soy phosphatidyl-choline
  • SPC semi-synthetic fully hydrogenated derivative of natural soy lecithin
  • cholesterol 29.4 mg/mL
  • the lipid is organized in a bilayer, with an average particle size of 75 to 120nm.
  • the sterile suspension is suspended in an isotonic buffer (25 mM histidine, 145 mM NaCl at pH 6.0, 300 mOsm/kg) and administered by inhalation.
  • These liposomal ciprofloxacin preparations contained approximately 1% unencapsulated ciprofloxacin.
  • the manufacturing process includes the following steps.
  • the ciprofloxacin encapsulated liposomes were evaluated in a mouse model of P. aeruginosa lung infection.
  • the gut-corrected, Cftr knockout mice have been shown to have a cystic fibrosis lung phenotype following infection with P . aeruginosa -laden agarose beads (van Heeckeren et al., 2004), and have a similar inflammatory response as the UNC Cftr knockout mice (van Heeckeren et al., 2004). All of these features make this the strain of choice to investigate whether the drug has efficacy in a mouse model of cystic fibrosis lung infection, and not if there is a differential response between wild type and cystic fibrosis mice. Mice of one sex, male, were used to eliminate sex as a potential confounder. All mice were between 6-8 weeks of age and weighed >16g.
  • P. aeruginosa -laden agarose (PA) beads were made and used, as described previously (van Heeckeren, et al., 1997, van Heeckeren et al., 2000, van Heeckeren and Schlerer, 2002), with minor differences. Mice were inoculated with a 1:35 dilution of the beads, and beads were delivered in mice anesthetized with isoflurane. This was established to be an LD50 dose, though subtle differences from experiment to experiment may lead to differential responses, which is not predictable. That is, in one experiment the dose is an LD50, but it may be an LD90 in another.
  • Formulations of liposomal ciprofloxacin or sham (diluent) ( ⁇ 0.05 ml) were delivered intranasally.
  • the outcome measures included clinical signs (including coat quality, posture, ability to right themselves after being placed in lateral recumbency, ambulation), changes from initial body weight, and survival.
  • clinical signs including coat quality, posture, ability to right themselves after being placed in lateral recumbency, ambulation
  • changes from initial body weight and survival.
  • bronchoalveolar lavage BAL was performed using 1 ml sterile PBS, pH 7.4, whole blood, unprocessed BAL fluid and spleen homogenates were tested for presence or absence of P. aeruginosa, and BAL cells were enumerated using a hemacytometer.
  • Figure 2 shows the cumulative survival rate for each group out to 10 days reported as a percentage of the number of mice that survived.
  • the three groups treated with liposomal ciprofloxacin had greater survival rates than the diluent control group.
  • the 100%-dose group had the longest survival of all the groups, with all mice surviving out to Day 5, whereas the other groups all had 2 deaths by this time.
  • Intranasal administration to target the lung
  • liposome-encapsulated ciprofloxacin containing approximately 1% free ciprofloxacin increased the survival rate of mice with P. aeruginosa lung infections. Accordingly, inhaled liposomal ciprofloxacin is efficacious in patients with cystic fibrosis, or other diseases with lung infections.
  • Figure 2 shows the cumulative survival rate following infection. Mice were infected with P. aeruginosa -laden agarose beads on Day 0. Mice were treated intranasally once daily starting on Day 2 and ending on Day 9 with the liposomal formulation of ciprofloxacin (drug) at one of three different concentrations (100%, open diamond; 33%, closed square; or 10%, open triangle). Diluent was used as a control (closed circle). Surviving mice were sacrificed on Day 10.
  • Ciprofloxacin A solution of unencapsulated, or "free" ciprofloxacin at a concentration of 30 mg/mL in 10 mM sodium acetate, pH 3.2, was prepared.
  • Ciprofloxacin 50 mg/mL was encapsulated into liposomes consisting of hydrogenated soy phosphatidyl-choline (HSPC) (70.6 mg/mL), a semi-synthetic fully hydrogenated derivative of natural soy lecithin (SPC), and cholesterol (29.4 mg/mL), as described in Example 1. Characterization of this liposomal formulation indicated that approximately 1% of the ciprofloxacin was free; that is, it was not encapsulated within the liposome.
  • HSPC hydrogenated soy phosphatidyl-choline
  • SPC semi-synthetic fully hydrogenated derivative of natural soy lecithin
  • cholesterol 29.4 mg/mL
  • the outcome measures included clinical signs (including coat quality, posture, ability to right themselves after being placed in lateral recumbency, ambulation), changes from initial body weight, and survival.
  • clinical signs including coat quality, posture, ability to right themselves after being placed in lateral recumbency, ambulation
  • changes from initial body weight and survival.
  • bronchoalveolar lavage BAL was performed using 1 ml sterile PBS, pH 7.4, whole blood, unprocessed BAL fluid and spleen homogenates were tested for presence or absence of P. aeruginosa, and BAL cells were enumerated using a hemacytometer.
  • Table 1 shows the cumulative survival rate for each group out to 10 days reported as a percentage of the number of mice that survived from both studies. At Day 10, all groups treated with a combination of free and liposomal ciprofloxacin had greater survival rates than the diluent control group. Table 1: Mean survival per group from two studies in CF mice with P. aeruginosa lung infection treated with intranasally instilled ARD-3100, or control Dose (mg/kg) % Free Ciprofloxacin Mean Starting Number Mean Mortality Mean Survival (%) 0 (Control) N/A 9 6/9 34% 0.6 1 8.5 2.5/8.5 66% 1.2 1 8.5 3/8.5 65% 0.96 38 10.5 2.5/10.5 76%
  • Ciprofloxacin 50 mg/mL was encapsulated into liposomes consisting of hydrogenated soy phosphatidyl-choline (HSPC) (70.6 mg/mL), a semi-synthetic fully hydrogenated derivative of natural soy lecithin (SPC), and cholesterol (29.4 mg/mL), as described in Example 1. Characterization of this liposomal formulation indicated that approximately 1% of the ciprofloxacin was free; that is, it was not encapsulated within the liposome.
  • HSPC hydrogenated soy phosphatidyl-choline
  • SPC semi-synthetic fully hydrogenated derivative of natural soy lecithin
  • cholesterol 29.4 mg/mL

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pulmonology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Epidemiology (AREA)
  • Otolaryngology (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

    FIELD OF THE INVENTION
  • The present invention relates to pharmaceutical compositions for inhalation such as for treating respiratory tract infections caused by a variety of microorganisms. In particular, the present invention relates to a bi-phasic release formulation which provides for immediate and sustained release of a drug such as anti-infectives delivered by inhalation for the treatment of cystic fibrosis.
  • BACKGROUND OF THE INVENTION
  • Respiratory tract infections are caused by a variety of microorganisms. Infections which are persistent have a myriad of consequences for the health care community including increased treatment burden and cost, and for the patient in terms of more invasive treatment paradigms and potential for serious illness or even death. It would be beneficial if an improved treatment paradigm were available to provide prophylactic treatment to prevent susceptible patients from acquiring respiratory tract infections as well as increasing the rate or effectiveness of eradicating the infections in patients already infected with the microorganisms.
  • In particular, cystic fibrosis (CF) is one example of a disease in which patients often acquire persistent or tenacious respiratory tract infections. CF is a life-threatening genetic disease affecting approximately 30,000 people in the United States with a frequency of approximately one in every 2,500 live births (Fitzsimmons SC, 1993). The name cystic fibrosis refers to the characteristic scarring (fibrosis) and cyst formation within the pancreas, first recognized in the 1930s. About 1,000 new cases of CF are diagnosed each year. More than 80 percent of patients are diagnosed by age three; however, nearly 10 percent of newly diagnosed cases are age 18 or older.
  • The primary CF defect is expressed as altered ion transport via the cystic fibrosis transmembrane conductance regulator (CFTR), which is the protein regulating cyclic-AMP-mediated chloride conductance at the apical membranes of secretory epithelia (Schroeder SA et al., 1995). Specifically, the normal release of intracellular chloride into extracellular fluids fails to respond to normal cAMP elevation. This impaired release of chloride results in the dehydration of surrounding respiratory and intestinal mucosal linings and impaired sodium reabsorption of the sudoriferous glands. This mucosal dehydration, coupled with inflammatory and infective by-products, creates a thick and tenacious mucus that clogs and damages airways. Prompt, aggressive treatment of CF symptoms can extend the lives of those with the disease.
  • Although most people without CF have two working copies of the CFTR gene, only one is needed to prevent cystic fibrosis. CF develops when neither gene works normally. Therefore, CF is considered an autosomal recessive disease. There are more than 1,500 different genetic mutations associated with the disease (CFTR mutation database (2006)), thus making homozygous and heterozygous screening procedures difficult (Zielenski J et al., 1995). However, approximately two thirds of the mutations are found to be delta F508, making it the most common CF mutation (CF Genetic Analysis Consortium, 1994).
  • The ongoing treatment of CF depends upon the stage of the disease and the organs involved. Clearing mucus from the lungs is an important part of the daily CF treatment regimen. Chest physical therapy is one form of airway clearance, and it requires vigorous percussion (by using cupped hands) on the back and chest to dislodge the thick mucus from the lungs. Other forms of airway clearance can be done with the help of mechanical devices used to stimulate mucus clearance. Other types of treatments include: Pulmozyme®, an inhaled mucolytic agent shown to reduce the number of lung infections and improve lung function (Hodson M, 1995); TOBI® (tobramycin solution for inhalation), an aerosolized aminoglycoside antibiotic used to treat lung infections and also shown to improve lung function (Weber A et al., 1994); and oral azithromycin, a macrolide antibiotic shown to reduce the number of respiratory exacerbations and the rate of decline of lung function (Wolter J et al., 2002).
  • As discussed above, high rates of colonization and the challenge of managing Pseudomonas aeruginosa infections in patients with cystic fibrosis (CF) have necessitated a search for safe and effective antibiotics. Currently, therapy with an aminoglycoside in combination with a beta-lactam or a quinolone antibiotic is the standard. A 96-week series of clinical studies including 520 patients with moderate-to-severe CF showed that patients receiving inhaled tobramycin spent 25 to 33% fewer days in the hospital and experienced significant increases in lung function (Moss RB, 2001). These results demonstrate the effectiveness of inhaled antibiotics to treat CF. However, the development of drug resistant strains, especially P. aeruginosa, is a major concern with the long-term delivery of aerosolized antibiotics via inhalation (LiPuma JJ, 2001).
  • While azithromycin possesses activity against Staphylococcus aureus, Haemophilus influenzae, and Streptococcus pneumoniae, it has no direct activity against Pseudomonas aeruginosa, Burkholderia cepacia, or other gram-negative non-fermenters (Lode H et al., 1996). Tobramycin possesses activity against P. aeruginosa; however, the increase in the number of patients with resistant isolates on continuous therapy from ∼10% to 80% after 3 months (Smith AL et al., 1989) has led to the intermittent dosing regimen of 28-days-on followed by 28-days-off therapy. Even on intermittent inhaled tobramycin therapy, the percentage of patients with multiresistant P. aeruginosa increased from 14% at baseline to 23% after 18 months of treatment (LiPuma JJ, 2001). The development of a therapeutic regimen that delivers the anti-infective therapy in a continuous fashion, while still inhibiting the emergence of resistant isolates, may provide an improved treatment paradigm. It is noteworthy that chronic P. aeruginosa airway infections remain the primary cause of morbidity and mortality in CF patients. When patients experience pulmonary exacerbations, the use of antipseudomonal therapy, frequently consisting of a β-lactam and an aminoglycoside, may result in clinical improvement and a decrease in bacterial burden. Eradication of the infection, however, is quite rare.
  • In CF airways, P. aeruginosa initially has a non-mucoid phenotype, but ultimately produces mucoid exopolysaccharide and organizes into a biofilm, which indicates the airway infection has progressed from acute to chronic. Bacteria in biofilms are very slow growing due to an anaerobic environment and are inherently resistant to antimicrobial agents, since sessile cells are much less susceptible than cells growing planktonically. It has been reported that biofilm cells are at least 500 times more resistant to antibacterial agents (Costerton JW et al., 1995). Thus, the transition to the mucoid phenotype and production of a biofilm contribute to the persistence of P. aeruginosa in CF patients with chronic infection by protecting the bacteria from host defenses and interfering with the delivery of antibiotics to the bacterial cell.
  • Although much effort has been made to improve the care and treatment of individuals with CF, and the average lifespan has increased, the median age of survival for people with CF is only to the late 30s (CF Foundation web site, 2006). Thus, a continuing need exists for improved formulations of anti-infectives, especially for administration by inhalation. The present invention addresses this need.
  • Ciprofloxacin is a fluoroquinolone antibiotic that is indicated for the treatment of lower respiratory tract infections due to P. aeruginosa, which is common in patients with cystic fibrosis. Ciprofloxacin is broad spectrum and, in addition to P. aeruginosa, is active against several other types of gram-negative and gram-positive bacteria. It acts by inhibition of topoisomerase II (DNA gyrase) and topoisomerase IV, which are enzymes required for bacterial replication, transcription, repair, and recombination. This mechanism of action is different from that for penicillins, cephalosporins, aminoglycosides, macrolides, and tetracyclines, and therefore bacteria resistant to these classes of drugs may be susceptible to ciprofloxacin. Thus, CF patients who have developed resistance to the aminoglycoside tobramycin (TOBI), can likely still be treated with ciprofloxacin. There is no known cross-resistance between ciprofloxacin and other classes of antimicrobials.
  • Despite its attractive antimicrobial properties, ciprofloxacin does produce bothersome side effects, such as GI intolerance (vomiting, diarrhea, abdominal discomfort), as well as dizziness, insomnia, irritability and increased levels of anxiety. There is a clear need for improved treatment regimes that can be used chronically, without resulting in these debilitating side effects.
  • Delivering ciprofloxacin as an inhaled aerosol has the potential to address these concerns by compartmentalizing the delivery and action of the drug in the respiratory tract, which is the primary site of infection.
  • Currently there is no aerosolized form of ciprofloxacin with regulatory approval for human use, capable of targeting antibiotic delivery direct to the area of primary infection. In part this is because the poor solubility and bitterness of the drug have inhibited development of a formulation suitable for inhalation. Furthermore, the tissue distribution of ciprofloxacin is so rapid that the drug residence time in the lung is too short to provide additional therapeutic benefit over drug administered by oral or IV routes.
  • Phospholipid vehicles as drug delivery systems were rediscovered as "liposomes" in 1965 (Bangham et al., 1965). The therapeutic properties of many active pharmaceutical ingredients (APIs) can be improved by incorporation into liposomal drug delivery systems. The general term liposome covers a wide variety of structures, but generally all are composed of one or more lipid bilayers enclosing an aqueous space in which drugs can be encapsulated. The liposomes applied in this program are known in the drug delivery field as large unilamellar vesicles (LUV), which are the preferred liposomal structures for IV drug administration.
  • Liposome encapsulation improves biopharmaceutical characteristics through a number of mechanisms including altered drug pharmacokinetics and biodistribution, sustained drug release from the carrier, enhanced delivery to disease sites, and protection of the active drug species from degradation. Liposome formulations of the anticancer agents doxorubicin (Myocet®lEvacet®, Doxyl®/Caelyx®), daunorubicin (DaunoXome®) the anti-fungal agent amphotericin B (Abelcet®, AmBisome®, Amphotec®) and a benzoporphyrin (Visudyne®) are examples of successful products introduced into the US, European and Japanese markets over the last decade. Furthermore, a number of second-generation products have been in late-stage clinical trials, including Inex's vincristine sulphate liposomes injection (VSLI). The proven safety and efficacy of lipid-based carriers make them attractive candidates for the formulation of pharmaceuticals.
  • Therefore, in comparison to the current ciprofloxacin formulations, a liposomal ciprofloxacin aerosol formulation should offer several benefits: 1) higher drug concentrations, 2) increased drug residence time via sustained release at the site of infection, 3) decreased side effects, 4) increased palatability, 5) better penetration into the bacteria, and 6) better penetration into the cells infected by bacteria. It has previously been shown that inhalation of liposome-encapsulated fluoroquinolone antibiotics may be effective in treatment of lung infections. In a mouse model of F. tularensis liposomal encapsulated fluoroquinolone antibiotics were shown to be superior to the free or unencapsulated fluoroquinolone by increasing survival ( CA2,215,716 , CA2,174,803 , and CA2,101,241 ).
  • Another application, EP1083881B1 , describes liposomes containing a drug-conjugate comprising a quinolone compound covalently attached to an amino acid. Yet another application, U.S. Publication No. 20004142026 , also describes the use of liposome-encapsulated antibiotics and the potential for administration of a lower dose of a liposome-encapsulated anti-infective, by a factor of 10 or 100, than for the free unencapsulated anti-infective.
  • It has also been reported that the presence of sub-inhibitory concentrations of antibiotic agents within the depths of the biofilm will provide selective pressures for the development of more resistant phenotypes (Gilbert P et al., 1997). This may be partly due to the failure of the antibiotics to penetrate the glycocalyx adequately.
  • The application WO2004/110493 describes a liposonal ciprofloxacin formulation composed of 55% HSPC and 45% cholesterol.
  • SUMMARY OF THE INVENTION
  • An aspect of the invention is an aerosolized, bi-phasic, composition of particles. The particles comprise a free drug which drug is not encapsulated and which is ciprofloxacin. The particles further include a liposome which encapsulates a drug which is also ciprofloxin. The free and liposome encapsulated drug are included within a pharmaceutically acceptable excipient which is formulated for aerosolized delivery.
  • One aspect of the invention is a formulation comprising liposomes which are delivered via an aerosol to the lungs of a human patient, the liposomes comprising free and encapsulated ciprofloxacin.
  • A further aspect of the invention is a method for treating cystic fibrosis in a patient, the method comprising administering a formulation comprising the anti-infection ciprofloxacin, encapsulated in liposomes to the patient. The formulation is preferably administered by inhalation to the patient.
  • According to another aspect of the present invention, a formulation comprising both a free and encapsulated anti-infective provides an initially high therapeutic level of the anti-infective in the lungs to overcome the barrier to eradicate the difficult to treat biofilm bacteria, while maintaining a sustained release of anti-infective over time. While some aspects of biofilm resistance are poorly understood, the dominant mechanisms are thought to be related to: (i) modified nutrient environments and suppression of growth rate within the biofilm; (ii) direct interactions between the exopolymer matrices, and their constituents, and antimicrobials, affecting diffusion and availability; and (iii) the development of biofilm/attachment-specific phenotypes (Gilbert P et al., 1997). The intent of the immediate-release anti-infective; e.g., ciprofloxacin, is thus to rapidly increase the antibiotic concentration in the lung to therapeutic levels around the difficult to eradicate biofilm bacteria to address the challenges of lower diffusion rate of antibiotic to and within the biofilm. The sustained-release anti-infective; e.g., ciprofloxacin, serves to maintain a therapeutic level of antibiotic in the lung thereby providing continued therapy over a longer time frame, increasing efficacy, reducing the frequency of administration, and reducing the potential for resistant colonies to form.
  • According to another aspect of the present invention, the immediate release of high levels of an anti-infective may allow enhanced penetration of the glycocalyx. The sustained release of the anti-infective may ensure that the anti-infective agent never falls below the sub-inhibitory concentration and so reduces the likelihood of forming resistance to the anti-infective.
  • These and other objects, advantages, and features of the invention will become apparent to those persons skilled in the art upon reading the details of the formulations and methodology as more fully described below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Aspects and embodiments of the invention are best understood from the following detailed description when read in conjunction with the accompanying drawings. It is emphasized that, according to common practice, the various features of the drawings are not to-scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity. Included in the drawings are the following figures:
    • FIG. 1 is a manufacturing flow chart of liposomal ciprofloxacin for inhalation (HSPC/Chol - 10 L Batch).
    • FIG. 2 is a graph showing the cumulative survival rate of mice following infection with P. aeruginosa-laden agarose beads on Day 0. Mice were treated intranasally once daily starting on Day 2 and ending on Day 9 with the liposomal formulation of ciprofloxacin (drug) at one of three different concentrations (100%, open diamond; 33%, closed square; or 10%, open triangle). Diluent was used as a control (closed circle). Surviving mice were sacrificed on Day 10.
    DETAILED DESCRIPTION OF THE INVENTION
  • Before the present method of formulating ciprofloxacin-encapsulated liposomes and delivery of such for prevention and/or treatment of cystic fibrosis and other medical conditions, and devices and formulations used in connection with such are described, it is to be understood that this invention is not limited to the particular methodology, devices and formulations described, as such methods, devices and formulations may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.
  • Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
  • Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned herein disclose and describe the methods and/or materials in connection with which the publications are cited.
  • It must be noted that as used herein and in the appended claims, the singular forms "a", "an", and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a formulation" includes a plurality of such formulations and reference to "the method" includes reference to one or more methods and equivalents thereof known to those skilled in the art, and so forth.
  • The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admissior that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
  • As used herein, anti-infective refers to agents that act against infections, such as bacterial, viral, fungal, mycobacterial, or protozoal infections.
  • As used herein, "Formulation" refers to the liposome-encapsulated anti-infective, with any excipients or additional active ingredients, either as a dry powder or suspended or dissolved in a liquid.
  • The terms "subject," "individual," "patient," and "host" are used interchangeably herein and refer to any vertebrate, particularly any mammal and most particularly including human subjects, farm animals, and mammalian pets. The subject may be, but is not necessarily under the care of a health care professional such as a doctor.
  • A "stable" formulation is one in which the protein or enzyme therein essentially retains its physical and chemical stability and integrity upon storage and exposure to relatively high temperatures. Various analytical techniques for measuring peptide stability are available in the art and are reviewed in Peptide and Protein Drug Delivery, 247-301, Vincent Lee Ed., Marcel Dekker, Inc., New York, N.Y., Pubs. (1991), and Jones, A. (1993) Adv. Drug Delivery Rev. 10:29-90. Stability can be measured at a selected temperature for a selected time period.
  • "Mammal" for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, etc. Preferably, the mammal is human.
  • A "disorder" is any condition that would benefit from treatment with the claimed methods and compositions.
  • 1. Generation of Liposomes Containing Ciprofloxacin
  • According to aspects of the instant invention, a method is provided for formulating ciprofloxacin and other anti-infectives by encapsulating these drugs in liposomes. Composed of naturally-occurring materials which are biocompatible and biodegradable, liposomes are used to encapsulate biologically active materials for a variety of purposes. Having a variety of layers, sizes, surface charges and compositions, numerous procedures for liposomal preparation and for drug encapsulation within them have been developed, some of which have been scaled up to industrial levels. Liposomes can be designed to act as sustained release drug depots and, in certain applications, aid drug access across cell membranes.
  • The sustained release property of the liposomes may be regulated by the nature of the lipid membrane and by the inclusion of other excipients in the composition of the liposomes. Extensive research in liposome technology over many years has yielded a reasonable prediction of the rate of drug release based on the composition of the liposome formulation. The rate of drug release is primarily dependent on the nature of the phospholipids, e.g. hydrogenated (--H) or unhydrogenated (--G), or the phospholipid/cholesterol ratio (the higher this ratio, the faster the rate of release), the hydrophilic/lipophilic properties of the active ingredients and by the method of liposome manufacturing.
  • Methods for making bioadhesive liposomes can be found, for example, in U.S.5,401,511 along with the patents and publications eited therein which describe liposomes and methods of making liposomes. In recent years, successful attempts have been made to bind different substances to liposomes. For example, binding of chymotrypsin to liposomes has been studied as a model for binding substances to liposomal surfaces. Recognizing substances, including antibodies, glycoproteins and lectins, have been bound to liposomal surfaces in an attempt to confer target specificity to the liposomes.
  • The number and surface density of the discrete sites on the liposomal surfaces for covalent bonding are dictated by the liposome formulation and the liposome type. The liposomal surfaces also have sites for noncovalent association. Covalent binding is preferred as noncovalent binding might result in dissociation of the recognizing substances from the liposomes at the site of administration since the liposomes and the bioadhesive counterparts of the target site (that is, the bioadhesive matter) compete for the recognizing substances. Such dissociation would reverse the administered modified liposomes into regular, non-modified liposomes, thereby defeating the purpose of administration of the modified liposomes.
  • To form covalent conjugates of recognizing substances and liposomes, crosslinking reagents have been studied for effectiveness and biocompatibility. Once such reagent is glutaraldehyde (GAD). Through the complex chemistry of crosslinking by GAD, linkage of the amine residues of the recognizing substances and liposomes is established.
  • The crosslinking reagents can include glutaraldehyde (GAD) and a water soluble carbodiimide, preferably, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). The recognizing substances include gelatin, collagen, and hyaluronic acid (HA). Following these methodologies, recognizing substances may be utilized as an adhesive or glue to attach the liposomes onto a target area, such as the lung.
  • Thus, while not essential to the instant invention, the use of such bioadhesive liposomes, particularly those having hyaluronic acid as the bioadhesive ligand, will potentially increase residence time in pulmonary sites, and reduce mucociliary clearance and macrophage uptake.
  • In general, ciprofloxacin is preferably used in the formulations of the instant invention, although other antibiotics or anti-infectives known to those skilled in the art may be used.
  • Multilamellar vesicles (MLV) are prepared according to techniques well known in the art. Briefly, in an embodiment, lipids are weighed and dissolved in a suitable organic solvent (such as chloroform or chloroform-methanol mixtures). The organic solvent is evaporated to complete dryness in a rotary evaporator, under low pressure, and at a temperature range of about 37-40 °C. Following evaporation, the ciprofloxacin solution is added to the dry lipid film. The system is vigorously mixed, then incubated for about two hours in, for example, a shaker bath at a temperature range appropriate for the lipid composition. The preparation is then preferably buffered, for example, by adding about a one tenth volume of ten-fold concentrated phosphate buffered saline (PBS), of pH 7.4.
  • In an embodiment, MLV generated as described above serve as the source material for acidic unilamellar vesicles (ULV). For example, MLV are prepared as described above and subjected to extrusion in a device such as, for example, that manufactured by Lipex Biomembranes, Inc. (Vancouver, British Columbia). Extrusion is performed through a series of membranes with progressively-smaller pore sizes, such as, for example, starting with pore sizes in the range of 0.8 to 1.0 µm (one to two extrusion cycles per pore size) and ending at the pore size range selected according to the desired liposome size (e.g., about seven cycles of extrusion at the final pore size).
  • Exemplary liposome compositions and methods of making them are disclosed in US Patents 6,890,555 ; 6,855,296 ; 6,770,291 ; 6,759,057 ; 6,623,671 ; 6,534,018 ; 6,355,267 ; 6,316,024 ; 6,221,385 and 6,197,333 . The liposomes of the invention may be multilamellar, unilamellar, or any configuration known such as described in the above patents. The liposomes of the instant invention are preferably made from biocompatible lipids. In general, the size of the liposomes generated is over a wide range depending on mode of delivery, e.g. 1 nm to 10 µm or 20 nm to 1 µm or about 100 nm in diameter ±20% for pulmonary delivery.
  • II. Pharmaceutical Formulation of Ciprofloxacin-containing Liposomes
  • In a preferred embodiment, the liposome-encapsulated ciprofloxacin is administered to a patient in an aerosol inhalation device but could be administered by the IV route. In some embodiments, the liposomes are administered in combination with ciprofloxacin that is not encapsulated.
  • Regardless of the form of the drug formulation, it is preferable to create droplets or particles for inhalation in the range of about 0.5µm to 12µm, preferably 1 µm to 6µm, and more preferably about 2-4µm. By creating inhaled particles which have a relatively narrow range of size, it is possible to further increase the efficiency of the drug delivery system and improve the repeatability of the dosing. Thus, it is preferable that the particles not only have a size in the range of 0.5µm to 12µm or 2µm to 6µm or about 3-4 µm but that the mean particle size be within a narrow range so that 80% or more of the particles being delivered to a patient have a particle diameter which is within ±20% of the average particle size, preferably ±10% and more preferably ±5% of the average particle size.
  • The formulations of the invention may be administered to a patient using a disposable package and portable, hand-held, battery-powered device, such as the AERx device ( US Patent No. 5,823,178 , Aradigm, Hayward, CA). Alternatively, the formulations of the instant invention may be carried out using a mechanical (non-electronic) device. Other inhalation devices may be used to deliver the formulations including conventional jet nebulizers, ultrasonic nebulizers, soft mist inhalers, dry powder inhalers (DPIs), metered dose inhalers (MDIs), condensation aerosol generators, and other systems.
  • An aerosol may be created by forcing drug through pores of a membrane which pores have a size in the range of about 0.25 to 6 microns ( US Patent 5,823,178 ). When the pores have this size the particles which escape through the pores to create the aerosol will have a diameter in the range of 0.5 to 12 microns. Drug particles may be released with an air flow intended to keep the particles within this size range. The creation of small particles may be facilitated by the use of the vibration device which provides a vibration frequency in the range of about 800 to about 4000 kilohertz. Those skilled in the art will recognize that some adjustments can be made in the parameters such as the size of the pores from which drug is released, vibration frequency, pressure, and other parameters based on the density and viscosity of the formulation keeping in mind that an object of some embodiments is to provide aerosolized particles having a diameter in the range of about 0.5 to 12 microns.
  • The liposome formulation may be a low viscosity liquid formulation. The viscosity of the drug by itself or in combination with a carrier should be sufficiently low so that the formulation can be forced out of openings to form an aerosol, e.g., using 20 to 200 psi to form an aerosol preferably having a particle size in the range of about 0.5 to 12 microns.
  • In an embodiment, a low boiling point, highly volatile propellant is combined with the liposomes of the invention and a pharmaceutically acceptable excipient. The liposomes may be provided as a suspension or dry powder in the propellant, or, in another embodiment, the liposomes are dissolved in solution within the propellant. Both of these formulations may be readily included within a container which has a valve as its only opening. Since the propellant is highly volatile, i.e. has a low boiling point, the contents of the container will be under pressure.
  • In accordance with another formulation, the ciprofloxacin-containing liposomes are provided as a dry powder by itself, and in accordance with still another formulation, the ciprofloxacin-containing liposomes are provided in a solution formulation. The dry powder may be directly inhaled by allowing inhalation only at the same measured inspiratory flow rate and inspiratory volume for each delivery. The powder may be dissolved in an aqueous solvent to create a solution which is moved through a porous membrane to create an aerosol for inhalation.Any formulation which makes it possible to produce aerosolized forms of ciprofloxacin-containing liposomes which can be inhaled and delivered to a patient via the intrapulmonary route may be used in connection with the present invention. Specific information regarding formulations which can be used in connection with aerosolized delivery devices are described within Remington's Pharmaceutical Sciences, A. R. Gennaro editor (latest edition) Mack Publishing Company. Regarding insulin formulations, it is also useful to note the findings of Sciarra et al., (1976). When low boiling point propellants are used, the propellants are held within a pressurized canister of the device and maintained in a liquid state. When the valve is actuated, the propellant is released and forces the active ingredient from the canister along with the propellant. The propellant will "flash" upon exposure to the surrounding atmosphere, i.e., the propellant immediately evaporates. The flashing occurs so rapidly that it is essentially pure active ingredient which is actually delivered to the lungs of the patient.
  • III. Dosing Regimens
  • Based on the above, it will be understood by those skilled in the art that a plurality of different treatments and means of administration can be used to treat a single patient. Thus, patients already receiving such medications, for example, as intravenous ciprofloxacin or antibiotics, etc., may benefit from inhalation of the formulations of the present invention. Some patients may receive only ciprofloxacin-containing liposome formulations by inhalation. Such patients may have symptoms of cystic fibrosis, be diagnosed as having lung infections, or have symptoms of a medical condition, which symptoms may benefit from administration to the patient of an antibiotic such as ciprofloxacin. The formulations of the invention may also be used diagnostically. In an embodiment, for example, a patient may receive a dose of a formulation of the invention as part of a procedure to diagnose lung infections, wherein one of more of the patient's symptoms improves in response to the formulation.
  • A patient will typically receive a dose of about 0.01 to 10 mg/kg/day of ciprofloxacin ±20% or ±10%. This dose will typically be administered by at least one, preferably several "puffs" from the aerosol device. The total dose per day is preferably administered at least once per day, but may be divided into two or more doses per day. Some patients may benefit from a period of "loading" the patient with ciprofloxacin with a higher dose or more frequent administration over a period of days or weeks, followed by a reduced or maintenance dose. As cystic fibrosis is typically a chronic condition, patients are expected to receive such therapy over a prolonged period of time.
  • It has previously been shown that inhalation of liposome-encapsulated fluoroquinolone antibiotics may be effective in treatment of lung infections and were shown to be superior to the free or unencapsulated fluoroquinolone in a mouse model of F. tularensis ( CA 2,215,716 , CA 2,174,803 and CA 2,101,241 ). However, they did not anticipate the potential benefit of combining the free and encapsulated fluoroquinolone antibiotics to treat those lung infections. According to one aspect of the present invention, high concentrations of an antibiotic are delivered immediately while also providing a sustained release of the therapeutic over hours or a day.
  • Another application, EP1083881B1 , describes liposomes containing a drug-conjugate comprising a quinolone compound covalently attached to an amino acid. That application does not foresee the requirement to have both an immediate release and sustained release component to treat those lung infections.
  • Another application, US 2000142026 , also describes the use of liposome-encapsulated antibiotics. That application discusses the potential for administration of a lower dose of a liposome-encapsulated antibiotic, by a factor of 10 or 100, than for the free unencapsulated antibiotic. However, they did not anticipate the benefit of combining both free and encapsulated antibiotic to provide an initially high therapeutic level of the antibiotic in the lungs to overcome the barrier to eradicating the difficult to treat biofilm bacteria.
  • Thus, as discussed above, the formulations according to some aspects of the invention include free or non-encapsulated ciprofloxacin in combination with the liposome-encapsulated ciprofloxacin. Such formulations may provide an immediate benefit with the free ciprofloxacin resulting in a rapid increase in the antibiotic concentration in the lung fluid surrounding the bacterial colonies or biofilm and reducing their viability, followed by a sustained benefit from the encapsulated ciprofloxacin which continues to kill the bacteria or decrease its ability to reproduce, or reducing the possibility of antibiotic resistant colonies arising. The skilled practitioner will understand that the relative advantages of the formulations of the invention in treating medical conditions on a patient-by-patient basis.
  • IV. Method of Treatment
  • Until now we have discussed primarily the application of this invention to treat infections in cystic fibrosis patients. However, it will be obvious to one skilled in the art that this invention will have utility and advantages beyond CF. This method of treatment applies to other disease states which involve infections of the nasal passages, airways, inner ear, or lungs; including but not limited to: bronchiectasis, tuberculosis, pneumonia; including but not limited to ventilator associated pneumonia, community acquired pneumonia, bronchial pneumonia, lobar pneumonia; infections by Streptococcus pneumoniae, Chlamydia, Mycoplasma pneumonia, staphylococci, prophylactive treatment or preventation for conditions in which infection might arise, e.g., intubated or ventilated patients, infections in lung transplant patient, bronchitis, pertussis (whooping cough), inner ear infections, streptococal throat infections, inhalation anthrax, tularemia, or sinusitis.
  • EXPERIMENTAL
  • The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the present invention, and are not intended to limit the scope of what the inventors regard as their invention nor is it intended to represent that the experiment below is the only experiment performed. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperature, etc.) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, molecular weight is weight average molecular weight, temperature is in degrees Centigrade, and pressure is at or near atmospheric.
  • EXAMPLE 1 Manufacture of encapsulated ciprofloxacin:
  • Ciprofloxacin (50 mg/mL) is encapsulated into liposomes consisting of hydrogenated soy phosphatidyl-choline (HSPC) (70.6 mg/mL), a semi-synthetic fully hydrogenated derivative of natural soy lecithin (SPC), and cholesterol (29.4 mg/mL). The lipid is organized in a bilayer, with an average particle size of 75 to 120nm. The sterile suspension is suspended in an isotonic buffer (25 mM histidine, 145 mM NaCl at pH 6.0, 300 mOsm/kg) and administered by inhalation. These liposomal ciprofloxacin preparations contained approximately 1% unencapsulated ciprofloxacin.
  • The manufacturing process includes the following steps.
    1. 1. Preparation of buffers.
    2. 2. Weighing of lipid components.
    3. 3. Dissolution of lipids in solvent (tBuOH:EtOH:dH2O / 49:49:2).
    4. 4. Mixing of the solvent solution of lipids with methylamine sulphate buffer (10% v/v solvent) to form multilamellar vesicles (MLVs) with encapsulated methylamine sulphate buffer at 30 mg/mL lipid.
    5. 5. Extrusion through four stacked 80 nm pore size polycarbonate filters to generate large unilamellar vesicles (LUVs). A second extrusion pass was performed to generate liposomes with a mean diameter of ∼ 100 nm.
    6. 6. Ultrafiltration to concentrate the liposomes to ∼ 55 mg/mL total lipid.
    7. 7. Diafiltration against 10 volumes of buffer (145 mM NaCl, 5 mM histidine, pH 6.0) to remove ethanol and generate a transmembrane pH gradient.
    8. 8. Determination of the lipid concentration by HPLC.
    9. 9. Heating of the liposome suspension to 50°C and slow addition of powdered ciprofloxacin (60% of the total lipid mass) with stirring. Ciprofloxacin is added incrementally (10% of mass every 4 minutes over a 40-minute period) and the product incubated at 50°C for 20 minutes following addition of the last aliquot to allow completion of the drug loading process.
    10. 10. Diafiltration of the ciprofloxacin loaded liposomes against 3-volumes of 145 mM NaCl, 5 mM acetate, pH 4.0 to remove unencapsulated ciprofloxacin under conditions in which the free ciprofloxacin is soluble.
    11. 11. Diafiltration of the ciprofloxacin loaded liposomes against 5-volumes of 145 mM NaCl, 25 mM histidine, pH 6.0 to remove any remaining unencapsulated ciprofloxacin, further reducing the residual solvent levels and exchanging the external buffer for the desired final product buffer.
    12. 12. Ultrafiltration of the formulation to a ciprofloxacin concentration of 50 mg/mL (in-process testing required).
    13. 13. Pre-filtration of the liposomes through 0.45/0.2 µm filter sheets to remove particulates which can clog sterilizing grade filters. The filters employed are in fact sterilizing grade filters; however they are employed at elevated pressures not compatible with their use for sterile filtration.
    14. 14. Redundant filtration through 0.2 µm sterilizing grade filters.
    15. 15. Sample vialing and packaging.
  • The overall manufacturing scheme is shown in Figure 1.
  • Description of infection model:
  • The ciprofloxacin encapsulated liposomes were evaluated in a mouse model of P. aeruginosa lung infection. The gut-corrected, Cftr knockout mice have been shown to have a cystic fibrosis lung phenotype following infection with P. aeruginosa-laden agarose beads (van Heeckeren et al., 2004), and have a similar inflammatory response as the UNC Cftr knockout mice (van Heeckeren et al., 2004). All of these features make this the strain of choice to investigate whether the drug has efficacy in a mouse model of cystic fibrosis lung infection, and not if there is a differential response between wild type and cystic fibrosis mice. Mice of one sex, male, were used to eliminate sex as a potential confounder. All mice were between 6-8 weeks of age and weighed >16g.
  • P. aeruginosa-laden agarose (PA) beads were made and used, as described previously (van Heeckeren, et al., 1997, van Heeckeren et al., 2000, van Heeckeren and Schluchter, 2002), with minor differences. Mice were inoculated with a 1:35 dilution of the beads, and beads were delivered in mice anesthetized with isoflurane. This was established to be an LD50 dose, though subtle differences from experiment to experiment may lead to differential responses, which is not predictable. That is, in one experiment the dose is an LD50, but it may be an LD90 in another. Since we are interested in investigating whether these drugs have clinical efficacy, we attempted to dose between the LD50 and the LD90 range in infected CF control mice. Interventional euthanasia was performed if the mice were moribund (severe delay in the righting reflex and palpably cold), and a necropsy performed to determine whether there was overt lung infection. Mice that were sacrificed were included as if spontaneous death had occurred.
  • Liposomal ciprofloxacin treatments:
  • Formulations of liposomal ciprofloxacin or sham (diluent) (≤ 0.05 ml) were delivered intranasally.
  • Design of dose-ranging study:
  • Three doses were tested: 10%, 33%, and 100% of full strength (50 mg/ml) ciprofloxacin composed of 99% encapsulated and 1% free ciprofloxacin, plus the liposomal diluent as a negative control. The low- and mid-dose were prepared by dilution. On Day 0, mice were inoculated transtracheally with P. aeruginosa-laden agarose beads diluted 1:35 in sterile PBS, pH 7.4. On Days 2 through 9, mice were treated with the drug or diluent sham once daily. On Day 10, mice were sacrificed. The outcome measures included clinical signs (including coat quality, posture, ability to right themselves after being placed in lateral recumbency, ambulation), changes from initial body weight, and survival. At the time of sacrifice, gross lung pathology was noted, bronchoalveolar lavage (BAL) was performed using 1 ml sterile PBS, pH 7.4, whole blood, unprocessed BAL fluid and spleen homogenates were tested for presence or absence of P. aeruginosa, and BAL cells were enumerated using a hemacytometer.
  • Survival Results:
  • Figure 2 shows the cumulative survival rate for each group out to 10 days reported as a percentage of the number of mice that survived. At Day 10, the three groups treated with liposomal ciprofloxacin had greater survival rates than the diluent control group. There were only 2 deaths in each of the liposomal treatment groups, whereas there were 6 deaths in the diluent group. The 100%-dose group had the longest survival of all the groups, with all mice surviving out to Day 5, whereas the other groups all had 2 deaths by this time.
  • Intranasal administration (to target the lung) of liposome-encapsulated ciprofloxacin containing approximately 1% free ciprofloxacin increased the survival rate of mice with P. aeruginosa lung infections. Accordingly, inhaled liposomal ciprofloxacin is efficacious in patients with cystic fibrosis, or other diseases with lung infections.
  • Figure 2 shows the cumulative survival rate following infection. Mice were infected with P. aeruginosa-laden agarose beads on Day 0. Mice were treated intranasally once daily starting on Day 2 and ending on Day 9 with the liposomal formulation of ciprofloxacin (drug) at one of three different concentrations (100%, open diamond; 33%, closed square; or 10%, open triangle). Diluent was used as a control (closed circle). Surviving mice were sacrificed on Day 10.
  • EXAMPLE 2
  • Preparation of Unencapsulated Ciprofloxacin: A solution of unencapsulated, or "free" ciprofloxacin at a concentration of 30 mg/mL in 10 mM sodium acetate, pH 3.2, was prepared.
  • Manufacture of encapsulated ciprofloxacin: Ciprofloxacin (50 mg/mL) was encapsulated into liposomes consisting of hydrogenated soy phosphatidyl-choline (HSPC) (70.6 mg/mL), a semi-synthetic fully hydrogenated derivative of natural soy lecithin (SPC), and cholesterol (29.4 mg/mL), as described in Example 1. Characterization of this liposomal formulation indicated that approximately 1% of the ciprofloxacin was free; that is, it was not encapsulated within the liposome.
  • Description of infection model: Formulations containing free ciprofloxacin and liposome encapsulated ciprofloxacin were evaluated in two additional experiments in a mouse model of P. aeruginosa lung infection as described in Example 1.
  • Design of dose-ranging study: One dose of the combination of free and liposomal ciprofloxacin (0.36 mg/kg free and 0.6 mg/kg liposomal ciprofloxacin), two doses of liposomal ciprofloxacin (0.6 mg/kg and 1.2 mg/kg) and the liposomal diluent as a negative control were evaluated in two separate experiments. On Day 0, mice were inoculated transtracheally with P. aeruginosa-laden agarose beads diluted 1:35 in sterile PBS, pH 7.4. On Days 2 through 9, mice were treated with the drug or diluent sham once daily. On Day 10, mice were sacrificed. The outcome measures included clinical signs (including coat quality, posture, ability to right themselves after being placed in lateral recumbency, ambulation), changes from initial body weight, and survival. At the time of sacrifice, gross lung pathology was noted, bronchoalveolar lavage (BAL) was performed using 1 ml sterile PBS, pH 7.4, whole blood, unprocessed BAL fluid and spleen homogenates were tested for presence or absence of P. aeruginosa, and BAL cells were enumerated using a hemacytometer.
  • Survival Results: Table 1 shows the cumulative survival rate for each group out to 10 days reported as a percentage of the number of mice that survived from both studies. At Day 10, all groups treated with a combination of free and liposomal ciprofloxacin had greater survival rates than the diluent control group. Table 1: Mean survival per group from two studies in CF mice with P. aeruginosa lung infection treated with intranasally instilled ARD-3100, or control
    Dose (mg/kg) % Free Ciprofloxacin Mean Starting Number Mean Mortality Mean Survival (%)
    0 (Control) N/A 9 6/9 34%
    0.6 1 8.5 2.5/8.5 66%
    1.2 1 8.5 3/8.5 65%
    0.96 38 10.5 2.5/10.5 76%
  • Conclusion: Intranasal administration (to target the lung) of liposome-encapsulated ciprofloxacin increased the survival rate of mice with P. aeruginosa lung infections. Inhaled liposomal ciprofloxacin or combinations of free and liposomal ciprofloxacin are efficacious in patients with cystic fibrosis, or other diseases with lung infections.
  • EXAMPLE 3
  • Manufacture of encapsulated ciprofloxacin: Ciprofloxacin (50 mg/mL) was encapsulated into liposomes consisting of hydrogenated soy phosphatidyl-choline (HSPC) (70.6 mg/mL), a semi-synthetic fully hydrogenated derivative of natural soy lecithin (SPC), and cholesterol (29.4 mg/mL), as described in Example 1. Characterization of this liposomal formulation indicated that approximately 1% of the ciprofloxacin was free; that is, it was not encapsulated within the liposome.
  • Delivery of Combination of Free and Encapsulated Ciprofloxacin: Rather than using a formulation which contains both free and encapsulated ciprofloxacin, an alternative method is to create the mixture during the delivery event. For example, the addition of shear or heat in a controlled fashion may reproducibly result in some of the liposomes losing their integrity and releasing the contents of drug that were previously encapsulated within the liposomes. Studies using the electromechanical AERx system confirmed the possibility of using this approach. Formulations containing approximately 99% encapsulated ciprofloxacin were delivered using the AERx system and the aerosol droplets were collected. With the temperature controller set at temperatures of 13, 45, 77, 108 and 140 °C the collected aerosol contained 89, 84, 82, 77 and 41 percent encapsulated, respectively.
  • The instant invention is shown and described herein in a manner which is considered to be the most practical and preferred embodiments. It is recognized, however, that departures may be made therefrom which are within the scope of the invention and that obvious modifications will occur to one skilled in the art upon reading this disclosure.
  • While the instant invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.
  • REFERENCES
    • Almeida JA, Runge S, Mülleret RH, Peptide-loaded solid lipid nanoparticles (SLN): Influence of production parameters. Int J Pharm. 149 (2) (1997) 255-265.
    • Bangham AD, Standish MM, Watkins JC, Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 13 (1) (1965) 238-252.
    • Conforti A, Franco L, Milanino R, Velo GP, Boccu E, Largajolli, E, Schiavon O, Veronese FM. PEG superoxide dismutase derivatives: anti-inflammatory activity in carrageenan pleurisy in rats. Pharm Research Commun. 19, pg. 287, 1987.
    • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM., Microbial biofilms. Annu Rev Microbiol. 1995;49:711-45.
    • Fitzsimmons SC. The changing epidemiology of cystic fibrosis. J Pediatr. 1993 Jan;122(1):1-9.
    • Gilbert P, Das J, Foley I., Biofilm susceptibility to antimicrobials. Adv Dent Res. 1997 Apr;11(1):160-7.
    • Helle J, Barr J, Ng SY, Shen HR, Schwach-Abdellaoui K, Gurny R, Vivien-Castioni N, Loup PJ, Baehni P, Mombelli A. Development and applications of injectable poly(ortho esters) for pain control and periodontal treatment. Biomaterials, 23, 2002, 4397-4404.
    • Hodson M, Shah PL, DNase trials in cystic fibrosis. Respiration 1995; 62, Suppl 1: 29-32.
    • Katre NV, Knauf MJ, Laird WJ., Chemical modification of .
    • LiPuma JJ., Microbiological and immunologic considerations with aerosolized drug delivery. Chest. 2001 Sep;120(3 Suppl):118S-123S.
    • Lode H, Borner K, Koeppe P, Schaberg T., Azithromycin--review of key chemical, pharmacokinetic and microbiological features. J Antimicrob Chemother. 1996; 37, Suppl C: 1-8
    • Moss RB., Administration of aerosolized antibiotics in cystic fibrosis patients. Chest. 2001 Sep;120(3 Suppl):107S-113S.
    • Passirani C, Barratt G, Devissaguet JP, Labarre D., Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate). Pharm Res. 1998 Jul; 15(7):1046-50.
    • Peppas Bures P, Leobandung W, Ichikawa H., Hydrogels in pharmaceutical formulations. Eur J of Pharm and Biopharm. 2000 Jul;50(1):27-46. Review.
    • Polonio RE Mermel LA, Paquette GE, Sperry JF., Eradication of biofilm-forming Staphylococcus epidermidis (RP62A) by a combination of sodium salicylate and vancomycin. Antimicrob Agents Chemother. 2001 Nov;45(11):3262-6.
    • Schroeder SA Gaughan DM, Swift M., Protection against bronchial asthma by CFTR delta F508 mutation: a heterozygote advantage in cystic fibrosis. Nat Med.1995 Jul;1(7):703-5.
    • Sciarra JJ, Patel SP., In vitro release of therapeutically active ingredients from polymer matrixes. J of Pharm Sci. 1976 Oct;65(10):1519-22.
    • Smith AL, Ramsey BW, Hedges DL, Hack B, Williams-Warren J, Weber A, Gore EJ, Redding GJ. Safety of aerosol tobramycin administration for 3 months to patients with cystic fibrosis. Ped Pulmonol. 1989;7(4):265-271.
    • Thorgeirsdottir TO, Kjoniksen AL, Knudsen KD, Kristmundsdottir T, Nystrom B. Viscoelastic and Structural Properties of Pharmaceutical Hydrogels Containing Monocaprin. Eur. J. of Pharm. and Biopharm. 2005 Feb;59(2):333-42.
    • Van Heeckeren AM, Schluchter MD, Drumm ML, Davis PB. Role of Cftr genotype in the response to chronic Pseudomonas aeruginosa lung infection in mice. Am J Physiol Lung Cell Mol Physiol. 2004 Nov;287(5):L944-52. Epub 2004 .
    • Van Heeckeren AM, Scaria A, Schluchter MD, Ferkol TW, Wadsworth S, Davis PB. Delivery of CFTR by adenoviral vector to cystic fibrosis mouse lung in a model of chronic Pseudomonas aeruginosa lung infection. Am J Physiol Lung Cell Mol Physiol. 2004 Apr;286(4):L717-26. Epub 2003 Sep 26.
    • Van Heeckeren A, Ferkol T, Tosi M., Effects of bronchopulmonary inflammation induced by pseudomonas aeruginosa on adenovirus-mediated gene transfer to airway epithelial cells in mice. Gene Ther. 1998 Mar;5(3):345-51.
    • Van Heeckeren AM, Schluchter MD., Murine models of chronic Pseudomonas aeruginosa lung infection. Lab Anim. 2002 Jul;36(3):291-312.
    • Van Heeckeren AM, Tscheikuna J, Walenga RW, Konstan MW, Davis PB, Erokwu B, Haxhiu MA, Ferkol TW. Effect of Pseudomonas infection on weight loss, lung mechanics, and cytokines in mice. Am J Respir Crit Care Med. 2000 Jan;161(1):271-9.
    • Weber A, Smith A, Williams-Warren J, Ramsey B, Covert DS., Nebulizer delivery of tobramycin to the lower respiratory tract. Pediatr Pulmonol. 1994 May;17(5):331-9.
    • Wolter J, Seeney S, Bell S, Bowler S, Masel P, McCormack J., Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax 2002; 57:212-216.
    • Woodle MC, Storm G, Newman MS, Jekot JJ, Collins LR, Martin FJ, Szoka FC Jr., Prolonged systemic delivery of peptide drugs by long-circulating liposomes: illustration with vasopressin in the Brattleboro rat. Pharm Res.1992 Feb;9(2):260-5.
    • Zielenski J, Tsui LC., Cystic fibrosis: genotypic and phenotypic variations. Annual Rev Genet. 1995;29:777-807.
    • Ye, Q, Asherman J, Stevenson M, Brownson E, Katre NV., DepoFoam technology: a vehicle for controlled delivery of protein and peptide drugs. J Control Rel. Feb 14;64(1-3):155-66.

Claims (2)

  1. A liposome-encapsulated ciprofloxacin composition, wherein the liposomes consist of 50 mg/ml ciprofloxacin, 70.6 mg/ml hydrogenated soy phosphatidyl-choline (HSPC) and 29.4 mg/ml cholesterol, wherein the liposomes have an average particle size of 75 nm to 120 nm and wherein the liposomes are suspended in an isotonic buffer comprised of 25 mM histidine, 145 mM NaCl at pH 6.0 and 300 mOsm/Kg, and wherein the composition is formulated for aerosolized delivery.
  2. A composition of particles comprising liposome-encapsulated ciprofloxacin according to claim 1, and unencapulated ciprofloxacin, wherein the unencapsulated ciprofloxacin is formed from a solution at a concentration of 30mg/mL in 10mM sodium acetate, pH 3.2, wherein the composition comprises 0.36mg/kg unencapsulated ciprofloxacin and 0.6mg/kg encapsulated ciprofloxacin, and wherein the composition is formulated for aerosolized delivery.
EP07867260.7A 2006-10-24 2007-10-23 Dual action, inhaled formulations providing both an immediate and sustained release profile Not-in-force EP2079443B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL07867260T PL2079443T3 (en) 2006-10-24 2007-10-23 Dual action, inhaled formulations providing both an immediate and sustained release profile
EP14175442.4A EP2789330A1 (en) 2006-10-24 2007-10-23 Dual action, inhaled formulations providing both an immediate and sustained release profile
SI200731557T SI2079443T1 (en) 2006-10-24 2007-10-23 Dual action, inhaled formulations providing both an immediate and sustained release profile
EP14165088.7A EP2759292A1 (en) 2006-10-24 2007-10-23 Dual action, inhaled formulations providing both an immediate and sustained release profile
CY20141100958T CY1115890T1 (en) 2006-10-24 2014-11-17 INSPIRED PHARMACEUTICAL FORMS OF DOUBLE ACTION PROVIDING BOTH IMMEDIATE PROTECTION AND MAINTENANCE RELEASE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US86275306P 2006-10-24 2006-10-24
PCT/US2007/022424 WO2008063341A2 (en) 2006-10-24 2007-10-23 Dual action, inhaled formulations providing both an immediate and sustained release profile

Related Child Applications (4)

Application Number Title Priority Date Filing Date
EP14175442.4A Division-Into EP2789330A1 (en) 2006-10-24 2007-10-23 Dual action, inhaled formulations providing both an immediate and sustained release profile
EP14175442.4A Division EP2789330A1 (en) 2006-10-24 2007-10-23 Dual action, inhaled formulations providing both an immediate and sustained release profile
EP14165088.7A Division EP2759292A1 (en) 2006-10-24 2007-10-23 Dual action, inhaled formulations providing both an immediate and sustained release profile
EP14165088.7A Division-Into EP2759292A1 (en) 2006-10-24 2007-10-23 Dual action, inhaled formulations providing both an immediate and sustained release profile

Publications (3)

Publication Number Publication Date
EP2079443A2 EP2079443A2 (en) 2009-07-22
EP2079443A4 EP2079443A4 (en) 2012-03-07
EP2079443B1 true EP2079443B1 (en) 2014-08-27

Family

ID=39430258

Family Applications (3)

Application Number Title Priority Date Filing Date
EP07867260.7A Not-in-force EP2079443B1 (en) 2006-10-24 2007-10-23 Dual action, inhaled formulations providing both an immediate and sustained release profile
EP14165088.7A Withdrawn EP2759292A1 (en) 2006-10-24 2007-10-23 Dual action, inhaled formulations providing both an immediate and sustained release profile
EP14175442.4A Withdrawn EP2789330A1 (en) 2006-10-24 2007-10-23 Dual action, inhaled formulations providing both an immediate and sustained release profile

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP14165088.7A Withdrawn EP2759292A1 (en) 2006-10-24 2007-10-23 Dual action, inhaled formulations providing both an immediate and sustained release profile
EP14175442.4A Withdrawn EP2789330A1 (en) 2006-10-24 2007-10-23 Dual action, inhaled formulations providing both an immediate and sustained release profile

Country Status (12)

Country Link
US (2) US8268347B1 (en)
EP (3) EP2079443B1 (en)
JP (2) JP5254239B2 (en)
CN (2) CN104666248B (en)
AU (1) AU2007322224B2 (en)
CA (1) CA2667494C (en)
DK (1) DK2079443T3 (en)
ES (1) ES2520028T3 (en)
PL (1) PL2079443T3 (en)
PT (1) PT2079443E (en)
SI (1) SI2079443T1 (en)
WO (1) WO2008063341A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11534399B2 (en) 2018-04-23 2022-12-27 Inspirmed Corp. Inhalable liposomal sustained release composition for use in treating pulmonary diseases

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7718189B2 (en) 2002-10-29 2010-05-18 Transave, Inc. Sustained release of antiinfectives
PT1962805T (en) 2005-12-08 2016-10-05 Insmed Inc Lipid-based compositions of antiinfectives for treating pulmonary infections
JP5600432B2 (en) * 2006-04-06 2014-10-01 インスメッド, インコーポレイテッド Coacervation-induced liposome encapsulation method and preparation thereof
US8119156B2 (en) * 2006-10-24 2012-02-21 Aradigm Corporation Dual action, inhaled formulations providing both an immediate and sustained release profile
US8268347B1 (en) * 2006-10-24 2012-09-18 Aradigm Corporation Dual action, inhaled formulations providing both an immediate and sustained release profile
US20100196455A1 (en) 2007-05-04 2010-08-05 Transave, Inc. Compositions of Multicationic Drugs for Reducing Interactions with Polyanionic Biomolecules and Methods of Use Thereof
US9114081B2 (en) 2007-05-07 2015-08-25 Insmed Incorporated Methods of treating pulmonary disorders with liposomal amikacin formulations
US9333214B2 (en) 2007-05-07 2016-05-10 Insmed Incorporated Method for treating pulmonary disorders with liposomal amikacin formulations
US9119783B2 (en) 2007-05-07 2015-09-01 Insmed Incorporated Method of treating pulmonary disorders with liposomal amikacin formulations
WO2009091531A2 (en) * 2008-01-16 2009-07-23 The General Hospital Corporation Uniform-sized, multi-drug carrying and photosensitive liposomes for advance drug delivery
TW201010708A (en) * 2008-06-02 2010-03-16 Intervet Int Bv Composition comprising an antibiotic and a corticosteroid
WO2010041255A2 (en) * 2008-10-07 2010-04-15 Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. Liposomal systems comprising sphingomyelin
US8642039B2 (en) * 2009-12-22 2014-02-04 Kalobios Pharmaceuticals, Inc. Method of treating a staphylococcus infection in a patient having a low-level pathogenic Pseudomonas aeruginosa infection
AU2011224207B2 (en) 2010-03-12 2015-11-19 Berg Llc Intravenous formulations of Coenzyme Q10 (CoQ10) and methods of use thereof
CN102309448B (en) * 2010-06-29 2014-07-09 中国人民解放军军事医学科学院毒物药物研究所 Pulmonary delivery ciprofloxacin pharmaceutical composition and preparation method thereof
WO2012058483A1 (en) * 2010-10-28 2012-05-03 Pacira Pharmaceuticals, Inc. A sustained release formulation of a non-steroidal anti-inflammatory drug
IT1405998B1 (en) * 2010-12-09 2014-02-06 Bionest Ltd MULTIPURPOSE GEL AGAINST THE VAGINAL DRYNESS WITH A DIRECT AND DELAYED EFFECT
PE20140628A1 (en) * 2011-06-17 2014-05-30 Berg Llc INHALABLE PHARMACEUTICAL COMPOSITIONS
WO2013057208A1 (en) * 2011-10-18 2013-04-25 Targeted Delivery Technologies Limited Compositions and methods for reducing the proliferation and viability of microbial agents
MX354547B (en) 2011-11-14 2018-03-09 Alfasigma Spa Assays for selecting a treatment regimen for a subject with depression and methods for treatment.
CN104349783B (en) 2012-05-21 2018-07-13 英斯麦德公司 The system for treating pulmonary infection
WO2014058974A1 (en) * 2012-10-10 2014-04-17 Emory University Methods of managing inflammation using glycolysis pathway inhibitors
EP2925298B1 (en) 2012-11-29 2019-05-29 Insmed Incorporated Stabilized vancomycin formulations
US9987227B2 (en) 2013-10-22 2018-06-05 Aradigm Corporation Inhaled surfactant-modified liposomal formulations providing both an immediate and sustained release profile
WO2015136446A1 (en) 2014-03-11 2015-09-17 Nestec S.A. Methods for selecting antidepressant drug therapy to treat depression
EP3129004A4 (en) 2014-04-08 2017-11-15 Aradigm Corporation Liposomal ciprofloxacin formulations with activity against non-tuberculous mycobacteria
KR20160144404A (en) 2014-04-08 2016-12-16 아라다임 코포레이션 Liposomes that form drug nanocrystals after freeze-thaw
CA2949078C (en) 2014-05-15 2022-09-20 Insmed Incorporated Methods for treating pulmonary non-tuberculous mycobacterial infections
US10765817B2 (en) 2014-08-13 2020-09-08 Elwha, Llc Methods, systems, and devices related to delivery of alcohol with an inhaler
US10245393B2 (en) 2014-08-13 2019-04-02 Elwha Llc Methods, systems, and devices related to a supplemental inhaler
US10987048B2 (en) 2014-08-13 2021-04-27 Elwha Llc Systems, methods, and devices to incentivize inhaler use
WO2016179365A1 (en) * 2015-05-05 2016-11-10 Musc Foundation For Research Development Nanocarriers for delivery of alpha-1-antitrypsin
TWI609701B (en) * 2016-01-05 2018-01-01 國立交通大學 Compound prescription colloidal eyedrop gel and methods of making the same
US20170355933A1 (en) * 2016-06-09 2017-12-14 The Procter & Gamble Company Cleaning compositions including nuclease enzyme and malodor reduction materials
EA031933B1 (en) * 2016-08-05 2019-03-29 Общество С Ограниченной Ответственностью "Научно-Производственный Центр Пробиотех" Veterinary biological preparation, method of producing the same (embodiments), and method for treatment of nodular dermatitis in bovine cattle (embodiments)
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN109983013A (en) 2016-11-18 2019-07-05 帕西拉制药有限公司 Meloxicam zinc complexes particle multivesicular liposome preparation and preparation method thereof
WO2019183006A1 (en) * 2018-03-19 2019-09-26 Liang Gui Bai Methods and compositions for treating idiopathic pulmonary fibrosis
WO2019191627A1 (en) 2018-03-30 2019-10-03 Insmed Incorporated Methods for continuous manufacture of liposomal drug products
CN111249251A (en) * 2018-12-03 2020-06-09 华中农业大学 Enrofloxacin chitosan nanoparticles
US20220117893A1 (en) * 2019-02-22 2022-04-21 The Blue Group Llc Inhalable therapeutic agent
WO2020259670A1 (en) 2019-06-28 2020-12-30 江苏恒瑞医药股份有限公司 Sustained-release lipid composition and preparation method therefor
CN113018443B (en) * 2019-12-27 2022-09-13 海南斯达制药有限公司 Pharmaceutical composition for treating respiratory system diseases and preparation method thereof
CN113116823B (en) * 2019-12-30 2024-02-20 江苏恒瑞医药股份有限公司 Liposome and preparation method thereof
CN111420024B (en) * 2020-04-07 2023-10-03 中国科学院深圳先进技术研究院 Application of bacillus phthalein A in preparing medicament for preventing and treating coronavirus
US20230301905A1 (en) * 2020-08-26 2023-09-28 Cila Therapeutic Inc. Inhalable therapeutic agents
CN112076193B (en) * 2020-10-13 2021-10-26 苏州大学 Application of mequindox in preparation of medicine for treating and/or preventing diseases taking T-type calcium channel as treatment target

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2000414A (en) 1932-08-10 1935-05-07 Ig Farbenindustrie Ag Explosive composition
US4142026A (en) 1977-04-22 1979-02-27 Zordan Macario J Dry cell adapter
DE2848503C2 (en) 1978-11-08 1983-05-05 Alcan Aluminiumwerk Nürnberg GmbH, 6000 Frankfurt Machine housing with a component that has a relatively small wall thickness
US4256737A (en) 1979-06-11 1981-03-17 Syntex (U.S.A.) Inc. Long acting depot injectable formulations for LH-RH analogues
US4304767A (en) 1980-05-15 1981-12-08 Sri International Polymers of di- (and higher functionality) ketene acetals and polyols
US4507466A (en) 1983-01-07 1985-03-26 The Dow Chemical Corporation Dense star polymers having core, core branches, terminal groups
US6759057B1 (en) 1986-06-12 2004-07-06 The Liposome Company, Inc. Methods and compositions using liposome-encapsulated non-steroidal anti-inflammatory drugs
EP0271180B2 (en) 1986-08-18 1997-06-18 The Dow Chemical Company Starburst conjugates
US4957998A (en) 1988-08-22 1990-09-18 Pharmaceutical Delivery Systems, Inc. Polymers containing acetal, carboxy-acetal, ortho ester and carboxyortho ester linkages
US4938763B1 (en) 1988-10-03 1995-07-04 Atrix Lab Inc Biodegradable in-situ forming implants and method of producing the same
US5006343A (en) 1988-12-29 1991-04-09 Benson Bradley J Pulmonary administration of pharmaceutically active substances
ATE92107T1 (en) 1989-04-29 1993-08-15 Delta Biotechnology Ltd N-TERMINAL FRAGMENTS OF HUMAN SERUM ALBUMIN-CONTAINING FUSION PROTEINS.
FR2650598B1 (en) 1989-08-03 1994-06-03 Rhone Poulenc Sante DERIVATIVES OF ALBUMIN WITH THERAPEUTIC FUNCTION
US6623671B2 (en) 1990-10-05 2003-09-23 Royden M. Coe Liposome extrusion process
ES2084335T3 (en) 1991-02-14 1996-05-01 Baxter Int UNION OF LIPOSOMAS RECOGNITION SUBSTANCES.
US5176907A (en) 1991-08-13 1993-01-05 The Johns Hopkins University School Of Medicine Biocompatible and biodegradable poly (phosphoester-urethanes)
FR2686899B1 (en) 1992-01-31 1995-09-01 Rhone Poulenc Rorer Sa NOVEL BIOLOGICALLY ACTIVE POLYPEPTIDES, THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM.
FR2686901A1 (en) 1992-01-31 1993-08-06 Rhone Poulenc Rorer Sa NOVEL ANTITHROMBOTIC POLYPEPTIDES, THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM.
US6890555B1 (en) 1992-02-05 2005-05-10 Qlt, Inc. Liposome compositions of porphyrin photosensitizers
US5497763A (en) 1993-05-21 1996-03-12 Aradigm Corporation Disposable package for intrapulmonary delivery of aerosolized formulations
US5367051A (en) 1993-07-22 1994-11-22 Sri International Amine-containing polymerizable monomers and polymers functionalized with fullerenes to provide polymers with high temperature stability
CA2101241C (en) 1993-07-23 1998-12-22 Jonathan P. Wong Liposome-encapsulated ciprofloxacin
WO1995012387A1 (en) 1993-11-05 1995-05-11 Amgen Inc. Liposome preparation and material encapsulation method
DE699079T1 (en) 1994-03-07 1997-09-25 Dendritech Inc BIOACTIVE AND / OR TARGETED DENDRIMER CONJUGATES
SE518578C2 (en) 1994-06-15 2002-10-29 Gs Dev Ab Lipid-based composition
US5972379A (en) 1995-02-14 1999-10-26 Sequus Pharmaceuticals, Inc. Liposome composition and method for administering a quinolone
DE69632859T2 (en) * 1995-04-18 2005-07-14 Yissum Research Development Company Of The Hebrew University Of Jerusalem Method for drug treatment of liposomes Composition
US5747058A (en) 1995-06-07 1998-05-05 Southern Biosystems, Inc. High viscosity liquid controlled delivery system
US5968543A (en) 1996-01-05 1999-10-19 Advanced Polymer Systems, Inc. Polymers with controlled physical state and bioerodibility
CA2250219C (en) 1996-03-28 2008-10-07 Hayat Onyuksel Materials and methods for making improved liposome compositions
CA2174803C (en) 1996-04-23 2000-07-11 Jonathan P. Wong Use of liposome encapsulated ciprofloxacin as an immunotherapeutic drug
GB9609779D0 (en) 1996-05-10 1996-07-17 Univ Bruxelles Freeze dried liposome encapsulated amphiphilic drug compositions and a process for the preparation thereof
US6770291B2 (en) 1996-08-30 2004-08-03 The United States Of America As Represented By The Department Of Health And Human Services Liposome complexes for increased systemic delivery
US6056973A (en) 1996-10-11 2000-05-02 Sequus Pharmaceuticals, Inc. Therapeutic liposome composition and method of preparation
CA2215716C (en) 1997-09-17 1999-12-07 Her Majesty The Queen, In Right Of Canada, As Represented By The Ministe R Of National Defence Aerosol delivery of liposome-encapsulated fluoroquinolone
US6541606B2 (en) 1997-12-31 2003-04-01 Altus Biologics Inc. Stabilized protein crystals formulations containing them and methods of making them
ES2260915T3 (en) * 1998-05-27 2006-11-01 Euro-Celtique S.A. PREPARATIONS FOR THE APPLICATION OF ANTI-INFLAMMATORY AGENTETS, ESPECIALLY OF ANTISEPTIC AGENTS, AND / OR AGENTS THAT STIMULATE THE WOUND CICATRIZATION, IN THE SUPERIOR RESPIATORY TRACT AND / OR IN THE EAR.
NZ509186A (en) 1998-07-17 2005-01-28 Skyepharma Inc Biodegradable compositions for the controlled release of encapsulated substances
CZ20011581A3 (en) * 1998-11-12 2001-12-12 Frank G. Pilkiewicz System for administering biologically active compound by inhalation
US6855296B1 (en) 1998-11-13 2005-02-15 Optime Therapeutics, Inc. Method and apparatus for liposome production
DE69938875D1 (en) 1998-11-13 2008-07-17 William A Heriot
WO2001000246A2 (en) 1999-06-11 2001-01-04 Shearwater Corporation Hydrogels derived from chitosan and poly(ethylene glycol)
WO2001000173A1 (en) * 1999-06-24 2001-01-04 Kyowa Hakko Kogyo Co., Ltd. Method of regulating leakage of drug encapsulated in liposomes
US6392008B1 (en) 1999-07-21 2002-05-21 The Penn State Research Foundation Polyphosphazene polymers
DE19954843C2 (en) 1999-11-09 2003-11-20 Novosom Ag Process for encapsulating proteins or peptides in liposomes, liposomes produced by the process and their use
US6946134B1 (en) 2000-04-12 2005-09-20 Human Genome Sciences, Inc. Albumin fusion proteins
WO2002092661A1 (en) 2001-05-11 2002-11-21 Ap Pharma, Inc. Peg-poe, peg-poe-peg, and poe-peg-poe block copolymers
CA2477979A1 (en) 2002-03-05 2003-09-18 Transave, Inc. An inhalation system for treatment of intracellular infections
US7718189B2 (en) 2002-10-29 2010-05-18 Transave, Inc. Sustained release of antiinfectives
US7879351B2 (en) 2002-10-29 2011-02-01 Transave, Inc. High delivery rates for lipid based drug formulations, and methods of treatment thereof
SI1581236T1 (en) 2002-10-29 2014-02-28 Insmed Incorporated Princeton Corporate Plaza Sustained release of antiinfectives
WO2004110493A2 (en) 2003-05-30 2004-12-23 Alza Corporation Method of pulmonary administration of an agent
FR2856844B1 (en) 2003-06-24 2006-02-17 Commissariat Energie Atomique HIGH PERFORMANCE CHIP INTEGRATED CIRCUIT
EP1525890A1 (en) 2003-10-02 2005-04-27 Complex Biosystems GmbH Protein-Proteophore complexes
EP1711610A2 (en) 2004-01-28 2006-10-18 Syntonix Pharmaceuticals, Inc. HETERODIMERIC FOLLICLE STIMULATING HORMONE-Fc (FSH-Fc) FUSION PROTEINS FOR THE TREATMENT OF INFERTILITY
PT1962805T (en) * 2005-12-08 2016-10-05 Insmed Inc Lipid-based compositions of antiinfectives for treating pulmonary infections
US8119156B2 (en) 2006-10-24 2012-02-21 Aradigm Corporation Dual action, inhaled formulations providing both an immediate and sustained release profile
US8268347B1 (en) * 2006-10-24 2012-09-18 Aradigm Corporation Dual action, inhaled formulations providing both an immediate and sustained release profile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11534399B2 (en) 2018-04-23 2022-12-27 Inspirmed Corp. Inhalable liposomal sustained release composition for use in treating pulmonary diseases

Also Published As

Publication number Publication date
JP2013116909A (en) 2013-06-13
CA2667494A1 (en) 2008-05-29
US20120282328A1 (en) 2012-11-08
EP2079443A2 (en) 2009-07-22
WO2008063341A3 (en) 2008-10-16
EP2759292A1 (en) 2014-07-30
PL2079443T3 (en) 2015-02-27
PT2079443E (en) 2014-11-26
JP5797217B2 (en) 2015-10-21
EP2079443A4 (en) 2012-03-07
JP5254239B2 (en) 2013-08-07
CN104666248A (en) 2015-06-03
CN104666248B (en) 2017-11-03
CN101553209A (en) 2009-10-07
CA2667494C (en) 2015-05-19
JP2010507658A (en) 2010-03-11
SI2079443T1 (en) 2014-12-31
ES2520028T3 (en) 2014-11-11
AU2007322224A1 (en) 2008-05-29
DK2079443T3 (en) 2014-12-08
US20120244206A1 (en) 2012-09-27
AU2007322224B2 (en) 2012-05-17
WO2008063341A2 (en) 2008-05-29
US8268347B1 (en) 2012-09-18
EP2789330A1 (en) 2014-10-15
US8414915B2 (en) 2013-04-09

Similar Documents

Publication Publication Date Title
EP2079443B1 (en) Dual action, inhaled formulations providing both an immediate and sustained release profile
US11026941B2 (en) Concentrated, inhalable ciprofloxacin formulation
US8071127B2 (en) Dual action, inhaled formulations providing both an immediate and sustained release profile
US9987227B2 (en) Inhaled surfactant-modified liposomal formulations providing both an immediate and sustained release profile
EP2214645A2 (en) Liposomal vancomycin formulations
AU2012211514B2 (en) Concentrated, inhalable ciprofloxacin formulation
CIPOLLA et al. Sommaire du brevet 2667494
CIPOLLA et al. Patent 2667494 Summary

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090512

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20120207

RIC1 Information provided on ipc code assigned before grant

Ipc: A61K 31/47 20060101ALI20120201BHEP

Ipc: A61K 31/495 20060101ALI20120201BHEP

Ipc: A61K 9/72 20060101ALI20120201BHEP

Ipc: A61K 9/127 20060101AFI20120201BHEP

17Q First examination report despatched

Effective date: 20120914

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140410

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 684157

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007038356

Country of ref document: DE

Effective date: 20141009

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2520028

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20141111

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ARNOLD AND SIEDSMA AG, CH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20141118

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20141201

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E009874

Country of ref document: EE

Effective date: 20141118

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20140402346

Country of ref document: GR

Effective date: 20141223

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 17613

Country of ref document: SK

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007038356

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150528

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E024002

Country of ref document: HU

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20170928

Year of fee payment: 11

Ref country code: GR

Payment date: 20170929

Year of fee payment: 11

Ref country code: EE

Payment date: 20170926

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20170927

Year of fee payment: 11

Ref country code: PL

Payment date: 20170926

Year of fee payment: 11

Ref country code: LU

Payment date: 20171009

Year of fee payment: 11

Ref country code: BG

Payment date: 20170928

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20171002

Year of fee payment: 11

Ref country code: MC

Payment date: 20171027

Year of fee payment: 11

Ref country code: TR

Payment date: 20171018

Year of fee payment: 11

Ref country code: HU

Payment date: 20171005

Year of fee payment: 11

Ref country code: FI

Payment date: 20171011

Year of fee payment: 11

Ref country code: LT

Payment date: 20171002

Year of fee payment: 11

Ref country code: RO

Payment date: 20171002

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CY

Payment date: 20171010

Year of fee payment: 11

Ref country code: LV

Payment date: 20171004

Year of fee payment: 11

Ref country code: SI

Payment date: 20171004

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MT

Payment date: 20171017

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: LT

Ref legal event code: MM4D

Effective date: 20181023

REG Reference to a national code

Ref country code: EE

Ref legal event code: MM4A

Ref document number: E009874

Country of ref document: EE

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181023

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 17613

Country of ref document: SK

Effective date: 20181023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181023

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181023

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181023

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181023

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20190627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181023

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181024

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181024

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181023

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190506

Ref country code: EE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: LV

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181023

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210910

Year of fee payment: 15

Ref country code: IE

Payment date: 20210923

Year of fee payment: 15

Ref country code: NL

Payment date: 20210928

Year of fee payment: 15

Ref country code: CH

Payment date: 20210928

Year of fee payment: 15

Ref country code: FR

Payment date: 20210915

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210929

Year of fee payment: 15

Ref country code: BE

Payment date: 20210916

Year of fee payment: 15

Ref country code: GB

Payment date: 20210915

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20211109

Year of fee payment: 15

Ref country code: DK

Payment date: 20211012

Year of fee payment: 15

Ref country code: PT

Payment date: 20211025

Year of fee payment: 15

Ref country code: DE

Payment date: 20210914

Year of fee payment: 15

Ref country code: AT

Payment date: 20210928

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181023

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007038356

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20221031

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20221101

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 684157

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221023

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230424

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221101

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230503

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221023

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221023

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221023

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20231201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221024