Nothing Special   »   [go: up one dir, main page]

EP2078867B1 - Pressure exchanger for transferring pressure energy from one liquid flow to another liquid flow - Google Patents

Pressure exchanger for transferring pressure energy from one liquid flow to another liquid flow Download PDF

Info

Publication number
EP2078867B1
EP2078867B1 EP07023903.3A EP07023903A EP2078867B1 EP 2078867 B1 EP2078867 B1 EP 2078867B1 EP 07023903 A EP07023903 A EP 07023903A EP 2078867 B1 EP2078867 B1 EP 2078867B1
Authority
EP
European Patent Office
Prior art keywords
rotor
liquid
channels
pressure
fluid flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07023903.3A
Other languages
German (de)
French (fr)
Other versions
EP2078867A1 (en
Inventor
Holger Krogsgård
Erik B. Svarre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos Management AS
Original Assignee
Grundfos Management AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grundfos Management AS filed Critical Grundfos Management AS
Priority to EP07023903.3A priority Critical patent/EP2078867B1/en
Priority to PCT/EP2008/009191 priority patent/WO2009074195A1/en
Priority to US12/747,064 priority patent/US8226376B2/en
Priority to CN2008801254614A priority patent/CN101925749B/en
Publication of EP2078867A1 publication Critical patent/EP2078867A1/en
Application granted granted Critical
Publication of EP2078867B1 publication Critical patent/EP2078867B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F13/00Pressure exchangers

Definitions

  • the invention relates to a pressure exchanger for transmitting pressure energy from a first liquid stream to a second liquid stream.
  • a Deraltiger pressure exchanger is for example off EP 0 298 097 B1 is known and serves to transfer pressure energy from a first liquid stream to a second liquid stream.
  • Such pressure exchangers are used in particular in seawater desalination plants.
  • salt water is supplied under pressure on the input side.
  • the supplied salt water then flows through membranes through which the desalted water passes and is discharged as a second liquid stream.
  • On the inlet side of the membrane creates a higher concentrated brine, which emerges under pressure from the plant.
  • the task of the pressure exchanger is to recover some of the pressure energy, which contains these escaping brine, and to reintroduce it to the salt water supplied in order to reduce the energy requirement of the plant.
  • WO 2006/015682 A1 discloses a variable speed pressure exchanger for transferring pressure energy from a first fluid to a second liquid.
  • the pressure exchanger is controlled so that there is a predominantly bumpless entry of the flow rate in the channels of the rotor of the pressure exchanger.
  • this regulation can still lead to undesirable mixing.
  • EP 1 508 361 A1 also discloses a pressure exchanger having a rotor drivable by a drive motor.
  • a rotor drivable by a drive motor.
  • a piston is movably arranged, which separates the two liquids from each other.
  • the arrangement of the piston leads to a more complex structure of the rotor.
  • the rotor becomes heavier overall, whereby the efficiency deteriorates.
  • WO 97/20134 shows a charging device for the charge air of an internal combustion engine, which is designed as a pressure exchanger for transmitting the pressure energy from the exhaust gas flow to the charge air. Also, this pressure exchanger has a rotor which is driven in rotation by an electric motor. In the rotor open channels are formed, so that even with this pressure exchanger presents the problem that it can lead to an undesirable mixing of the two air streams.
  • the pressure exchanger according to the invention serves to transfer pressure energy from a first liquid stream to a second liquid stream.
  • the first liquid stream may be a brine exiting a seawater desalination plant while the second liquid stream may be a liquid stream of brine which is supplied to the seawater desalination plant.
  • the application of the pressure exchanger according to the invention is not limited to seawater desalination plants, but can also be used in other plants in which pressure energy is to be transferred from a first liquid jet to a second one.
  • the pressure exchanger has a housing which has an inlet and an outlet for the first fluid flow and an inlet and an outlet for a second fluid flow.
  • the inlet and the outlet for the first liquid stream are preferably arranged at a first axial end and the inlet and the outlet for the second liquid stream are arranged at a second axial end.
  • a rotor having a plurality of channels extending radially spaced from a rotational axis of the rotor from a first axial end of the rotor to an opposite second axial end of the rotor. That is, the channels connect the two axial sides of the rotor with each other.
  • a plurality of channels is distributed over the circumference of the rotor.
  • the rotor is arranged to the inputs and outputs for the first liquid stream and the second liquid stream such that the channels alternately the input for the first liquid stream with the output for the second liquid stream and the input for the second liquid stream with each rotation of the rotor connect to the outlet for the first liquid flow.
  • the pressure exchanger has for this purpose at its axial ends preferably connecting elements on which the inputs and outputs described for the two liquid streams are formed. That is, a first connection element is provided for the first liquid flow at an axial end and a second connection element for the second liquid flow at the opposite axial end, wherein the rotor is located in the axial direction between the two connection elements.
  • connection elements are designed so that the inputs and outputs located in them are not directly connected to each other. Rather, the inputs and outputs are each facing the rotor, so you can be aligned with the channels in the rotor depending on the rotation angle of the rotor.
  • This structure basically corresponds to the EP 0 298 097 B1 known structure.
  • the operation of the pressure transmitter is such that from the inlet for the first fluid flow whose higher pressure is transmitted via one or more channels in the rotor to the outlet for the second fluid flow. In this way, pressure energy is transferred from the first liquid stream to the second liquid stream.
  • the channels responsible for the pressure energy transfer described above come to a position where they are aligned with the second fluid stream inlet and the first liquid stream outlet. In this case, then pressure energy from the input of the second liquid stream transmitted to the output of the first liquid stream.
  • the volume flow of the first liquid flow with a higher pressure is less than the volume flow of the second liquid flow with a lower pressure.
  • a mixing of the liquid streams according to the invention should be avoided in particular between the inlet for the liquid flow with a higher pressure and the outlet for the liquid flow with a lower pressure.
  • the output for the second liquid stream i. the liquid flow with the lower pressure, the salt water fed to the seawater desalination plant. For this reason, it should be prevented that a part of the brine, which emerges from the seawater desalination plant and has a higher pressure, in this second liquid stream passes, since in this case the seawater desalination plant an unnecessarily increased salt concentration would be supplied.
  • a drive motor preferably an electric drive motor is provided according to the invention.
  • Essential to the invention is that adjusting means are provided by means of which the speed of the rotor is changeable. This can be done in particular by changing the speed of the drive motor.
  • These adjustment means allow the rotor speed to be adapted to the current boundary conditions of the installation, in particular to the current volume flow of the first liquid stream and the second liquid stream.
  • the speed of the rotor can be adapted to the volume flows so that an optimal pressure transfer takes place without the liquid streams mix more than necessary with each other. In the operation of such a pressure exchanger forms in the channels a mixing zone in which the two liquid streams come into contact with each other.
  • this mixing zone migrates in the channels in the axial direction.
  • this mixing zone must advantageously always remain in the interior of the channel.
  • the path by which this mixing zone travels in the axial direction should be as large as possible, preferably corresponding to almost the entire length of the channel in the axial direction.
  • the movement of the mixing zone depends on external parameters, in particular the pressure differences and the volume flows and the rotational speed of the rotor. Now, if the speed of the rotor is variable, it is possible to always adjust the speed of the rotor so that the mixing zone remains inside the channel and at the same time the efficiency is maximized.
  • a control or regulating device is provided, via which the rotational speed of the rotor is adjustable. This is further preferably automatically to operate the pressure exchanger always with a rotor speed, which allows the maximum efficiency at given flow rates and pressure differences.
  • control or regulating device is designed such that it adjusts the rotational speed of the rotor so that a mixing zone, in which there is a mixture between the first liquid stream and the second liquid stream, is always located in the interior of the channels.
  • the controller preferably performs the control such that the axial distance that the mixing zone moves as the rotor rotates is maximized. This ensures the highest possible efficiency.
  • a sensor for detecting at least one parameter of at least one of the liquid streams is present and the control or regulating device is designed such that the rotational speed of the drive motor is set as a function of the detected parameter.
  • the control or regulating device is designed such that the rotational speed of the drive motor is set as a function of the detected parameter.
  • an automatic adjustment of the rotor speed to the detected parameters is possible and the operation of the pressure exchanger can be done depending on the detected parameter in the range with maximum efficiency.
  • the setting and adjustment of the rotor speed via the setting of the speed of the drive motor can be done automatically depending on the detected parameter or the detected parameters.
  • a plurality of sensors are provided to detect parameters of the liquid streams at different locations, for example, at the inlet and outlet for the respective liquid flow.
  • the senor is a sensor for detecting the concentration of a substance and in particular the salt content in the liquid.
  • a sensor for detecting the concentration of a substance and in particular the salt content in the liquid.
  • About such a sensor can be monitored directly, whether it comes to a mixing of the two liquid streams. Should this be determined, the speed of the drive motor can then be adjusted so that such mixing no longer occurs, what then in turn detected by the sensor or sensors for concentration detection.
  • the control or regulating device is for detecting the difference between the concentrations of substances at the input and the output and for setting the Speed of the drive motor formed as a function of the detected difference. If the pressure exchange between two liquids or liquid streams, which have different concentrations of a substance, for example, a different salt content, takes place, it can be determined in this way, if it comes to a mixing of the liquids. If the liquids do not mix, at the exit and entrance of a liquid stream, the concentration of the substance should be substantially the same, respectively. H. the detected difference have a minimum. If the difference becomes larger, this indicates that there is an undesirable mixing of the two fluid streams and the speed of the drive motor can be adjusted by the controller accordingly to adjust the speed of the drive motor so that it does not a mixing of the liquid flows comes.
  • the control device is designed such that it controls the speed of the drive motor so that the difference of the substance concentrations reaches a minimum. In this way, the pressure exchanger is always operated so that it comes to the least possible mixing of the two liquid streams and at the same time the maximum efficiency can be achieved.
  • means for detecting the rotational speed of the rotor may be present, in particular a Speed sensor can be arranged on the rotor. This makes it possible to detect the current rotor speed and to take into account in the control or regulation of the speed. The controller can thus receive feedback on how high the actual rotor speed is. Thus, an even more accurate control or regulation of the speed of the drive motor and thus adaptation to the current operating conditions is possible.
  • the geometric structure of the pressure exchanger essentially corresponds to the example of EP 0 298 097 B1 known pressure exchanger.
  • the pressure exchanger has a cylindrical housing 2, in the interior of which a rotor 4 is rotatably arranged.
  • the rotor 4 is rotatable about the longitudinal axis X of the housing 2 and the rotor 4.
  • the housing 2 is closed in each case by a connecting element 6.
  • Both connection elements 6 are identical, for distinction, the two connection elements are referred to below with 6a and 6b. If no distinction is made, the description refers to identically formed parts.
  • the connection elements 6 are screwed to the housing 4.
  • the rotor 4 has a plurality of channels 10, which extend in the rotor in the axial direction parallel to the longitudinal axis X.
  • the channels 10 are arranged in a circle around the longitudinal axis X.
  • two concentric rings of channels 10 are provided. This arrangement of two rings of channels is chosen for stability reasons. It should be understood that other arrangements, for example, only a ring of z. B. for larger channels or more than two rings of channels can be selected.
  • the channels 10 connect the two axial ends of the rotor 4 with each other.
  • connection elements 6 has connecting pieces 12 (12a, 12b) and 14 (14a, 14b). As in Fig. 2 can be seen, the connecting pieces 12 and 14 are not connected to each other. Rather, in the interior of the connecting element 6, a partition wall 16 is formed, which is the interior of the connection element 6 divides into two parts. Thus, two arcuate recesses 18 (18a, 18b) and 20 (20a, 20b) separated from each other by the partition 16 are formed on the surface of the connecting element 6 facing the rotor 4. In this case, the recess 18 is connected to the connecting piece 12 and the recess 20 with the connecting piece 14.
  • an electric drive motor 22 is provided, which is connected via a coupling 24 with the rotor shaft 26.
  • the rotor 4 is rotatably mounted on the rotor shaft 26 so that it can be rotated by the drive motor 22.
  • a shaft seal 28 is arranged at the rotor shaft 14.
  • the shaft seal 28 is connected via the channel 30 with the recess 18 b to supply liquid for lubrication.
  • a channel 32 is provided, which leads from the recess 18a to the circumferential space 34 between the rotor 4 and the housing 2, to discharge liquid from this space. In this way, liquid which penetrates into this space can be dissipated and an excessive pressure in this space can be prevented.
  • a channel 36 is provided, which connects the recess 18a with the through hole in the rotor 4, in which the rotor shaft 26 is located.
  • the connecting pieces 12a and 14a serve for connection to a line system for a first liquid flow, while the connections 12b and 14b serve for connection to a line system for a second liquid flow.
  • the first liquid stream is, for example, the brine stream emanating from a seawater desalination plant, which still has a high pressure energy, which is due to a second liquid stream, which, for example, is a flow of salt water is, which is to be supplied to a desalination plant is transmitted.
  • the connection piece 14a forms an inlet for the first liquid stream under the pressure p 2 , for example brine.
  • the port 12a forms the outlet for the first liquid flow at a lower pressure p 4 .
  • the port 14b forms the outlet for the second fluid stream, for example the salt water, while the port 12b forms the inlet for the second fluid stream.
  • the first liquid flow enters the inlet 14a and the subsequent recess 20a at a pressure p 2 . Since the pressure p 2 is greater than the pressure p 1 , which has the liquid of the second liquid stream at the outlet 14 b, the liquid flows from the inlet 14 a into the channels 10 facing the recess 20 a and thus transfers the pressure to the second liquid, which is located in these channels, and the second liquid in the recess 20b and the subsequent to the output 14b line system, since these channels 10 are also aligned with the recess 20b.
  • the two liquids come into contact with each other, being moved by the higher pressure p 2, this contact zone in the channels 10 to the axial end, which faces the recess 20b of the connecting element 6b. That is, in this position, the channels 10 are largely filled with the first liquid from the inlet 14a.
  • these channels 10 which have first located between the recesses 20a and 20b, come to rest between the recesses 18a and 18b.
  • the liquid pressure p 3 of the incoming second liquid prevails, which, although lower than the pressure p 2 , but higher than the output pressure p 4 of the first liquid in the recess 18a.
  • the second liquid flows into the channels 10 and presses the first liquid from the channels 10 largely into the recess 18a and via the connecting piece 12a in a subsequent pipeline.
  • the mixing zone in which the two liquids in the channels 10 come into contact with each other, moves to that axial end of the channels 10, which faces the connection element 6a and its recess 18a. Since the volume flow of the second liquid is greater than that of the first liquid, it comes on this side of the pressure exchanger to a mixing of the liquids, that is, a part of the second liquid enters the recess 18 a and the liquid emerging from the port 12 a is with a part of the incoming second liquid mixed.
  • the rotational speed of the rotor 4 can now be changed via the drive motor 22 in order to adapt the rotor speed to the first and the second fluid flow, so that an optimum efficiency is achieved, without causing a mixing of the two fluids on the side of the pressure exchanger with higher pressure that is, between the recesses 20a and 20b. Mixing would occur when the mixing region, in which both liquids come into contact with each other, leaves the channels 10 at one axial end.
  • the rotor speed should be adjusted so that such overflow does not occur.
  • the rotor speed is too fast, too little liquid enters the channels 10.
  • the channels 10 between the recesses 20a and 20b starting from the recess 20a would be filled only to a small extent with the first liquid before the rotor continues to rotate. This deteriorates the efficiency, because then the pressure energy can be transferred only to a small extent from the first liquid to the second liquid.
  • Optimum efficiency is achieved when the contact or mixing region in which the two liquids in the channels 10 are in contact with each other upon rotation of the rotor from the position between the recesses 20a and 20b to the position between the recesses 18a and 18b migrates substantially over the full axial length of the channels 10.
  • sensors 38 for detecting the salt content are arranged in the recesses 18b and 20b.
  • the sensors could also be designed to detect the concentration of another substance as salt, depending on the location of the pressure exchanger.
  • the sensors 38 are connected by cable or wirelessly with a control or regulating device 39 which controls or regulates the rotational speed of the drive motor 22.
  • the control device 39 determines from the output signals of the sensors 38 the difference between the substance concentrations or the salt contents.
  • a change in the salt content can be detected in a second liquid flowing in through the connecting piece 12b and flowing out through the connecting piece 14b.
  • the first liquid which is supplied through the connecting piece 14a and discharged through the connecting piece 12a, has a higher salt content than the second liquid, which is the case in the example described from a desalination plant, it would be in a mixing of first and second liquid to increase the salt content in the second liquid.
  • the first liquid is starting would flow from the recess 20a through the channels 10 into the recess 20b, this would result in the recess 20b to an increased salt content of the second liquid. That is, the salt content in the recess 20b would be higher than in the recess 18b in which the incoming second liquid is located. It would thus be possible to detect a difference in the salt content via the sensors 38.
  • Fig. 4 the difference of the salt content 40 is plotted against the rotor speed 42. It can be seen that this curve 44 has a minimum 43. This minimum 43 is the optimum operating point at which there is the least possible mixing of the two fluid streams. If the rotational speed is too low, mixing occurs due to overflow of the liquid from the recess 20a into the recess 20b. If the speed is too high, there is also an increase in the difference in salt content between inlet and outlet for the second fluid, since there is an increasing mixing of the first and second fluids in the channels 10, since the channels 10 are not as before alternately substantially completely filled with the first and the second liquid. Rather, always a part of the liquid remains in the channels, so that here comes to a mixture and a slight increase in the salt content in the outlet for the second liquid.
  • a speed is selected which is higher than the speed 47 at the minimum difference 43. Based on this speed, the speed is initially reduced, as long as the sensors 38 determine a decreasing difference in salinity. This is in the diagram in Fig. 4 indicated by the dashed arrows 45. If now an increase in the difference in salinity is detected, the rotor speed is increased again, as by the arrow 46 in Fig. 4 is shown. In this way, the speed can be adjusted to the speed 47 at the minimum 43 of the difference in salinity between the sensors 38.
  • the control can be carried out in such a way that the speed is set as low as possible. The speed is reduced so far that it just does not increase the difference of the salt content 40.
  • a speed control via the detection of the salt content in the manner described above it is also possible to regulate the speed via the volume flow by the volume flows of the first and / or the second liquid are detected and depending on one or both volume flows, the speed be set.
  • a table with an assignment of speeds to volume flows can be stored in the controller.
  • Fig. 5 shows a further embodiment of the invention, which differs from the preceding, with reference to Fig. 3 described embodiment differs only in that in the channels 10 spherical locking elements 48 are arranged.
  • the blocking elements 48 are movable in the channels 10 along their longitudinal axis.
  • stop rings 50 are provided which prevent the locking elements 48 can escape from the channels 10 on the axial side.
  • the blocking elements 48 prevent the first and second liquids in the channels 10 from coming into direct contact with each other. A small contact is tolerated, however, since it should be understood that the locking elements 48 can not always be arranged completely sealed in the channels due to their mobility.
  • the blocking elements move 48, when the channels 10 are located between the recesses 20a and 20b, ideally first up to that axial end of the channels 10, which faces the connection element 6b, so that the locking elements 48 come to rest on the stop rings 50 at this axial end.
  • the rotor then rotates to a position such that these channels 10 are located between the recesses 18a and 18b, the locking elements 48 are moved to the opposite end of the rotor 4 and abut the stop rings 50 facing the terminal 6a. All other elements and the operation correspond to the above with reference to Fig. 3 explained operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Centrifugal Separators (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

Die Erfindung betrifft einen Druckaustauscher zur Übertragung von Druckenergie von einem ersten Flüssigkeitsstrom auf einen zweiten Flüssigkeitsstrom. Ein Derartiger Druckaustauscher ist beispielsweise aus EP 0 298 097 B1 bekannt und dient dazu, Druckenergie von einem ersten Flüssigkeitsstrom auf einen zweiten Flüssigkeitsstrom zu übertragen. Solche Druckaustauscher werden insbesondere in Meerwasserentsalzungsanlagen eingesetzt. In solchen Anlagen wird eingangsseitig Salzwasser unter Druck zugeführt. Das zugeführte Salzwasser strömt dann über Membranen, durch welche das entsalzte Wasser hindurchtritt und als zweiter Flüssigkeitsstrom abgeführt wird. Eingangsseitig der Membran entsteht eine höher konzentrierte Sole, welche unter Druck aus der Anlage austritt. Aufgabe des Druckaustauschers ist es, einen Teil der Druckenergie, welche diese austretende Sole enthält, zurückzugewinnen und dem zugeführten Salzwasser wieder zuzuführen, um den Energiebedarf der Anlage zu reduzieren.The invention relates to a pressure exchanger for transmitting pressure energy from a first liquid stream to a second liquid stream. A Deraltiger pressure exchanger is for example off EP 0 298 097 B1 is known and serves to transfer pressure energy from a first liquid stream to a second liquid stream. Such pressure exchangers are used in particular in seawater desalination plants. In such systems, salt water is supplied under pressure on the input side. The supplied salt water then flows through membranes through which the desalted water passes and is discharged as a second liquid stream. On the inlet side of the membrane creates a higher concentrated brine, which emerges under pressure from the plant. The task of the pressure exchanger is to recover some of the pressure energy, which contains these escaping brine, and to reintroduce it to the salt water supplied in order to reduce the energy requirement of the plant.

Problematisch bei solchen Druckaustauschern der aus EP 0 298 097 B1 bekannten Bauart ist, dass es in dem Druckaustauscher zu einer unerwünschten Mischung von Salzwasser und Sole kommen kann, da beide Flüssigkeitsströme nicht vollständig voneinander getrennt sind.Problematic in such pressure exchangers of EP 0 298 097 B1 known type is that it can come in the pressure exchanger to an undesirable mixture of salt water and brine, since both liquid streams are not completely separated.

WO 2006/015682 A1 offenbart einen Drehzahl-regelbaren Druckaustauscher zum Transferieren von Druckenergie von einer ersten Flüssigkeit auf eine zweite Flüssigkeit. Dabei wird der Druckaustauscher so geregelt, dass es zu einem überwiegend stoßfreien Eintritt des Mengenstroms in die Kanäle des Rotors des Druckaustauschers kommt. Durch diese Regelung kann es jedoch immer noch zu einer unerwünschten Vermischung kommen. WO 2006/015682 A1 discloses a variable speed pressure exchanger for transferring pressure energy from a first fluid to a second liquid. In this case, the pressure exchanger is controlled so that there is a predominantly bumpless entry of the flow rate in the channels of the rotor of the pressure exchanger. However, this regulation can still lead to undesirable mixing.

EP 1 508 361 A1 offenbart ebenfalls einen Druckaustauscher, welcher einen durch einen Antriebsmotor antreibbaren Rotor aufweist. In diesem Rotor sind Kanäle ausgebildet, in welchen ein Kolben bewegbar angeordnet ist, welcher die beiden Flüssigkeiten voneinander trennt. Die Anordnung der Kolben führt zu einem aufwendigeren Aufbau des Rotors. Darüber hinaus wird der Rotor insgesamt schwerer, wodurch sich der Wirkungsgrad verschlechtert. EP 1 508 361 A1 also discloses a pressure exchanger having a rotor drivable by a drive motor. In this rotor channels are formed, in which a piston is movably arranged, which separates the two liquids from each other. The arrangement of the piston leads to a more complex structure of the rotor. In addition, the rotor becomes heavier overall, whereby the efficiency deteriorates.

WO 97/20134 zeigt eine Aufladeeinrichtung für die Ladeluft eines Verbrennungsmotors, welche als Druckaustauscher zum Übertragen der Druckenergie von dem Abgasstrom auf die Ladeluft ausgebildet ist. Auch dieser Druckaustauscher weist einen Rotor auf, welcher durch einen Elektromotor drehend angetrieben wird. In dem Rotor sind offene Kanäle ausgebildet, so dass sich auch bei diesem Druckaustauscher das Problem stellt, dass es zu einer unerwünschten Vermischung der beiden Luftströme kommen kann. WO 97/20134 shows a charging device for the charge air of an internal combustion engine, which is designed as a pressure exchanger for transmitting the pressure energy from the exhaust gas flow to the charge air. Also, this pressure exchanger has a rotor which is driven in rotation by an electric motor. In the rotor open channels are formed, so that even with this pressure exchanger presents the problem that it can lead to an undesirable mixing of the two air streams.

Im Hinblick auf dieses Problem ist es Aufgabe der Erfindung, einen Druckaustauscher in der Weise zu verbessern, dass gleichzeitig ein möglichst hoher Wirkungsgrad und zuverlässiger Betrieb des Druckaustauschers erreicht wird und eine unerwünschte Vermischung der beiden Flüssigkeitsströme miteinander vermieden wird.In view of this problem, it is an object of the invention to improve a pressure exchanger in such a way that at the same time a possible high efficiency and reliable operation of the pressure exchanger is achieved and unwanted mixing of the two liquid streams is avoided together.

Diese Aufgabe wird durch einen Druckaustauscher mit den im Anspruch 1 angegebenen Merkmalen gelöst. Bevorzugte Ausführungsformen ergeben sich aus den Unteransprüchen, der nachfolgenden Beschreibung sowie den beigefügten Figuren.This object is achieved by a pressure exchanger having the features specified in claim 1. Preferred embodiments will become apparent from the subclaims, the following description and the accompanying figures.

Der erfindungsgemäße Druckaustauscher dient zur Übertragung von Druckenergie von einem ersten Flüssigkeitsstrom auf einen zweiten Flüssigkeitsstrom. Der erste Flüssigkeitsstrom kann beispielsweise eine Sole sein, welche aus einer Meerwasserentsalzungsanlage austritt, während der zweite Flüssigkeitsstrom ein Flüssigkeitsstrom von Salzwasser sein kann, welches der Meerwasserentsalzungsanlage zugeführt wird. Die Anwendung des erfindungsgemäßen Druckaustauschers ist jedoch nicht auf Meerwasserentsalzungsanlagen beschränkt, sondern kann auch bei anderen Anlagen, bei welchen Druckenergie von einem ersten Flüssigkeitsstrahl auf einen zweiten übertragen werden soll, zum Einsatz kommen.The pressure exchanger according to the invention serves to transfer pressure energy from a first liquid stream to a second liquid stream. For example, the first liquid stream may be a brine exiting a seawater desalination plant while the second liquid stream may be a liquid stream of brine which is supplied to the seawater desalination plant. However, the application of the pressure exchanger according to the invention is not limited to seawater desalination plants, but can also be used in other plants in which pressure energy is to be transferred from a first liquid jet to a second one.

Der erfindungsgemäße Druckaustauscher weist ein Gehäuse auf, welches einen Eingang und einen Ausgang für den ersten Flüssigkeitsstrom sowie einen Eingang und einen Ausgang für einen zweiten Flüssigkeitsstrom aufweist. Dabei sind der Eingang und der Ausgang für den ersten Flüssigkeitsstrom vorzugsweise an einem ersten Axialende und der Eingang sowie der Ausgang für den zweiten Flüssigkeitsstrom an einem zweiten Axialende angeordnet. Ferner ist in dem Gehäuse ein Rotor angeordnet, welcher eine Vielzahl von Kanälen aufweist, welche sich radial beabstandet von einer Drehachse des Rotors von einem ersten Axialende des Rotors zu einem entgegengesetzten zweiten Axialende des Rotors erstrecken. Das heißt die Kanäle verbinden die beiden Axialseiten des Rotors miteinander. Dabei ist eine Mehrzahl von Kanälen über den Umfang des Rotors verteilt. Der Rotor ist zu den Ein- und Ausgängen für den ersten Flüssigkeitsstrom sowie den zweiten Flüssigkeitsstrom derart angeordnet, dass die Kanäle bei Drehung des Rotors jeweils abwechselnd den Eingang für den ersten Flüssigkeitsstrom mit dem Ausgang für den zweiten Flüssigkeitsstrom und den Eingang für den zweiten Flüssigkeitsstrom mit dem Ausgang für den ersten Flüssigkeitsstrom verbinden. Der Druckaustauscher weist dazu an seinen Axialenden vorzugsweise Anschlusselemente auf, an welchen die beschriebenen Ein- und Ausgänge für die beiden Flüssigkeitsströme ausgebildet sind. Das heißt ein erstes Anschlusselement ist für den ersten Flüssigkeitsstrom an einem Axialende und ein zweites Anschlusselement für den zweiten Flüssigkeitsstrom am entgegengesetzten Axialende vorgesehen, wobei der Rotor in axialer Richtung zwischen den beiden Anschlusselementen gelegen ist. Darüber hinaus sind die Anschlusselemente so ausgebildet, dass die in Ihnen gelegenen Ein- und Ausgänge nicht direkt miteinander verbunden sind. Vielmehr sind die Ein- und Ausgänge jeweils dem Rotor zugewandt, sodass Sie mit den Kanälen im Rotor je nach Drehwinkel des Rotors fluchten können. Dieser Aufbau entspricht grundsätzlich dem aus EP 0 298 097 B1 bekannten Aufbau.The pressure exchanger according to the invention has a housing which has an inlet and an outlet for the first fluid flow and an inlet and an outlet for a second fluid flow. In this case, the inlet and the outlet for the first liquid stream are preferably arranged at a first axial end and the inlet and the outlet for the second liquid stream are arranged at a second axial end. Further, disposed in the housing is a rotor having a plurality of channels extending radially spaced from a rotational axis of the rotor from a first axial end of the rotor to an opposite second axial end of the rotor. That is, the channels connect the two axial sides of the rotor with each other. In this case, a plurality of channels is distributed over the circumference of the rotor. The rotor is arranged to the inputs and outputs for the first liquid stream and the second liquid stream such that the channels alternately the input for the first liquid stream with the output for the second liquid stream and the input for the second liquid stream with each rotation of the rotor connect to the outlet for the first liquid flow. The pressure exchanger has for this purpose at its axial ends preferably connecting elements on which the inputs and outputs described for the two liquid streams are formed. That is, a first connection element is provided for the first liquid flow at an axial end and a second connection element for the second liquid flow at the opposite axial end, wherein the rotor is located in the axial direction between the two connection elements. In addition, the connection elements are designed so that the inputs and outputs located in them are not directly connected to each other. Rather, the inputs and outputs are each facing the rotor, so you can be aligned with the channels in the rotor depending on the rotation angle of the rotor. This structure basically corresponds to the EP 0 298 097 B1 known structure.

Die Funktionsweise des Drucküberträgers ist derart, dass von dem Eingang für den ersten Flüssigkeitsstrom dessen höherer Druck über einen oder mehrere Kanäle in dem Rotor zu dem Ausgang für den zweiten Flüssigkeitsstrom übertragen wird. Auf diese Weise wird Druckenergie von dem ersten Flüssigkeitsstrom auf den zweiten Flüssigkeitsstrom übertragen. Wenn der Rotor nun weiter gedreht wird, kommen die für die vorangehend beschriebene Druckenergieübertragung verantwortlichen Kanäle in eine Position, in welcher sie mit dem Eingang für den zweiten Flüssigkeitsstrom und mit dem Ausgang für den ersten Flüssigkeitsstrom fluchten. Dabei wird dann Druckenergie von dem Eingang des zweiten Flüssigkeitsstromes auf den Ausgang des ersten Flüssigkeitsstromes übertragen.The operation of the pressure transmitter is such that from the inlet for the first fluid flow whose higher pressure is transmitted via one or more channels in the rotor to the outlet for the second fluid flow. In this way, pressure energy is transferred from the first liquid stream to the second liquid stream. As the rotor continues to rotate, the channels responsible for the pressure energy transfer described above come to a position where they are aligned with the second fluid stream inlet and the first liquid stream outlet. In this case, then pressure energy from the input of the second liquid stream transmitted to the output of the first liquid stream.

Üblicherweise ist der Volumenstrom des ersten Flüssigkeitsstromes mit höherem Druck geringer als der Volumenstrom des zweiten Flüssigkeitsstroms mit geringerem Druck. Ein Vermischen der Flüssigkeitsströme soll erfindungsgemäß insbesondere zwischen dem Eingang für den Flüssigkeitsstrom mit höherem Druck und dem Ausgang für den Flüssigkeitsstrom mit geringerem Druck vermieden werden. Bei Verwendung in einer Meerwasserentsalzungsanlage wird von dem Ausgang für den zweiten Flüssigkeitsstrom, d.h. den Flüssigkeitsstrom mit dem geringerem Druck, das Salzwasser der Meerwasserentsalzungsanlage zugeführt. Aus diesem Grunde soll verhindert werden, dass ein Teil der Sole, welcher aus der Meerwasserentsalzungsanlage austritt und einen höheren Druck aufweist, in diesen zweiten Flüssigkeitsstrom übertritt, da in diesem Fall der Meerwasserentsalzungsanlage eine unnötig erhöhte Salzkonzentration zugeführt würde. Auf der anderen Seite des Druckaustauschers zwischen dem Ausgang für den ersten Flüssigkeitsstrom und dem Eingang für den zweiten Flüssigkeitsstrom ist es jedoch unproblematischer, wenn sich die Flüssigkeitsströme zu einem Teil vermischen, da dies lediglich bewirken würde, dass Flüssigkeit aus dem zweiten Flüssigkeitsstrom in den ersten Flüssigkeitsstrom übertritt. Im Fall des Einsatzes in einer Meerwasserentsalzungsanlage würde dies bedeuten, dass frisches Salzwasser in die austretende Sole übertritt, was in der Regel unproblematisch ist. Wenn der Volumenstrom des zweiten Flüssigkeitsstromes größer ist, wird es auf dieser Seite in der Regel immer zu einem Vermischen und einem gewissen Übertritt der zweiten Flüssigkeit in den Ausgang für den ersten Flüssigkeitsstrom kommen.Usually, the volume flow of the first liquid flow with a higher pressure is less than the volume flow of the second liquid flow with a lower pressure. A mixing of the liquid streams according to the invention should be avoided in particular between the inlet for the liquid flow with a higher pressure and the outlet for the liquid flow with a lower pressure. When used in a seawater desalination plant, the output for the second liquid stream, i. the liquid flow with the lower pressure, the salt water fed to the seawater desalination plant. For this reason, it should be prevented that a part of the brine, which emerges from the seawater desalination plant and has a higher pressure, in this second liquid stream passes, since in this case the seawater desalination plant an unnecessarily increased salt concentration would be supplied. On the other side of the pressure exchanger between the outlet for the first fluid flow and the inlet for the second fluid flow, however, it is less problematic if the fluid flows to a part mix, as this would only cause liquid from the second fluid flow in the first fluid flow transgresses. In the case of use in a seawater desalination plant, this would mean that fresh salt water passes into the escaping brine, which is usually unproblematic. If the volume flow of the second liquid stream is greater, there will usually always be a mixing and a certain transfer of the second liquid into the outlet for the first liquid stream on this side.

Zur Drehung des Rotors ist erfindungsgemäß ein Antriebsmotor, vorzugsweise ein elektrischer Antriebsmotor vorgesehen. Erfindungswesentlich ist, dass Einstellmittel vorhanden sind, mittels denen die Drehzahl des Rotors veränderbar ist. Dies kann insbesondere durch Veränderung der Drehzahl des Antriebsmotors erfolgen. Diese Einstellmittel ermöglichen eine Anpassung der Rotorgeschwindigkeit an die aktuellen Randbedingungen der Anlage, insbesondere an den aktuellen Volumenstrom von erstem Flüssigkeitsstrom und zweitem Flüssigkeitsstrom. Die Drehzahl des Rotors kann dabei so an die Volumenströme angepasst werden, dass eine optimale Druckübertragung erfolgt, ohne dass sich die Flüssigkeitsströme mehr als nötig miteinander vermischen. Beim Betrieb eines derartigen Druckaustauschers bildet sich in den Kanälen eine Mischzone, in welcher die beiden Flüssigkeitsströme miteinander in Kontakt kommen. Beim Austausch der Druckenergie wandert diese Mischzone in den Kanälen in axialer Richtung. Um ein wirkliches Vermischen der Flüssigkeitsströme zwischen dem Eingang für den ersten Flüssigkeitsstrom und dem Ausgang für den zweiten Flüssigkeitsstrom zu vermeiden, muss diese Mischzone jedoch vorteilhafterweise immer im Inneren des Kanals verbleiben. Gleichzeitig soll, um einen hohen Wirkungsgrad des Druckaustauschers zu erzielen, der Weg, um welchen diese Mischzone in axialer Richtung wandert, möglichst groß sein, vorzugsweise nahezu der gesamten Länge des Kanals in axialer Richtung entsprechen. Die Bewegung der Mischzone hängt jedoch von äußeren Parametern, insbesondere den Druckdifferenzen und den Volumenströmen sowie der Drehzahl des Rotors ab. Wenn nun die Drehzahl des Rotors veränderbar ist, ist es möglich, die Drehzahl des Rotors immer so anzupassen, dass die Mischzone im Inneren des Kanals verbleibt und gleichzeitig der Wirkungsgrad maximiert wird.For rotation of the rotor, a drive motor, preferably an electric drive motor is provided according to the invention. Essential to the invention is that adjusting means are provided by means of which the speed of the rotor is changeable. This can be done in particular by changing the speed of the drive motor. These adjustment means allow the rotor speed to be adapted to the current boundary conditions of the installation, in particular to the current volume flow of the first liquid stream and the second liquid stream. The speed of the rotor can be adapted to the volume flows so that an optimal pressure transfer takes place without the liquid streams mix more than necessary with each other. In the operation of such a pressure exchanger forms in the channels a mixing zone in which the two liquid streams come into contact with each other. When replacing the pressure energy, this mixing zone migrates in the channels in the axial direction. In order to avoid a real mixing of the liquid streams between the inlet for the first liquid stream and the outlet for the second liquid stream, however, this mixing zone must advantageously always remain in the interior of the channel. At the same time, in order to achieve a high efficiency of the pressure exchanger, the path by which this mixing zone travels in the axial direction should be as large as possible, preferably corresponding to almost the entire length of the channel in the axial direction. However, the movement of the mixing zone depends on external parameters, in particular the pressure differences and the volume flows and the rotational speed of the rotor. Now, if the speed of the rotor is variable, it is possible to always adjust the speed of the rotor so that the mixing zone remains inside the channel and at the same time the efficiency is maximized.

Dazu ist eine Steuer- oder Regeleinrichtung vorgesehen, über welche die Drehzahl des Rotors einstellbar ist. Dies erfolgt weiter bevorzugt automatisch, um den Druckaustauscher immer mit einer Rotordrehzahl zu betreiben, welche den maximalen Wirkungsgrad bei gegebenen Volumenströmen und Druckdifferenzen ermöglicht.For this purpose, a control or regulating device is provided, via which the rotational speed of the rotor is adjustable. This is further preferably automatically to operate the pressure exchanger always with a rotor speed, which allows the maximum efficiency at given flow rates and pressure differences.

Ferner ist die Steuer- oder Regeleinrichtung derart ausgebildet, dass sie die Drehzahl des Rotors so einstellt, dass eine Mischzone, in welcher es zu einer Mischung zwischen dem ersten Flüssigkeitsstrom und dem zweiten Flüssigkeitsstrom kommt, stets im Inneren der Kanäle gelegen ist. Dadurch wird, wie beschrieben, ein Vermischen der Flüssigkeitsströme verhindert. Gleichzeitig führt die Steuer- oder Regeleinrichtung vorzugsweise die Steuerung oder Regelung derart aus, dass die axiale Strecke, um welche sich die Mischzone bei Drehung des Rotors bewegt, maximiert ist. Dies stellt den höchstmöglichen Wirkungsgrad sicher.Furthermore, the control or regulating device is designed such that it adjusts the rotational speed of the rotor so that a mixing zone, in which there is a mixture between the first liquid stream and the second liquid stream, is always located in the interior of the channels. As a result, mixing of the liquid streams is prevented as described. At the same time, the controller preferably performs the control such that the axial distance that the mixing zone moves as the rotor rotates is maximized. This ensures the highest possible efficiency.

Erfindungsgemäß ist ein Sensor zum Erfassen zumindest eines Parameters zumindest eines der Flüssigkeitsströme vorhanden und die Steuer- oder Regeleinrichtung derart ausgebildet, dass die Drehzahl des Antriebsmotors in Abhängigkeit des erfassten Parameters eingestellt wird. So wird eine automatische Anpassung der Rotordrehzahl an den erfassten Parameter möglich und der Betrieb des Druckaustauschers kann abhängig von dem erfassten Parameter im Bereich mit maximalem Wirkungsgrad erfolgen. Dabei kann die Einstellung und Anpassung der Rotordrehzahl über die Einstellung der Drehzahl des Antriebsmotors automatisch in Abhängigkeit des erfassten Parameters oder der erfassten Parameter erfolgen. Vorzugsweise sind mehrere Sensoren vorgesehen, um Parameter der Flüssigkeitsströme an verschiednen Stellen beispielsweise am Ein- und Ausgang für den jeweiligen Flüssigkeitsstrom zu erfassen.According to the invention, a sensor for detecting at least one parameter of at least one of the liquid streams is present and the control or regulating device is designed such that the rotational speed of the drive motor is set as a function of the detected parameter. Thus, an automatic adjustment of the rotor speed to the detected parameters is possible and the operation of the pressure exchanger can be done depending on the detected parameter in the range with maximum efficiency. The setting and adjustment of the rotor speed via the setting of the speed of the drive motor can be done automatically depending on the detected parameter or the detected parameters. Preferably, a plurality of sensors are provided to detect parameters of the liquid streams at different locations, for example, at the inlet and outlet for the respective liquid flow.

Erfindungsgemäß ist der Sensor ein Sensor zum Erfassen der Konzentration eines Stoffes und insbesondere des Salzgehaltes in der Flüssigkeit. Über einen solchen Sensor kann direkt überwacht werden, ob es zu einem Vermischen der beiden Flüssigkeitsströme kommt. Sollte dies festgestellt werden, kann die Drehzahl des Antriebsmotors dann so angepasst werden, dass ein solches Vermischen nicht mehr auftritt, was dann wiederum von dem oder den Sensoren zur Konzentrationserfassung detektiert wird.According to the invention, the sensor is a sensor for detecting the concentration of a substance and in particular the salt content in the liquid. About such a sensor can be monitored directly, whether it comes to a mixing of the two liquid streams. Should this be determined, the speed of the drive motor can then be adjusted so that such mixing no longer occurs, what then in turn detected by the sensor or sensors for concentration detection.

Ferner sind erfindungsgemäß für zumindest einen der beiden Flüssigkeitsströme sowohl in dem Eingang als auch in dem Ausgang jeweils ein Sensor zum Erfassen der Stoffkonzentration vorgesehen und die Steuer- oder Regeleinrichtung ist zum Erfassen der Differenz zwischen den Stoffkonzentrationen an dem Eingang und dem Ausgang und zum Einstellen der Drehzahl des Antriebsmotors in Abhängigkeit der erfassten Differenz ausgebildet. Wenn der Druckaustausch zwischen zwei Flüssigkeiten bzw. Flüssigkeitsströmen, welche unterschiedlich starke Konzentrationen eines Stoffes beispielsweise einen unterschiedlichen Salzgehalt aufweisen, stattfindet, kann auf diese Weise festgestellt werden, ob es zu einem Mischen der Flüssigkeiten kommt. Wenn sich die Flüssigkeiten nicht mischen, sollten am Aus- und Eingang eines Flüssigkeitsstromes die Stoffkonzentration jeweils im Wesentlichen gleich sein, d. h. die erfasste Differenz ein Minimum aufweisen. Wenn die Differenz größer wird, deutet dies darauf hin, dass es zu einem unerwünschten Vermischen der beiden Flüssigkeitsströme kommt und die Drehzahl des Antriebsmotors kann von der Steuer- bzw. Regeleinrichtung entsprechend angepasst werden, um die Drehzahl des Antriebsmotors so einzustellen, dass es nicht zu einem Vermischen der Flüssigkeitsströme kommt.Further, according to the invention for each at least one of the two liquid streams both in the input and in the output of a sensor for detecting the substance concentration is provided and the control or regulating device is for detecting the difference between the concentrations of substances at the input and the output and for setting the Speed of the drive motor formed as a function of the detected difference. If the pressure exchange between two liquids or liquid streams, which have different concentrations of a substance, for example, a different salt content, takes place, it can be determined in this way, if it comes to a mixing of the liquids. If the liquids do not mix, at the exit and entrance of a liquid stream, the concentration of the substance should be substantially the same, respectively. H. the detected difference have a minimum. If the difference becomes larger, this indicates that there is an undesirable mixing of the two fluid streams and the speed of the drive motor can be adjusted by the controller accordingly to adjust the speed of the drive motor so that it does not a mixing of the liquid flows comes.

Die Regeleinrichtung ist derart ausgebildet, dass sie die Drehzahl des Antriebsmotors so regelt, dass die Differenz der Stoffkonzentrationen ein Minimum erreicht. Auf diese Weise wird der Druckaustauscher immer so betrieben, dass es zu der geringstmöglichen Vermischung der beiden Flüssigkeitsströme kommt und gleichzeitig der maximale Wirkungsgrad erreicht werden kann.The control device is designed such that it controls the speed of the drive motor so that the difference of the substance concentrations reaches a minimum. In this way, the pressure exchanger is always operated so that it comes to the least possible mixing of the two liquid streams and at the same time the maximum efficiency can be achieved.

Gemäß einer weiteren bevorzugten Ausführungsform können Mittel zum Erfassen der Drehzahl des Rotors vorhanden sein, insbesondere ein Drehzahlsensor an dem Rotor angeordnet werden. Dies ermöglicht es, die aktuelle Rotordrehzahl zu erfassen und bei der Steuerung bzw. Regelung der Drehzahl zu berücksichtigen. Die Steuer- bzw. Regeleinrichtung kann somit eine Rückmeldung erhalten, wie hoch die tatsächliche Rotordrehzahl ist. Somit wird eine noch genauere Steuerung bzw. Regelung der Drehzahl des Antriebsmotors und damit Anpassung an die aktuellen Betriebsbedingungen möglich.According to a further preferred embodiment, means for detecting the rotational speed of the rotor may be present, in particular a Speed sensor can be arranged on the rotor. This makes it possible to detect the current rotor speed and to take into account in the control or regulation of the speed. The controller can thus receive feedback on how high the actual rotor speed is. Thus, an even more accurate control or regulation of the speed of the drive motor and thus adaptation to the current operating conditions is possible.

Nachfolgend wird die Erfindung beispielhaft anhand der beigefügten Figuren beschrieben. In diesen zeigt:

Fig. 1
eine schematische perspektivische Ansicht des erfindungsgemäßen Druckaustauschers, wobei eines der axialen Anschlusselemente abgenommen ist,
Fig. 2
eine perspektivische Ansicht eines Anschlusselementes des Druckaustauschers gemäß Fig. 1,
Fig. 3
eine Schnittansicht des Druckaustauschers,
Fig. 4
eine Kurve, welche eine Differenz des Salzgehaltes aufgetragen über die Rotordrehzahl zeigt und
Fig. 5
eine Schnittansicht eines Druckaustauschers gemäß einer zweiten Ausführungsform der Erfindung.
The invention will now be described by way of example with reference to the accompanying drawings. In these shows:
Fig. 1
a schematic perspective view of the pressure exchanger according to the invention, wherein one of the axial connection elements is removed,
Fig. 2
a perspective view of a connection element of the pressure exchanger according to Fig. 1 .
Fig. 3
a sectional view of the pressure exchanger,
Fig. 4
a curve showing a difference of the salt content plotted against the rotor speed and
Fig. 5
a sectional view of a pressure exchanger according to a second embodiment of the invention.

Der geometrische Aufbau des Druckaustauschers entspricht im Wesentlichen dem beispielsweise aus EP 0 298 097 B1 bekannten Druckaustauscher. Der Druckaustauscher weist ein zylindrisches Gehäuse 2 auf, in dessen Inneren drehbar ein Rotor 4 angeordnet ist. Dabei ist der Rotor 4 um die Längsachse X von Gehäuse 2 und Rotor 4 drehbar. An den beiden Axialseiten ist das Gehäuse 2 jeweils durch ein Anschlusselement 6 verschlossen. Beide Anschlusselemente 6 sind identisch ausgebildet, zur Unterscheidung werden die beiden Anschlusselemente nachfolgend mit 6a und 6b bezeichnet. Ist keine Unterscheidung getroffen, bezieht sich die Beschreibung auf identisch ausgebildete Teile. Die Anschlusselemente 6 sind mit dem Gehäuse 4 verschraubt.The geometric structure of the pressure exchanger essentially corresponds to the example of EP 0 298 097 B1 known pressure exchanger. The pressure exchanger has a cylindrical housing 2, in the interior of which a rotor 4 is rotatably arranged. In this case, the rotor 4 is rotatable about the longitudinal axis X of the housing 2 and the rotor 4. At the two axial sides, the housing 2 is closed in each case by a connecting element 6. Both connection elements 6 are identical, for distinction, the two connection elements are referred to below with 6a and 6b. If no distinction is made, the description refers to identically formed parts. The connection elements 6 are screwed to the housing 4.

Der Rotor 4 weist eine Vielzahl von Kanälen 10 auf, welche sich im Rotor in axialer Richtung parallel zur Längsachse X erstrecken. Dabei sind die Kanäle 10 kreisförmig um die Längsachse X angeordnet. Im gezeigten Beispiel sind zwei konzentrische Ringe von Kanälen 10 vorgesehen. Diese Anordnung von zwei Ringen von Kanälen ist aus Stabilitätsgründen gewählt. Es ist zu verstehen, dass hier auch andere Anordnungen, beispielsweise nur ein Ring von z. B. dafür größeren Kanälen oder mehr als zwei Ringe von Kanälen gewählt werden können. Die Kanäle 10 verbinden die beiden Axialenden des Rotors 4 miteinander.The rotor 4 has a plurality of channels 10, which extend in the rotor in the axial direction parallel to the longitudinal axis X. The channels 10 are arranged in a circle around the longitudinal axis X. In the example shown, two concentric rings of channels 10 are provided. This arrangement of two rings of channels is chosen for stability reasons. It should be understood that other arrangements, for example, only a ring of z. B. for larger channels or more than two rings of channels can be selected. The channels 10 connect the two axial ends of the rotor 4 with each other.

Jedes der Anschlusselemente 6 weist Anschlussstutzen 12 (12a, 12b) und 14 (14a, 14b) auf. Wie in Fig. 2 zu erkennen ist, sind die Anschlussstutzen 12 und 14 nicht miteinander verbunden. Vielmehr ist im Inneren des Anschlusselementes 6 eine Trennwand 16 ausgebildet, welche das Innere des Anschlusselementes 6 in zwei Teile teilt. So werden an der dem Rotor 4 zugewanden Fläche des Anschlusselementes 6 zwei bogenförmige durch die Trennwand 16 voneinander getrennte Ausnehmungen 18 (18a, 18b) und 20 (20a, 20b) gebildet. Dabei ist die Ausnehmung 18 mit dem Anschlussstutzen 12 und die Ausnehmung 20 mit dem Anschlussstutzen 14 verbunden.Each of the connection elements 6 has connecting pieces 12 (12a, 12b) and 14 (14a, 14b). As in Fig. 2 can be seen, the connecting pieces 12 and 14 are not connected to each other. Rather, in the interior of the connecting element 6, a partition wall 16 is formed, which is the interior of the connection element 6 divides into two parts. Thus, two arcuate recesses 18 (18a, 18b) and 20 (20a, 20b) separated from each other by the partition 16 are formed on the surface of the connecting element 6 facing the rotor 4. In this case, the recess 18 is connected to the connecting piece 12 and the recess 20 with the connecting piece 14.

Wie in Figur 3 zu erkennen ist, ist ein elektrischer Antriebsmotor 22 vorgesehen, welcher über eine Kupplung 24 mit der Rotorwelle 26 verbunden ist. Der Rotor 4 ist drehfest auf der Rotorwelle 26 angeordnet, sodass er durch den Antriebsmotor 22 gedreht werden kann. An der Rotorwelle 14 ist eine Wellendichtung 28 angeordnet. Die Wellendichtung 28 ist über den Kanal 30 mit der Ausnehmung 18b verbunden, um Flüssigkeit zur Schmierung zuzuführen. Ferner ist ein Kanal 32 vorgesehen, welcher ausgehend von der Ausnehmung 18a zu dem umfänglichen Raum 34 zwischen Rotor 4 und Gehäuse 2 führt, um Flüssigkeit aus diesen Raum herauszuleiten. Auf diese Weise kann Flüssigkeit, welche in diesem Raum eindringt, abgeführt und ein zu hoher Druck in diesem Raum verhindert werden. Auch ist ein Kanal 36 vorgesehen, welcher die Ausnehmung 18a mit dem Durchgangsloch im Rotor 4 verbindet, in welchem die Rotorwelle 26 gelegen ist. So kann auch Flüssigkeit aus diesem Durchgangsloch abgeführt werden, insbesondere zur Kühlung und Schmierung der Lagerung durch den Kanal 30 eintretende Flüssigkeit.As in FIG. 3 can be seen, an electric drive motor 22 is provided, which is connected via a coupling 24 with the rotor shaft 26. The rotor 4 is rotatably mounted on the rotor shaft 26 so that it can be rotated by the drive motor 22. At the rotor shaft 14, a shaft seal 28 is arranged. The shaft seal 28 is connected via the channel 30 with the recess 18 b to supply liquid for lubrication. Further, a channel 32 is provided, which leads from the recess 18a to the circumferential space 34 between the rotor 4 and the housing 2, to discharge liquid from this space. In this way, liquid which penetrates into this space can be dissipated and an excessive pressure in this space can be prevented. Also, a channel 36 is provided, which connects the recess 18a with the through hole in the rotor 4, in which the rotor shaft 26 is located. Thus, liquid can be removed from this through hole, in particular for cooling and lubrication of storage through the channel 30 entering liquid.

Die Funktionsweise des Druckaustauschers ist wie nachfolgend beschrieben. Die Anschlussstutzen 12a und 14a dienen zur Anbindung an ein Leitungssystem für einen ersten Flüssigkeitsstrom, während die Anschlüsse 12b und 14b zur Anbindung an ein Leitungssystem für einen zweiten Flüssigkeitsstrom dienen. Der erste Flüssigkeitsstrom ist beispielsweise der aus einer Meerwasserentsalzungsanlage ausgehende Sole-Strom, welcher noch eine große Druckenergie hat, die auf einen zweiten Flüssigkeitsstrom, welcher beispielsweise eine Strömung von Salzwasser ist, welches einer Meerwasserentsalzungsanlage zugeführt werden soll, übertragen wird. Der Anschlussstutzen 14a bildet einen Eingang für den unter dem Druck p2 stehenden ersten Flüssigkeitsstrom, beispielsweise Sole. Der Anschluss 12a bildet den Ausgang für den ersten Flüssigkeitsstrom mit geringerem Druck p4.The operation of the pressure exchanger is as described below. The connecting pieces 12a and 14a serve for connection to a line system for a first liquid flow, while the connections 12b and 14b serve for connection to a line system for a second liquid flow. The first liquid stream is, for example, the brine stream emanating from a seawater desalination plant, which still has a high pressure energy, which is due to a second liquid stream, which, for example, is a flow of salt water is, which is to be supplied to a desalination plant is transmitted. The connection piece 14a forms an inlet for the first liquid stream under the pressure p 2 , for example brine. The port 12a forms the outlet for the first liquid flow at a lower pressure p 4 .

Der Anschluss 14b bildet den Ausgang für den zweiten Flüssigkeitsstrom, beispielsweise das Salzwasser, während der Anschlussstutzen 12b den Eingang für den zweiten Flüssigkeitsstrom bildet. Der erste Flüssigkeitsstrom tritt mit einem Druck p2 in den Eingang 14a und die anschließende Ausnehmung 20a ein. Da der Druck p2 größer als der Druck p1 ist, welche die Flüssigkeit des zweiten Flüssigkeitsstromes am Ausgang 14b hat, strömt die Flüssigkeit ausgehend von dem Eingang 14a in die der Ausnehmung 20a zugewandten Kanäle 10 und überträgt so den Druck auf die zweite Flüssigkeit, welche sich in diesen Kanälen befindet, und auf die zweite Flüssigkeit in der Ausnehmung 20b und das an den Ausgang 14b anschließende Leitungssystem, da diese Kanäle 10 auch mit der Ausnehmung 20b fluchten.The port 14b forms the outlet for the second fluid stream, for example the salt water, while the port 12b forms the inlet for the second fluid stream. The first liquid flow enters the inlet 14a and the subsequent recess 20a at a pressure p 2 . Since the pressure p 2 is greater than the pressure p 1 , which has the liquid of the second liquid stream at the outlet 14 b, the liquid flows from the inlet 14 a into the channels 10 facing the recess 20 a and thus transfers the pressure to the second liquid, which is located in these channels, and the second liquid in the recess 20b and the subsequent to the output 14b line system, since these channels 10 are also aligned with the recess 20b.

In den Kanälen 10 kommen dabei die beiden Flüssigkeiten miteinander in Kontakt, wobei durch den höheren Druck p2 diese Kontaktzone in den Kanälen 10 zu dem Axialende bewegt wird, welches der Ausnehmung 20b des Anschlusselementes 6b zugewandt ist. Das heißt in dieser Position werden die Kanäle 10 weitgehend mit der ersten Flüssigkeit aus dem Eingang 14a gefüllt. Wenn nun der Rotor 4 gedreht wird, kommen diese Kanäle 10, welche zuerst zwischen den Ausnehmungen 20a und 20b gelegen haben, zwischen den Ausnehmungen 18a und 18b zu liegen. In der Ausnehmung 18b herrscht der Flüssigkeitsdruck p3 der eingehenden zweiten Flüssigkeit, welcher zwar geringer als der Druck p2, aber höher ist als der Ausgangsdruck p4 der ersten Flüssigkeit in der Ausnehmung 18a. Dadurch strömt die zweite Flüssigkeit in die Kanäle 10 und drückt dabei die erste Flüssigkeit aus den Kanälen 10 weitgehend in die Ausnehmung 18a und über den Anschlussstutzen 12a in eine anschließende Rohrleitung. Dabei verlagert sich die Mischzone, in welcher die beiden Flüssigkeiten in den Kanälen 10 miteinander in Kontakt kommen, zu demjenigen Axialende der Kanäle 10, welches dem Anschlusselement 6a und dessen Ausnehmung 18a zugewandt ist. Da der Volumenstrom der zweiten Flüssigkeit größer als derjenige der ersten Flüssigkeit ist, kommt es auf dieser Seite des Druckaustauschers zu einem Vermischen der Flüssigkeiten, d.h. es tritt ein Teil der zweiten Flüssigkeit in die Ausnehmung 18a ein und die aus dem Anschluss 12a austretende Flüssigkeit ist mit einem Teil der eintretenden zweiten Flüssigkeit vermischt. Wenn der Rotor nun wieder in die erstbeschriebene Position dreht, sodass sich diese genannten Kanäle 10 wieder zwischen den Ausnehmungen 20a und 20b befinden, strömt dort wieder die erste Flüssigkeit in die Kanäle 10 ein und drückt die zweite Flüssigkeit zu dem Ausgang 14b für die zweite Flüssigkeit. So wird ein Teil der Druckenergie der ersten Flüssigkeit auf die zweite Flüssigkeit übertragen.In the channels 10, the two liquids come into contact with each other, being moved by the higher pressure p 2, this contact zone in the channels 10 to the axial end, which faces the recess 20b of the connecting element 6b. That is, in this position, the channels 10 are largely filled with the first liquid from the inlet 14a. Now, when the rotor 4 is rotated, these channels 10, which have first located between the recesses 20a and 20b, come to rest between the recesses 18a and 18b. In the recess 18b, the liquid pressure p 3 of the incoming second liquid prevails, which, although lower than the pressure p 2 , but higher than the output pressure p 4 of the first liquid in the recess 18a. As a result, the second liquid flows into the channels 10 and presses the first liquid from the channels 10 largely into the recess 18a and via the connecting piece 12a in a subsequent pipeline. In this case, the mixing zone, in which the two liquids in the channels 10 come into contact with each other, moves to that axial end of the channels 10, which faces the connection element 6a and its recess 18a. Since the volume flow of the second liquid is greater than that of the first liquid, it comes on this side of the pressure exchanger to a mixing of the liquids, that is, a part of the second liquid enters the recess 18 a and the liquid emerging from the port 12 a is with a part of the incoming second liquid mixed. When the rotor now rotates back to the first described position so that said channels 10 are again between the recesses 20a and 20b, the first liquid flows back into the channels 10 there and pushes the second liquid to the outlet 14b for the second liquid , Thus, part of the pressure energy of the first liquid is transferred to the second liquid.

Es ist zu erkennen, dass der gesamte erste Flüssigkeitsstrom und der gesamte zweite Flüssigkeitsstrom durch die Kanäle 10 des Rotors 4 gefördert werden müssen. Erfindungsgemäß kann nun über den Antriebsmotor 22 die Drehzahl des Rotors 4 verändert werden, um die Rotordrehzahl dem ersten und dem zweiten Flüssigkeitsstrom anzupassen, sodass ein optimaler Wirkungsgrad erzielt wird, ohne dass es zu einer Vermischung der beiden Flüssigkeiten auf der Seite des Druckaustauschers mit höherem Druck, d.h. zwischen den Ausnehmungen 20a und 20b kommt. Eine Vermischung würde auftreten, wenn der Mischbereich, in welchem beide Flüssigkeiten miteinander in Kontakt kommen die Kanäle 10 an einem Axialende verlässt. Beispielsweise wenn der Rotor zu langsam drehen würde, könnte es passieren, dass die erste Flüssigkeit durch die Kanäle 10 zwischen den Ausnehmungen 20b und 20a in die Ausnehmung 20b überströmt bevor sich der Rotor weiter gedreht hat. Hier sollte die Rotordrehzahl so angepasst sein, dass solches Überströmen nicht auftritt. Wenn allerdings die Rotordrehzahl zu schnell ist, tritt zu wenig Flüssigkeit in die Kanäle 10 ein. So würden beispielsweise die Kanäle 10 zwischen den Ausnehmungen 20a und 20b ausgehend von der Ausnehmung 20a nur zu einem kleinen Teil mit der ersten Flüssigkeit gefüllt, bevor sich der Rotor weiterdreht. Dies verschlechtert den Wirkungsgrad, da dann die Druckenergie nur zu einem geringen Teil von der ersten Flüssigkeit auf die zweite Flüssigkeit übertragen werden kann. Ein optimaler Wirkungsgrad wird dann erreicht, wenn der Kontakt bzw. Mischbereich, in welchem die beiden Flüssigkeiten in den Kanälen 10 miteinander in Kontakt sind, bei der Drehung des Rotors von der Position zwischen den Ausnehmungen 20a und 20b zu der Position zwischen den Ausnehmungen 18a und 18b im Wesentlichen über die vollständige axiale Länge der Kanäle 10 wandert.It can be seen that the entire first liquid flow and the entire second liquid flow must be conveyed through the channels 10 of the rotor 4. According to the invention, the rotational speed of the rotor 4 can now be changed via the drive motor 22 in order to adapt the rotor speed to the first and the second fluid flow, so that an optimum efficiency is achieved, without causing a mixing of the two fluids on the side of the pressure exchanger with higher pressure that is, between the recesses 20a and 20b. Mixing would occur when the mixing region, in which both liquids come into contact with each other, leaves the channels 10 at one axial end. For example, if the rotor were rotating too slowly, it could happen that the first fluid flows through the channels 10 between the recesses 20b and 20a into the recess 20b before the rotor has continued to rotate. Here, the rotor speed should be adjusted so that such overflow does not occur. However, if the rotor speed is too fast, too little liquid enters the channels 10. Thus, for example, the channels 10 between the recesses 20a and 20b starting from the recess 20a would be filled only to a small extent with the first liquid before the rotor continues to rotate. This deteriorates the efficiency, because then the pressure energy can be transferred only to a small extent from the first liquid to the second liquid. Optimum efficiency is achieved when the contact or mixing region in which the two liquids in the channels 10 are in contact with each other upon rotation of the rotor from the position between the recesses 20a and 20b to the position between the recesses 18a and 18b migrates substantially over the full axial length of the channels 10.

Um eine optimale Regelung zu erreichen, sind in den Ausnehmungen 18b und 20b Sensoren 38 zum Erfassen des Salzgehaltes angeordnet. Die Sensoren könnten auch zum Erfassen der Konzentration eines anderen Stoffes als Salz ausgebildet sein, je nach Einsatzort des Druckaustauschers. Die Sensoren 38 sind über Kabel oder kabellos mit einer Steuer- bzw. Regeleinrichtung 39 verbunden, welche die Drehzahl des Antriebsmotors 22 steuert oder regelt. Die Steuer- bzw. Regeleinrichtung 39 bestimmt aus den Ausgangssignalen der Sensoren 38 die Differenz zwischen den Stoffkonzentrationen bzw. den Salzgehalten. So kann eine Änderung des Salzgehaltes in einer durch den Anschlussstutzen 12b einströmenden und durch den Anschlussstutzen 14b ausströmenden zweiten Flüssigkeit erfasst werden. Wenn nun beispielsweise die erste Flüssigkeit, welche durch den Anschlussstutzen 14a zu- und durch den Anschlussstutzen 12a abgeführt wird, einen höheren Salzgehalt als die zweite Flüssigkeit aufweist, was bei dem beschriebenen Beispiel aus einer Meerwasserentsalzungsanlage der Fall ist, würde es bei einer Vermischung von erster und zweiter Flüssigkeit zu einer Erhöhung des Salzgehaltes in der zweiten Flüssigkeit kommen. Wenn die erste Flüssigkeit ausgehend von der Ausnehmung 20a durch die Kanäle 10 bis in die Ausnehmung 20b überströmen würde, würde dies in der Ausnehmung 20b zu einem erhöhten Salzgehalt der zweiten Flüssigkeit führen. Das heißt der Salzgehalt in der Ausnehmung 20b wäre höher als in der Ausnehmung 18b in welcher sich die eintretende zweite Flüssigkeit befindet. Es wäre somit über die Sensoren 38 eine Differenz des Salzgehaltes zu erfassen.In order to achieve an optimal control, sensors 38 for detecting the salt content are arranged in the recesses 18b and 20b. The sensors could also be designed to detect the concentration of another substance as salt, depending on the location of the pressure exchanger. The sensors 38 are connected by cable or wirelessly with a control or regulating device 39 which controls or regulates the rotational speed of the drive motor 22. The control device 39 determines from the output signals of the sensors 38 the difference between the substance concentrations or the salt contents. Thus, a change in the salt content can be detected in a second liquid flowing in through the connecting piece 12b and flowing out through the connecting piece 14b. If, for example, the first liquid, which is supplied through the connecting piece 14a and discharged through the connecting piece 12a, has a higher salt content than the second liquid, which is the case in the example described from a desalination plant, it would be in a mixing of first and second liquid to increase the salt content in the second liquid. When the first liquid is starting would flow from the recess 20a through the channels 10 into the recess 20b, this would result in the recess 20b to an increased salt content of the second liquid. That is, the salt content in the recess 20b would be higher than in the recess 18b in which the incoming second liquid is located. It would thus be possible to detect a difference in the salt content via the sensors 38.

In Fig. 4 ist die Differenz des Salzgehaltes 40 über die Rotordrehzahl 42 aufgetragen. Es ist zu erkennen, dass diese Kurve 44 ein Minimum 43 aufweist. Dieses Minimum 43 ist der optimale Betriebspunkt, bei welchem es zu einer geringstmöglichen Vermischung der beiden Flüssigkeitsströme kommt. Bei zu geringer Drehzahl kommt es zu einer Vermischung durch Überströmen der Flüssigkeit von der Ausnehmung 20a in die Ausnehmung 20b. Bei zu hoher Drehzahl kommt es ebenfalls zu einem Anstieg der Differenz des Salzgehaltes zwischen Ein- und Ausgang für die zweite Flüssigkeit, da es zu einer zunehmenden Vermischung der ersten und der zweiten Flüssigkeit in den Kanälen 10 kommt, da die Kanäle 10, nicht wie zuvor beschrieben abwechselnd im Wesentlichen vollständig mit der ersten und der zweiten Flüssigkeit gefüllt werden. Vielmehr verbleibt immer ein Teil der Flüssigkeit in den Kanälen, sodass es hier zu einer Mischung und einem geringem Anstieg des Salzgehaltes im Ausgang für die zweite Flüssigkeit kommt.In Fig. 4 the difference of the salt content 40 is plotted against the rotor speed 42. It can be seen that this curve 44 has a minimum 43. This minimum 43 is the optimum operating point at which there is the least possible mixing of the two fluid streams. If the rotational speed is too low, mixing occurs due to overflow of the liquid from the recess 20a into the recess 20b. If the speed is too high, there is also an increase in the difference in salt content between inlet and outlet for the second fluid, since there is an increasing mixing of the first and second fluids in the channels 10, since the channels 10 are not as before alternately substantially completely filled with the first and the second liquid. Rather, always a part of the liquid remains in the channels, so that here comes to a mixture and a slight increase in the salt content in the outlet for the second liquid.

Die Regelung der Drehzahl des Rotors 2 über die Drehzahl des Antriebsmotors 22 erfolgt nun wie folgt. Zunächst wird eine Drehzahl gewählt, welche höher als die Drehzahl 47 bei der minimalen Differenz 43 ist. Ausgehend von dieser Drehzahl wird die Drehzahl zunächst verringert, solange die Sensoren 38 eine abnehmende Differenz des Salzgehaltes ermitteln. Dies ist in dem Diagramm in Fig. 4 durch die gestrichelten Pfeile 45 angedeutet. Wenn nun ein Anstieg der Differenz des Salzgehaltes erfasst wird, wird die Rotordrehzahl wieder erhöht, wie durch den Pfeil 46 in Fig. 4 gezeigt ist. Auf diese Weise kann die Drehzahl auf die Drehzahl 47 bei dem Minimum 43 der Differenz des Salzgehaltes zwischen den Sensoren 38 eingeregelt werden.The regulation of the rotational speed of the rotor 2 via the rotational speed of the drive motor 22 now takes place as follows. First, a speed is selected which is higher than the speed 47 at the minimum difference 43. Based on this speed, the speed is initially reduced, as long as the sensors 38 determine a decreasing difference in salinity. This is in the diagram in Fig. 4 indicated by the dashed arrows 45. If now an increase in the difference in salinity is detected, the rotor speed is increased again, as by the arrow 46 in Fig. 4 is shown. In this way, the speed can be adjusted to the speed 47 at the minimum 43 of the difference in salinity between the sensors 38.

In dem Fall, dass die Kurve 44 so verläuft, dass sie bei höherer Rotordrehzahl eine Gerade bildet und somit kein globales Minimum aufweist, kann die Regelung in der Weise erfolgen, dass die Drehzahl möglichst gering eingestellt wird. Dabei wird die Drehzahl soweit reduziert, dass es gerade nicht zu einer Erhöhung der Differenz des Salzgehaltes 40 kommt.In the event that the curve 44 runs so that it forms a straight line at a higher rotor speed and thus has no global minimum, the control can be carried out in such a way that the speed is set as low as possible. The speed is reduced so far that it just does not increase the difference of the salt content 40.

Alternativ zu einer Drehzahlregelung über die Erfassung des Salzgehaltes in der vorangehend beschriebenen Weise, ist es auch möglich, die Drehzahl über den Volumenstrom zu regeln, indem die Volumenströme der ersten und/oder der zweiten Flüssigkeit erfasst werden und in Abhängigkeit eines oder beider Volumenströme die Drehzahl eingestellt werden. Hierzu kann in der Steuerung eine Tabelle mit einer Zuordnung von Drehzahlen zu Volumenströmen hinterlegt sein.As an alternative to a speed control via the detection of the salt content in the manner described above, it is also possible to regulate the speed via the volume flow by the volume flows of the first and / or the second liquid are detected and depending on one or both volume flows, the speed be set. For this purpose, a table with an assignment of speeds to volume flows can be stored in the controller.

Fig. 5 zeigt eine weitere Ausführungsform der Erfindung, welche sich von der vorangehend, anhand von Fig. 3 beschriebenen Ausführungsform nur darin unterscheidet, dass in den Kanälen 10 kugelförmige Sperrelemente 48 angeordnet sind. Die Sperrelemente 48 sind in den Kanälen 10 entlang deren Längsachse bewegbar. An den axialen Enden der Kanäle 10 sind Anschlagringe 50 vorgesehen, welche verhindern, dass die Sperrelemente 48 aus den Kanälen 10 axialseitig austreten können. Die Sperrelemente 48 verhindern, dass die erste und die zweite Flüssigkeit in den Kanälen 10 direkt miteinander in Kontakt kommen. Ein geringer Kontakt wird dabei jedoch toleriert, da zu verstehen ist, dass die Sperrelemente 48 aufgrund ihrer Bewegbarkeit nicht immer völlig dichtend in den Kanälen angeordnet sein können. Beim Betrieb des Druckaustauschers gemäß dieser Ausführungsform bewegen sich die Sperrelemente 48, wenn die Kanäle 10 zwischen den Ausnehmungen 20a und 20b gelegen sind, idealerweise zunächst bis zu demjenigen Axialende der Kanäle 10, welches dem Anschlusselement 6b zugewandt ist, sodass die Sperrelemente 48 an den Anschlagringen 50 an diesem Axialende zu liegen kommen. Wenn der Rotor dann in eine Position dreht, dass diese Kanäle 10 zwischen den Ausnehmungen 18a und 18b gelegen sind, werden die Sperrelemente 48 zum entgegengesetzten Ende des Rotors 4 bewegt und kommen an den Anschlagringen 50, welche dem Anschlusselement 6a zugewandt sind, zur Anlage. Alle übrigen Elemente und die Funktionsweise entsprechen der vorangehend anhand von Fig. 3 erläuterten Funktionsweise. Fig. 5 shows a further embodiment of the invention, which differs from the preceding, with reference to Fig. 3 described embodiment differs only in that in the channels 10 spherical locking elements 48 are arranged. The blocking elements 48 are movable in the channels 10 along their longitudinal axis. At the axial ends of the channels 10 stop rings 50 are provided which prevent the locking elements 48 can escape from the channels 10 on the axial side. The blocking elements 48 prevent the first and second liquids in the channels 10 from coming into direct contact with each other. A small contact is tolerated, however, since it should be understood that the locking elements 48 can not always be arranged completely sealed in the channels due to their mobility. In operation of the pressure exchanger according to this embodiment, the blocking elements move 48, when the channels 10 are located between the recesses 20a and 20b, ideally first up to that axial end of the channels 10, which faces the connection element 6b, so that the locking elements 48 come to rest on the stop rings 50 at this axial end. When the rotor then rotates to a position such that these channels 10 are located between the recesses 18a and 18b, the locking elements 48 are moved to the opposite end of the rotor 4 and abut the stop rings 50 facing the terminal 6a. All other elements and the operation correspond to the above with reference to Fig. 3 explained operation.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

22
- Gehäuse- Casing
44
- Rotor- Rotor
6a, 6b6a, 6b
- Anschlusselemente- Connection elements
1010
- Kanäle- Channels
12a, 12b 14a, 14b12a, 12b 14a, 14b
- Anschlussstutzen- Connecting piece
1616
- Trennwand- Partition wall
18a, 18b 20a, 20b18a, 18b, 20a, 20b
- Ausnehmungen- recesses
2222
- Antriebsmotor- Drive motor
2424
- Kupplung- coupling
2626
- Rotorwelle- Rotor shaft
2828
- Wellendichtung- shaft seal
30, 3230, 32
- Kanäle- Channels
3434
- Raum- room
3636
- Kanal- Channel
3838
- Sensoren- Sensors
3939
- Steuer- oder Regeleinrichtung- Control or regulating device
4040
- Differenz des Salzgehaltes- Difference in salinity
4242
- Rotordrehzahl- Rotor speed
4343
- Minimum- minimum
4444
- Kurve- Curve
45, 4645, 46
- Pfeile- arrows
4747
- Drehzahl- Rotation speed
4848
- Sperrelemente- blocking elements
5050
- Anschlagringe- stop rings
XX
- Längsachse- longitudinal axis

Claims (3)

  1. A pressure exchanger for transmitting pressure energy from a first fluid flow to a second fluid flow, with a housing (2) which comprises an inlet (14a) and an outlet (12a) for the first fluid flow as well as an inlet (14b) and an outlet (12b) for the second fluid flow,
    with a rotor (4) which is arranged in the housing (2) and which comprises a multitude of channels (10) which extend in a manner radially distanced to a rotation axis (X) of the rotor (4) from a first axial end of the rotor (4) to an opposite, second axial end of the rotor (4), wherein the rotor (4) is arranged to the inlets and outlets (12, 14) in a manner such that on rotation of the rotor (4), the channels (10) alternately connect the inlet (14a) for the first fluid flow to the outlet (14b) for the second fluid flow and the inlet (12b) for the second fluid flow to the outlet (12a) for the first fluid flow, and
    with a drive motor (22) via which the rotor (4) is drivable in rotation, with adjusting means for changing the rotational speed of the rotor, wherein a control or regulation device is present, via which the rotational speed of the drive motor (22) can be adjusted and which is designed in a manner such that it adjusts the rotational speed of the rotor (4) such that a mixing zone, in which a mixing between the first fluid flow and the second fluid flow occurs, is always situated in the inside of the channels (10), characterised in that a sensor (38) for detecting the substance concentration of a substance in the fluid is present in the inlet (12b) as well as in the outlet (14b), at least for one of the two fluid flows and the control or regulation device is designed for detecting the difference (44) between the substance concentrations at the inlet (12b) and the outlet (14b) and for adjusting the rotational speed of the drive motor (22) in dependence on the detected difference (44) in a manner such that that it controls the rotational speed of the drive motor (22) with a closed loop, such that the difference (44) of substance concentration reaches a minimum (43).
  2. A pressure exchanger according to claim 1, characterised in that the sensor is a sensor (38) for detecting the concentration of a substance and in particular of the salt content in the fluid.
  3. A pressure exchanger according to one of the preceding claims, characterised in that means for detecting the rotational speed of the rotor (4) are present.
EP07023903.3A 2007-12-11 2007-12-11 Pressure exchanger for transferring pressure energy from one liquid flow to another liquid flow Not-in-force EP2078867B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07023903.3A EP2078867B1 (en) 2007-12-11 2007-12-11 Pressure exchanger for transferring pressure energy from one liquid flow to another liquid flow
PCT/EP2008/009191 WO2009074195A1 (en) 2007-12-11 2008-10-31 Pressure exchanger for transmitting pressure energy from a first liquid stream to a second liquid stream
US12/747,064 US8226376B2 (en) 2007-12-11 2008-10-31 Pressure exchanger for transmitting pressure energy from a first liquid stream to a second liquid stream
CN2008801254614A CN101925749B (en) 2007-12-11 2008-10-31 Pressure exchanger for transmitting pressure energy from first liquid stream to second liquid stream

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07023903.3A EP2078867B1 (en) 2007-12-11 2007-12-11 Pressure exchanger for transferring pressure energy from one liquid flow to another liquid flow

Publications (2)

Publication Number Publication Date
EP2078867A1 EP2078867A1 (en) 2009-07-15
EP2078867B1 true EP2078867B1 (en) 2018-05-30

Family

ID=39295894

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07023903.3A Not-in-force EP2078867B1 (en) 2007-12-11 2007-12-11 Pressure exchanger for transferring pressure energy from one liquid flow to another liquid flow

Country Status (4)

Country Link
US (1) US8226376B2 (en)
EP (1) EP2078867B1 (en)
CN (1) CN101925749B (en)
WO (1) WO2009074195A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011038452A1 (en) * 2009-09-30 2011-04-07 Ghd Pty Ltd Liquid treatment system
US20120257991A1 (en) * 2009-11-24 2012-10-11 Ghd Pty Ltd Pressure exchanger
WO2011153920A1 (en) * 2010-06-08 2011-12-15 杭州帕尔水处理科技有限公司 Work-exchange type energy recovery device
EP2837824B1 (en) 2013-08-15 2015-12-30 Danfoss A/S Hydraulic machine, in particular hydraulic pressure exchanger
EP2837825B1 (en) * 2013-08-15 2016-02-10 Danfoss A/S Hydraulic machine, in particular hydraulic pressure exchanger
EP2837823B1 (en) * 2013-08-15 2017-04-26 Danfoss A/S Hydraulic machine, in particular hydraulic pressure exchanger
RU2642191C2 (en) * 2013-10-03 2018-01-24 Энерджи Рикавери Инк. System of hydraulic fracturing of formation with hydraulic energy transmission system
US9739128B2 (en) 2013-12-31 2017-08-22 Energy Recovery, Inc. Rotary isobaric pressure exchanger system with flush system
US11047398B2 (en) * 2014-08-05 2021-06-29 Energy Recovery, Inc. Systems and methods for repairing fluid handling equipment
US20160146229A1 (en) * 2014-11-26 2016-05-26 Energy Recovery, Inc. System and method for rotors
EP3227563B1 (en) * 2014-12-04 2020-02-05 Breakthrough Technologies, LLC Hybrid pressure and thermal exchanger
US20160160888A1 (en) * 2014-12-05 2016-06-09 Energy Recovery, Inc. Rotor duct spotface features
CN105114368B (en) * 2015-07-23 2017-03-01 西安交通大学 A kind of have the rotary work(exchanger extending influent stream corner structure
US10527073B2 (en) * 2016-06-06 2020-01-07 Energy Recovery, Inc. Pressure exchanger as choke
US10550857B2 (en) 2017-06-05 2020-02-04 Energy Recovery, Inc. Hydraulic energy transfer system with filtering system
CN109316967B (en) * 2018-10-12 2024-02-23 中国矿业大学 Self-driven double-turntable type energy recovery device
US10933375B1 (en) 2019-08-30 2021-03-02 Fluid Equipment Development Company, Llc Fluid to fluid pressurizer and method of operating the same
US12085094B2 (en) * 2020-02-12 2024-09-10 Isobaric Strategies Inc. Pressure exchanger with flow divider in rotor duct
ES2942899T3 (en) * 2020-12-18 2023-06-07 Danfoss As Set of tubes, pressure exchanger and reverse osmosis system
US11555509B2 (en) * 2021-03-02 2023-01-17 Energy Recovery, Inc. Motorized pressure exchanger with a low-pressure centerbore
US20230020630A1 (en) * 2021-07-08 2023-01-19 Energy Recovery, Inc. Reduced mixing pressure exchanger
US11959502B2 (en) 2021-07-09 2024-04-16 Energy Recovery, Inc Control of a pressure exchanger system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255418A (en) * 1985-09-02 1987-03-11 Mazda Motor Corp Engine with pressure wave supercharger
US4887942A (en) 1987-01-05 1989-12-19 Hauge Leif J Pressure exchanger for liquids
AT408785B (en) 1995-11-30 2002-03-25 Blank Otto Ing CHARGER FOR THE CHARGE AIR OF AN INTERNAL COMBUSTION ENGINE
EP1508361B1 (en) 2003-08-22 2009-02-18 Danfoss A/S A reverse osmosis system with a pressure exchanger
DE102004038440A1 (en) 2004-08-07 2006-03-16 Ksb Aktiengesellschaft Variable speed pressure exchanger
ES2719475T3 (en) * 2004-08-10 2019-07-10 Isobaric Strategies Inc Pressure exchanger and its use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN101925749A (en) 2010-12-22
US8226376B2 (en) 2012-07-24
WO2009074195A1 (en) 2009-06-18
CN101925749B (en) 2013-03-27
US20110008182A1 (en) 2011-01-13
EP2078867A1 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
EP2078867B1 (en) Pressure exchanger for transferring pressure energy from one liquid flow to another liquid flow
EP2705279B1 (en) Hydraulic circuit, method for operating same
DE2947729C2 (en)
EP2014919B1 (en) Adjustment valve for adjusting the supply volume of a pressure pump
DE2737788C2 (en)
DE102008046168B4 (en) Axial piston pump and reverse osmosis device
WO2010022726A1 (en) Reverse-osmosis apparatus
EP1778983A1 (en) Speed-regulated pressure exchanger
DE19580685B4 (en) Radial piston hydraulic motor and method for controlling a radial piston hydraulic motor
WO2019025526A1 (en) Mixing device and method for controlling the temperature of a fluid flow
DE102010009581A1 (en) Reverse osmosis device
DE2758266C2 (en) Device for regulating the throughput of a single or twin screw extruder connected to a polymerisation system
DE102007000696A1 (en) Valve e.g. inlet valve, time controlling system for use in drive transmission system, has pulse non-return valve integrated into fluid passage and reducing pressure pulse from phase switching valve to flow control valve through passage
DE102008000093B4 (en) Drive system for hydraulic motors for driving the wood loading elements of the delimbing and separating head of a forest harvester
WO2018166967A1 (en) Centrifugal pump aggregate
DE60305812T2 (en) Hydraulic pump with double outlet and system with same
EP1633487B1 (en) Centrifuge comprising hydraulic differential speed determination
DE69610527T2 (en) Torque transmission apparatus
WO2019025525A1 (en) Circulation pump assembly
EP3376051B1 (en) Pump unit
DE4108282A1 (en) FLOW CONTROL DEVICE
DE19541220C1 (en) Variable-speed hydraulic pump delivering at constant rate
DE3404927A1 (en) Hydraulic control device for the injection unit of a plastics injection moulding machine
EP2101934A1 (en) Drive roller, in particular for edge trimmers
DE202022104616U1 (en) Pump arrangement for conveying a fluid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20091222

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20160129

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171214

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1003890

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016200

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180530

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180830

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007016200

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181211

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1003890

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007016200

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221223

Year of fee payment: 16

Ref country code: FR

Payment date: 20221222

Year of fee payment: 16

Ref country code: DE

Payment date: 20221213

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007016200

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20231211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231231