EP2053329A1 - Electronics industry installation and method for operating electronic industry installation - Google Patents
Electronics industry installation and method for operating electronic industry installation Download PDFInfo
- Publication number
- EP2053329A1 EP2053329A1 EP07023683A EP07023683A EP2053329A1 EP 2053329 A1 EP2053329 A1 EP 2053329A1 EP 07023683 A EP07023683 A EP 07023683A EP 07023683 A EP07023683 A EP 07023683A EP 2053329 A1 EP2053329 A1 EP 2053329A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- product stream
- residual fraction
- oxygen
- production unit
- air separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04254—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
- F25J3/0426—The cryogenic component does not participate in the fractionation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04321—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/0443—A main column system not otherwise provided, e.g. a modified double column flowsheet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04527—Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04563—Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/90—Details relating to column internals, e.g. structured packing, gas or liquid distribution
- F25J2200/94—Details relating to the withdrawal point
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
- F25J2215/56—Ultra high purity oxygen, i.e. generally more than 99,9% O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/50—Separating low boiling, i.e. more volatile components from oxygen, e.g. N2, Ar
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/02—Recycle of a stream in general, e.g. a by-pass stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/02—Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/20—Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/62—Details of storing a fluid in a tank
Definitions
- the invention relates to a method for operating an electronic industrial plant according to the preamble of patent claim 1.
- cryogenic air separation unit in the form of a single column system which produces nitrogen as a single product and at least partially supplies it to the semiconductor manufacturing unit.
- Such units often require nitrogen for inertization, pure oxygen to produce an oxidizing atmosphere to remove CO and NO from the manufacturing tools, and impure oxygen to dispose of noxious fumes by incineration.
- the production unit for semiconductor production can be formed, for example, by a system known per se for the production or further processing of wafers, for the production or further processing of silicon plates for solar installations or for the production of integrated circuits.
- cryogenic air separation units are off Hausen / Linde, Tiefftemperaturtechnik, 2nd edition 1985, chapter 4 (pages 281 to 337 ) known. They usually have a distillation column system for nitrogen-oxygen separation and at least one main heat exchanger for cooling of feed air.
- the distillation column system of the invention can be configured as a single column system for nitrogen-oxygen separation (ie, for example, have a single column as a single distillation column), as a two-column system (for example as a classic Linde double column system or as a single column with pure oxygen column), or as three or multi-column system.
- it may also have condenser-type evaporators for producing reflux liquid and ascending steam for the distillation.
- Streams taken from the distillation column system and / or the main heat exchanger are referred to below as product streams of the cryogenic air separation unit. It is known to withdraw from one of the columns and / or condenser-evaporators of the distillation column system a nitrogen product stream which is in gaseous or liquid state and to deliver at least a portion of this nitrogen product stream to the production unit.
- distillation devices may be provided for obtaining other air components, in particular noble gases, for example for argon production.
- the invention is based on the object to operate the electronic industrial plant economically particularly favorable.
- product stream herein is meant not only those streams which are produced in the or one of the distillation columns of the cryogenic air separation unit, but also streams which originate from an external source but in the cryogenic air separation unit, for example in its main heat exchanger, is cooled in the feed air, be brought into heat exchange with one or more streams which originate from or be introduced into the distillation column (s).
- the third product stream has a composition which differs from the composition of the first product stream and from the composition of the second product stream, preferably by at least 1 mol% with respect to at least one component, in particular by at least 5 mol% or at least 10 mol% with respect to at least one component. It may, for example, be an oxygen product that is purer or less pure than that first product flow is.
- the third product stream may also be formed by an argon, helium or hydrogen product or by a nitrogen product that is purer or less pure than the first product stream. Of course, a combination of two or more "third" product streams of different composition is possible.
- the second product stream may be formed by a pure oxygen stream and the third product stream may be formed by a non-pure oxygen stream.
- the impure oxygen product can be generated in any manner in the cryogenic air separation unit. Preferably, this is done by a first oxygen-enriched residual fraction is generated, at least a first part of the first residual fraction is expanded to perform work in a relaxation machine and a second part of the first residual fraction is not introduced into the expansion machine, but is obtained as a gaseous impure oxygen product stream. At least a portion of the gaseous particulate oxygen product stream is then sent to the production unit.
- the remainder or part of the remainder can be used in the context of the invention as a gaseous impure oxygen product, specifically below the inlet pressure of the expansion machine, that is to say at a significantly superatmospheric pressure of 3 to 6 bar, preferably 3.5 to 5.5 bar.
- the gaseous impure oxygen product can be used for any application in the production unit that requires a corresponding pressure without the need for a compressor, for example, as an oxidant in a chemical reaction, such as combustion of environmentally harmful exhaust gas.
- the cryogenic air separation unit has a single column with overhead condenser in which vapor from the upper region of the single column is at least partially condensed
- the first residual fraction can first be removed liquid from the lower region of the single column and then at least partially vaporized in the overhead condenser; from the vaporized residual fraction downstream of the Top condenser then the first and the second part of the first residual fraction are formed.
- a second residual fraction is taken from the lower or middle region of the single column, recompressed, and then fed back to the single column. This increases the product yield, in particular of nitrogen.
- the recompression of the second residual fraction can be carried out by means of a cold compressor. Both in cold and in warm recompression, the mechanical energy generated during the work-relaxing expansion can be used at least partially for recompression of the second residual fraction.
- the second residual fraction can be taken out of the single column together with the first residual fraction. Alternatively, it is withdrawn from an intermediate point of the single column, which is arranged above the sump, in particular above the point at which the first residual fraction is removed.
- the first residual fraction can be withdrawn, for example, at the bottom of the single column.
- a pure oxygen product for the production unit or other third product stream can be recovered within the cryogenic air separation unit by evaporating and / or heating an external fluid of appropriate composition by cooling feed air in a main heat exchanger of the cryogenic air separation unit and into a distillation column system for nitrogen Oxygen separation is initiated, a fluid from an external source is at least temporarily passed into a liquid tank, at least temporarily taken fluid in the liquid state from the liquid tank, evaporated in the main heat exchanger and recovered as a gaseous pure oxygen product stream, which finally at least to Part of the production unit is supplied.
- the external fluid from the liquid tank is not warmed as usual by means of an external heat exchanger (for example a water bath evaporator or an air-heated evaporator), but in the main heat exchanger in which the feed air for the distillation column system is cooled.
- an external heat exchanger for example a water bath evaporator or an air-heated evaporator
- the fluid originates from an "external source", that is, not from any of the separation columns of the nitrogen-oxygen separation distillation column system or a separation column downstream of the nitrogen-oxygen separation distillation column system.
- it is transported from another plant for producing liquefied gas, for example by means of a tanker truck.
- It may be a fluid having the chemical composition of one of the product streams of the nitrogen-oxygen separation distillation column system.
- the fluid has a different composition than these product streams and consists for example of argon or hydrogen.
- the inventive method is thus suitable in particular for the supply of companies in the semiconductor industry with industrial gases.
- the "main heat exchanger” is preferably formed by a single heat exchanger block. For larger systems, it may be useful to realize the main heat exchanger by a plurality of parallel with respect to the temperature profile strands, which are formed by separate components. In principle, it is possible that the main heat exchanger or each of these strands is formed by two or more blocks connected in series.
- the operating pressure of the liquid tank is at least 1 bar above the atmospheric pressure, preferably at least 1 bar above the product pressure of the gaseous additional product, under which it is delivered to an application or a post-compression unit.
- the operating pressure of the liquid tank is for example 2 to 36 bar, preferably 5 to 16 bar.
- the overpressure may be formed by any known means, for example by filling with pressurized fluid or by pressure build-up evaporation.
- the pure oxygen can be recovered by decomposition in the cryogenic air separation unit by taking an oxygen-containing stream from the single column at an intermediate point and feeding it to a pure oxygen column and removing a pure oxygen product stream in the liquid state from the lower region of the pure oxygen column, the pure oxygen -Product stream - optionally evaporated after evaporation in the liquid state in the main heat exchanger against feed air and warmed and fed at least in part to the production unit.
- the invention also relates to an electronic industrial plant according to claim 10.
- the electronic industrial plant of FIG. 1 has a production unit 200 for producing a semiconductor product and a cryogenic air separation unit 100.
- Air 1 is supplied to a cryogenic air separation unit 100. From this, a nitrogen product stream as the first product stream 110, a pure oxygen product stream as the second product stream 120 and a non-pure oxygen product stream as the third product stream 130 are removed and fed to the production unit.
- FIG. 2 shows details of the cryogenic air separation unit of FIG. 1
- the distillation column system of the cryogenic air separation unit of the embodiment of FIG. 2 has a single column 12 and a pure oxygen column 38.
- Atmospheric air 1 is drawn in via a filter 2 from an air compressor and there compressed to an absolute pressure of 6 to 20 bar, preferably about 9 bar.
- the compressed air 6 is cleaned in a cleaning device 7 comprising a pair of containers filled with adsorption material, preferably molecular sieve.
- the purified air 8 is cooled in a main heat exchanger 9 to about dew point and partially liquefied.
- a first part 11 of the cooled air 10 is introduced via a throttle valve 51 into the single column 12.
- the feed is preferably some practical or theoretical soils above the sump.
- the operating pressure of the single column 12 (at the top) is 6 to 20 bar, preferably about 9 bar.
- Your top condenser is cooled with a second residual fraction 18 and a first residual fraction 14.
- the first residual fraction 14 is withdrawn from the sump of the single column 12, the second residual fraction 14 from an intermediate point some practical or theoretical soils above the air supply or at the same level as this.
- gaseous nitrogen 15 16 is withdrawn at the top, heated in the main heat exchanger 9 to about ambient temperature and finally withdrawn via line 17 as gaseous pressure product (PGAN) and on in FIG. 1 shown line 110 fed as a nitrogen product stream of the production unit 200.
- a portion 53 of the condensate 52 from the top condenser 13 may be recovered as liquid nitrogen product (PLIN); the remainder 54 is given up as reflux to the head of the single column.
- the second residual fraction 18 is vaporized in the top condenser 13 under a pressure of 2 to 9 bar, preferably about 4 bar and flows in gaseous form via line 29 to a cold compressor 30 in which it is recompressed to about the operating pressure of the single column.
- the recompressed residual fraction 31 is cooled in the main heat exchanger 9 back to column temperature and finally fed via line 32 of the single column 12 at the bottom again.
- the first residual fraction 14 is vaporized in the top condenser 13 under a pressure of 2 to 9 bar, preferably about 4 bar, and flows in gaseous form via line 19 to the cold end of the main heat exchanger 9.
- a first part 20 of the first residual fraction is removed again (Line 20).
- a second part remains in the main heat exchanger 9, where it is further warmed to approximately ambient temperature and leaves via line 60, the cryogenic air separation unit as gaseous impure oxygen product (GOX Imp.). He will then talk about the in FIG. 1 shown line 130 as Unreininsauer product flow supplied to the production unit 200.
- the first part 20 of the first residual fraction is depressurized in a relaxation machine 21, which is designed in the example as turboexpander, working to about 300 mbar above atmospheric pressure.
- the expansion machine is mechanically coupled to the cold compressor 30 and a braking device 22, which is formed in the embodiment by an oil brake.
- the relaxed first residual fraction 23 is heated in the main heat exchanger 9 to about ambient temperature.
- the warm first residual fraction 24 is blown off into the atmosphere (line 25) and / or used as regeneration gas 26, 27 in the cleaning device 7, optionally after heating in the heater 28.
- an impure oxygen product from the recompressed second residual fraction 31 branched off and warmed in the main heat exchanger 9 to about ambient temperature.
- An oxygen-containing stream 36 that is substantially free of less volatile impurities is withdrawn from an intermediate location of the single column 12 in the liquid state, which is located 5 to 25 theoretical or practical trays above the air feed.
- the oxygen-containing stream 36 is optionally supercooled in a sump evaporator 37 of the pure oxygen column 38 and fed via line 39 and throttle valve 40 to the top of the pure oxygen column 38.
- the operating pressure of the pure oxygen column 38 (at the top) is 1.3 to 4 bar, preferably about 2.5 bar.
- the sump evaporator 37 of the pure oxygen column 38 is also cooled by means of a second part 42 of the cooled feed air 10.
- the feed air stream 42 is at least partially, for example, completely condensed and flows via line 43 to the single column 12, where it is introduced approximately at the level of the feed of the remaining feed air 11.
- a pure oxygen product stream 41 is removed in the liquid state, brought by a pump 55 to an elevated pressure of 2 to 100 bar, preferably about 12 bar, led via line 56 to the cold end of the main heat exchanger 9, there under the increased pressure evaporated and warmed to about ambient temperature and finally via line 57 as gaseous product (GOX-IC) won. He will then talk about the in FIG. 1 shown line 120 fed as pure oxygen product stream of the production unit 200.
- the head gas 58 of the pure oxygen column 38 is admixed with the relaxed first residual fraction 23. If necessary, a portion of the feed air for pumping prevention of the cold compressor 30 is led to its inlet via a bypass line 59 (anti-surge control).
- a liquid oxygen can be removed as a liquid product (not shown in the drawing).
- an external liquid for example, liquid argon, liquid nitrogen or liquid oxygen from a liquid tank, may be vaporized in the main heat exchanger 9 in indirect heat exchange with the feed air (not shown in the drawing).
- a liquid tank 70 is occasionally filled from a tanker with liquid argon as a "fluid".
- the fluid is introduced below about 12 bar, the operating pressure of the liquid tank.
- Liquid fluid is continuously withdrawn below about 12 bar via a line 71, vaporized and warmed under this pressure in the main heat exchanger 9 and finally drawn off via lines 72 and 73 as a gaseous additional product.
- another stream 74 of liquid and pressurized fluid may be withdrawn from the liquid tank 70, in an evaporator 75 which is vaporized by means of an external heat transfer medium (for example atmospheric air or water) and added to the gaseous by-product via line 76.
- the evaporator 75 can also be used for emergency supply in case of failure of the main heat exchanger 9.
- the flow rates are adjusted by the valves 77 and 78.
- the invention is also applicable to a similar process without pure oxygen column 38.
- the external fluid in the liquid tank 70 is not formed by argon but by pure oxygen.
- the pure oxygen product stream is then withdrawn via line 72.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Betreiben einer Elektronikindustrieanlage gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for operating an electronic industrial plant according to the preamble of
Es ist bekannt, bei Elektronikindustrieanlagen eine Tieftemperatur-Luftzerlegungseinheit in Form einer Einzelsäulenanlage einzusetzen, die Stickstoff als einziges Produkt erzeugen und dieses mindestens zum Teil an die Produktionseinheit zur Halbleiterherstellung zu liefern. Solche Einheiten benötigen häufig Stickstoff zur Inertisierung, Reinsauerstoff zur Herstellung einer oxidierenden Atmosphäre zur Entfernung von CO und NO aus den Fertigungswerkzeugen und Unreinsauerstoff zur Entsorgung von schädlichen Abgasen durch Verbrennung.It is known to use in electronics industry plants a cryogenic air separation unit in the form of a single column system which produces nitrogen as a single product and at least partially supplies it to the semiconductor manufacturing unit. Such units often require nitrogen for inertization, pure oxygen to produce an oxidizing atmosphere to remove CO and NO from the manufacturing tools, and impure oxygen to dispose of noxious fumes by incineration.
Die Produktionseinheit zur Halbleiterherstellung kann zum Beispiel durch eine an sich bekannte Anlage zur Herstellung oder Weiterverarbeitung von Wafern, zur Fertigung oder Weiterverarbeitung von Siliziumplatten für Solaranlagen oder zur Herstellung integrierter Schaltungen gebildet werden.The production unit for semiconductor production can be formed, for example, by a system known per se for the production or further processing of wafers, for the production or further processing of silicon plates for solar installations or for the production of integrated circuits.
Tieftemperatur-Luftzerlegungseinheiten sind zum Beispiel aus
Zusätzlich können weitere Destilliervorrichtungen zur Gewinnung anderer Luftkomponenten, insbesondere von Edelgasen vorgesehen sein, beispielsweise zur Argongewinnung.In addition, further distillation devices may be provided for obtaining other air components, in particular noble gases, for example for argon production.
Der Erfindung liegt die Aufgabe zu Grunde, die Elektronikindustrieanlage wirtschaftlich besonders günstig zu betreiben.The invention is based on the object to operate the electronic industrial plant economically particularly favorable.
Diese Aufgabe wird durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.This object is solved by the characterizing features of
Als "Produktstrom" werden hier nicht nur diejenigen Ströme bezeichnet, die in der oder einer der Destilliersäulen der Tieftemperatur-Luftzerlegungseinheit erzeugt werden, sondern auch Ströme, die ursprünglich aus einer externen Quelle stammen, aber in der Tieftemperatur-Luftzerlegungseinheit, beispielsweise in deren Hauptwärmetauscher, in dem Einsatzluft abgekühlt wird, in Wärmeaustausch mit einem oder mehreren Strömen gebracht werden, die aus der oder den Destilliersäulen stammen oder in diese eingeleitete werden.As "product stream" herein is meant not only those streams which are produced in the or one of the distillation columns of the cryogenic air separation unit, but also streams which originate from an external source but in the cryogenic air separation unit, for example in its main heat exchanger, is cooled in the feed air, be brought into heat exchange with one or more streams which originate from or be introduced into the distillation column (s).
Im Rahmen der Erfindung wird also nicht nur ein Stickstoff-Produktstrom aus der Tieftemperatur-Luftzerlegungseinheit, sondern außerdem zwei weitere Produktströme, von denen mindestens einer einen Rein- oder Unreinsauerstoff-Produktstrom darstellt, aus der Tieftemperatur-Luftzerlegungseinheit in die Produktionseinheit eingeleitet. Dies ermöglicht eine wesentlich effizientere Nutzung der Tieftemperatur-Luftzerlegungseinheit und erspart den Einsatz anderer Quellen für diese Ströme, die in der Produktionseinheit benötigt werden.In the context of the invention, therefore, not only a nitrogen product stream from the cryogenic air separation unit, but also two further product streams, at least one of which represents a pure or non-pure oxygen product stream, are introduced from the cryogenic air separation unit into the production unit. This allows a much more efficient use of the cryogenic air separation unit and saves the use of other sources for these flows that are needed in the production unit.
Der dritte Produktstrom weist eine Zusammensetzung aufweist, die sich von der Zusammensetzung des ersten Produktstroms und von der Zusammensetzung des zweiten Produktstroms unterscheidet, vorzugsweise um mindestens 1 mol-% bezüglich mindestens einer Komponente, insbesondere um mindestens 5 mol-% oder mindestens 10 mol-% bezüglich mindestens einer Komponente. Es kann sich beispielsweise um ein Sauerstoffprodukt handeln, das reiner oder unreiner als der erste Produktstrom ist. Der dritte Produktstrom kann auch durch ein Argon-, Helium- oder Wasserstoffprodukt gebildet werden oder durch ein Stickstoffprodukt, das reiner oder weniger rein als der erste Produktstrom ist. Selbstverständlich ist auch eine Kombination zweier oder mehrerer "dritter" Produktströme unterschiedlicher Zusammensetzung möglich.The third product stream has a composition which differs from the composition of the first product stream and from the composition of the second product stream, preferably by at least 1 mol% with respect to at least one component, in particular by at least 5 mol% or at least 10 mol% with respect to at least one component. It may, for example, be an oxygen product that is purer or less pure than that first product flow is. The third product stream may also be formed by an argon, helium or hydrogen product or by a nitrogen product that is purer or less pure than the first product stream. Of course, a combination of two or more "third" product streams of different composition is possible.
Beispielsweise können der zweite Produktstrom durch einen Reinsauerstoffstrom und der dritte Produktstrom durch einen Unreinsauerstoffstrom gebildet werden. Das Unreinsauerstoff-Produkt kann auf jede Weise in der Tieftemperatur-Luftzerlegungseinheit erzeugt werden. Vorzugsweise geschieht dies, indem eine erste sauerstoffangereicherte Restfraktion erzeugt wird, mindestens ein erster Teil der ersten Restfraktion in einer Entspannungsmaschine arbeitsleistend entspannt wird und ein zweiter Teil der ersten Restfraktion nicht in die Entspannungsmaschine eingeleitet, sondern als gasförmiges Unreinsauerstoff-Produktstrom gewonnen wird. Mindestens ein Teil des gasförmigen Unreinsauerstoff-Produktstroms wird dann der Produktionseinheit zugeleitet.For example, the second product stream may be formed by a pure oxygen stream and the third product stream may be formed by a non-pure oxygen stream. The impure oxygen product can be generated in any manner in the cryogenic air separation unit. Preferably, this is done by a first oxygen-enriched residual fraction is generated, at least a first part of the first residual fraction is expanded to perform work in a relaxation machine and a second part of the first residual fraction is not introduced into the expansion machine, but is obtained as a gaseous impure oxygen product stream. At least a portion of the gaseous particulate oxygen product stream is then sent to the production unit.
Häufig wird nur ein Teil der ersten Restfraktion für die Kälteproduktion durch arbeitsleistende Entspannung benötigt. Der Rest oder ein Teil des Restes kann im Rahmen der Erfindung als gasförmiges Unrein-Sauerstoffprodukt verwendet werden, und zwar unter etwa dem Eintrittsdruck der Entspannungsmaschine, das heißt unter einem deutlich überatmosphärischen Druck von 3 bis 6 bar, vorzugsweise 3,5 bis 5,5 bar.Often, only part of the first residual fraction is needed for refrigeration production through work-performing relaxation. The remainder or part of the remainder can be used in the context of the invention as a gaseous impure oxygen product, specifically below the inlet pressure of the expansion machine, that is to say at a significantly superatmospheric pressure of 3 to 6 bar, preferably 3.5 to 5.5 bar.
Das gasförmige Unrein-Sauerstoffprodukt kann für jede Anwendung in der Produktionseinheit genutzt werden, die einen entsprechenden Druck erfordert, ohne dass ein Verdichter notwendig wäre, zum Beispiel als Oxidationsmittel bei einer chemischen Reaktion, etwa einer Verbrennung von umweltschädlichem Abgas.The gaseous impure oxygen product can be used for any application in the production unit that requires a corresponding pressure without the need for a compressor, for example, as an oxidant in a chemical reaction, such as combustion of environmentally harmful exhaust gas.
Wenn die Tieftemperatur-Luftzerlegungseinheit eine Einzelsäule mit Kopfkondensator aufweist, in dem Dampf aus dem oberen Bereich der Einzelsäule mindestens teilweise kondensiert wird, kann die erste Restfraktion zunächst flüssig aus dem unteren Bereich der Einzelsäule entnommen und anschließend in dem Kopfkondensator mindestens teilweise verdampft werden; aus der verdampften Restfraktion stromabwärts des Kopfkondensators werden dann der erste und der zweite Teil der ersten Restfraktion gebildet.If the cryogenic air separation unit has a single column with overhead condenser in which vapor from the upper region of the single column is at least partially condensed, the first residual fraction can first be removed liquid from the lower region of the single column and then at least partially vaporized in the overhead condenser; from the vaporized residual fraction downstream of the Top condenser then the first and the second part of the first residual fraction are formed.
Außerdem ist es günstig, wenn bei der Erfindung in an sich bekannter Weise eine zweite Restfraktion aus dem unteren oder mittleren Bereich der Einzelsäule entnommen, rückverdichtet und anschließend wieder der Einzelsäule zugeleitet wird. Hierdurch wird die Produktausbeute, insbesondere an Stickstoff, erhöht.Moreover, it is advantageous if, in a manner known per se, a second residual fraction is taken from the lower or middle region of the single column, recompressed, and then fed back to the single column. This increases the product yield, in particular of nitrogen.
Die Rückverdichtung der zweiten Restfraktion kann mittels eines Kaltverdichters vorgenommen werden. Sowohl bei kalter als auch bei warmer Rückverdichtung kann die bei der arbeitsleistenden Entspannung erzeugte mechanische Energie mindestens teilweise zur Rückverdichtung der zweiten Restfraktion genutzt werden.The recompression of the second residual fraction can be carried out by means of a cold compressor. Both in cold and in warm recompression, the mechanical energy generated during the work-relaxing expansion can be used at least partially for recompression of the second residual fraction.
Die zweite Restfraktion kann zusammen mit der ersten Restfraktion aus der Einzelsäule entnommen werden. Alternativ wird sie von einer Zwischenstelle der Einzelsäule abgezogen, die oberhalb des Sumpfs angeordnet ist, insbesondere oberhalb der Stelle, an der die erste Restfraktion entnommen wird. Die erste Restfraktion kann dabei zum Beispiel am Sumpf der Einzelsäule abgezogen werden.The second residual fraction can be taken out of the single column together with the first residual fraction. Alternatively, it is withdrawn from an intermediate point of the single column, which is arranged above the sump, in particular above the point at which the first residual fraction is removed. The first residual fraction can be withdrawn, for example, at the bottom of the single column.
Ein Reinsauerstoff-Produkt für die Produktionseinheit oder ein anderer dritter Produktstrom kann innerhalb der Tieftemperatur-Luftzerlegungseinheit mittels Verdampfung und/oder Anwärmung eines externen Fluids entsprechender Zusammensetzung gewonnen werden, indem Einsatzluft in einem Hauptwärmetauscher der Tieftemperatur-Luftzerlegungseinheit abgekühlt und in ein Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung eingeleitet wird, ein Fluid aus einer externen Quelle mindestens zeitweise in einen Flüssigtank geleitet wird, wobei mindestens zeitweise Fluid in flüssigem Zustand aus dem Flüssigtank entnommen, in dem Hauptwärmetauscher verdampft und als gasförmiger Reinsauerstoff-Produktstrom gewonnen wird, der schließlich mindestens zum Teil der Produktionseinheit zugeleitet wird.A pure oxygen product for the production unit or other third product stream can be recovered within the cryogenic air separation unit by evaporating and / or heating an external fluid of appropriate composition by cooling feed air in a main heat exchanger of the cryogenic air separation unit and into a distillation column system for nitrogen Oxygen separation is initiated, a fluid from an external source is at least temporarily passed into a liquid tank, at least temporarily taken fluid in the liquid state from the liquid tank, evaporated in the main heat exchanger and recovered as a gaseous pure oxygen product stream, which finally at least to Part of the production unit is supplied.
Das externe Fluid aus dem Flüssigtank wird nicht wie üblich mittels eines externen Wärmetauschers (beispielsweise einem Wasserbad-Verdampfer oder einem luftbeheizten Verdampfer) angewärmt, sondern im Hauptwärmetauscher, in dem die Einsatzluft für das Destilliersäulen-System abgekühlt wird. Hierdurch kann die Kälte, die in dem externen Fluid enthalten ist, für das Zerlegungsverfahren zurückgewonnen werden, indem sie in dem Hauptwärmetauscher auf Einsatzluft übertragen wird.The external fluid from the liquid tank is not warmed as usual by means of an external heat exchanger (for example a water bath evaporator or an air-heated evaporator), but in the main heat exchanger in which the feed air for the distillation column system is cooled. As a result, the cold, contained in the external fluid are recovered for the separation process by being transferred to feed air in the main heat exchanger.
Das Fluid stammt aus einer "externen Quelle", das heißt nicht aus einer der Trennsäulen des Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung oder einer dem Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung nachgeschalteten Trennsäule. Vorzugsweise wird es aus einer anderen Anlage zur Erzeugung verflüssigter Gas antransportiert, beispielsweise mittels eines Tankwagens. Es kann sich dabei um ein Fluid, das die chemische Zusammensetzung eines der Produktströme des Destilliersäulen-Systems zur Stickstoff-Sauerstoff-Trennung aufweist. Vorzugsweise weist das Fluid jedoch eine andere Zusammensetzung als diese Produktströme auf und besteht beispielsweise aus Argon oder Wasserstoff. Das erfindungsgemäße Verfahren eignet sich damit insbesondere für die Versorgung von Betrieben der Halbleiterindustrie mit technischen Gasen. Diese benötigen häufig eine so geringe Menge an Argon, dass es sich nicht lohnt, dem Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung eine Argongewinnung nachzuschalten. Außerdem kann auch die Kälte von Gasen wie Wasserstoff, die nicht in Luftzerlegungsanlagen gewonnen werden, für die Luftzerlegung genutzt und damit der Energieverbrauch der Zerlegung verringert werden.The fluid originates from an "external source", that is, not from any of the separation columns of the nitrogen-oxygen separation distillation column system or a separation column downstream of the nitrogen-oxygen separation distillation column system. Preferably, it is transported from another plant for producing liquefied gas, for example by means of a tanker truck. It may be a fluid having the chemical composition of one of the product streams of the nitrogen-oxygen separation distillation column system. Preferably, however, the fluid has a different composition than these product streams and consists for example of argon or hydrogen. The inventive method is thus suitable in particular for the supply of companies in the semiconductor industry with industrial gases. These often require such a small amount of argon that it is not worthwhile downstream of the distillation column system for nitrogen-oxygen separation argon production. In addition, the cold of gases such as hydrogen, which are not obtained in air separation plants, used for the air separation and thus reduce the energy consumption of the decomposition.
Der "Hauptwärmetauscher" wird vorzugsweise durch einen einzigen Wärmetauscherblock gebildet. Bei größeren Anlagen kann es sinnvoll sein, den Hauptwärmetauscher durch mehrere hinsichtlich des Temperaturverlaufs parallel geschaltete Stränge zu realisieren, die durch voneinander getrennte Bauelemente gebildet werden. Grundsätzlich ist es möglich, dass der Hauptwärmetauscher beziehungsweise jeder dieser Stränge durch zwei oder mehr seriell verbundene Blöcke gebildet wird.The "main heat exchanger" is preferably formed by a single heat exchanger block. For larger systems, it may be useful to realize the main heat exchanger by a plurality of parallel with respect to the temperature profile strands, which are formed by separate components. In principle, it is possible that the main heat exchanger or each of these strands is formed by two or more blocks connected in series.
Es ist günstig, wenn der Betriebsdruck des Flüssigtanks mindestens 1 bar über dem Atmosphärendruck liegt, vorzugsweise mindestens 1 bar über dem Produktdruck des gasförmigen Zusatzprodukts, unter dem dieses an eine Anwendung oder eine Nachverdichtungseinheit abgegeben wird. Der Betriebsdruck des Flüssigtanks beträgt beispielsweise 2 bis 36 bar, vorzugsweise 5 bis 16 bar. Der Überdruck kann durch jede bekannte Maßnahme, beispielsweise durch das Befüllen mit unter entsprechendem Druck stehendem Fluid oder durch Druckaufbauverdampfung gebildet werden.It is favorable if the operating pressure of the liquid tank is at least 1 bar above the atmospheric pressure, preferably at least 1 bar above the product pressure of the gaseous additional product, under which it is delivered to an application or a post-compression unit. The operating pressure of the liquid tank is for example 2 to 36 bar, preferably 5 to 16 bar. The overpressure may be formed by any known means, for example by filling with pressurized fluid or by pressure build-up evaporation.
Alternativ oder zusätzlich kann der Reinsauerstoff durch Zerlegung in der Tieftemperatur-Luftzerlegungseinheit gewonnen werden, indem ein sauerstoffhaltiger Strom der Einzelsäule an einer Zwischenstelle entnommen und einer Reinsauerstoffsäule zugeleitet wird und ein Reinsauerstoff-Produktstrom in flüssigem Zustand aus dem unteren Bereich der Reinsauerstoffsäule entnommen wird, der Reinsauerstoff-Produktstrom - gegebenenfalls nach Druckerhöhung im flüssigen Zustand in dem Hauptwärmetauscher gegen Einsatzluft verdampft und angewärmt und mindestens zum Teil der Produktionseinheit zugeleitet wird.Alternatively or additionally, the pure oxygen can be recovered by decomposition in the cryogenic air separation unit by taking an oxygen-containing stream from the single column at an intermediate point and feeding it to a pure oxygen column and removing a pure oxygen product stream in the liquid state from the lower region of the pure oxygen column, the pure oxygen -Product stream - optionally evaporated after evaporation in the liquid state in the main heat exchanger against feed air and warmed and fed at least in part to the production unit.
Die Erfindung betrifft außerdem eine Elektronikindustrieanlage gemäß Patentanspruch 10.The invention also relates to an electronic industrial plant according to
Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand eines in den Zeichnungen schematisch dargestellten Ausführungsbeispiels näher erläutert. Hierbei zeigen:
Figur 1- eine Prinzipdarstellung des Ausführungsbeispiels,
Figur 2- die Tieftemperatur-Luftzerlegungseinheit des Ausführungsbeispiels im Detail.
- FIG. 1
- a schematic diagram of the embodiment,
- FIG. 2
- the cryogenic air separation unit of the embodiment in detail.
Die Elektronikindustrieanlage der
Der Betriebsdruck der Einzelsäule 12 (am Kopf) beträgt 6 bis 20 bar, vorzugsweise etwa 9 bar. Ihr Kopfkondensator wird mit einer zweiten Restfraktion 18 und einer ersten Restfraktion 14 gekühlt. Die erste Restfraktion 14 wird vom Sumpf der Einzelsäule 12 abgezogen, die zweite Restfraktion 14 von einer Zwischenstelle einige praktische oder theoretische Böden oberhalb der Luftzuspeisung oder auf gleicher Höhe wie diese.The operating pressure of the single column 12 (at the top) is 6 to 20 bar, preferably about 9 bar. Your top condenser is cooled with a second
Als Hauptprodukt der Einzelsäule 12 wird gasförmiger Stickstoff 15, 16 am Kopf abgezogen, im Hauptwärmetauscher 9 auf etwa Umgebungstemperatur angewärmt und schließlich über Leitung 17 als gasförmiges Druckprodukt (PGAN) abgezogen und über die in
Die zweite Restfraktion 18 wird im Kopfkondensator 13 unter einem Druck von 2 bis 9 bar, vorzugsweise etwa 4 bar verdampft und strömt gasförmig über Leitung 29 zu einem Kaltverdichter 30, in dem sie auf etwa den Betriebsdruck der Einzelsäule rückverdichtet wird. Die rückverdichtete Restfraktion 31 wird im Hauptwärmetauscher 9 wieder auf Säulentemperatur abgekühlt und schließlich über Leitung 32 der Einzelsäule 12 am Sumpf wieder zugeführt.The second
Die erste Restfraktion 14 wird im Kopfkondensator 13 unter einem Druck von 2 bis 9 bar, vorzugsweise etwa 4 bar verdampft und strömt gasförmig über Leitung 19 zum kalten Ende des Hauptwärmetauschers 9. Aus bei einer Zwischentemperatur wird ein erster Teil 20 der ersten Restfraktion wieder entnommen (Leitung 20). Ein zweiter Teil verbleibt im Hauptwärmetauscher 9, wird dort weiter auf etwa Umgebungstemperatur angewärmt und verlässt über Leitung 60 die Tieftemperatur-Luftzerlegungseinheit als gasförmiges Unrein-Sauerstoffprodukt (GOX-Imp.). Er wird dann über die in
Ein sauerstoffhaltiger Strom 36, der im Wesentlichen frei von schwererflüchtigen Verunreinigungen ist, wird von einer Zwischenstelle der Einzelsäule 12 in flüssigem Zustand abgezogen, die 5 bis 25 theoretische oder praktische Böden oberhalb der Luftzuspeisung angeordnet ist. Der sauerstoffhaltige Strom 36 wird gegebenenfalls in einem Sumpfverdampfer 37 der Reinsauerstoffsäule 38 unterkühlt und über Leitung 39 und Drosselventil 40 auf den Kopf der Reinsauerstoffsäule 38 aufgegeben. Der Betriebsdruck der Reinsauerstoffsäule 38 (am Kopf) beträgt 1,3 bis 4 bar, vorzugsweise etwa 2,5 bar.An oxygen-containing
Der Sumpfverdampfer 37 der Reinsauerstoffsäule 38 wird außerdem mittels eines zweiten Teils 42 der abgekühlten Einsatzluft 10 gekühlt. Der Einsatzluftstrom 42 wird dabei mindestens teilweise, beispielsweise vollständig kondensiert und strömt über Leitung 43 zur Einzelsäule 12, wo er etwa auf Höhe der Zuspeisung der übrigen Einsatzluft 11 eingeleitet wird.The
Vom Sumpf der Reinsauerstoffsäule 38 wird ein Reinsauerstoff-Produktstrom 41 in flüssigem Zustand entnommen, mittels einer Pumpe 55 auf einen erhöhten Druck von 2 bis 100 bar, vorzugsweise etwa 12 bar gebracht, über Leitung 56 zum kalten Ende des Hauptwärmetauschers 9 geführt, dort unter dem erhöhten Druck verdampft und auf etwa Umgebungstemperatur angewärmt und schließlich über Leitung 57 als gasförmiges Produkt (GOX-IC) gewonnen. Er wird dann über die in
Das Kopfgas 58 der Reinsauerstoffsäule 38 wird der entspannten ersten Restfraktion 23 zugemischt. Über eine Bypassleitung 59 wird gegebenenfalls ein Teil der Einsatzluft zur Pumpverhütung des Kaltverdichters 30 zu dessen Eintritt geleitet (anti-surge control).The
Bei Bedarf kann der Anlage stromaufwärts und/oder stromabwärts der Pumpe 55 ein flüssiger Sauerstoffs als Flüssigprodukt entnommen werden (in der Zeichnung nicht dargestellt). Zusätzlich kann eine externe Flüssigkeit, zum Beispiel flüssiges Argon, flüssiger Stickstoff oder flüssiger Sauerstoff aus einem Flüssigtank, in dem Hauptwärmetauscher 9 in indirektem Wärmeaustausch mit der Einsatzluft verdampft werden (in der Zeichnung nicht dargestellt).If necessary, the system upstream and / or downstream of the
Ein Flüssigkeitstank 70 wird von Zeit zu Zeit aus einem Tankwagen mit flüssigem Argon als "Fluid" gefüllt. Das Fluid wird unter etwa 12 bar, dem Betriebsdruck des Flüssigtanks, eingeführt. Kontinuierlich wird über eine Leitung 71 flüssiges Fluid unter etwa 12 bar entnommen, unter diesem Druck im Hauptwärmetauscher 9 verdampft und angewärmt und schließlich über die Leitungen 72 und 73 als gasförmiges Zusatzprodukt abgezogen.A
Gleichzeitig kann ein weiterer Strom 74 des flüssigen und unter Druck stehenden Fluids aus dem Flüssigtank 70 entnommen, in einem Verdampfer 75, der mittels eines externen Wärmeträgers (zum Beispiel atmosphärischer Luft oder Wasser) verdampft und über Leitung 76 dem gasförmigen Zusatzprodukt hinzugefügt werden. Der Verdampfer 75 kann aber auch zur Notversorgung bei Ausfall des Hauptwärmetauschers 9 genutzt werden. Die Mengenströme werden durch die Ventile 77 und 78 eingestellt.At the same time, another
Die Erfindung ist ebenso auf ähnliches Verfahren ohne Reinsauerstoffsäule 38 anwendbar. In diesem Fall wird das externe Fluid in dem Flüssigtank 70 nicht durch Argon, sondern durch Reinsauerstoff gebildet. Der Reinsauerstoffprodukt-Strom wird dann über Leitung 72 abgezogen.The invention is also applicable to a similar process without
Claims (10)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007051182A DE102007051182A1 (en) | 2007-10-25 | 2007-10-25 | An electronic industrial plant and method for operating an electronic industrial plant |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2053329A1 true EP2053329A1 (en) | 2009-04-29 |
Family
ID=39387144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07023683A Withdrawn EP2053329A1 (en) | 2007-10-25 | 2007-12-06 | Electronics industry installation and method for operating electronic industry installation |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2053329A1 (en) |
DE (1) | DE102007051182A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018219685A1 (en) * | 2017-05-31 | 2018-12-06 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Gas production system |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4671813A (en) * | 1984-03-29 | 1987-06-09 | Daidousanso Co. Ltd. | Highly pure nitrogen gas producing apparatus |
US5363656A (en) * | 1992-04-13 | 1994-11-15 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Ultra-high purity nitrogen and oxygen generator |
US5546765A (en) * | 1994-09-14 | 1996-08-20 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Air separating unit |
US5656557A (en) * | 1993-04-22 | 1997-08-12 | Nippon Sanso Corporation | Process for producing various gases for semiconductor production factories |
JPH09303957A (en) * | 1996-05-14 | 1997-11-28 | Teisan Kk | Air separator |
EP1037004A1 (en) * | 1999-03-17 | 2000-09-20 | Linde Aktiengesellschaft | Apparatus and process for gas mixture separation at low temperature |
US6546748B1 (en) * | 2002-06-11 | 2003-04-15 | Praxair Technology, Inc. | Cryogenic rectification system for producing ultra high purity clean dry air |
DE10205096A1 (en) * | 2001-11-02 | 2003-05-15 | Linde Ag | Process for recovering highly pure oxygen from less pure oxygen in a distillation system comprises feeding the less pure oxygen into high pressure column, feeding fraction into a low pressure column and withdrawing highly pure oxygen |
US20070204652A1 (en) * | 2006-02-21 | 2007-09-06 | Musicus Paul | Process and apparatus for producing ultrapure oxygen |
-
2007
- 2007-10-25 DE DE102007051182A patent/DE102007051182A1/en not_active Withdrawn
- 2007-12-06 EP EP07023683A patent/EP2053329A1/en not_active Withdrawn
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4671813A (en) * | 1984-03-29 | 1987-06-09 | Daidousanso Co. Ltd. | Highly pure nitrogen gas producing apparatus |
US5363656A (en) * | 1992-04-13 | 1994-11-15 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Ultra-high purity nitrogen and oxygen generator |
US5656557A (en) * | 1993-04-22 | 1997-08-12 | Nippon Sanso Corporation | Process for producing various gases for semiconductor production factories |
US5546765A (en) * | 1994-09-14 | 1996-08-20 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Air separating unit |
JPH09303957A (en) * | 1996-05-14 | 1997-11-28 | Teisan Kk | Air separator |
EP1037004A1 (en) * | 1999-03-17 | 2000-09-20 | Linde Aktiengesellschaft | Apparatus and process for gas mixture separation at low temperature |
DE10205096A1 (en) * | 2001-11-02 | 2003-05-15 | Linde Ag | Process for recovering highly pure oxygen from less pure oxygen in a distillation system comprises feeding the less pure oxygen into high pressure column, feeding fraction into a low pressure column and withdrawing highly pure oxygen |
US6546748B1 (en) * | 2002-06-11 | 2003-04-15 | Praxair Technology, Inc. | Cryogenic rectification system for producing ultra high purity clean dry air |
US20070204652A1 (en) * | 2006-02-21 | 2007-09-06 | Musicus Paul | Process and apparatus for producing ultrapure oxygen |
Non-Patent Citations (1)
Title |
---|
"Hausen/Linde, Tieftemperaturtechnik", 1985, pages: 281 - 337 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018219685A1 (en) * | 2017-05-31 | 2018-12-06 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Gas production system |
CN110662935A (en) * | 2017-05-31 | 2020-01-07 | 乔治洛德方法研究和开发液化空气有限公司 | Gas production system |
US11346603B2 (en) | 2017-05-31 | 2022-05-31 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Gas production system |
TWI821181B (en) * | 2017-05-31 | 2023-11-11 | 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 | Gas production system |
Also Published As
Publication number | Publication date |
---|---|
DE102007051182A1 (en) | 2009-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2235460B1 (en) | Process and device for the cryogenic separation of air | |
EP2053330A1 (en) | Method for low-temperature air separation | |
EP2015012A2 (en) | Process for the cryogenic separation of air | |
DE10334560A1 (en) | Method for recovering krypton and xenon from air, comprises separating nitrogen and oxygen and feeding krypton- and xenon-containing fraction into enrichment column, stream of pure air being decompressed and fed into column | |
EP1995537A2 (en) | Process and device for the cryogenic separation of air | |
EP2989400B1 (en) | Method for obtaining an air product in an air separating system with temporary storage, and air separating system | |
EP3870915A1 (en) | Method and unit for low-temperature air separation | |
DE10334559A1 (en) | Process for recovering krypton/xenon by the cryogenic separation of air comprises feeding an argon-enriched vapor from a crude argon rectification system into a sump evaporator | |
DE10332863A1 (en) | Krypton and xenon recovery by low-temperature fractionation of air yields higher purity products and higher argon productivity, using low nitrogen content scrubbing liquid stream | |
EP2053331A1 (en) | Method and device for low-temperature air separation | |
EP2603754A2 (en) | Method and device for obtaining compressed oxygen and compressed nitrogen by the low-temperature separation of air | |
EP1757884A2 (en) | Process for the recovery of Krypton and/or Xenon by cryogenic separation of air | |
EP1239246B2 (en) | Process and apparatus for separation of a gas mixture with failsafe operation | |
EP0768503A2 (en) | Triple column air separation process | |
EP2551619A1 (en) | Method and device for extracting pressurised oxygen and pressurised nitrogen by cryogenic decomposition of air | |
WO2021104668A1 (en) | Process and plant for low-temperature fractionation of air | |
DE19933558B4 (en) | Three-column process and apparatus for the cryogenic separation of air | |
DE102007042462A1 (en) | Method and apparatus for the cryogenic separation of air | |
DE102013002094A1 (en) | Method for producing liquid and gaseous oxygen by low temperature separation of air in air separation system in industrial application, involves feeding feed air flow to portion in mixed column and to another portion in separating column | |
EP1300640A1 (en) | Process and device for producing ultra-high purity Nitrogen by cryogenic separation of air | |
EP3980705A1 (en) | Method and system for low-temperature air separation | |
EP2914913A2 (en) | Process for the low-temperature separation of air in an air separation plant and air separation plant | |
EP2053329A1 (en) | Electronics industry installation and method for operating electronic industry installation | |
DE102017010001A1 (en) | Process and installation for the cryogenic separation of air | |
EP2600090A1 (en) | Method and device for generating pressurised oxygen by cryogenic decomposition of air |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LINDE AG |
|
AKX | Designation fees paid | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20091030 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |