EP1913169B1 - Procede de fabrication de tôles d'acier presentant une haute resistance et une excellente ductilite, et tôles ainsi produites - Google Patents
Procede de fabrication de tôles d'acier presentant une haute resistance et une excellente ductilite, et tôles ainsi produites Download PDFInfo
- Publication number
- EP1913169B1 EP1913169B1 EP06778838.0A EP06778838A EP1913169B1 EP 1913169 B1 EP1913169 B1 EP 1913169B1 EP 06778838 A EP06778838 A EP 06778838A EP 1913169 B1 EP1913169 B1 EP 1913169B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- steel
- content
- sheet
- residual austenite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 74
- 239000010959 steel Substances 0.000 title claims description 74
- 238000004519 manufacturing process Methods 0.000 title claims description 32
- 229910001566 austenite Inorganic materials 0.000 claims description 78
- 238000001816 cooling Methods 0.000 claims description 41
- 229910000734 martensite Inorganic materials 0.000 claims description 33
- 239000000203 mixture Substances 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 23
- 229910000859 α-Fe Inorganic materials 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 21
- 229910001563 bainite Inorganic materials 0.000 claims description 15
- 238000005098 hot rolling Methods 0.000 claims description 15
- 238000000137 annealing Methods 0.000 claims description 14
- 239000011265 semifinished product Substances 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 230000001747 exhibiting effect Effects 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 238000005096 rolling process Methods 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 238000003723 Smelting Methods 0.000 claims 1
- 230000003014 reinforcing effect Effects 0.000 claims 1
- 230000009466 transformation Effects 0.000 description 40
- 229910052720 vanadium Inorganic materials 0.000 description 31
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 26
- 229910052799 carbon Inorganic materials 0.000 description 26
- 238000001556 precipitation Methods 0.000 description 26
- 238000004804 winding Methods 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 229910052710 silicon Inorganic materials 0.000 description 12
- 239000010703 silicon Substances 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 229910001567 cementite Inorganic materials 0.000 description 9
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 9
- 239000011572 manganese Substances 0.000 description 9
- 239000010936 titanium Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 6
- 238000012423 maintenance Methods 0.000 description 6
- 229910052748 manganese Inorganic materials 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000005097 cold rolling Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 241001080024 Telles Species 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 229910000794 TRIP steel Inorganic materials 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 235000019362 perlite Nutrition 0.000 description 3
- 239000010451 perlite Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000885 Dual-phase steel Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229940082150 encore Drugs 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- VCTOKJRTAUILIH-UHFFFAOYSA-N manganese(2+);sulfide Chemical class [S-2].[Mn+2] VCTOKJRTAUILIH-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- -1 titanium nitrides Chemical class 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
Definitions
- the invention relates to the manufacture of steel sheets, more particularly "TRIP” ("Transformation Induced Plasticity”) steels, ie having a plasticity induced by an allotropic transformation.
- TRIP Transformation Induced Plasticity
- TRIP steel cold-rolled sheet is produced by reheating during annealing in a field where austenitization occurs partially, followed by rapid cooling to avoid the formation of perlite and subsequent maintenance. isothermal in the bainitic domain: a part of the austenite is transformed into bainite, another part is stabilized by the increase of the carbon content of the islands of residual austenite. Thus, the initial presence of ductile residual austenite is associated with high deformability. Under the effect of a subsequent deformation, for example during stamping, the residual austenite of a TRIP steel part gradually changes to martensite, which results in a significant hardening. A steel with a TRIP behavior thus makes it possible to guarantee an aptitude significant deformation and high mechanical strength, both properties being usually antagonistic. This combination provides a high energy absorption potential, a quality typically sought in the automotive industry for shock-resistant parts.
- a manufacturing process is therefore sought to increase the strength of the TRIP steel sheets, in particular above about 900-1100 MPa for a carbon content of the order of 0.2% by weight without the total elongation. be reduced below a value of 18%. An increase in resistance of more than 100 MPa from current levels is desirable.
- the present invention aims to solve the problems mentioned above.
- the subject of the invention is a composition for the manufacture of steel having a TRIP behavior, comprising, the contents being expressed by weight: 0.08% ⁇ C ⁇ 0.23%, 1% ⁇ Mn ⁇ 2 %, 1 ⁇ If ⁇ 2%, Al ⁇ 0.030%, 0.1% ⁇ V ⁇ 0.25%, Ti ⁇ 0.010%, S ⁇ 0.015%, P ⁇ 0.1%, 0.004% ⁇ N ⁇ 0.012% , and optionally one or more selected elements among: Nb ⁇ 0.1%, Mo ⁇ 0.5%, Cr ⁇ 0.3%, the remainder of the composition consisting of iron and unavoidable impurities resulting from the preparation.
- the carbon content is such that: 0.08% ⁇ C ⁇ 0.13%.
- the carbon content is such that: 0.13% ⁇ C ⁇ 0.18%.
- the carbon content is such that: 0.18% ⁇ C ⁇ 0.23%.
- the manganese content is such that: 1.4% ⁇ Mn ⁇ 1.8%.
- the manganese content satisfies: 1.5% ⁇ Mn s 1.7%.
- the silicon content is such that: 1.4% ⁇ Si ⁇ 1.7%.
- the aluminum content satisfies: Al ⁇ 0.015%.
- the vanadium content is such that: 0.12% ⁇ V ⁇ 0.15%.
- the titanium content is such that: Ti ⁇ 0.005%.
- the invention also relates to a steel sheet of the above composition, the microstructure of which consists of ferrite, bainite, residual austenite, and possibly martensite.
- the microstructure of the steel comprises a residual austenite content of between 8 and 20%.
- the microstructure of the steel preferably comprises a martensite content of less than 2%.
- the average size of the residual austenite islands is less than or equal to 2 microns.
- the average size of the residual austenite islands is preferably less than or equal to 1 micrometer.
- the temperature T fl at the end of the hot rolling, the speed V r of the cooling, the temperature T bob of the winding are chosen such that the microstructure of the steel comprises a residual austenite content of between 8 and 20%. .
- the temperature T fl of the hot rolling end, the cooling speed V r , the winding temperature T bob are chosen such that the microstructure of the steel comprises a martensite content of less than 2%.
- the temperature T fl of the hot rolling end, the cooling speed V r , the winding temperature T bob are chosen such that the average size of the residual austenite islands is less than or equal to 2 microns. and very preferably less than 1 micrometer.
- the parameters V cm , T m , t m , V rm , T ' m , t' m are chosen such that the microstructure of the steel comprises a residual austenite content of between 8 and 20%. .
- the parameters V cm , T m , tm, V rm , T ' m , t' m are chosen such that the microstructure of the steel comprises less than 2% of martensite.
- the parameters V cm , T m , t m , V rm , T ' m , t' m are chosen such that the average size of the residual austenite islands is less than 2 micrometers, very preferably less than at 1 micrometer.
- the subject of the invention is also a process for manufacturing a cold-rolled sheet exhibiting a TRIP behavior, according to which the sheet is subjected to an annealing heat treatment, the heat treatment comprising a heating phase at a speed V cm.
- a holding phase at a holding temperature T m between Ac1 and Ac3 for a holding time t m of between 10 and 200s, followed by a cooling phase at a speed of cooling V rm greater than 15 ° C / s when the temperature is lower than Ar3, followed by a holding phase at a temperature T ' m between 300 and 500 ° C for a holding time t' m between 10 and 1000 s.
- the holding temperature T m is preferably between 770 and 815 ° C.
- the invention also relates to the use of a steel sheet having a TRIP behavior, according to one of the variants described above, or manufactured by one of the processes described above, for the manufacture of parts of structure or reinforcement elements in the automotive field.
- a bainitic transformation takes place from an austenitic structure formed at high temperature , and bainitic ferrite slats are formed. Given the much lower solubility of carbon in ferrite compared to austenite, the carbon of the austenite is rejected between the slats. Thanks to certain alloying elements of the steel composition according to the invention, in particular silicon and manganese, the precipitation of carbides, in particular of cementite, intervenes very little. Thus, the austenite interlatte is progressively enriched in carbon without the precipitation of carbides intervening.
- the carbon content is between 0.08 and 0.23% by weight.
- the carbon content is in a first range of 0.08 to 0.13% by weight.
- the carbon content is greater than 0.13% and is less than or equal to 0.18% by weight.
- the carbon content is in a third preferred range, where it is greater than 0.18 and less than or equal to 0.23% by weight.
- the minimum carbon content of each of the three preferred ranges makes it possible to obtain a minimum strength of 600 MPa, 800 MPa and 950 MPa on cold-rolled and annealed sheets, respectively at each of the three preferred ranges. beaches above.
- the maximum carbon content of each of three ranges makes it possible to guarantee satisfactory weldability, particularly in spot welding, if the level of resistance obtained in these three preferred ranges is taken into account.
- an addition of manganese contributes to reducing the martensitic transformation start temperature Ms and stabilizing the austenite.
- This addition of manganese also contributes to an effective hardening in solid solution and thus to obtaining increased strength.
- Manganese is preferentially included between 1.4 and 1.8% by weight: in this way a satisfactory hardening and an increase in the stability of the austenite are combined without, however, excessively increasing the quenchability in the welded joints.
- the manganese content is between 1.5 and 1.7% by weight. In this way, the effects sought above are obtained without risk of formation of a harmful band structure that would come from a possible segregation of manganese during solidification.
- silicon inhibits the precipitation of cementite during cooling from austenite by considerably retarding the growth of carbides: this is due to the fact that the solubility of silicon in cementite is very low. low and that this element increases the carbon activity in the austenite. In this way, a possible cementite seed forming will be surrounded by a silicon-rich austenitic zone which has been rejected at the precipitate-matrix interface.
- This silicon-enriched austenite is also richer in carbon and the growth of cementite is slowed down because of the small diffusion resulting from the reduced carbon gradient between the cementite and the surrounding austenitic zone.
- This addition of silicon thus contributes to stabilizing a sufficient amount of residual austenite to obtain a TRIP effect.
- this addition of silicon makes it possible to increase the resistance thanks to hardening in solid solution.
- an excessive addition of silicon causes the formation of strongly adherent oxides, which are difficult to eliminate during a stripping operation, and the possible appearance of surface defects due in particular to a lack of wettability in dip galvanizing operations.
- the silicon content is preferably between 1.4 and 1.7% by weight.
- Aluminum is a very effective element for the deoxidation of steel. Like silicon, it is very slightly soluble in cementite and could be used as such to prevent the precipitation of cementite during maintenance at a bainitic transformation temperature and stabilize the austenite residual.
- the aluminum content is less than or equal to 0.030% by weight: in fact, as will be seen below, a very effective hardening is obtained by means of a precipitation of vanadium carbonitrides: when the aluminum content is greater than 0.030%, there is a risk of precipitation of aluminum nitride which reduces by the same amount of nitrogen capable of precipitating with vanadium.
- this amount is less than or equal to 0.015% by weight, any risk of precipitation of aluminum nitride is discarded and the full effect of hardening by the precipitation of vanadium carbonitrides is obtained.
- the titanium content is less than or equal to 0.010% by weight in order not to precipitate a significant amount of nitrogen in the form of titanium nitrides or carbonitrides.
- the titanium content is preferably less than or equal to 0.005% by weight. Such a titanium content then makes it possible to avoid the precipitation of (Ti, V) N on hot-rolled sheets.
- Vanadium and nitrogen are important elements of the invention: The inventors have demonstrated that, when these elements are present in defined amounts according to the invention, they precipitate in the form of very fine vanadium carbonitrides associated with hardening. important. When the vanadium content is less than 0.1% by weight or when the nitrogen content is less than 0.004% by weight, the precipitation of vanadium carbonitrides is limited and curing is insufficient. When the vanadium content is greater than 0.25% by weight or when the nitrogen content is greater than 0.012% by weight, the precipitation occurs at an early stage after hot rolling in the form of coarser precipitates.
- the uniform or breaking elongation is particularly increased.
- sulfur tends to precipitate excessively in the form of manganese sulfides which greatly reduce the formability.
- Phosphorus is a known element to segregate at grain boundaries. Its content shall be limited to 0.1% by weight so as to maintain sufficient hot ductility and to promote breakage by peeling during tensile-shear tests carried out on spot-welded joints.
- elements such as chromium and molybdenum that delay bainitic transformation and promote hardening by solid solution, can be added in amounts of less than or equal to 0.3 or 0.5% by weight, respectively.
- Niobium may also optionally be added in an amount of less than or equal to 0.1% by weight so as to increase the resistance by additional precipitation of carbonitrides.
- the cast semifinished products are first brought to a temperature above 1200 ° C. in order to attain at all points a temperature favorable to the high deformations which the steel will undergo during rolling as well as to avoid at this stage of manufacture the presence of vanadium carbonitrides.
- the step of hot rolling of these semi-products starting at more than 1200 ° C. can be done directly after so that an intermediate reheat step is not then necessary.
- this minimum temperature of 1200 ° C. also makes it possible to perform hot rolling in a completely austenitic phase under satisfactory conditions on a continuous hot rolling mill.
- the semi-finished product is hot-rolled up to a rolling end temperature T f equal to or greater than 900 ° C.
- T f rolling end temperature
- the rolling is entirely carried out in the austenitic phase where the solubility of the vanadium carbonitrides is greater and where the probability of precipitation of V (CN) is the lowest.
- the sheet thus obtained is then cooled with a cooling rate V r greater than or equal to 20 ° C./s in order to avoid a precipitation of the vanadium carbonitrides in the ferrite.
- This cooling can be carried out for example by means of spraying water on the sheet.
- the sheet obtained is then reeled at a temperature of less than or equal to 450 ° C.
- the quasi-isothermal maintenance associated with this winding leads to the formation of a microstructure consisting of bainite, ferrite, residual austenite, possibly a small amount of martensite, as well as a hardening precipitation of vanadium carbonitrides.
- the winding temperature is less than or equal to 400 ° C, the total elongation and the distributed elongation are increased.
- T fl end temperature of hot rolling, the cooling rate V r and the winding bob temperature T such that the microstructure comprises a residual austenite content of between 8 and 20%:
- the amount residual austenite is less than 8%, a sufficient TRIP effect can not be demonstrated during mechanical tests: in particular, it is demonstrated during tensile tests that the coefficient of hardening n is less than 0 , 2 and decreases rapidly with the deformation ⁇ .
- TRIP behavior residual austenite is progressively transforms into martensite during deformation, n is greater than 0.2 and necking appears for larger deformations.
- the residual austenite content is greater than 20%, the residual austenite formed under these conditions has a relatively low carbon content and is destabilized too easily during a subsequent phase of deformation or cooling.
- a hot-rolled sheet is first produced according to one of the variants which have been explained above. Indeed, the inventors have found that the microstructures and the mechanical properties obtained by the cold rolling and annealing manufacturing process which will be exposed, depend relatively little on the manufacturing conditions within the limits of the process variants set out above. , in particular variations of the winding temperature T bob . In this way, the sheet metal manufacturing process Cold rolled has the advantage of being insensitive to unforeseen variations in the manufacturing conditions of hot-rolled sheets.
- a winding temperature of less than or equal to 400 ° C. will be chosen so as to keep more vanadium in solid solution available for precipitation during the subsequent annealing of the cold-rolled sheet.
- the hot-rolled sheet is scraped by a method known per se so as to give it a surface state suitable for cold rolling.
- the latter is carried out under customary conditions, for example by reducing the thickness of the hot-rolled sheet by 30 to 75%.
- a rapid cooling is carried out at a speed V rm greater than 15 ° C / s when the temperature is lower than Ar3. Rapid cooling when the temperature is lower than Ar3 is important in order to limit the formation of ferrite before the bainitic transformation.
- This rapid cooling phase when the temperature is lower than Ar 3 may be preceded, if necessary, by a slower cooling phase from the temperature T m .
- the holding temperature T m is between 770 and 815 ° C: below 770 ° C, the recrystallization may be insufficient. Beyond 815 ° C, the fraction of intercritical austenite formed is too large and the hardening of ferrite by the precipitation of vanadium carbonitrides is less effective: in fact, the intercritical ferrite content is less and the total amount of vanadium precipitates, vanadium being rather soluble in the austenite. On the other hand, vanadium carbonitride precipitates that form are more likely to grow and coalesce at high temperatures.
- the sheet is subjected to a heat treatment annealing whose parameters V cm , T m , tm, V rm , T ' m , t' m are chosen so that the microstructure of the steel obtained consists of ferrite, bainite and residual austenite, possibly martensite.
- parameters will be chosen such that the residual austenite content is between 8 and 20%.
- Parameters will preferably be chosen such that the average size of the residual austenite islands is less than or equal to 2 micrometers, optimally less than or equal to 1 micrometer.
- These parameters will also be chosen so that the martensite content is less than 2%.
- the microstructure does not include martensite.
- the sheets manufactured according to the invention have a very high strength, significantly higher than 800 MPa for a carbon content of about 0.22%.
- Their microstructure is composed of ferrite, bainite and residual austenite, as well as martensite in an amount of less than 2%.
- residual austenite content 10.8%
- the carbon concentration of the residual austenite islets is 1.36% by weight. This indicates that the austenite is sufficiently stable to obtain a TRIP effect as shown by the behavior observed during the tensile tests performed on these steel sheets.
- the reference steel sheet R1 of bainito-pearlitic structure with a very low residual austenite content, does not exhibit TRIP behavior. Its resistance is less than 800 MPa, a level significantly lower than that of the steels of the invention.
- I2 steel according to the invention also has excellent toughness since its ductile-brittle transition temperature is significantly lower (-35 ° C) than that of a reference steel (0 ° C).
- the resulting microstructure was observed after Klemm reagent attack highlighting residual austenite islands and the average size of these islets was measured using image analysis software.
- the average size of the islands is 1.1 microns.
- the microstructure general is thinner with an average island size of 0.7 micron.
- these islets have a more even character.
- these characteristics particularly reduce the stress concentrations at the matrix-island interface.
- the mechanical properties after cold rolling and annealing are as follows: Table 3: Mechanical tensile characteristics of cold-rolled and annealed sheets. Steel Holding temperature T m Re (MPa) Rm (MPa) At (%) I2 775 630 1000 25 795 658 980 28 815 650 938 26 R1 775 480 830 nd 795 480 820 30 815 470 820 30 na: Not determined.
- the steel I2 manufactured according to the invention has a resistance greater than 900 MPa. At a maintenance temperature T m comparable, its resistance is significantly increased compared to the reference steel.
- the cold-rolled and annealed steels according to the invention have mechanical properties which are not very sensitive to small variations in certain manufacturing parameters such as the winding temperature or the annealing temperature T m .
- the invention allows the manufacture of steels with a TRIP behavior with increased mechanical strength.
- Parts made from steel sheets according to the invention are used with advantage for the manufacture of structural parts or reinforcement elements in the automotive field.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
Description
- L'invention concerne la fabrication de tôles d'acier, plus particulièrement d'aciers « TRIP » (« Transformation Induced Plasticity ») c'est à dire présentant une plasticité induite par une transformation allotropique.
- Dans l'industrie automobile, il existe un besoin continu d'allègement des véhicules qui se traduit par la recherche d'aciers à limite d'élasticité ou à résistance accrues. C'est ainsi que l'on a proposé des aciers à haute résistance comportant des éléments de micro-alliage. Le durcissement est obtenu simultanément par précipitation et par affinement de la taille de grains. Dans le but d'obtenir des niveaux de résistance encore supérieurs, on a développé des aciers TRIP qui présentent des combinaisons de propriétés (résistance-aptitude à la déformation) avantageuses. Ces propriétés sont liées à la structure de ces aciers, constituée d'une matrice ferritique comportant des phases de bainite et d'austénite résiduelle. Dans les tôles laminées à chaud, l'austénite résiduelle est stabilisée grâce à une augmentation de la teneur en éléments tels que le silicium ou d'aluminium, ces éléments retardant la précipitation des carbures dans la bainite. La fabrication de tôles laminées à froid en acier TRIP est quant à elle réalisée par un réchauffage lors du recuit dans un domaine où l'austénitisation intervient de manière partielle, suivi d'un refroidissement rapide pour éviter la formation de perlite puis d'un maintien isotherme dans le domaine bainitique : une partie de l'austénite se transforme en bainite, une autre partie est stabilisée par l'accroissement de la teneur en carbone des îlots d'austénite résiduelle. Ainsi, la présence initiale d'austénite résiduelle ductile est associée à une grande aptitude à la déformation. Sous l'effet d'une déformation ultérieure, par exemple lors d'un l'emboutissage, l'austénite résiduelle d'une pièce en acier TRIP se transforme progressivement en martensite ce qui se traduit par un durcissement important. Un acier présentant un comportement TRIP permet donc de garantir une aptitude importante à la déformation et une résistance mécanique élevée, ces deux propriétés étant habituellement antagonistes. Cette combinaison procure un potentiel d'absorption d'énergie élevée, qualité typiquement recherchée dans l'industrie automobile pour des pièces résistantes aux chocs.
- Le carbone joue un rôle important dans la fabrication des aciers TRIP: d'une part sa présence en quantité suffisante au sein des îlots d'austénite résiduelle est nécessaire pour que la température de transformation martensitique locale soit abaissée au dessous de la température ambiante. D'autre part, il est usuellement ajouté pour accroître la résistance de façon économique. Cependant, cette addition de carbone doit rester limitée pour garantir que la soudabilité des produits reste satisfaisante : dans le cas contraire, la ductilité des assemblages soudés et la résistance à la fissuration à froid sont amoindries. On recherche donc un procédé de fabrication pour augmenter la résistance des tôles d'acier TRIP, en particulier au delà de 900-1100 MPa environ pour une teneur en carbone de l'ordre de 0,2% en poids sans que l'allongement total ne soit réduit au dessous d'une valeur de 18%. Une augmentation de résistance de plus de 100 MPa par rapport aux niveaux actuels est souhaitable.
- On recherche également un procédé de fabrication de tôles d'acier laminées à chaud ou à froid qui serait peu sensible à de petites variations des conditions industrielles de fabrication, en particulier à des variations de température. On cherche ainsi à obtenir un produit caractérisé par une microstructure et des propriétés mécaniques peu sensibles à de petites variations de ces paramètres de fabrication. On cherche également à obtenir un produit à haute ténacité offrant une excellente résistance à la rupture.
- La présente invention a pour but de résoudre les problèmes évoqués ci-dessus.
- Dans ce but, l'invention a pour objet une composition pour la fabrication d'acier présentant un comportement TRIP, comprenant, les teneurs étant exprimées en poids : 0,08% ≤ C ≤ 0,23%, 1%≤ Mn ≤ 2%, 1≤ Si ≤ 2%, Al ≤ 0,030%, 0,1% ≤ V ≤ 0,25%, Ti ≤ 0,010%, S ≤ 0,015%, P≤ 0,1%, 0,004% ≤ N ≤ 0,012%, et à titre optionnel un ou plusieurs éléments choisis parmi : Nb ≤ 0,1%, Mo ≤ 0,5%, Cr ≤ 0,3%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration. Préférentiellement, la teneur en carbone est telle que : 0,08% ≤ C ≤ 0,13%. Selon une variante préférée, la teneur en carbone est telle que : 0,13% < C ≤ 0,18%.
- Préférentiellement encore, la teneur en carbone est telle que : 0,18% < C ≤ 0,23%.
- Préférentiellement, la teneur en manganèse est telle que : 1,4% ≤ Mn ≤ 1,8%. Préférentiellement encore, la teneur en manganèse satisfait à : 1,5% ≤ Mn s 1,7%.
- A titre préféré, la teneur en silicium est telle que : 1,4% ≤ Si ≤ 1,7%. Préférentiellement, la teneur en aluminium satisfait à : Al ≤ 0,015%.
- Selon un mode préféré, la teneur en vanadium est telle que : 0,12% ≤V ≤ 0,15%.
- Préférentiellement encore, la teneur en titane est telle que : Ti ≤ 0,005%. L'invention a également pour objet une tôle d'acier de composition ci-dessus, dont la microstructure est constituée de ferrite, de bainite, d'austénite résiduelle, et éventuellement de martensite.
- Selon un mode préféré, la microstructure de l'acier comprend une teneur en austénite résiduelle comprise entre 8 et 20%.
- La microstructure de l'acier comprend préférentiellement une teneur en martensite inférieure à 2%.
- A titre préférentiel, la taille moyenne des îlots d'austénite résiduelle est inférieure ou égale à 2 micromètres.
- La taille moyenne des îlots d'austénite résiduelle est préférentiellement inférieure ou égale à 1 micromètre.
- L'invention a également pour objet un procédé de fabrication d'une tôle laminée à chaud présentant un comportement TRIP, selon lequel :
- on approvisionne un acier selon l'une quelconque des compositions ci-dessus,
- on procède à la coulée d'un demi-produit à partir de cet acier,
- on porte ledit demi-produit à une température supérieure à 1200°C,
- on lamine à chaud le demi-produit,
- on refroidit la tôle ainsi obtenue,
- on bobine la tôle, la température Tfl de fin du laminage à chaud, la vitesse Vr du refroidissement, la température de bobinage Tbob étant choisies de telle sorte que la microstructure de l'acier soit constituée de ferrite, de bainite, d'austénite résiduelle, et éventuellement de martensite.
- Préférentiellement, la température Tfl de fin de laminage à chaud, la vitesse Vr du refroidissement, la température Tbob de bobinage sont choisies de telle sorte que la microstructure de l'acier comprenne une teneur en austénite résiduelle comprise entre 8 et 20%.
- Préférentiellement encore, la température Tfl de fin de laminage à chaud, la vitesse Vr de refroidissement, la température Tbob de bobinage sont choisies de telle sorte que la microstructure de l'acier comprenne une teneur en martensite inférieure à 2%.
- A titre préféré, la température Tfl de fin de laminage à chaud, la vitesse Vr de refroidissement, la température Tbob de bobinage sont choisies de telle sorte que la taille moyenne des îlots d'austénite résiduelle soit inférieure ou égale à 2 micromètres, et très préférentiellement inférieure à 1 micromètre.
- L'invention a également pour objet un procédé de fabrication d'une tôle laminée à chaud présentant un comportement TRIP, selon lequel :
- on lamine à chaud le demi-produit jusqu'à une température de fin de laminage Tfl supérieure ou égale à 900°C,
- on refroidit la tôle ainsi obtenue avec une vitesse de refroidissement Vr supérieure ou égale à 20°C/s,
- on bobine la tôle à une température Tbob inférieure à 450°C. Préférentiellement, la température de bobinage Tbob est inférieure à 400°C. L'invention a également pour objet un procédé de fabrication d'une tôle laminée à froid présentant un comportement TRIP, selon lequel on approvisionne une tôle d'acier laminé à chaud fabriquée selon l'un quelconque des procédés décrits ci-dessus, on décape la tôle, on lamine à froid la tôle, on fait subir à la tôle un traitement thermique de recuit, le traitement thermique comprenant une phase de chauffage à une vitesse de chauffage Vcm, une phase de maintien à une température de maintien Tm pendant un temps de maintien tm, suivie d'une phase de refroidissement à une vitesse de refroidissement Vrm lorsque la température est inférieure à Ar3, suivie d'une phase de maintien à une température de maintien T'm pendant un temps de maintien t'm, les paramètres Vcm, Tm, tm, Vrm, T'm, t'm étant choisis de telle sorte que la microstructure dudit acier soit constituée de ferrite, de bainite, d'austénite résiduelle, et éventuellement de martensite.
- Selon un mode préféré, les paramètres Vcm, Tm, tm, Vrm, T'm, t'm sont choisis de telle sorte que la microstructure de l'acier comprenne une teneur en austénite résiduelle comprise entre 8 et 20%.
- Préférentiellement encore, les paramètres Vcm, Tm, tm, Vrm, T'm, t'm sont choisis de telle sorte que la microstructure de l'acier comprenne moins de 2% de martensite.
- Selon un mode préféré, les paramètres Vcm, Tm, tm, Vrm, T'm, t'm sont choisis de telle sorte que la taille moyenne des îlots d'austénite résiduelle est inférieure à 2 micromètres, très préférentiellement inférieure à 1 micromètre. L'invention a également pour objet un procédé de fabrication d'une tôle laminée à froid présentant un comportement TRIP, selon lequel on fait subir à la tôle un traitement thermique de recuit, le traitement thermique comprenant une phase de chauffage à une vitesse Vcm supérieure ou égale à 2°C/s, une phase de maintien à une température de maintien Tm comprise entre Ac1 et Ac3 pendant un temps de maintien tm compris entre 10 et 200s, suivie d'une phase de refroidissement à une vitesse de refroidissement Vrm supérieure à 15°C/s lorsque la température est inférieure à Ar3, suivie d'une phase de maintien à une température T'm comprise entre 300 et 500°C pendant un temps de maintien t'm compris entre 10 et 1000 s.
- La température de maintien Tm est préférentiellement comprise entre 770 et 815°C.
- L'invention a également pour objet l'utilisation d'une tôle d'acier présentant un comportement TRIP, selon l'une des variantes décrites ci-dessus, ou fabriquée par un des procédés décrits ci-dessus, pour la fabrication de pièces de structure ou d'éléments de renfort dans le domaine automobile.
- D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description ci-dessous, donnée à titre d'exemple.
- En ce qui concerne la composition chimique de l'acier, le carbone joue un rôle très important sur la formation de la microstructure et les propriétés mécaniques: Selon l'invention, une transformation bainitique intervient à partir d'une structure austénitique formée à haute température, et des lattes de ferrite bainitique sont formées. Compte tenu de la solubilité très inférieure du carbone dans la ferrite par rapport à l'austénite, le carbone de l'austénite est rejeté entre les lattes. Grâce à certains éléments d'alliage de la composition d'acier selon l'invention, en particulier le silicium et le manganèse, la précipitation de carbures, notamment de cémentite, intervient très peu. Ainsi, l'austénite interlattes s'enrichit progressivement en carbone sans que la précipitation de carbures n'intervienne. Cet enrichissement est tel que l'austénite est stabilisée, c'est à dire que la transformation martensitique de cette austénite n'intervient pas lors du refroidissement jusqu'à la température ambiante. Selon l'invention, la teneur en carbone est comprise entre 0,08 et 0,23% en poids. A titre préférentiel, la teneur en carbone est comprise dans une première plage allant de 0,08 à 0,13% en poids. Dans une seconde plage préférentielle, la teneur en carbone est supérieure à 0,13% et est inférieure ou égale à 0,18% en poids. La teneur en carbone est comprise dans une troisième plage préférentielle, où celle-ci est supérieure à 0,18 et inférieure ou égale à 0,23% en poids.
- Le carbone étant un élément particulièrement important pour le durcissement, la teneur minimale en carbone de chacune des trois plages préférentielles permet d'obtenir une résistance minimale de 600 MPa, 800 MPa et 950 MPa sur tôles laminées à froid et recuites, respectivement à chacune des plages ci-dessus. La teneur maximale en carbone de chacune de trois plages permet de garantir une soudabilité satisfaisante notamment en soudage par points si l'on tient compte du niveau de résistance obtenu dans ces trois plages préférentielles.
- En quantité comprise entre 1 et 2% en poids, une addition de manganèse, élément à caractère gammagène, contribue à diminuer la température de début de transformation martensitique Ms et à stabiliser l'austénite. Cette addition de manganèse participe également à un durcissement efficace en solution solide et donc à l'obtention d'une résistance accrue. Le manganèse est compris préférentiellement entre 1,4 et 1,8% en poids : on combine de la sorte un durcissement satisfaisant et une augmentation de la stabilité de l'austénite sans pour autant augmenter de façon excessive la trempabilité dans les assemblages soudés. Optimalement, la teneur en manganèse est comprise entre 1,5 et 1,7% en poids. De la sorte, les effets recherchés ci-dessus sont obtenus sans risque de formation d'une structure en bandes néfaste qui proviendrait d'une ségrégation éventuelle du manganèse lors de la solidification.
- En quantité comprise entre 1 et 2% en poids, le silicium inhibe la précipitation de la cémentite lors du refroidissement à partir de l'austénite en retardant considérablement la croissance des carbures : ceci provient du fait que la solubilité du silicium dans la cémentite est très faible et que cet élément augmente l'activité du carbone dans l'austénite. De la sorte, un germe éventuel de cémentite se formant sera environné d'une zone austénitique riche en silicium qui aura été rejeté à l'interface précipité-matrice. Cette austénite enrichie en silicium est également plus riche en carbone et la croissance de la cémentite est ralentie en raison de la diffusion peu importante résultant du gradient réduit de carbone entre la cémentite et la zone austénitique avoisinante. Cette addition de silicium contribue donc à stabiliser une quantité suffisante d'austénite résiduelle pour obtenir un effet TRIP. De plus, cette addition de silicium permet d'augmenter la résistance grâce à un durcissement en solution solide. Cependant, une addition excessive de silicium provoque la formation d'oxydes fortement adhérents, difficilement éliminables lors d'une opération de décapage, et l'apparition éventuelle de défauts de surface dus notamment à un manque de mouillabilité dans les opérations de galvanisation au trempé. Afin d'obtenir la stabilisation d'une quantité suffisante d'austénite tout en réduisant le risque de défauts de surface, la teneur en silicium est préférentiellement comprise entre 1,4 et 1,7% en poids.
- L'aluminium est un élément très efficace pour la désoxydation de l'acier. Comme le silicium, il est très peu soluble dans la cémentite et pourrait être utilisé à ce titre pour éviter la précipitation de la cémentite lors d'un maintien à une température de transformation bainitique et stabiliser l'austénite résiduelle. Cependant, selon l'invention, la teneur en aluminium est inférieure ou égale à 0,030% en poids : en effet, comme on le verra ci-dessous, un durcissement très efficace est obtenu au moyen d'une précipitation de carbonitrures de vanadium : lorsque la teneur en aluminium est supérieure à 0,030%, il existe un risque de précipitation de nitrure d'aluminium qui réduit d'autant la quantité d'azote susceptible de précipiter avec le vanadium. Préférentiellement, lorsque cette quantité est inférieure ou égale à 0,015% en poids, tout risque de précipitation de nitrure d'aluminium est écarté et le plein effet du durcissement par la précipitation des carbonitrures de vanadium est obtenu.
- Pour la même raison, la teneur en titane est inférieure ou égale à 0,010% en poids afin de ne pas précipiter une quantité significative d'azote sous forme de nitrures ou de carbonitrures de titane. Compte tenu de la forte affinité du titane pour l'azote, la teneur en titane est préférentiellement inférieure ou égale à 0,005% en poids. Une telle teneur en titane permet alors d'éviter la précipitation de (Ti,V)N sur tôles laminées à chaud.
- Le vanadium et l'azote sont des éléments importants de l'invention : Les inventeurs ont mis en évidence que, lorsque ces éléments sont présents en quantités définies selon l'invention, ils précipitent sous forme de carbonitrures de vanadium très fins associés à un durcissement important. Lorsque la teneur en vanadium est inférieure à 0,1% en poids ou lorsque la teneur en azote est inférieure à 0,004% en poids, la précipitation de carbonitrures de vanadium est limitée et le durcissement est insuffisant. Lorsque la teneur en vanadium est supérieure à 0,25% en poids ou lorsque la teneur en azote est supérieure à 0,012% en poids, la précipitation intervient à un stade précoce après le laminage à chaud sous forme de précipités plus grossiers. La taille de ces précipités ne permet pas de tirer le plein parti du durcissement potentiel du vanadium, tout particulièrement lorsque l'on vise à la fabrication d'une tôle d'acier laminée à froid et recuite. Dans ce dernier cas, les inventeurs ont mis en évidence qu'il convient de limiter la précipitation du vanadium à l'étape du laminage à chaud afin de tirer le plus grand parti d'une précipitation fine durcissante lors d'un recuit ultérieur. De plus, la limitation de la précipitation du vanadium à ce stade permet de réduire les efforts nécessaires lors du laminage à froid ultérieur et donc d'exploiter au mieux les performances des installations industrielles.
- Lorsque la teneur en vanadium est comprise entre 0,12 et 0,15% en poids, l'allongement uniforme ou à rupture est particulièrement augmenté.
- En quantité supérieure à 0,015% en poids, le soufre tend à précipiter en quantité excessive sous forme de sulfures de manganèse qui réduisent fortement l'aptitude à la mise en forme.
- Le phosphore est un élément connu pour ségréger aux joints de grains. Sa teneur doit être limitée à 0,1% en poids de façon à maintenir une ductilité à chaud suffisante et afin de favoriser une rupture par déboutonnage lors d'essais de traction-cisaillement effectués sur des assemblages soudés par point.
- A titre optionnel, des éléments tels que le chrome et le molybdène qui retardent la transformation bainitique et favorisent le durcissement par solution solide, peuvent être ajoutés en quantité respectivement inférieure ou égale à 0,3 ou 0,5% en poids. Le niobium peut être également ajouté à titre optionnel en quantité inférieure ou égale à 0,1% en poids de façon à accroître la résistance par une précipitation complémentaire de carbonitrures.
- La mise en oeuvre du procédé de fabrication d'une tôle laminée à chaud selon l'invention est la suivante :
- On approvisionne un acier de composition selon l'invention
- On procède à la coulée d'un demi-produit à partir de cet acier. Cette coulée peut être réalisée en lingots ou en continu sous forme de brames d'épaisseur de l'ordre de 200mm. On peut également effectuer la coulée sous forme de brames minces de quelques dizaines de millimètres d'épaisseur ou de bandes minces entre cylindres d'acier contra-rotatifs.
- Les demi-produits coulés sont tout d'abord portés à une température supérieure à 1200°C pour atteindre en tout point une température favorable aux déformations élevées que va subir l'acier lors du laminage ainsi que pour éviter à ce stade de la fabrication la présence de carbonitrures de vanadium. Naturellement, dans le cas d'une coulée directe de brames minces ou de bandes minces entre cylindres contra-rotatifs, l'étape de laminage à chaud de ces demi-produits débutant à plus de 1200°C peut se faire directement après coulée si bien qu'une étape de réchauffage intermédiaire n'est pas alors nécessaire. Comme on va le voir, cette température minimale de 1200°C permet également de réaliser le laminage à chaud en phase entièrement austénitique dans des conditions satisfaisantes sur un train continu de laminage à chaud.
- On lamine à chaud le demi-produit jusqu'à une température de fin de laminage Tfl supérieure ou égale à 900°C : de la sorte, le laminage est entièrement effectué en phase austénitique où la solubilité des carbonitrures de vanadium est plus importante et où la probabilité d'une précipitation de V(CN) est la plus réduite. Pour la même raison, on refroidit ensuite la tôle ainsi obtenue avec une vitesse de refroidissement Vr supérieure ou égale à 20°C/s afin d'éviter une précipitation des carbonitrures de vanadium dans la ferrite. Ce refroidissement peut être effectué par exemple au moyen de pulvérisation d'eau sur la tôle.
- Si l'on veut fabriquer une tôle laminée à chaud selon l'invention, on bobine ensuite la tôle obtenue à une température inférieure ou égale à 450°C. De la sorte, le maintien quasi-isotherme associé à ce bobinage conduit à la formation d'une microstructure constituée de bainite, de ferrite, d'austénite résiduelle, éventuellement d'une faible quantité de martensite, ainsi qu'à une précipitation durcissante de carbonitrures de vanadium. Lorsque la température de bobinage est inférieure ou égale à 400°C, l'allongement total et l'allongement réparti sont accrus.
- On choisira plus particulièrement la température Tfl de fin de laminage à chaud, la vitesse Vr de refroidissement et la température Tbob de bobinage de telle sorte que la microstructure comprenne une teneur en austénite résiduelle comprise entre 8 et 20% : Lorsque la quantité d'austénite résiduelle est inférieure à 8%, un effet TRIP suffisant ne peut être mis en évidence lors d'essais mécaniques : en particulier, on met en évidence lors d'essais de traction que le coefficient d'écrouissage n est inférieur à 0,2 et décroît rapidement avec la déformation ε. Le critère de Considère s'applique à ces aciers et la rupture intervient quand n = εvrai, l'allongement est donc fortement limité. Dans le cas d'un comportement TRIP, l'austénite résiduelle se transforme progressivement en martensite lors la déformation, n est supérieur à 0,2 et la striction apparaît pour des déformations plus importantes. Lorsque la teneur en austénite résiduelle est supérieure à 20%, l'austénite résiduelle formée dans ces conditions présente une teneur en carbone relativement faible et se déstabilise trop facilement lors d'une phase ultérieure de déformation ou de refroidissement.
- Parmi les paramètres Tfl, Vr, Tbob choisis pour obtenir une quantité d'austénite résiduelle comprise entre 8 et 20%, les paramètres Vr, Tbob sont les plus importants :
- La vitesse de refroidissement Vr sera choisie de façon à être la plus rapide possible pour éviter une transformation perlitique (ce qui irait à l'encontre de l'obtention d'une teneur en austénite résiduelle comprise entre 8 et 20%) tout en restant au sein des capacités de contrôle d'une ligne industrielle de façon à obtenir une homogénéité microstructurale dans le sens longitudinal et transversal de la tôle laminée à chaud.
- La température de bobinage sera choisie suffisamment basse de façon à éviter une transformation perlitique, ce qui se traduirait par une transformation bainitique incomplète et une teneur en austénite résiduelle inférieure à 8%.
- On choisira préférentiellement les paramètres Tfl, Vr, Tbob, de telle sorte que la microstructure de la tôle d'acier laminée à chaud contienne moins de 2% de martensite. Dans le cas contraire, l'allongement est réduit ainsi que l'énergie d'absorption liée à l'aire sous la courbe de traction (σ-ε). La présence excessive de martensite conduit à un comportement mécanique se rapprochant de celui d'un acier Dual-Phase avec une valeur initiale du coefficient d'écrouissage n élevé diminuant lorsque le taux de déformation augmente. Optimalement, la microstructure ne contient pas de martensite. Parmi les paramètres Tfl, Vr, Tbob choisis dans le but d'obtenir une teneur en martensite inférieure à 2%, les paramètres les plus importants sont :
- La vitesse de refroidissement Vr, qui doit être la plus rapide possible pour éviter une transformation perlitique, tout en évitant que ce refroidissement ne conduise à une température inférieure à Ms, cette dernière température désignant la température de début de transformation martensitique, caractéristique de la composition chimique de l'acier mis en oeuvre.
- Pour la même raison, on choisira une température de bobinage supérieure à Ms.
- On choisira aussi préférentiellement les paramètres Tfl, Vr, Tbob, de telle sorte que la taille moyenne des îlots d'austénite résiduelle de la microstructure soit inférieure ou égale à 2 micromètres. En effet, lorsque l'austénite se transforme en martensite sous l'influence de l'abaissement de la température ou d'une déformation, les îlots de martensite de taille moyenne supérieure à 2 micromètres jouent un rôle préférentiel pour l'endommagement par suite d'une décohésion avec la matrice.
- A titre préférentiel, on choisira encore plus particulièrement les paramètres Tfl, Vr, Tbob, de telle sorte que la taille moyenne des îlots d'austénite résiduelle de la microstructure soit inférieure ou égale à 1 micromètre afin d'augmenter leur stabilité, de limiter l'endommagement à l'interface matrice-îlots et de repousser la striction vers des valeurs de déformation plus élevées.
- Dans le but d'obtenir une taille fine d'îlots d'austénite résiduelle, on choisira :
- Une température Tfl de fin de laminage dans le domaine austénitique pas trop élevée de façon à obtenir une taille de grain austénitique relativement fine avant transformation allotropique.
- La vitesse de refroidissement Vr la plus rapide possible pour éviter une transformation perlitique.
- Pour fabriquer une tôle laminée à froid selon l'invention, on fabrique tout d'abord une tôle laminée à chaud selon l'une des variantes qui ont été exposées ci-dessus. En effet, les inventeurs ont constaté que les microstructures et les propriétés mécaniques obtenues grâce au procédé de fabrication par laminage à froid et recuit qui va être exposé, dépendent relativement peu des conditions de fabrication au sein des limites des variantes du procédé exposées ci-dessus, en particulier des variations de la température de bobinage Tbob. De la sorte, le procédé de fabrication des tôles laminées à froid présente l'avantage d'être peu sensible à des variations fortuites des conditions de fabrication des tôles laminées à chaud.
- A titre préférentiel, on choisira cependant une température de bobinage inférieure ou égale à 400°C de façon à garder plus de vanadium en solution solide disponible pour la précipitation lors du recuit ultérieur de la tôle laminée à froid.
- On décape la tôle laminée à chaud selon un procédé connu en lui-même de façon à conférer à celle-ci un état de surface propre au laminage à froid. Ce dernier est effectué dans des conditions usuelles, en réduisant par exemple l'épaisseur de la tôle laminée à chaud de 30 à 75%
- On effectue ensuite un traitement de recuit propre à recristalliser la structure écrouie et à conférer la microstructure particulière selon l'invention. Ce traitement, effectué préférentiellement par recuit en continu, comporte les phases successives suivantes :
- Une phase de chauffage avec une vitesse Vcm supérieure ou égale à 2°C/s jusqu'à une température Tm située dans le domaine intercritique, c'est à dire une température située entre les températures de transformation Ac1 et Ac3 : Lors de cette phase, on observe une recristallisation de la structure écrouie, une dissolution de la cémentite et une croissance de l'austénite au delà de la température de transformation Ac1 ainsi qu'une précipitation de carbonitrures de vanadium dans la ferrite : ces précipités sont de très petite taille, de diamètre typiquement inférieur à 5 nanomètres à l'issue de cette phase de chauffage.
- Lorsque la vitesse de chauffage est inférieure à 2°C/s, la fraction volumique de vanadium précipité décroît. De plus la productivité de la fabrication est réduite de façon excessive.
- Une phase de maintien à une température intercritique Tm comprise entre Ac1 et Ac3 pendant un temps tm compris entre 10s et 200s. Dans ces conditions bien définies, les inventeurs ont mis en évidence que la précipitation de carbonitrures de vanadium se poursuivait dans la ferrite pratiquement sans aucune précipitation dans la phase austénitique nouvellement formée. La fraction volumique de précipités s'accroît parallèlement à une augmentation du diamètre moyen de ces précipités. De la sorte, on obtient un durcissement particulièrement efficace de la ferrite intercritique.
- On effectue ensuite un refroidissement rapide à une vitesse Vrm supérieure à 15°C/s lorsque la température est inférieure à Ar3. Le refroidissement rapide lorsque la température est inférieure à Ar3 est important afin de limiter la formation de ferrite avant la transformation bainitique. Cette phase de refroidissement rapide lorsque la température est inférieure à Ar3 peut être précédée éventuellement d'une phase de refroidissement plus lent à partir de la température Tm.
- Durant cette phase de refroidissement, les inventeurs ont mis en évidence qu'une précipitation complémentaire de carbonitrures de vanadium dans la phase ferritique n'intervenait pratiquement pas.
- On effectue ensuite un maintien à une température T'm comprise entre 300°C et 500°C pendant un temps de maintien t'm compris entre 10s et 1000 s : on obtient de la sorte une transformation bainitique et un enrichissement en carbone des îlots d'austénite résiduelle dans une quantité telle que cette austénite résiduelle est stable même après refroidissement jusqu'à température ambiante.
- Préférentiellement, la température de maintien Tm est comprise entre 770 et 815°C : au dessous de 770°C, la recristallisation peut être insuffisante. Au delà de 815°C, la fraction d'austénite intercritique formée est trop importante et le durcissement de la ferrite par la précipitation de carbonitrures de vanadium est moins efficace : en effet, la teneur en ferrite intercritique est moindre ainsi que la quantité totale de vanadium précipité, le vanadium étant plutôt soluble dans l'austénite. D'autre part, les précipités de carbonitrures de vanadium qui se forment ont plus tendance à croître et à coalescer à haute température.
- Selon un mode préféré de l'invention, après l'étape de laminage à froid, on fait subir à la tôle un traitement thermique de recuit dont les paramètres Vcm, Tm, tm, Vrm, T'm, t'm sont choisis de telle sorte que la microstructure de l'acier obtenu soit constituée de ferrite, de bainite et d'austénite résiduelle, éventuellement de martensite. On choisira avantageusement des paramètres tels que la teneur en austénite résiduelle soit comprise entre 8 et 20%. Ces paramètres seront choisis de préférence de telle sorte que la taille moyenne des îlots d'austénite résiduelle soit inférieure ou égale à 2 micromètres, optimalement inférieure ou égale à 1 micromètre. On choisira également ces paramètres de telle sorte que la teneur en martensite soit inférieure à 2%. D'une façon optimale, la microstructure ne comprend pas de martensite.
- Afin d'obtenir ces résultats, le choix des paramètres Tm, tm, Vrm, T'm est plus particulièrement important :
- Tm, température située dans le domaine intercritique entre les températures de transformation Ac1 (début de transformation austénitique) et Ac3 (fin de transformation austénitique), doit être choisie de façon à obtenir au moins 8% d'austénite formée à haute température. Cette condition est nécessaire pour que la structure après refroidissement contienne au moins 8% d'austénite résiduelle. La température Tm ne doit cependant pas être trop proche de Ac3 pour éviter un grossissement du grain austénitique à haute température, entraînant par la suite une taille trop importante des îlots d'austénite résiduelle.
- Le temps tm doit être choisi suffisamment long pour que la transformation partielle en austénite ait le temps d'intervenir.
- La vitesse de refroidissement Vrm doit être suffisamment rapide pour éviter la formation de perlite, celle-ci ne permettant pas d'obtenir les résultats visés ci-dessus.
- La température T'm sera choisie de façon à ce que la transformation de l'austénite formée lors du maintien à la température Tm, soit une transformation bainitique, et conduise à un enrichissement en carbone suffisant pour que cette austénite formée à haute température soit stabilisée dans une quantité comprise entre 8 et 20%.
- A titre d'exemple non limitatif, les résultats suivants vont montrer les caractéristiques avantageuses conférées par l'invention.
- On a élaboré des aciers dont la composition figure au tableau ci-dessous, exprimée en pourcentage pondéral. Outre les aciers I1 à I3 selon l'invention, on a indiqué à titre de comparaison la composition d'un acier de référence R1 :
Tableau 1 Compositions d'aciers (% poids). I= Selon l'invention. R= référence Acier C Mn Si Al V Ti S P N I1 0,223 1,58 1,59 <0.030 0,100 0,002 <0.005 <0.030 0,008 I2 0,225 1,58 1,60 <0.030 0,155 0,002 <0.005 <0.030 0,009 I3 0,225 1,58 1,60 <0.030 0,209 0,002 <0.005 <0.030 0,009 R1 0,221 1,60 1,59 <0.030 0,005(*) 0,002 <0.005 <0.030 0,001(*) (*) : Non conforme à l'invention - Des demi-produits correspondant aux compositions ci-dessus ont été réchauffés à 1200°C et laminés à chaud de telle sorte que la température de laminage soit supérieure à 900°C. Les tôles de 3 mm ainsi obtenues ont été refroidies avec une vitesse de 20°C/s par pulvérisation d'eau, puis bobinées à une température de 400°C. Les propriétés mécaniques de traction obtenues (limite d'élasticité Re, résistance Rm, allongement uniforme Au, allongement à rupture At) ont été portées au tableau 2 ci-dessous. On a également déterminé au moyen d'éprouvettes de type Charpy V d'épaisseur réduite (e=3mm) la température de transition ductile-fragile. On a indiqué également la teneur en austénite résiduelle mesurée par diffraction de rayons X.
Tableau 2 : Caractéristiques mécaniques de traction, température de transition et teneur en austénite résiduelle des tôles laminées à chaud. Acier Re (MPa) Rm (MPa) Au (%) At (%) Température de transition (°C) Teneur en austénite résiduelle (%) I1 731 884 13 22 n.d. n.d. I2 724 891 26 38 -35 n.d. I3 755 916 24 36 n.d. 10,8 R1 615 793 14 28 0 <1% n.d. : Non déterminé. - Les tôles fabriquées selon l'invention présentent une résistance très élevée, nettement supérieure à 800MPa pour une teneur en carbone d'environ 0,22%. Leur microstructure est composée de ferrite, de bainite et d'austénite résiduelle, ainsi que de martensite en quantité inférieure à 2%. Dans le cas de l'acier 13 (teneur en austénite résiduelle: 10,8%) la concentration en carbone des îlots d'austénite résiduelle est de 1,36% en poids. Ceci indique que l'austénite est suffisamment stable pour obtenir un effet TRIP comme le montre le comportement observé lors des essais de traction effectués sur ces tôles d'acier.
- La tôle d'acier de référence R1 de structure bainito-perlitique, avec une très faible teneur en austénite résiduelle, ne présente pas de comportement TRIP. Sa résistance est inférieure à 800MPa, soit un niveau nettement plus faible que celle des aciers de l'invention.
- L'acier I2 selon l'invention présente également une excellente ténacité puisque sa température de transition ductile-fragile est nettement plus basse (-35°C) que celle d'un acier de référence (0°C).
- Des tôles laminées à chaud de 3mm d'épaisseur d'aciers de compositions I2 et R1 fabriquées selon l'exemple 1 ont été laminées à froid jusqu'à une épaisseur de 0,9mm. On a ensuite effectué un traitement thermique de recuit comprenant une phase de chauffage à une vitesse de 5°C/s, une phase de maintien à une température de maintien Tm comprise entre 775 et 815°C (températures situées dans le domaine Ac1-Ac3) pendant un temps de maintien de 180s, suivie d'une première phase de refroidissement à 6-8°C/s, puis d'un refroidissement à 20°C/s dans un domaine où la température est inférieure à Ar3, d'une phase de maintien à 400°C pendant 300s pour former de la bainite, et d'un refroidissement final à 5°C/s.
- On a observé la microstructure ainsi obtenue après attaque au réactif de Klemm mettant en évidence les îlots d'austénite résiduelle et on a mesuré la taille moyenne de ces îlots au moyen d'un logiciel d'analyse d'images.
- Dans le cas de l'acier de référence R1, la taille moyenne des îlots est de 1,1 micromètre. Dans le cas de l'acier selon l'invention 12, la microstructure générale est plus fine avec une taille moyenne d'îlots de 0,7 micromètre. En outre, ces îlots ont un caractère plus équiaxe. Dans le cas de l'acier 12, ces caractéristiques diminuent particulièrement les concentrations de contrainte à l'interface matrice-îlots.
- Les propriétés mécaniques après laminage à froid et recuit sont les suivantes :
Tableau 3 : Caractéristiques mécaniques de traction des tôles laminées à froid et recuites. Acier Température de maintien Tm Re (MPa) Rm (MPa) At(%) I2 775 630 1000 25 795 658 980 28 815 650 938 26 R1 775 480 830 n.d. 795 480 820 30 815 470 820 30 n.d. : Non déterminé. - L'acier I2 fabriqué selon l'invention présente une résistance supérieure à 900MPa. A température de maintien Tm comparable, sa résistance est nettement accrue par rapport à l'acier de référence.
- Les aciers laminés à froid et recuits selon l'invention présentent des propriétés mécaniques peu sensibles à de petites variations de certains paramètres de fabrication tels que la température de bobinage ou la température de recuit Tm.
- Ainsi, l'invention permet la fabrication d'aciers présentant un comportement TRIP avec une résistance mécanique accrue. Les pièces fabriquées à partir de tôles d'aciers selon l'invention sont utilisées avec profit pour la fabrication de pièces de structure ou d'éléments de renfort dans le domaine automobile.
Claims (30)
- Tôle d'acier de composition selon l'une quelconque des revendications 1 à 10, caractérisée en ce que la microstructure dudit acier est constituée de ferrite, de bainite, d'austénite résiduelle, et éventuellement de martensite
- Tôle d'acier selon la revendication 11, caractérisée en ce que la microstructure dudit acier comprend une teneur en austénite résiduelle comprise entre 8 et 20%
- Tôle d'acier selon la revendication 11 ou 12, caractérisée en ce que la microstructure dudit acier comprend une teneur en martensite inférieure à 2%
- Tôle d'acier selon l'une quelconque des revendications 11 à 13, caractérisée en ce que la taille moyenne des îlots d'austénite résiduelle est inférieure ou égale à 2 micromètres
- Tôle d'acier selon l'une quelconque des revendications 11 à 14, caractérisée en ce que la taille moyenne des îlots d'austénite résiduelle est inférieure ou égale à 1 micromètre
- Procédé de fabrication d'une tôle laminée à chaud présentant un comportement TRIP, selon lequel :- on approvisionne un acier de composition selon l'une quelconque des revendications 1 à 10,- on procède à la coulée d'un demi-produit à partir de cet acier- on porte ledit demi-produit à une température supérieure à 1200°C,- on lamine à chaud ledit demi-produit,- on refroidit la tôle ainsi obtenue,- on bobine ladite tôle,- caractérisé en ce que la température Tfl de fin dudit laminage à chaud, la vitesse Vr dudit refroidissement, la température dudit bobinage Tbob sont choisies de telle sorte que la microstructure dudit acier soit constituée de ferrite, de bainite, d'austénite résiduelle, et éventuellement de martensite
- Procédé selon la revendication 16, caractérisé en ce que la température Tfl de fin dudit laminage à chaud, la vitesse Vr dudit refroidissement, la température Tbob dudit bobinage sont choisies de telle sorte que la microstructure dudit acier comprenne une teneur en austénite résiduelle comprise entre 8 et 20%
- Procédé selon la revendication 16 ou 17, caractérisé en ce que la température Tfl de fin dudit laminage à chaud, la vitesse Vr dudit refroidissement, la température Tbob dudit bobinage sont choisies de telle sorte que la microstructure dudit acier comprenne une teneur en martensite inférieure à 2%
- Procédé selon l'une quelconque des revendications 16 à 18, caractérisé en ce que la température Tfl de fin dudit laminage à chaud, la vitesse Vr dudit refroidissement, la température Tbob dudit bobinage sont choisies de telle sorte que la taille moyenne des îlots d'austénite résiduelle est inférieure ou égale à 2 micromètres
- Procédé selon l'une quelconque des revendications 16 à 19, caractérisé en ce que la température Tfl de fin dudit laminage à chaud, la vitesse Vr dudit refroidissement, la température Tbob dudit bobinage sont choisies de telle sorte que la taille moyenne des îlots d'austénite résiduelle est inférieure ou égale à 1 micromètre
- Procédé de fabrication d'une tôle laminée à chaud selon la revendication 16, caractérisé en ce que la température Tfl de fin dudit laminage est supérieure ou égale à 900°C, la vitesse Vr dudit refroidissement est supérieure ou égale à 20°C/s, et la température Tbob dudit bobinage est inférieure à 450°C
- Procédé selon la revendication 21, caractérisé en ce que la température de bobinage Tbob est inférieure à 400°C
- Procédé de fabrication d'une tôle laminée à froid présentant un comportement TRIP, selon lequel :- on approvisionne une tôle d'acier laminé à chaud fabriquée selon l'une quelconque des revendications 16 à 22,- on décape ladite tôle- on lamine à froid ladite tôle- on fait subir à ladite tôle un traitement thermique de recuit, ledit traitement thermique comprenant une phase de chauffage à une vitesse de chauffage Vcm, une phase de maintien à une température de maintien Tm pendant un temps de maintien tm, suivie d'une phase de refroidissement à une vitesse de refroidissement Vrm lorsque la température est inférieure à Ar3, suivie d'une phase de maintien à une température de maintien T'm pendant un temps de maintien t'm, caractérisé en ce que les paramètres Vcm, Tm, tm, Vrm, T'm, t'm, sont choisis de telle sorte que la microstructure dudit acier soit constituée de ferrite, de bainite, d'austénite résiduelle, et éventuellement de martensite
- Procédé selon la revendication 23, caractérisé en ce que les paramètres Vcm, Tm, tm, Vrm, T'm, t'm, sont choisis de telle sorte que la microstructure dudit acier comprenne une teneur en austénite résiduelle comprise entre 8 et 20%
- Procédé selon la revendication 23 ou 24, caractérisé en ce que les paramètres Vcm, Tm, tm, Vrm, T'm, t'm, sont choisis de telle sorte que la microstructure dudit acier comprenne une teneur en martensite inférieure à 2%
- Procédé selon l'une quelconque des revendications 23 à 25, caractérisé en ce que les paramètres Vcm, Tm, tm, Vrm, T'm, t'm, sont choisis de telle sorte que la taille moyenne des îlots d'austénite résiduelle est inférieure à 2 micromètres
- Procédé selon l'une quelconque des revendications 23 à 26, caractérisé en ce que les paramètres Vcm, Tm, tm, Vrm, T'm, t'm, sont choisis de telle sorte que la taille moyenne des îlots d'austénite résiduelle est inférieure à 1 micromètre
- Procédé de fabrication d'une tôle laminée à froid présentant un comportement TRIP, selon la revendication 23, caractérisé en ce que on fait subir à ladite tôle un traitement thermique de recuit, ledit traitement thermique comprenant une phase de chauffage à une vitesse Vcm supérieure ou égale à 2°C/s , une phase de maintien à une température de maintien Tm comprise entre Ac1 et Ac3 pendant un temps de maintien tm compris entre 10 et 200s, suivie d'une phase de refroidissement à une vitesse de refroidissement Vrm supérieure à 15°C/s lorsque la température est inférieure à Ar3, suivie d'une phase de maintien à une température T'm comprise entre 300 et 500°C pendant un temps de maintien t'm compris entre 10 et 1000 s
- Procédé selon la revendication 28, caractérisé en ce que ladite température de maintien Tm est comprise entre 770 et 815°C
- Utilisation d'une tôle d'acier selon l'une quelconque des revendications 11 à 15, ou fabriquée par un procédé selon l'une quelconque des revendications 16 à 29, pour la fabrication de pièces de structure ou d'éléments de renfort dans le domaine automobile.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06778838.0A EP1913169B1 (fr) | 2005-08-04 | 2006-07-07 | Procede de fabrication de tôles d'acier presentant une haute resistance et une excellente ductilite, et tôles ainsi produites |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05291675A EP1749895A1 (fr) | 2005-08-04 | 2005-08-04 | Procédé de fabrication de tôles d'acier présentant une haute résistance et une excellente ductilité, et tôles ainsi produites |
EP06778838.0A EP1913169B1 (fr) | 2005-08-04 | 2006-07-07 | Procede de fabrication de tôles d'acier presentant une haute resistance et une excellente ductilite, et tôles ainsi produites |
PCT/FR2006/001668 WO2007017565A1 (fr) | 2005-08-04 | 2006-07-07 | Procede de fabrication de tôles d'acier presentant une haute resistance et une excellente ductilite, et tôles ainsi produites |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1913169A1 EP1913169A1 (fr) | 2008-04-23 |
EP1913169B1 true EP1913169B1 (fr) | 2014-09-03 |
Family
ID=35149545
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05291675A Withdrawn EP1749895A1 (fr) | 2005-08-04 | 2005-08-04 | Procédé de fabrication de tôles d'acier présentant une haute résistance et une excellente ductilité, et tôles ainsi produites |
EP06778838.0A Active EP1913169B1 (fr) | 2005-08-04 | 2006-07-07 | Procede de fabrication de tôles d'acier presentant une haute resistance et une excellente ductilite, et tôles ainsi produites |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05291675A Withdrawn EP1749895A1 (fr) | 2005-08-04 | 2005-08-04 | Procédé de fabrication de tôles d'acier présentant une haute résistance et une excellente ductilité, et tôles ainsi produites |
Country Status (14)
Country | Link |
---|---|
US (1) | US9732404B2 (fr) |
EP (2) | EP1749895A1 (fr) |
JP (1) | JP5283504B2 (fr) |
KR (2) | KR101222724B1 (fr) |
CN (1) | CN101263239B (fr) |
BR (1) | BRPI0614391B8 (fr) |
CA (1) | CA2617879C (fr) |
ES (1) | ES2515116T3 (fr) |
MA (1) | MA29691B1 (fr) |
MX (1) | MX2008001653A (fr) |
RU (1) | RU2403311C2 (fr) |
UA (1) | UA92039C2 (fr) |
WO (1) | WO2007017565A1 (fr) |
ZA (1) | ZA200801068B (fr) |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5214905B2 (ja) * | 2007-04-17 | 2013-06-19 | 株式会社中山製鋼所 | 高強度熱延鋼板およびその製造方法 |
US8258432B2 (en) * | 2009-03-04 | 2012-09-04 | Lincoln Global, Inc. | Welding trip steels |
JP5779847B2 (ja) * | 2009-07-29 | 2015-09-16 | Jfeスチール株式会社 | 化成処理性に優れた高強度冷延鋼板の製造方法 |
DE102010012830B4 (de) | 2010-03-25 | 2017-06-08 | Benteler Automobiltechnik Gmbh | Verfahren zur Herstellung einer Kraftfahrzeugkomponente und Karosseriebauteil |
CN101942601B (zh) * | 2010-09-15 | 2012-11-14 | 北京科技大学 | 一种含v热轧相变诱发塑性钢的制备方法 |
US9314880B2 (en) * | 2010-10-21 | 2016-04-19 | Stoody Company | Chromium free hardfacing welding consumable |
BR112013011409A2 (pt) * | 2010-11-10 | 2016-08-02 | Posco | processo para fabricar aço trip de alta resistência laminado a frio/laminado a quente tendo uma resistência à tração de grau 590 mpa, funcionalidade superior e baixo desvio de propriedade mecânica |
CN102140606A (zh) * | 2011-03-17 | 2011-08-03 | 北京科技大学 | 一种热轧高强低合金多相钢及其制备方法 |
JP5636347B2 (ja) | 2011-08-17 | 2014-12-03 | 株式会社神戸製鋼所 | 室温および温間での成形性に優れた高強度鋼板およびその温間成形方法 |
CZ2011612A3 (cs) * | 2011-09-30 | 2013-07-10 | Západoceská Univerzita V Plzni | Zpusob dosazení TRIP struktury ocelí s vyuzitím deformacního tepla |
KR101660144B1 (ko) | 2012-01-13 | 2016-09-26 | 신닛테츠스미킨 카부시키카이샤 | 핫 스탬프 성형체 및 그 제조 방법 |
BR112014017042B1 (pt) * | 2012-01-13 | 2020-10-27 | Nippon Steel Corporation | chapa de aço laminada a frio e processo de fabricação da mesma |
EP2690183B1 (fr) * | 2012-07-27 | 2017-06-28 | ThyssenKrupp Steel Europe AG | Produit plat en acier laminé à chaud et son procédé de fabrication |
JP6513568B2 (ja) * | 2012-09-14 | 2019-05-15 | ザルツギッター・マンネスマン・プレシジョン・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | 低合金高張力鋼用の合金鋼 |
CN103805838B (zh) * | 2012-11-15 | 2017-02-08 | 宝山钢铁股份有限公司 | 一种高成形性超高强度冷轧钢板及其制造方法 |
EP2840159B8 (fr) | 2013-08-22 | 2017-07-19 | ThyssenKrupp Steel Europe AG | Procédé destiné à la fabrication d'un composant en acier |
CN104018069B (zh) * | 2014-06-16 | 2016-01-20 | 武汉科技大学 | 一种高性能低碳含Mo贝氏体钢及其制备方法 |
WO2016016676A1 (fr) * | 2014-07-30 | 2016-02-04 | ArcelorMittal Investigación y Desarrollo, S.L. | Procédé de fabrication de tôles d'acier, pour durcissement sous presse, et pièces obtenues par ce procédé |
WO2016020714A1 (fr) * | 2014-08-07 | 2016-02-11 | Arcelormittal | Procédé permettant de produire une tôle d'acier revêtue présentant une meilleure résistance, une meilleure ductilité et une meilleure aptitude au formage |
JP5935843B2 (ja) * | 2014-08-08 | 2016-06-15 | Jfeスチール株式会社 | スポット溶接性に優れた冷延鋼板およびその製造方法 |
CN104233092B (zh) * | 2014-09-15 | 2016-12-07 | 首钢总公司 | 一种热轧trip钢及其制备方法 |
CN105039847B (zh) * | 2015-08-17 | 2017-01-25 | 攀钢集团攀枝花钢铁研究院有限公司 | 铌合金化tam钢及其制造方法 |
WO2017109538A1 (fr) * | 2015-12-21 | 2017-06-29 | Arcelormittal | Procédé de production d'une tôle d'acier présentant une résistance, une ductilité et une aptitude au formage améliorées |
WO2017163098A1 (fr) * | 2016-03-25 | 2017-09-28 | Arcelormittal | Procede de fabrication de toles d'aciers laminees a froid et soudees, et toles ainsi produites |
CN105714189B (zh) * | 2016-04-28 | 2017-09-15 | 北京科技大学 | 一种铌、钒复合添加的具有高强塑积汽车用钢及制造方法 |
CN105950970B (zh) * | 2016-05-09 | 2018-01-02 | 北京科技大学 | 一种超细晶复合贝氏体高强韧汽车用钢及其制备方法 |
TWI635189B (zh) * | 2017-06-21 | 2018-09-11 | 中國鋼鐵股份有限公司 | 鋼材之製造方法及其應用 |
CN107557692B (zh) * | 2017-08-23 | 2019-01-25 | 武汉钢铁有限公司 | 基于CSP流程的1000MPa级热轧TRIP钢及制造方法 |
CN107475627B (zh) * | 2017-08-23 | 2018-12-21 | 武汉钢铁有限公司 | 基于CSP流程的600MPa级热轧TRIP钢及制造方法 |
CN107488814B (zh) * | 2017-08-23 | 2018-12-28 | 武汉钢铁有限公司 | 基于CSP流程的800MPa级热轧TRIP钢及制造方法 |
WO2019111028A1 (fr) * | 2017-12-05 | 2019-06-13 | Arcelormittal | Tôle d'acier laminée à froid recuite et son procédé de fabrication |
WO2019122963A1 (fr) * | 2017-12-19 | 2019-06-27 | Arcelormittal | Tôle d'acier laminée à froid et traitée thermiquement et son procédé de fabrication |
CN109943769B (zh) * | 2017-12-20 | 2021-06-15 | 宝山钢铁股份有限公司 | 780MPa级别低碳低合金TRIP钢及其快速热处理方法 |
CN108486477B (zh) * | 2018-05-30 | 2019-05-10 | 攀钢集团攀枝花钢铁研究院有限公司 | 1000MPa级高加工硬化指数冷轧高强钢板及其制备方法 |
EP3887148A1 (fr) * | 2018-11-29 | 2021-10-06 | Tata Steel Nederland Technology B.V. | Procédé de production d'une bande d'acier à haute résistance ayant une bonne aptitude à l'emboutissage profond et acier à haute résistance ainsi produit |
CN112760554A (zh) * | 2019-10-21 | 2021-05-07 | 宝山钢铁股份有限公司 | 一种延展性优异的高强度钢及其制造方法 |
CN111218607A (zh) * | 2020-04-16 | 2020-06-02 | 江苏沙钢集团有限公司 | 一种高强度座椅滑轨用钢及其基于薄带铸轧生产的方法 |
RU2751072C1 (ru) * | 2020-09-02 | 2021-07-07 | Публичное Акционерное Общество "Новолипецкий металлургический комбинат" | Способ производства высокопрочной холоднокатаной стали |
CN112080703B (zh) * | 2020-09-23 | 2021-08-17 | 辽宁衡业高科新材股份有限公司 | 一种960MPa级微残余应力高强钢板及其热处理方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01230715A (ja) | 1987-06-26 | 1989-09-14 | Nippon Steel Corp | プレス成形性の優れた高強度冷延鋼板の製造方法 |
JPH0733551B2 (ja) | 1989-02-18 | 1995-04-12 | 新日本製鐵株式会社 | 優れた成形性を有する高強度鋼板の製造方法 |
CN1076223A (zh) * | 1992-03-11 | 1993-09-15 | 中国科学院金属研究所 | 热轧低合金高强度钢板及其制备工艺 |
US5470529A (en) * | 1994-03-08 | 1995-11-28 | Sumitomo Metal Industries, Ltd. | High tensile strength steel sheet having improved formability |
WO1998032889A1 (fr) * | 1997-01-29 | 1998-07-30 | Nippon Steel Corporation | Tole d'acier a haute resistance mecanique, tres resistante a la deformation dynamique et d'une excellente ouvrabilite, et son procede de fabrication |
FR2801061B1 (fr) * | 1999-11-12 | 2001-12-14 | Lorraine Laminage | Procede de realisation d'une bande de tole laminere a chaud a tres haute resistance, utilisable pour la mise en forme et notamment pour l'emboutissage |
JP3858540B2 (ja) * | 1999-11-30 | 2006-12-13 | Jfeスチール株式会社 | 材質均一性に優れた高加工性熱延高張力鋼板の製造方法 |
JP3958921B2 (ja) * | 2000-08-04 | 2007-08-15 | 新日本製鐵株式会社 | 塗装焼付硬化性能と耐常温時効性に優れた冷延鋼板及びその製造方法 |
MXPA03008006A (es) * | 2001-03-09 | 2005-06-20 | Sumitomo Metal Ind | Tuberia de acero para encastrado - expansion y metodo para encastrar - expandir la tuberia de acero de un pozo petrolero. |
JP4445161B2 (ja) | 2001-06-19 | 2010-04-07 | 新日本製鐵株式会社 | 疲労強度に優れた厚鋼板の製造方法 |
JP4304421B2 (ja) * | 2002-10-23 | 2009-07-29 | 住友金属工業株式会社 | 熱延鋼板 |
KR100700473B1 (ko) | 2003-01-15 | 2007-03-28 | 신닛뽄세이테쯔 카부시키카이샤 | 고강도 용융 아연 도금 강판 및 그 제조 방법 |
US7981224B2 (en) * | 2003-12-18 | 2011-07-19 | Nippon Steel Corporation | Multi-phase steel sheet excellent in hole expandability and method of producing the same |
EP1559798B1 (fr) * | 2004-01-28 | 2016-11-02 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Tôle d'acier laminée à froid, à haute résistance, à bas rapport de limite d'élasticité et procédé pour sa fabrication |
US20050199322A1 (en) * | 2004-03-10 | 2005-09-15 | Jfe Steel Corporation | High carbon hot-rolled steel sheet and method for manufacturing the same |
ATE426686T1 (de) * | 2004-04-22 | 2009-04-15 | Kobe Steel Ltd | Hochfestes und kaltgewaltzes stahlblech mit hervorragender verformbarkeit und plattiertes stahlblech |
-
2005
- 2005-08-04 EP EP05291675A patent/EP1749895A1/fr not_active Withdrawn
-
2006
- 2006-07-07 CA CA2617879A patent/CA2617879C/fr active Active
- 2006-07-07 MX MX2008001653A patent/MX2008001653A/es active IP Right Grant
- 2006-07-07 KR KR1020087005304A patent/KR101222724B1/ko active IP Right Grant
- 2006-07-07 US US11/997,609 patent/US9732404B2/en active Active
- 2006-07-07 WO PCT/FR2006/001668 patent/WO2007017565A1/fr active Application Filing
- 2006-07-07 CN CN2006800333766A patent/CN101263239B/zh active Active
- 2006-07-07 UA UAA200805640A patent/UA92039C2/ru unknown
- 2006-07-07 ES ES06778838.0T patent/ES2515116T3/es active Active
- 2006-07-07 KR KR1020127025650A patent/KR101232972B1/ko active IP Right Grant
- 2006-07-07 RU RU2008117135/02A patent/RU2403311C2/ru active
- 2006-07-07 JP JP2008524537A patent/JP5283504B2/ja active Active
- 2006-07-07 EP EP06778838.0A patent/EP1913169B1/fr active Active
- 2006-07-07 BR BRPI0614391A patent/BRPI0614391B8/pt active IP Right Grant
-
2008
- 2008-02-01 MA MA30616A patent/MA29691B1/fr unknown
- 2008-02-04 ZA ZA200801068A patent/ZA200801068B/xx unknown
Also Published As
Publication number | Publication date |
---|---|
WO2007017565A1 (fr) | 2007-02-15 |
EP1749895A1 (fr) | 2007-02-07 |
RU2008117135A (ru) | 2009-11-10 |
JP5283504B2 (ja) | 2013-09-04 |
CN101263239A (zh) | 2008-09-10 |
ZA200801068B (en) | 2008-12-31 |
CN101263239B (zh) | 2012-06-27 |
ES2515116T3 (es) | 2014-10-29 |
JP2009503267A (ja) | 2009-01-29 |
MX2008001653A (es) | 2008-04-22 |
BRPI0614391A2 (pt) | 2011-03-22 |
EP1913169A1 (fr) | 2008-04-23 |
CA2617879A1 (fr) | 2007-02-15 |
KR20080038202A (ko) | 2008-05-02 |
US9732404B2 (en) | 2017-08-15 |
MA29691B1 (fr) | 2008-08-01 |
KR101222724B1 (ko) | 2013-01-16 |
CA2617879C (fr) | 2011-11-15 |
US20080199347A1 (en) | 2008-08-21 |
RU2403311C2 (ru) | 2010-11-10 |
KR20120114411A (ko) | 2012-10-16 |
UA92039C2 (ru) | 2010-09-27 |
KR101232972B1 (ko) | 2013-02-13 |
BRPI0614391B8 (pt) | 2017-03-21 |
BRPI0614391B1 (pt) | 2016-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1913169B1 (fr) | Procede de fabrication de tôles d'acier presentant une haute resistance et une excellente ductilite, et tôles ainsi produites | |
EP2155915B2 (fr) | Procédé de fabrication de tôles d'acier laminées à froid et recuites à très haute résistance, et tôles ainsi produites | |
EP3084014B1 (fr) | Acier à haute résistance et procédé de fabrication | |
CA2587858C (fr) | Procede de fabrication de toles d'acier austenitique, fer-carbone-manganese a tres hautes caracteristiques de resistance et d'allongement, et excellente homogeneite | |
EP2718469B1 (fr) | Tôle d'acier laminée à froid et revêtue de zinc ou d'alliage de zinc, procede de fabrication et utilisation d'une telle tôle | |
EP2291547B1 (fr) | Procede de fabrication de toles d'aciers dual phase laminees a froid a tres haute resistance et toles ainsi produites | |
EP2689045B1 (fr) | Tôle d'acier laminée à chaud et procédé de fabrication associé | |
EP1844173B1 (fr) | Procede de fabrication de toles d'acier austenitique fer-carbone-manganese et toles ainsi produites | |
EP2855725B1 (fr) | Acier lamine a chaud ou a froid a faible densite, son procede de mise en oeuvre et son utilisation | |
EP2155916B2 (fr) | Acier a faible densite presentant une bonne aptitude a l'emboutissage | |
EP3146083B1 (fr) | Tôle d'acier doublement recuite a hautes caracteristiques mecaniques de resistance et de ductilite, procede de fabrication et utilisation de telles tôles | |
EP3307921A2 (fr) | Acier à haute résistance et procédé de fabrication | |
WO2007101921A1 (fr) | Procede de fabrication de tôles d1acier a tres hautes caracteristiques de resistance, de ductilite et de tenacite, et tôles ainsi produites | |
WO2012153009A1 (fr) | Procede de fabrication d'acier martensitique a tres haute resistance et tole ainsi obtenue | |
FR2833617A1 (fr) | Procede de fabrication de toles laminees a froid a tres haute resistance d'aciers dual phase micro-allies | |
EP1587963B1 (fr) | Acier laminé à chaud à très haute résistance et procédé de fabrication de bandes | |
EP2257652B1 (fr) | Procede de fabrication de tôles d'acier inoxydable austenitique a hautes caracteristiques mecaniques, et tôles ainsi obtenues |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080304 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140227 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 685665 Country of ref document: AT Kind code of ref document: T Effective date: 20140915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602006042942 Country of ref document: DE Effective date: 20141009 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2515116 Country of ref document: ES Kind code of ref document: T3 Effective date: 20141029 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 685665 Country of ref document: AT Kind code of ref document: T Effective date: 20140903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141204 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20140903 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 17660 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150105 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602006042942 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 |
|
26N | No opposition filed |
Effective date: 20150604 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150707 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150731 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140903 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20060707 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150731 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230523 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20230623 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20230801 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240620 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240625 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20240627 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240619 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240619 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240619 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240619 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240802 Year of fee payment: 19 |