EP1908526A1 - Nozzle for a diphasic mixture - Google Patents
Nozzle for a diphasic mixture Download PDFInfo
- Publication number
- EP1908526A1 EP1908526A1 EP06291557A EP06291557A EP1908526A1 EP 1908526 A1 EP1908526 A1 EP 1908526A1 EP 06291557 A EP06291557 A EP 06291557A EP 06291557 A EP06291557 A EP 06291557A EP 1908526 A1 EP1908526 A1 EP 1908526A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- liquid
- nozzle
- gas
- mixture
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/0012—Apparatus for achieving spraying before discharge from the apparatus
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62C—FIRE-FIGHTING
- A62C31/00—Delivery of fire-extinguishing material
- A62C31/02—Nozzles specially adapted for fire-extinguishing
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62C—FIRE-FIGHTING
- A62C31/00—Delivery of fire-extinguishing material
- A62C31/02—Nozzles specially adapted for fire-extinguishing
- A62C31/05—Nozzles specially adapted for fire-extinguishing with two or more outlets
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62C—FIRE-FIGHTING
- A62C99/00—Subject matter not provided for in other groups of this subclass
- A62C99/0009—Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames
- A62C99/0072—Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames using sprayed or atomised water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B3/00—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
- B05B3/02—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
- B05B3/04—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B3/00—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
- B05B3/02—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
- B05B3/04—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet
- B05B3/0409—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements
- B05B3/0418—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements comprising a liquid driven rotor, e.g. a turbine
- B05B3/0422—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements comprising a liquid driven rotor, e.g. a turbine with rotating outlet elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B3/00—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
- B05B3/02—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
- B05B3/04—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet
- B05B3/06—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet by jet reaction, i.e. creating a spinning torque due to a tangential component of the jet
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/0018—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with devices for making foam
- B05B7/0025—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with devices for making foam with a compressed gas supply
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/02—Spray pistols; Apparatus for discharge
- B05B7/04—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
- B05B7/0416—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/02—Spray pistols; Apparatus for discharge
- B05B7/04—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
- B05B7/0416—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
- B05B7/0441—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
- B05B7/0475—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber with means for deflecting the peripheral gas flow towards the central liquid flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/02—Spray pistols; Apparatus for discharge
- B05B7/04—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
- B05B7/0416—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
- B05B7/0483—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with gas and liquid jets intersecting in the mixing chamber
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/42—Constructional features of converters
- C21C5/46—Details or accessories
- C21C5/4606—Lances or injectors
Definitions
- the present invention relates to a device for ejecting an at least two-phase mixture according to the preamble of claim 1, as well as various advantageous uses of this device according to claims 16 to 20.
- a known way to fight effectively against a fire is the water lance, allowing to "drown" a fire, especially under a large range of ejection but at the cost of a large flow of water.
- Another ejection device uses a two-phase mixture, for example by means of, inter alia, water and pressurized gas, and adapts itself in the field of extinguishing fire in order to create a mist of water or fire-fighting foam, such as a conventional fire extinguisher.
- the amount of water required is therefore reduced.
- Other agents may also be included in the pressurized water-gas phase, such as an emulsifying agent or another agent of a non-obligatorily emulsifying nature such as carbon dioxide.
- agent remains however binding for example because of the limited storage of a fire extinguisher.
- the scope of conventional fire extinguishers is also limited because they are designed for small-scale fire suppression.
- a device of this type comprises a wall delimiting a chamber where this two-phase pressure flow is produced, perforated by at least one opening through which a gas under a so-called "supply pressure" pressure, equipped with a first upstream end connected to a liquid supply source substantially at the same pressure, and a second downstream end connected to a fluid accelerating nozzle where it relaxes, and from which it escapes in the form of jet at high speed.
- Such a device makes it possible to create a two-phase jet of water and non-oxidizing gas at the site of the fire intervention, from the existing water resource, and from a source of non-oxidizing gas.
- the supply pressure is increased to obtain jets at such speeds that they can reach fires at great distances, the operation of the devices becomes defective.
- This device for ejecting a two-phase mixture comprises two separate inputs for a liquid injection inlet and the injection inlet gas, an emulsion chamber for producing a liquid-gas mixture and an ejection nozzle of the first liquid-gas mixture in a main direction defined by a vector axis.
- the gas is injected perpendicularly into the water inlet pipe and through perforated elements promoting the emulsion of the liquid-gas mixture.
- partition elements such as lamellae are arranged parallel to the flow of the water pipe so as to form separate channels of flow. These slats can be spaced angularly on a section of the water pipe surrounded by the perforated elements for the entry of gas into the channels. Admittedly, this device makes it possible to generate a constant two-phase jet for various pressures, but may be subject to disturbances due to untimely obstructions at the level of the lamellae or perforated elements, for example when introducing impurities (sand, pebble, dirt, etc.) via the water pipe or via the gas line. This can also result in a point or prolonged degeneration of the diphasic mixture which makes the extinction of a fire less manageable.
- the elements internally arranged at the levels of the pipes require the manufacture and maintenance of the complex device.
- An object of the present invention is to provide a simple device for ejecting a mixture at least two-phase that allows at least a precise control of its ejection range in two-phase assured.
- this device should adapt to various liquid and gas injection pressures, or even in the low pressure range while reaching long spans of the two-phase jet.
- the device should be able to overcome internal elements with shutter potential and complex and remain insensitive to input impurity factors, in that the two-phase mixture at the device outlet is provided over the entire length of the jet and permanently .
- the invention thus proposes a solution based on a device for ejecting an at least two-phase mixture, comprising at least one injection inlet for a liquid and a gas, an emulsion chamber for producing a first liquid-gas mixture. , an ejection nozzle of the first liquid-gas mixture in a main direction defined by a vector axis.
- the ejection nozzle has a geometry with at least a minimum cross-sectional area along its length, at a location of the vector axis, not only is an expansion effect within the nozzle created as known in any Venturi type flow, but it is important to note that the geometry of the nozzle is adapted such that a relaxation within the ejection nozzle is induced allowing the first liquid-gas mixture from the chamber of emulsion to be converted, in the direction of the flow configuration, into a second liquid-gas mixture at the outlet of the nozzle, the ejection range of the second mixture and the particle size of the liquid in the form of droplets can be controlled according to the mass flow rates of the liquid and gas and the absolute pressure at the injection inlet.
- the invention makes it possible to optionally use a common inlet for the liquid and the gas, which decreases the complexity favorably vis-à-vis device with two separate inputs whose relative position is to be taken into account in particularly for the emulsion.
- the invention does not require the use of sharing or perforation elements in one of the injection inlets to allow quality emulsion and two-phase mixing, because the geometry of the nozzle coupled to the generating conditions at the inlet of the device (mass flow rates of the liquid and the gas and the absolute pressure at the injection inlet) ensure optimum emulsion and in addition allow the two-phase mixture at the nozzle inlet to be transformed, in the direction of the flow configuration, in a second two-phase mixture at the outlet of nozzles whose particle size and range are clearly related to the generating conditions, thus controlled.
- the device is very simplified and moreover avoids any shutter effect by the absence of elements arranged in the complete flow.
- such elements perforated cone, grid, stirrer, etc.
- the geometry of the nozzle is adapted so that the ejected mixture, called the second mixture to distinguish it from the first mixture at the nozzle inlet, forms a fog jet mainly along the vector axis of the nozzle and whose particle size, the range and volume deployment out of the vector axis (also commonly referred to as jet divergence) are controllable and assured up to the desired fire attack surface.
- the impurities or even grains of sand do not cause significant disturbances at the two-phase ejected mixture. It is even possible to add to the water-gas mixture an abrasive product such as consisting of fine solid particles.
- the nozzle inlet consists of a first high gradient convergent access zone followed by a second low gradient convergent zone, a transition to the minimum cross section also referred to as the nozzle neck, and possibly a third divergent area ending in the nozzle outlet section. It is thanks to such a configuration or to similar configurations that the expansion within the nozzle makes it possible to control the particle size of the fog jet and its range, as a function of generating conditions that are simply definable at the inlet of the device.
- a strong advantage of the invention is that the device can be used for a low absolute pressure (generally of the order of 5 to 10 bar) at the inlet to the emulsion chamber or the nozzle.
- a fog jet flow at the outlet of the nozzle is, however, perfectly ensured in a range from 50 to 150 m / s and a particle size of droplets of 50 to 150 microns.
- the device therefore does not require a high input pressure or at least a considerable increase, in order to guarantee a larger jet range, such as for a long range light.
- untimely and abrupt variations in its particle size (and therefore its diphasic state) are discarded.
- the geometry of the nozzle allows a liquid-gas emulsion at its inlet to provide particle size uniformity as well as controlled range (and vice versa). It could then be understood that to vary the range thus obtained without modifying the particle size of the jet and the generating conditions, it would be necessary to modify the geometry of the nozzle, which would be practically impossible.
- nozzle geometry has also been calculated and adapted to allow range variation of the jet for a stable particle size factor by simply varying one or more of the generating conditions at the inlet or in the device.
- the input pressure (liquid-gas injection) of the device is for example adjustable by a single valve.
- the invention also has a second advantageous aspect coupling several nozzles as described above and arranged on a rotary support, allowing in addition to a gyratory action by the detents of the nozzles and their particular provisions on the rotor and between them, of sweep targeted surfaces in a complete and extensive way or to project jets of fog over a large volume without trying to reach precisely a flame zone for example.
- the rotational speed can also be favorably controlled for a desired exercise, depending on the generating conditions of the multi-nozzle device, similar to that of a single nozzle.
- the ejection device according to the invention satisfies the requirements of the control of large particle size in practice.
- the size of the droplets must be adapted according to the type of fire, for example by means of finer drops to attack hydrocarbon foci or to cool very hot environments, or by means of larger drops for wet fires forming embers.
- a set of subclaims also has advantages of the invention.
- the particle size and range characteristics of the second ejected MLG2 liquid-gas mixture are controllable by said generator conditions such as the total inlet pressure of the EMC emulsion chamber or of the EJ nozzle (s) and the mass flow rates of the liquid. L1 and gas G1. These generating conditions relating to a nozzle flow are adapted for operating points of the nozzle with targeted particle size and range.
- the feed conditions pressure of the first mixture MLG1 inlet nozzle EJ, incoming flow of the liquid L1, incoming flow of the gas G1 are not arbitrary.
- jet outlet conditions are entirely a function of the conditions generating the flow, directly also related to the geometry of the nozzle. It is thus possible to map, for a nozzle geometry, operating points according to the generating and output conditions for each desired ejection application.
- the network arrangements and the multi-head device have the disadvantage of leaving unprotected areas of the volume, while the solution of a rotating body on which several nozzles are fixed can scan all a set of direction and optimally cover the volume to be protected.
- FIG. 2 such a device for ejecting a two-phase fluid MLG1 injected into a multi-nozzle rotary system is shown in cross-section.
- the system comprises a stator STAT rotating guide a rotor ROT, on which are arranged nozzles EJ, EJ1, EJ2.- according to Figure 1.
- the gas G1 and liquid L1 are directly injected to the inputs nozzles via the single input IN of the stator STAT leading to a free inner space of the rotor ROT which simply serves as an EMD distribution chamber for the MLG1 mixture.
- an effective emulsion chamber for example with perforated or partition elements, is no longer indispensable insofar as the mixture is admitted directly into the distribution chamber.
- EMC emulsion chamber
- the axis AX of a nozzle EJ can be superimposed on the axis of rotation RX of the rotor ROT, but does not contribute to the rotation of the rotor.
- This nozzle EJ can also be fixed on the stator STAT to simplify the construction of the complete device and avoid a rotation of the nozzle on itself.
- Separate jets are disposed on the walls of the EMD distribution chamber, in particular so as to obtain a surface or a fog cover volume extended to at least one defined range.
- Some vector axes AX1, AX2, ... ejector nozzles EJ1, EJ2, - can be arranged on the rotor ROT asymmetrically about a plane comprising the axis of rotation RX, and are in particular oriented from staggered at an angle between 0 ° and 90 ° in a plane perpendicular to the axis of rotation RX. To simply favor the jet distribution, this angle is different between at least two adjacent nozzles.
- the expansions at the outlet of the ejector nozzles EJ1, EJ2, ... or / and the directions distinct from the vector axes AX1, AX2,... are thus adapted so that a rotating effect of the rotor ROT with controlled rotation speed is produced.
- the vector axes AX1, AX2,... May also be free from any intersection with the axis of rotation RX in order to generate on the rotor ROT by the reaction forces in a nozzle a torque component laterally to the nozzle inducing an angular displacement of the rotor ROT about its axis RX.
- the fog obtained can have various properties useful for various exercises (close and far extinction, several controlled diameters of drops).
- the pressure of the liquid L1 or / and the gas G1 at the injection inlet is adaptable according to the ratio of the inlet flow rates for the liquid L1 and the gas G1 .
- the device is designed with geometrically studied nozzles, so that particle size characteristics and scope of the second ejected MLG2 liquid-gas mixture are controllable by generating conditions such as the total inlet pressure of the EMD distribution chamber or / of the nozzle (s) EJ, EJ1, EJ2, ... and mass flow rates of the liquid L1 and gas G1.
- the rotary device responds to generating conditions relating to a nozzle flow and which are adapted for operating points of the device for one (or more) granulometry (s) and / or one (or several) targeted reach (s).
- liquid flow rates L1 of the order of less than 2 kg / s are made possible.
- Figure 2 corresponding to an embodiment suitable for the rotary multi-nozzle device has one of the ideal geometries of the nozzle according to the invention.
- This geometry has been detailed for the nozzle EJ2 seen in section at the level of its axis-vector AX2 (axis of symmetry of the nozzle).
- the nozzle EJ2 consists of three portions of length La, Lb, LC along its vector axis AX2.
- the nozzle inlet consists of a first zone, of length La, converging with a strong gradient followed by a second zone, of length Lb, converging at a low gradient, of a passage at the minimum section also called neck of the nozzle, and optionally to a third zone, of length Lc, diverging ending in the nozzle outlet section of dimension D2 (usually greater than 1 mm for extinguishing or cooling applications over a few tens of meters).
- the first zone with high gradient favors a rapid atomization of the flow, the increase of the exchange surface resulting from this atomization allows intense transfers of momentum and energy, between liquid and gas, in the together the nozzle which thus jointly ensures atomization and acceleration of the liquid during relaxation. It is thanks to such a geometry and such dimensions that the two-phase mixture can be ejected after expansion into a fog nozzle with particle size, range and volume controlled as the invention describes it.
- Figures 3 and 4 show a bottom view and a side view (right) of rotary multi-nozzle device according to Figure 2.
- the arrangement of the nozzles EJ1, EJ2, ..., EJ6 relative to the axis of rotation RX of the rotor ROT is asymmetrical considering two nozzles whose vector axes are included in a single plane also comprising the axis of rotation.
- RX rotation of the rotor for example the EJ4 and EJ6 nozzles with their vector axes AX4 and AX6).
- the neighboring nozzles are also angularly offset relative to the axis of rotation RX of the rotor ROT. This arrangement promotes the controlled rotational effect of the rotor ROT, but also offers an extended jet scan on volumes to be humidified.
- this system provides an ecological advantage because it operates at low water flow rates with respect to current devices for ejecting a two-phase water-gas mixture (weakly compressed gas). It therefore allows a low consumption of water coupled to a precisely controlled distribution of water.
- This device could therefore also be advantageously used, outside a building, for the prevention of fire in natural environments.
- the water could come from any source (especially a water table).
- a humidification or even watering function is also possible over large spaces while minimizing water consumption without the need for high pressure at the inlet of the device.
- Other media such as flammable industrial surfaces may also be protected against suspicious heating or fire.
- the present invention is potentially adaptable to other types of applications such as propellant feed / atomization for rocket engines, or for fuel injection optimization for combustion heat engines.
- the device for the propulsion of a vehicle comprising the nozzle as a means of propulsion is also possible, such as for the propulsion of a marine or air vehicle (submarine, jet-ski, airplane, etc.).
Landscapes
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Nozzles (AREA)
Abstract
Description
La présente invention concerne un dispositif d'éjection d'un mélange au moins diphasique selon le préambule de la revendication 1, ainsi que diverses utilisations avantageuses de ce dispositif selon les revendications 16 à 20.The present invention relates to a device for ejecting an at least two-phase mixture according to the preamble of
A la base, un moyen connu pour lutter efficacement Contre un incendie est la lance à eau, permettant de pouvoir « noyer » un feu, en particulier sous une grande portée d'éjection mais au prix d'un grand débit d'eau.Basically, a known way to fight effectively against a fire is the water lance, allowing to "drown" a fire, especially under a large range of ejection but at the cost of a large flow of water.
Un autre dispositif d'éjection utilise un mélange diphasique, par exemple au moyen entre autre d'eau et de gaz sous pression, et s'adapte dans le domaine de l'extinction d'incendie afin de créer un brouillard d'eau ou une mousse extinctrice, tel qu'un extincteur classique. La quantité d'eau requise est donc réduite. D'autres agents peuvent aussi être inclus dans la phase eau-gaz sous pression, telle qu'un agent émulsifiant ou un autre agent à caractère non obligatoirement émulsifiant tel que du gaz carbonique. L'ajout d'agent reste cependant contraignant par exemple à cause du stockage limité d'un extincteur. La portée des extincteurs classiques est par ailleurs aussi limitée, car ceux-ci sont conçus pour des extinctions de feu à faible étendue.Another ejection device uses a two-phase mixture, for example by means of, inter alia, water and pressurized gas, and adapts itself in the field of extinguishing fire in order to create a mist of water or fire-fighting foam, such as a conventional fire extinguisher. The amount of water required is therefore reduced. Other agents may also be included in the pressurized water-gas phase, such as an emulsifying agent or another agent of a non-obligatorily emulsifying nature such as carbon dioxide. The addition of agent remains however binding for example because of the limited storage of a fire extinguisher. The scope of conventional fire extinguishers is also limited because they are designed for small-scale fire suppression.
D'autres systèmes, par exemple adaptés à une lance à longue portée, utilisent un gaz à haute pression comme de l'azote, permettant une atomisation de l'eau, cependant préalablement traitée (déminéralisation). Ainsi, les propriétés spécifiques du liquide injecté restent à caractère contraignant. De ce fait, de l'eau de mer ou toute autre eau avec des impuretés ne permettent pas de former correctement un mélange diphasique qui, même outre une haute pression du gaz, n'atteint pas une longue portée.Other systems, for example adapted to a long-range lance, use a high-pressure gas such as nitrogen, allowing atomization of the water, however previously treated (demineralization). Thus, the specific properties of the injected liquid remain binding. As a result, seawater or other water with impurities does not properly form a diphasic mixture. which, even in addition to high gas pressure, does not reach a long range.
Il a été tenté de pallier à cet inconvénient en utilisant un dispositif de génération d'un écoulement diphasique, tel que décrit dans le brevet
De là, un nouveau dispositif a été élaboré, tel que celui décrit dans la demande de brevet
Un but de la présente invention est de proposer un dispositif simple d'éjection d'un mélange au moins diphasique qui permet au moins un contrôle précis de sa portée d'éjection sous forme diphasique assurée.An object of the present invention is to provide a simple device for ejecting a mixture at least two-phase that allows at least a precise control of its ejection range in two-phase assured.
En particulier, ce dispositif devrait s'adapter à des pressions d'injection du liquide et du gaz diverses, voire aussi dans le domaine des basses pressions tout en atteignant de longues portées du jet diphasique.In particular, this device should adapt to various liquid and gas injection pressures, or even in the low pressure range while reaching long spans of the two-phase jet.
Le dispositif devrait pouvoir s'affranchir d'éléments internes à potentiel obturateur et complexe et rester insensible à des facteurs d'impuretés en entrée, en ce sens que le mélange diphasique en sortie de dispositif est assuré sur toute la longueur du jet et en permanence.The device should be able to overcome internal elements with shutter potential and complex and remain insensitive to input impurity factors, in that the two-phase mixture at the device outlet is provided over the entire length of the jet and permanently .
L'invention propose ainsi une solution basée sur un dispositif d'éjection d'un mélange au moins diphasique, comprenant au moins une entrée d'injection pour un liquide et un gaz, une chambre d'émulsion pour produire un premier mélange liquide-gaz, une tuyère d'éjection du premier mélange liquide-gaz suivant une direction principale définie par un axe-vecteur.
Du fait que la tuyère d'éjection possède une géométrie avec au moins sur sa longueur une section minimale, dite col, à un emplacement de l'axe-vecteur, non seulement un effet de détente au sein de la tuyère est créé comme connu dans tout écoulement de type Venturi, mais il est important de noter que la géométrie de la tuyère est adaptée de telle façon qu'une détente au sein de la tuyère d'éjection est induite permettant au premier mélange liquide-gaz issu de la chambre d'émulsion d'être transformé, au sens de la configuration d'écoulement, en un deuxième mélange de liquide-gaz en sortie de tuyère dont la portée d'éjection du deuxième mélange et la granulométrie du liquide sous forme de gouttelettes est contrôlable en fonction des débits massiques du liquide et du gaz et de la pression absolue à l'entrée d'injection.The invention thus proposes a solution based on a device for ejecting an at least two-phase mixture, comprising at least one injection inlet for a liquid and a gas, an emulsion chamber for producing a first liquid-gas mixture. , an ejection nozzle of the first liquid-gas mixture in a main direction defined by a vector axis.
Since the ejection nozzle has a geometry with at least a minimum cross-sectional area along its length, at a location of the vector axis, not only is an expansion effect within the nozzle created as known in any Venturi type flow, but it is important to note that the geometry of the nozzle is adapted such that a relaxation within the ejection nozzle is induced allowing the first liquid-gas mixture from the chamber of emulsion to be converted, in the direction of the flow configuration, into a second liquid-gas mixture at the outlet of the nozzle, the ejection range of the second mixture and the particle size of the liquid in the form of droplets can be controlled according to the mass flow rates of the liquid and gas and the absolute pressure at the injection inlet.
Il est à noter que l'invention permet d'utiliser éventuellement une entrée commune pour le liquide et le gaz, ce qui diminue la complexité favorablement vis-à-vis de dispositif à deux entrées distinctes dont la position relative est à prendre en compte en particulier pour l'émulsion.It should be noted that the invention makes it possible to optionally use a common inlet for the liquid and the gas, which decreases the complexity favorably vis-à-vis device with two separate inputs whose relative position is to be taken into account in particularly for the emulsion.
De plus, l'invention n'oblige pas à utiliser des éléments de partage ou de perforation dans une des entrées d'injection pour permettre une émulsion et un mélange diphasique de qualité, car la géométrie de la tuyère couplée aux conditions génératrices en entrée du dispositif (débits massiques du liquide et du gaz et de la pression absolue à l'entrée d'injection) assurent une émulsion optimale et permettent de plus au mélange diphasique en entrée de tuyère de se transformer, au sens de la configuration d'écoulement, en un deuxième mélange diphasique en sortie de tuyères dont la granulométrie et la portée sont clairement liées aux conditions génératrices, donc contrôlées. Ainsi, le dispositif se voit fort simplifié et de plus évite tout effet obturateur par l'absence d'éléments disposés dans l'écoulement complet. Bien entendu, de tels éléments (cône perforé, grille, agitateur, etc.) peuvent être disposés en amont comme aval de la tuyère si l'émulsion ou la configuration du jet doivent être modifiées.In addition, the invention does not require the use of sharing or perforation elements in one of the injection inlets to allow quality emulsion and two-phase mixing, because the geometry of the nozzle coupled to the generating conditions at the inlet of the device (mass flow rates of the liquid and the gas and the absolute pressure at the injection inlet) ensure optimum emulsion and in addition allow the two-phase mixture at the nozzle inlet to be transformed, in the direction of the flow configuration, in a second two-phase mixture at the outlet of nozzles whose particle size and range are clearly related to the generating conditions, thus controlled. Thus, the device is very simplified and moreover avoids any shutter effect by the absence of elements arranged in the complete flow. Of course, such elements (perforated cone, grid, stirrer, etc.) may be arranged upstream or downstream of the nozzle if the emulsion or the configuration of the jet must be modified.
La géométrie de la tuyère est donc adaptée de telle façon que le mélange éjecté, dénommé deuxième mélange pour le distinguer du premier mélange en entrée de tuyère, forme un jet de brouillard principalement suivant l'axe-vecteur de la tuyère et dont la granulométrie, la portée et le déploiement volumique hors de l'axe-vecteur (aussi communément appelée divergence de jet) sont contrôlables et assurés jusqu'à la surface d'attaque du feu désirée.The geometry of the nozzle is adapted so that the ejected mixture, called the second mixture to distinguish it from the first mixture at the nozzle inlet, forms a fog jet mainly along the vector axis of the nozzle and whose particle size, the range and volume deployment out of the vector axis (also commonly referred to as jet divergence) are controllable and assured up to the desired fire attack surface.
Du fait de la géométrie de section de la tuyère de l'ordre d'un ou plusieurs millimètres d'ouverture, les impuretés ou même des grains de sables par exemple ne provoquent pas de perturbations notables au niveau du mélange diphasique éjecté. Il est même possible d'ajouter au mélange eau-gaz un produit abrasif tel que constitué de fines particules solides.Because of the section geometry of the nozzle of the order of one or more millimeters of opening, the impurities or even grains of sand for example do not cause significant disturbances at the two-phase ejected mixture. It is even possible to add to the water-gas mixture an abrasive product such as consisting of fine solid particles.
Par la suite, un exemple de géométrie adaptée pour une tuyère (ou un dispositif multi-tuyères), en particulier au niveau de son entrée, son rétrécissement et sa sortie sera illustré. Principalement, l'entrée de tuyère consiste en une première zone d'accès convergent à fort gradient suivi d'une deuxième zone convergent à faible gradient, d'un passage à la section minimale appelé aussi col de la tuyère, et éventuellemt à une troisième zone divergent se terminant par la section de sortie de tuyère. C'est grâce à une telle configuration ou à des configurations approchantes que la détente au sein de la tuyère permet de contrôler la granulométrie du jet de brouillard et sa portée, en fonction de conditions génératrices simplement définissables en entrée du dispositif.Subsequently, an example of geometry adapted for a nozzle (or a multi-nozzle device), in particular at its inlet, its narrowing and its output will be illustrated. Mainly, the nozzle inlet consists of a first high gradient convergent access zone followed by a second low gradient convergent zone, a transition to the minimum cross section also referred to as the nozzle neck, and possibly a third divergent area ending in the nozzle outlet section. It is thanks to such a configuration or to similar configurations that the expansion within the nozzle makes it possible to control the particle size of the fog jet and its range, as a function of generating conditions that are simply definable at the inlet of the device.
En réalité, des simulations avancées de géométrie de tuyère ont été effectuées pour arriver sur l'exemple ci-dessus, mais aussi sur d'autres variations permettant un contrôle adapté à un exercice voulu, par exemple pour permettre d'assurer un intervalle de portée variable tout en tendant à maintenir une granulométrie contrôlée du jet de brouillard.In fact, advanced simulations of nozzle geometry have been made to arrive at the above example, but also at other variations allowing a control adapted to a desired exercise, for example to ensure a range of range variable while tending to maintain a controlled particle size of the fog jet.
Un avantage fort de l'invention est que le dispositif peut être utilisé pour une pression absolue basse (de l'ordre généralement de 5 à 10 bar) au niveau de l'entrée dans la chambre d'émulsion ou de la tuyère. Pour ce domaine de pression, un débit de jet de brouillard en sortie de tuyère est cependant parfaitement assuré dans un domaine allant de 50 à 150 m/s ainsi qu'une granulométrie de gouttelettes de 50 à 150 µm. Le dispositif ne nécessite donc pas de forte pression en entrée ou du moins d'augmentation considérable, afin de garantir une portée de jet plus importante, telle que pour un feu à grande distance. Ainsi, lors d'une variation même considérable de portée du jet, des variations intempestives et brusques de sa granulométrie (et donc de son état diphasique) sont écartées.A strong advantage of the invention is that the device can be used for a low absolute pressure (generally of the order of 5 to 10 bar) at the inlet to the emulsion chamber or the nozzle. For this pressure range, a fog jet flow at the outlet of the nozzle is, however, perfectly ensured in a range from 50 to 150 m / s and a particle size of droplets of 50 to 150 microns. The device therefore does not require a high input pressure or at least a considerable increase, in order to guarantee a larger jet range, such as for a long range light. Thus, during a considerable variation in range of the jet, untimely and abrupt variations in its particle size (and therefore its diphasic state) are discarded.
En bref, la géométrie (avec au moins deux sections à diamètre variable le long de l'axe vecteur en entrée et en sortie) de 1a tuyère selon l'invention est adaptée pour permettre un taux de détente en sortie de tuyère qui assure:
- une granulométrie contrôlée du mélange diphasique par un fractionnement du liquide en gouttelettes
- une accélération et une vectorisation des gouttelettes de liquide par la détente du gaz également pré-émulsionné en entrée de tuyère.
- a controlled particle size of the diphasic mixture by splitting the liquid into droplets
- an acceleration and a vectorization of the liquid droplets by the expansion of the gas also pre-emulsified at the nozzle inlet.
En d'autres termes, la géométrie de 1a tuyère permet à une émulsion liquide-gaz à son entrée de lui assurer une uniformité granulométrique ainsi qu'une portée contrôlée (et vice-versa). On pourrait alors comprendre que pour faire varier la portée ainsi obtenue sans modifier la granulométrie du jet et les conditions génératrices, il faudrait modifier la géométrie de 1a tuyère, ce qui serait pratiquement impossible. En fait, 1a géométrie de 1a tuyère a aussi été calculée et adaptée pour permettre une variation de portée du jet pour un facteur de granulométrie stable en faisant varier simplement une ou plusieurs des conditions génératrices à 1'entrée ou dans le dispositif. Pour un souci de facilité, la pression en entrée (injection liquide-gaz) du dispositif est par exemple réglable par une simple vanne.In other words, the geometry of the nozzle allows a liquid-gas emulsion at its inlet to provide particle size uniformity as well as controlled range (and vice versa). It could then be understood that to vary the range thus obtained without modifying the particle size of the jet and the generating conditions, it would be necessary to modify the geometry of the nozzle, which would be practically impossible. In fact, nozzle geometry has also been calculated and adapted to allow range variation of the jet for a stable particle size factor by simply varying one or more of the generating conditions at the inlet or in the device. For the sake of ease, the input pressure (liquid-gas injection) of the device is for example adjustable by a single valve.
L'invention présente également un deuxième aspect avantageux couplant plusieurs tuyères telles que décrites ci-dessus et disposées sur un support rotatif, permettant en plus d'une action giratoire par les détentes des tuyères et leurs dispositions particulières sur le rotor et entre elles, de balayer des surfaces ciblées de façon complète et étendue ou bien de projeter des jets de brouillards sur un large volume sans essayer d'atteindre précisément une zone de flamme par exemple. De la même façon que pour le contrôle de la portée et de la granulométrie du jet, la vitesse de rotation peut aussi être contrôlée favorablement pour un exercice souhaité, en fonction des conditions génératrices du dispositif multi-tuyères, semblables à celles d'une seule tuyère.The invention also has a second advantageous aspect coupling several nozzles as described above and arranged on a rotary support, allowing in addition to a gyratory action by the detents of the nozzles and their particular provisions on the rotor and between them, of sweep targeted surfaces in a complete and extensive way or to project jets of fog over a large volume without trying to reach precisely a flame zone for example. In the same way as for the control of the range and particle size of the jet, the rotational speed can also be favorably controlled for a desired exercise, depending on the generating conditions of the multi-nozzle device, similar to that of a single nozzle.
Ainsi, le dispositif d'éjection selon l'invention satisfait aux exigences du contrôle de granulométrie importantes dans la pratique. En effet, la taille des gouttelettes doit être adaptée en fonction du type de foyer d'incendie, par exemple au moyen de gouttes plus fines pour attaquer des foyers d'hydrocarbures ou refroidir des ambiances très chaudes, ou au moyen de gouttes plus grosses pour mouiller des feux formant des braises.Thus, the ejection device according to the invention satisfies the requirements of the control of large particle size in practice. Indeed, the size of the droplets must be adapted according to the type of fire, for example by means of finer drops to attack hydrocarbon foci or to cool very hot environments, or by means of larger drops for wet fires forming embers.
Avantageusement, diverses utilisations de la tuyère ou d'un dispositif multi-tuyère (rotatif ou non) sont possibles comme à titre d'exemple et de façon non exhaustive:
- Utilisation pour l'extinction d'un incendie, la prévention d'incendie par humidification à faible consommation de liquide ou le refroidissement de matériau avec comme liquide de l'eau pouvant contenir un agent extincteur, un agent mouillant.
- Utilisation pour un traitement surfacique d'un matériau, telle que :
- + pour le nettoyage d'un matériau, 1e liquide étant de l'eau ou/et pouvant contenir un agent de nettoyage ;
- + pour une application de peinture sur le matériau où le liquide contient principalement un agent colorant ;
- + pour un traitement abrasif du matériau où le deuxième mélange contient une solution chimique liquide ou partiellement de faible granulométrie solide.
- Utilisation comme dispositif d'éjection d'un combustible (liquide ou gazeux).
- Utilisation comme dispositif pour la propulsion d'un élément comprenant la tuyère comme moyen de propulsion.
- etc.
- Use for the extinguishing of a fire, fire prevention by humidification with low liquid consumption or cooling of material with water as liquid which may contain an extinguishing agent, a wetting agent.
- Use for surface treatment of a material, such as:
- for cleaning a material, the liquid being water and / or capable of containing a cleaning agent;
- + for a painting application on the material where the liquid mainly contains a coloring agent;
- + for an abrasive treatment of the material where the second mixture contains a liquid chemical solution or partially of small solid particle size.
- Use as a device for ejecting a fuel (liquid or gaseous).
- Use as a device for propelling an element comprising the nozzle as a means of propulsion.
- etc.
Un ensemble de sous-revendications présente également des avantages de l'invention.A set of subclaims also has advantages of the invention.
Des exemples de réalisation et d'application sont fournis à l'aide de figures décrites :
- Figure 1
- description générale d'une tuyère pour un mélange diphasique,
- Figure 2
- coupe d'un dispositif multi-tuyères rotatif,
- Figure 3
- vue de dessous du dispositif multi-tuyères rotatif,
- Figure 4
- vue de côté (droite) du dispositif multituyères rotatif.
- Figure 1
- general description of a nozzle for a diphasic mixture,
- Figure 2
- cutting a rotary multi-nozzle device,
- Figure 3
- bottom view of the rotary multi-nozzle device,
- Figure 4
- side view (right) of the multi-rotator device.
Figure 1 décrit généralement un exemple de tuyère EJ pour un mélange diphasique MLG1 réalisé via une chambre d'émulsion EMC avec des éléments optionnels ou des formes conçues pour favoriser le mélange d'un liquide L1 avec un gaz G1, tous deux injectés à basse pression (inférieure à 20 bar, dans la pratique entre 5 et 10 bars). Un profil plus exact de tuyère adéquate sera décrit dans la suite du document. Le liquide L1 et le gaz G1 entrant dans la chambre d'émulsion EMC ou directement dans la tuyère EJ peuvent être amenés par deux canaux IN1, IN2 distincts convergents vers l'entrée IN. Ces canaux n'ont avantageusement pas besoin d'avoir une disposition particulière comme dans la plupart des dispositifs à tuyère diphasique de l'état de la technique. Ainsi, dans la chambre d'émulsion EMC ou plus généralement en aval de l'entrée de la tuyère EJ, le premier mélange diphasique MLG1 est formé d'une manière encore non idéalement contrôlée, en ce sens que la granulométrie du mélange MLG1 ou du liquide L1 et l'écoulement du gaz G1 sont encore grossiers et très variables. Grâce à la géométrie adaptée de la tuyère EJ de longueur L avec un col de tuyère disposé à un emplacement X (qui peut être local comme aussi étendu), une transformation du premier mélange MLG1 en un deuxième mélange diphasique MLG2 s'opère, tout au long de la tuyère optimisée par le biais de la détente. Le mélange a alors une granulométrie à caractère maîtrisé, c'est-à-dire que le liquide L1 apporté dans le premier mélange MLG1 se trouve dans le mélange MLG2 sous forme de gouttelettes GOUT ayant des diamètres faibles (50à 150µm) résultant de l'atomisation produite au sein de la tuyère.. Ainsi la granulométrie du liquide L1 et donc du jet de brouillard sortant est parfaitement contrôlée sur une portée PO. De plus, le gaz G1, en tant que composante à la base du premier mélange MLG1 à basse pression, est détendu avec un fort gradient, de telle façon qu'il provoque une accélération et une vectorisation des gouttelettes GOUT selon en majeure partie un axe-vecteur AX (axe de symétrie principal de la tuyère. Dans ce jet pouvant avoir une divergence variable mais maîtrisée, le gaz G1 dans le deuxième mélange MLG2 a donc un effet porteur des gouttelettes GOUT sur la portée PO. La portée PO est bien entendu liée à la géométrie particulière de la tuyère utilisée et aux conditions génératrices. Au cours de la détente en tuyère à géométrie adaptée, le gaz G1 issu du premier mélange MLG1 fournit un travail qui assure ainsi d'une part une propulsion supplémentaire du liquide L1, à la base grossièrement fractionné, et d'autre part son atomisation en fines gouttelettes uniformes. Le jet sortant se présente sous forme de brouillard à déplacement rapide (50 à 150 m/s).
Ce concept met à profit une géométrie de tuyère de forme simple, et comprenant des orifices de « grande » dimension (jusqu'à quelques mm) pour mettre en oeuvre au sein même de l'écoulement diphasique une physique complexe de détente en pression associant :
- une détente à forts gradients de pression et associée à un intense transfert aussi bien de quantité de mouvement (trainée interfaciale) que d'énergie (chaleur et travail interfaciaux), l'efficacité de ces transferts est liée à l'augmentation de l'aire interfaciale (surface d'échange liquide-gaz) résultant de l'atomisation.
- un fractionnement et une accélération contrôlés de la phase liquide.
This concept takes advantage of a nozzle geometry of simple shape, and including "large" orifices (up to a few mm) to implement, within the two-phase flow, a complex pressure-expansion physics associating:
- a relaxation with strong pressure gradients and associated with an intense transfer of both momentum (interfacial drag) and energy (heat and interfacial work), the efficiency of these transfers is related to the increase of the area interfacial (liquid-gas exchange surface) resulting from atomization.
- controlled fractionation and acceleration of the liquid phase.
Les caractéristiques granulométriques et de portée du deuxième mélange liquide-gaz MLG2 éjecté sont contrôlables par des dites conditions génératrices telle que la pression totale en entrée de la chambre d'émulsion EMC ou de/des tuyère(s) EJ et des débits massiques du liquide L1 et du gaz G1. Ces conditions génératrices relatives à un écoulement en tuyère sont adaptées pour des points de fonctionnement de 1a tuyère à granulométrie et portée ciblées.
Pour une géométrie de tuyère donnée, les conditions d'alimentation (pression du premier mélange MLG1 en entrée de tuyère EJ, débit entrant du liquide L1, débit entrant du gaz Gl) ne sont pas quelconques. Il est possible de démontrer qu'il existe pour une géométrie de tuyère une relation f unique de tel que :
où ṁ1 est le débit massique (en kg/sec) du liquide L1, ṁg est le débit massique (en kg/sec) du gaz G1 et Pin est la pression absolue du mélange MLG1 (en bar) en entrée de tuyère.The particle size and range characteristics of the second ejected MLG2 liquid-gas mixture are controllable by said generator conditions such as the total inlet pressure of the EMC emulsion chamber or of the EJ nozzle (s) and the mass flow rates of the liquid. L1 and gas G1. These generating conditions relating to a nozzle flow are adapted for operating points of the nozzle with targeted particle size and range.
For a given nozzle geometry, the feed conditions (pressure of the first mixture MLG1 inlet nozzle EJ, incoming flow of the liquid L1, incoming flow of the gas G1) are not arbitrary. It is possible to demonstrate that there exists for a nozzle geometry a unique relation f such that:
where ṁ 1 is the mass flow (in kg / sec) of the liquid L1, ṁ g is the mass flow (in kg / sec) of the gas G1 and Pin is the absolute pressure of the mixture MLG1 (in bar) at the nozzle inlet.
Remarque :
- 1. En écoulement diphasique, la grandeur utilisée est le titre massique en gaz TM (rapport du débit massique gaz et du débit massique total « liquide + gaz »), plutôt que le débit massique gaz.
- 2. Il est alors possible de définir des points de fonctionnement de la tuyère qui sont donc caractérisés par un ensemble de triplet {ṁ1, TM, Pin} qui constitue les conditions génératrices de l'écoulement en entrée de tuyère. D'un point de vue pratique cette relation a pour conséquence de rendre impossible un choix quelconque de débits (liquide et gaz) et de pression. I1 faut donc « relaxer » une des variables (par exemple le débit gaz). Ainsi lorsque qu'un réglage est effectué, il est possible de choisir un débit liquide ṁ1 et une pression d'alimentation Pin, mais le débit gaz ṁg est alors imposé.
- 1. In two-phase flow, the quantity used is the mass content in TM gas (ratio of the gas mass flow rate and the total mass flow "liquid + gas"), rather than the mass flow gas.
- 2. It is then possible to define operating points of the nozzle which are therefore characterized by a set of triplet {ṁ 1 , TM, Pin} which constitute the conditions generating the nozzle inlet flow. From a practical point of view this relation has the consequence of making impossible any choice of flows (liquid and gas) and pressure. It is therefore necessary to "relax" one of the variables (for example the gas flow rate). Thus, when an adjustment is made, it is possible to choose a liquid flow ṁ 1 and a supply pressure Pin, but the gas flow ṁ g is then imposed.
Suivant ce schéma, des valeurs de sortie en tant que grandeurs pertinentes sont à considérer. Le jet diphasique qui se développe en sortie de tuyère EJ se caractérise par :
- 1. Une dynamique de jet de l'ordre de 50 à 150 m/sec en sortie de tuyère
- 2. Une granulométrie (taille des gouttelettes) de l'ordre de 50 à 150 µm
- 3. Une enveloppe de jet (c'est à dire la frontière entre le jet et l'extérieur du jet)
- 1. A jet velocity of about 50 to 150 m / sec at the outlet of the nozzle
- 2. A particle size (droplet size) of the order of 50 to 150 μm
- 3. A jet envelope (ie the border between the jet and the outside of the jet)
De ces trois caractéristiques de première importance, il est possible de déduire les grandeurs pertinentes, par exemple dans le cadre de la lutte contre les incendies comme :
- La portée PO, distance maximum au delà de laquelle la dynamique du jet n'est plus suffisante pour être efficace sur un feu.
- La densité d'aire interfaciale, c'est-à-dire la surface totale développée par l'ensemble des gouttes contenues dans un volume unitaire.
- Le volume protégé (couverture volumique du jet)
- The range PO, maximum distance beyond which the dynamics of the jet is no longer sufficient to be effective on a fire.
- The interfacial area density, that is to say the total area developed by all the drops contained in a unit volume.
- The protected volume (volume coverage of the jet)
Bien entendu, les conditions de sortie du jet (dynamique du jet, granulométrie et enveloppe) sont entièrement fonction des conditions génératrices de l'écoulement, directement liées aussi à la géométrie de la tuyère. Il est ainsi possible de cartographier, pour une géométrie de tuyère, des points de fonctionnements en fonction des conditions génératrices et de sortie pour chaque application d'éjection souhaitée.Of course, the jet outlet conditions (jet velocity, particle size and envelope) are entirely a function of the conditions generating the flow, directly also related to the geometry of the nozzle. It is thus possible to map, for a nozzle geometry, operating points according to the generating and output conditions for each desired ejection application.
Dans le cadre générale de la lutte contre les incendies, et plus particulièrement au moyen de brouillards d'eau, il existe deux approches distinctes : la protection ponctuelle (le jet est directement orienté sur le site identifié à risque, par exemple un réservoir, un moteur, etc.) et la protection en volume où le jet est orienté de manière à protéger l'ensemble du volume sans essayer d'atteindre précisément la zone de flamme.
Les tuyères diphasiques à jet de brouillard selon l'invention produisent, outre une certaine tolérance de divergence, un jet de grande dynamique et relativement directif. Ainsi pour les applications de protection en volume, où l'on cherche à protéger un volume dans son ensemble sans privilégier une direction particulière, il est nécessaire d'utiliser un ensemble de plusieurs tuyères capable de couvrir toutes les directions dans tout le volume. Pour cela plusieurs solutions existent (liste non exhaustive):
- Disposer les tuyères en différents lieux du volume et suivant différentes directions (disposition en réseau dit en peigne ou en « swirl ») ;
- Regrouper plusieurs tuyères sur un même corps fixe (dispositif multi-têtes) ;
- Disposer plusieurs tuyères sur un corps rotatif (corps multi-tuyères rotatif).
The two-phase mist jet nozzles according to the invention produce, in addition to a certain divergence tolerance, a jet of great dynamic and relatively directional. Thus for volume protection applications, where one seeks to protect a volume as a whole without privileging a particular direction, it is necessary to use a set of several nozzles capable of covering all directions in the entire volume. For this, several solutions exist (non-exhaustive list):
- Arrange the nozzles in different places of the volume and in different directions (network arrangement called comb or "swirl");
- Group several nozzles on the same fixed body (multi-head device);
- Arrange several nozzles on a rotating body (rotary multi-nozzle body).
Outre des résultats très intéressants, les dispositions en réseau ainsi que le dispositif multi-têtes, ont l'inconvénient de laisser des zones du volume non protégées, tandis que la solution d'un corps rotatif sur lequel plusieurs tuyères sont fixées permet de balayer tout un ensemble de direction et de couvrir de façon optimale le volume à protéger.In addition to very interesting results, the network arrangements and the multi-head device, have the disadvantage of leaving unprotected areas of the volume, while the solution of a rotating body on which several nozzles are fixed can scan all a set of direction and optimally cover the volume to be protected.
A la figure 2, un tel dispositif d'éjection d'un fluide diphasique MLG1 injecté dans un système rotatif multi-tuyères est représenté en coupe transversale. Le système comprend un stator STAT guidant en rotation un rotor ROT, sur lequel sont disposées des tuyères EJ, EJ1, EJ2.- selon la figure 1. Il est à noter que le gaz G1 et le liquide L1 sont directement injecté jusqu'aux entrées des tuyères via l'entrée unique IN du stator STAT menant à un espace interne libre du rotor ROT qui sert simplement de chambre de distribution EMD pour le mélange MLG1. Il est à noter qu'une chambre d'émulsion effective, par exemple avec des éléments perforés ou de partage, n'est plus indispensable dans la mesure ou le mélange est admis directement dans la chambre de distribution. Si la maîtrise de la qualité du mélange admis le nécessite, il est possible de placer une chambre d'émulsion EMC, similaire à celle de la figure 1, en amont de la chambre de distribution EMD. Ainsi, aucun élément perforé ou de partage ou à risque obturateur n'est présent dans la chambre de distribution EMD. La chambre de distribution EMD matérialisée entre le rotor ROT et le stator STAT est ainsi commune à l'ensemble des tuyères EJ, EJ1, EJ2... qu'elle alimente en mélange eau/gaz ou tout autre mélange liquide /gaz (qui pourrait aussi contenir plus de deux phases).In FIG. 2, such a device for ejecting a two-phase fluid MLG1 injected into a multi-nozzle rotary system is shown in cross-section. The system comprises a stator STAT rotating guide a rotor ROT, on which are arranged nozzles EJ, EJ1, EJ2.- according to Figure 1. It should be noted that the gas G1 and liquid L1 are directly injected to the inputs nozzles via the single input IN of the stator STAT leading to a free inner space of the rotor ROT which simply serves as an EMD distribution chamber for the MLG1 mixture. It should be noted that an effective emulsion chamber, for example with perforated or partition elements, is no longer indispensable insofar as the mixture is admitted directly into the distribution chamber. If the control of the quality of the admitted mixture requires it, it is possible to place an emulsion chamber EMC, similar to that of Figure 1, upstream of the EMD distribution chamber. Thus, no perforated or sharing element or risk shutter is present in the EMD distribution chamber. The EMD distribution chamber materialized between the rotor ROT and the STAT stator is thus common to all the nozzles EJ, EJ1, EJ2 ... that it feeds into water / gas mixture or any other liquid / gas mixture (which could also contain more than two phases).
Les tuyères EJ1, EJ2... et leurs axes AX1, AX2... disposées de manière décalée ou asymétrique par rapport à l'axe de rotation RX du rotor ROT permettent la propulsion en rotation par des forces de réaction même des jets sortants des tuyères. L'axe AX d'une tuyère EJ peut être superposé à l'axe de rotation RX du rotor ROT, mais ne contribue pas à la rotation du rotor. Cette tuyère EJ peut être aussi fixée sur le stator STAT pour simplifier la construction du dispositif complet et éviter une rotation de la tuyère sur elle-même.
Ainsi, plusieurs tuyères d'éjection EJ1, EJ2, ... munis de leurs axes-vecteur AX1, AX2, ... de jets distincts sont disposées sur les parois de la chambre de distribution EMD, en particulier de façon à obtenir une surface ou un volume de couverture de brouillard étendu à au moins une portée définie. Certains axes-vecteur AX1, AX2, ... des tuyères d'éjection EJ1, EJ2, - peuvent être disposées sur le rotor ROT de façon asymétrique autour d'un plan comprenant l'axe de rotation RX, et sont en particulier orientés de manière décalée selon un angle compris entre 0° et 90° sous un plan perpendiculaire à l'axe de rotation RX. Pour simplement favoriser la distribution de jet, cet angle est différent entre au moins deux tuyères voisines.The nozzles EJ1, EJ2... And their axes AX1, AX2... Arranged in an offset or asymmetrical manner relative to the axis of rotation RX of the rotor ROT allow the rotational propulsion by the same reaction forces of the outgoing jets of the nozzles. The axis AX of a nozzle EJ can be superimposed on the axis of rotation RX of the rotor ROT, but does not contribute to the rotation of the rotor. This nozzle EJ can also be fixed on the stator STAT to simplify the construction of the complete device and avoid a rotation of the nozzle on itself.
Thus, several exhaust nozzles EJ1, EJ2,... Provided with their axes-vector AX1, AX2,... Separate jets are disposed on the walls of the EMD distribution chamber, in particular so as to obtain a surface or a fog cover volume extended to at least one defined range. Some vector axes AX1, AX2, ... ejector nozzles EJ1, EJ2, - can be arranged on the rotor ROT asymmetrically about a plane comprising the axis of rotation RX, and are in particular oriented from staggered at an angle between 0 ° and 90 ° in a plane perpendicular to the axis of rotation RX. To simply favor the jet distribution, this angle is different between at least two adjacent nozzles.
Par la géométrie des tuyères, les détentes en sortie des tuyères d'éjection EJ1, EJ2, ... ou/et les directions distinctes des axes-vecteur AX1, AX2, ... sont ainsi adaptées pour qu'un effet giratoire du rotor ROT à vitesse de rotation contrôlée soit produit. En particulier, les axes-vecteur AX1, AX2, ... peuvent aussi être libres de toute intersection avec l'axe de rotation RX afin de générer sur le rotor ROT par les forces de réaction en tuyère une composante de couple latéralement à la tuyère induisant un déplacement angulaire du rotor ROT autour de son axe RX.By the geometry of the nozzles, the expansions at the outlet of the ejector nozzles EJ1, EJ2, ... or / and the directions distinct from the vector axes AX1, AX2,... Are thus adapted so that a rotating effect of the rotor ROT with controlled rotation speed is produced. In particular, the vector axes AX1, AX2,... May also be free from any intersection with the axis of rotation RX in order to generate on the rotor ROT by the reaction forces in a nozzle a torque component laterally to the nozzle inducing an angular displacement of the rotor ROT about its axis RX.
Il est bien entendu possible de disposer sur le rotor ROT des tuyères d'éjection EJ1, EJ2, ... ayant des géométries différentes influant sur la granulométrie ou/et la portée du deuxième mélange liquide-gaz MLG2. Ainsi, le brouillard obtenu peut avoir diverses propriétés utiles à des exercices variés (extinction proche et lointaine, plusieurs diamètres contrôlés de gouttes).It is of course possible to have on the rotor ROT ej1, EJ2, ... ejection nozzles having different geometries influencing the particle size and / or the range of the second liquid-gas mixture MLG2. Thus, the fog obtained can have various properties useful for various exercises (close and far extinction, several controlled diameters of drops).
Dans ce dispositif et tout comme pour la tuyère de la figure 1, la pression du liquide L1 ou/et du gaz G1 à l'entrée d'injection est adaptable suivant le rapport des débits d'entrée pour le liquide L1 et le gaz G1. De même, le dispositif est conçu avec des tuyères étudiées géométriquement, afin que des caractéristiques granulométriques et de portée du deuxième mélange liquide-gaz MLG2 éjecté soient contrôlables par des conditions génératrices telle que la pression totale en entrée de la chambre de distribution EMD ou de/des tuyère(s) EJ, EJ1, EJ2,... et des débits massiques du liquide L1 et du gaz G1. Il en ressort que comme pour une tuyère, le dispositif rotatif répond à des conditions génératrices relatives à un écoulement en tuyère et qui sont adaptées pour des points de fonctionnements du dispositif pour une (ou plusieurs) granulométrie(s) ou/et une (ou plusieurs) portée(s) ciblées. Suivant cette configuration, des débits de liquide L1 de l'ordre ou inférieur à 2kg/s sont rendus possibles.In this device and as for the nozzle of FIG. 1, the pressure of the liquid L1 or / and the gas G1 at the injection inlet is adaptable according to the ratio of the inlet flow rates for the liquid L1 and the gas G1 . Similarly, the device is designed with geometrically studied nozzles, so that particle size characteristics and scope of the second ejected MLG2 liquid-gas mixture are controllable by generating conditions such as the total inlet pressure of the EMD distribution chamber or / of the nozzle (s) EJ, EJ1, EJ2, ... and mass flow rates of the liquid L1 and gas G1. It follows that as for a nozzle, the rotary device responds to generating conditions relating to a nozzle flow and which are adapted for operating points of the device for one (or more) granulometry (s) and / or one (or several) targeted reach (s). According to this configuration, liquid flow rates L1 of the order of less than 2 kg / s are made possible.
Enfin, la figure 2 correspondant à une réalisation appropriée au dispositif multi-tuyères rotatif présente une des géométries idéales de la tuyère selon l'invention. Cette géométrie a été détaillée pour la tuyère EJ2 vue en coupe au niveau de son axe-vecteur AX2 (axe de symétrie de la tuyère). Principalement, la tuyère EJ2 se compose de trois portions de longueur La, Lb, LC suivant son axe-vecteur AX2. L'entrée de tuyère consiste en une première zone, de longueur La, convergent à fort gradient suivi d'une deuxième zone, de longueur Lb, convergent à faible gradient, d'un passage à la section minimale appelé aussi col de la tuyère, et éventuellement à une troisième zone, de longueur Lc, divergent se terminant par la section de sortie de tuyère de dimension D2 (usuellement supérieure à 1 mm pour des applications d'extinction ou de refroidissement sur quelques dizaines de mètres). La première zone à fort gradient favorise une atomisation rapide de l'écoulement, l'augmentation de la surface d'échange résultant de cette atomisation permet d'intenses transferts de quantité de mouvement et d'énergie, entre liquide et gaz, dans l'ensemble de la tuyère qui assure ainsi conjointement l'atomisation et l'accélération du liquide au cours de la détente. C'est grâce à une telle géométrie et de telles dimensions que le mélange diphasique peut être éjecté après détente en tuyère sous forme de brouillard à granulométrie, portée et volume contrôlés tel que l'invention le décrit.Finally, Figure 2 corresponding to an embodiment suitable for the rotary multi-nozzle device has one of the ideal geometries of the nozzle according to the invention. This geometry has been detailed for the nozzle EJ2 seen in section at the level of its axis-vector AX2 (axis of symmetry of the nozzle). Principally, the nozzle EJ2 consists of three portions of length La, Lb, LC along its vector axis AX2. The nozzle inlet consists of a first zone, of length La, converging with a strong gradient followed by a second zone, of length Lb, converging at a low gradient, of a passage at the minimum section also called neck of the nozzle, and optionally to a third zone, of length Lc, diverging ending in the nozzle outlet section of dimension D2 (usually greater than 1 mm for extinguishing or cooling applications over a few tens of meters). The first zone with high gradient favors a rapid atomization of the flow, the increase of the exchange surface resulting from this atomization allows intense transfers of momentum and energy, between liquid and gas, in the together the nozzle which thus jointly ensures atomization and acceleration of the liquid during relaxation. It is thanks to such a geometry and such dimensions that the two-phase mixture can be ejected after expansion into a fog nozzle with particle size, range and volume controlled as the invention describes it.
Les figures 3 et 4 représentent une vue de dessous et une vue de côté (droite) de dispositif multi-tuyères rotatif selon la figure 2. En particulier, il est à noter que la disposition des tuyères EJ1, EJ2, ..., EJ6 par rapport à l'axe de rotation RX du rotor ROT (ou par rapport à un plan comprenant l'axe de rotation RX) est asymétrique en considérant deux tuyères dont les axes-vecteur sont inclus dans un seul plan comprenant aussi l'axe de rotation RX du rotor (par exemple les tuyères EJ4 et EJ6 avec leurs axes-vecteur AX4 et AX6). Les tuyères voisines sont aussi décalées angulairement par rapport à l'axe de rotation RX du rotor ROT. Cette disposition favorise l'effet giratoire contrôlé du rotor ROT, mais aussi offre un balayage de jet étendu sur des volumes à humidifier.Figures 3 and 4 show a bottom view and a side view (right) of rotary multi-nozzle device according to Figure 2. In particular, it should be noted that the arrangement of the nozzles EJ1, EJ2, ..., EJ6 relative to the axis of rotation RX of the rotor ROT (or with respect to a plane comprising the axis of rotation RX) is asymmetrical considering two nozzles whose vector axes are included in a single plane also comprising the axis of rotation. RX rotation of the rotor (for example the EJ4 and EJ6 nozzles with their vector axes AX4 and AX6). The neighboring nozzles are also angularly offset relative to the axis of rotation RX of the rotor ROT. This arrangement promotes the controlled rotational effect of the rotor ROT, but also offers an extended jet scan on volumes to be humidified.
Il est important de souligner que ce système apporte un avantage à caractère écologique, car il fonctionne à de faibles débits d'eau vis-à-vis des dispositifs actuels d'éjection d'un mélange diphasique eau-gaz (gaz faiblement comprimé). Il permet donc une faible consommation d'eau couplée de plus à une répartition précisément contrôlée de l'eau. Ce dispositif pourrait donc être aussi avantageusement utilisé, hors d'un bâtiment, pour la prévention d'incendie dans les milieux naturels. L'eau pourrait provenir d'une source quelconque (en particulier une nappe phréatique). Une fonction d'humidification voire d'arrosage est également possible sur de grands espaces tout en minimisant la consommation d'eau sans besoin de disposer de haute pression en entrée du dispositif. D'autres milieux tels que des surfaces industrielles à caractère inflammable peuvent également être protégées contre tout réchauffement suspect ou incendie.It is important to point out that this system provides an ecological advantage because it operates at low water flow rates with respect to current devices for ejecting a two-phase water-gas mixture (weakly compressed gas). It therefore allows a low consumption of water coupled to a precisely controlled distribution of water. This device could therefore also be advantageously used, outside a building, for the prevention of fire in natural environments. The water could come from any source (especially a water table). A humidification or even watering function is also possible over large spaces while minimizing water consumption without the need for high pressure at the inlet of the device. Other media such as flammable industrial surfaces may also be protected against suspicious heating or fire.
La présente invention s'adapte potentiellement à d'autres types d'applications telles que l'alimentation/atomisation en ergols pour des moteurs de fusée, ou pour une optimisation d'injection de carburant pour des moteurs thermiques à combustion.The present invention is potentially adaptable to other types of applications such as propellant feed / atomization for rocket engines, or for fuel injection optimization for combustion heat engines.
Il est aussi possible selon l'invention d'améliorer le dispositif d'éjection d'un combustible (liquide ou gazeux) pour former une flamme de grande dimension (exemple d'application industrielle : brûleurs dans les fours verriers ; exemple d'application militaire : lance-flammes).It is also possible according to the invention to improve the device for ejecting a fuel (liquid or gaseous) to form a large flame (example of industrial application: burners in glass furnaces, example of military application : flamethrower).
Une utilisation du dispositif pour la propulsion d'un véhicule comprenant la tuyère comme moyen de propulsion est aussi possible, tel que pour la propulsion d'un véhicule marin ou aérien (sous-marin, jet-ski, avion, etc.).Use of the device for the propulsion of a vehicle comprising the nozzle as a means of propulsion is also possible, such as for the propulsion of a marine or air vehicle (submarine, jet-ski, airplane, etc.).
Ainsi, il est facile de comprendre que la présente invention va bien au-delà d'une liste exhaustive de possibilités de domaine d'application ou d'utilisation de la tuyère ou plus généralement du dispositif d'éjection.Thus, it is easy to understand that the present invention goes well beyond an exhaustive list of possibilities of field of application or use of the nozzle or more generally of the ejection device.
Claims (20)
caractérisé en ce que
la tuyère d'éjection (EJ) possède une géométrie avec au moins sur sa longueur une section minimale, appelée col, à un emplacement (X) de l'axe-vecteur (AX),
et pour laquelle géométrie une détente au sein de la tuyère d'éjection (EJ) est induite permettant au premier mélange liquide-gaz (MLG1) issu de la chambre de distribution d'être transformé, au sens de la configuration d'écoulement, en un deuxième mélange de liquide-gaz (MLG2) en sortie de tuyère dont la portée d'éjection du deuxième mélange (MLG2) et la granulométrie du liquide (L2) sous forme de gouttelettes (GOUT) est contrôlable en fonction des débits massiques du liquide (L1) et du gaz (G1) et de la pression absolue à l'entrée d'injection.Device for ejecting an at least two-phase mixture, comprising at least one injection inlet (IN1, IN2) for a liquid (L1) and a gas (G1), a distribution chamber (EMD) for producing a first mixture liquid-gas (MLG1), an ejector nozzle (EJ) of the first liquid-gas mixture (MLG1) in a main direction defined by a vector axis (AX),
characterized in that
the ejection nozzle (EJ) has a geometry with at least a minimum cross-sectional area, called a collar, at a location (X) of the vector axis (AX),
and for which geometry an expansion within the ejection nozzle (EJ) is induced allowing the first liquid-gas mixture (MLG1) from the distribution chamber to be converted, in the flow configuration sense, into a second mixture of liquid-gas (MLG2) at the outlet of the nozzle, the ejection range of the second mixture (MLG2) and the particle size of the liquid (L2) in the form of droplets (GOUT) can be controlled according to the mass flow rates of the liquid (L1) and gas (G1) and the absolute pressure at the injection inlet.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06291557A EP1908526A1 (en) | 2006-10-04 | 2006-10-04 | Nozzle for a diphasic mixture |
KR1020097009237A KR101384012B1 (en) | 2006-10-04 | 2007-08-27 | Device for ejecting a diphasic mixture |
UAA200903212A UA99264C2 (en) | 2006-10-04 | 2007-08-27 | Device for ejecting diphasic mixture |
US12/444,432 US9352340B2 (en) | 2006-10-04 | 2007-08-27 | Device for ejecting a diphasic mixture |
CA2665265A CA2665265C (en) | 2006-10-04 | 2007-08-27 | Device for ejecting a diphasic mixture |
EP07801913.0A EP2069073B1 (en) | 2006-10-04 | 2007-08-27 | Nozzle for a diphasic mixture |
PCT/EP2007/007488 WO2008040418A1 (en) | 2006-10-04 | 2007-08-27 | Device for ejecting a diphasic mixture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06291557A EP1908526A1 (en) | 2006-10-04 | 2006-10-04 | Nozzle for a diphasic mixture |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1908526A1 true EP1908526A1 (en) | 2008-04-09 |
Family
ID=37781664
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06291557A Withdrawn EP1908526A1 (en) | 2006-10-04 | 2006-10-04 | Nozzle for a diphasic mixture |
EP07801913.0A Active EP2069073B1 (en) | 2006-10-04 | 2007-08-27 | Nozzle for a diphasic mixture |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07801913.0A Active EP2069073B1 (en) | 2006-10-04 | 2007-08-27 | Nozzle for a diphasic mixture |
Country Status (6)
Country | Link |
---|---|
US (1) | US9352340B2 (en) |
EP (2) | EP1908526A1 (en) |
KR (1) | KR101384012B1 (en) |
CA (1) | CA2665265C (en) |
UA (1) | UA99264C2 (en) |
WO (1) | WO2008040418A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011087383A1 (en) * | 2010-01-12 | 2011-07-21 | Telesto Sp. Z.O.O. | Apparatus for regulating two-phase flow and portable atomizer based on two-phase flow |
CN109485168A (en) * | 2019-01-08 | 2019-03-19 | 威海百克环保工程有限公司 | A kind of jet mixing aerator |
CN114602104A (en) * | 2022-03-15 | 2022-06-10 | 刘龙平 | Automatic spraying device capable of spraying in large range and used for indoor fire fighting |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101383605B1 (en) * | 2010-08-11 | 2014-04-11 | 주식회사 엘지화학 | Float bath for manufacturing float glass & cooling method of the same |
KR101383604B1 (en) * | 2010-08-12 | 2014-04-11 | 주식회사 엘지화학 | Float bath for manufacturing float glass & cooling method of the same |
DK177678B1 (en) * | 2011-12-19 | 2014-02-24 | Vid Fire Kill Aps | Modular fixed installed tunnel fire protection system. |
US20160325129A1 (en) * | 2015-05-08 | 2016-11-10 | International Fog Inc. | Fluid discharge nozzle |
US10081091B2 (en) * | 2015-06-12 | 2018-09-25 | Postech Academy-Industry Foundation | Nozzle, device, and method for high-speed generation of uniform nanoparticles |
US10324104B2 (en) * | 2016-01-04 | 2019-06-18 | Bradley Charles Ashmore | Device for measuring the speed and direction of a gas flow |
CN105749463A (en) * | 2016-05-03 | 2016-07-13 | 曹景怡 | Novel vehicle-mounted fire extinguishing system and fire prevention method |
USD842451S1 (en) * | 2017-05-24 | 2019-03-05 | Hamworthy Combustion Engineering Limited | Atomizer |
CN107470049B (en) * | 2017-09-30 | 2023-04-18 | 江西远达环保有限公司 | Spray gun pipe with anti-vaporization function for desulfurization and denitrification |
CN107470050B (en) * | 2017-09-30 | 2023-04-18 | 江西远达环保有限公司 | Spray gun with cooling effect for desulfurization and denitrification |
US10815046B2 (en) * | 2018-03-03 | 2020-10-27 | Byoplanet International, LLC | Size-selective aerosol nozzle device |
US11364510B2 (en) * | 2018-11-20 | 2022-06-21 | Willis Dane | Multiple nozzle system |
US11181544B2 (en) | 2020-02-20 | 2021-11-23 | Bradley Charles Ashmore | Configurable flow velocimeter |
CN111853776B (en) * | 2020-07-09 | 2022-05-27 | 芜湖中燃城市燃气发展有限公司 | Natural gas burner with air mixing function and method |
CN114681845B (en) * | 2022-04-22 | 2022-11-25 | 海天消防科技股份有限公司 | Fine water atomization fire extinguishing apparatus with cooling function for transformer substation |
EP4400218A1 (en) * | 2023-01-13 | 2024-07-17 | Veromist Limited | Airter device to generate effervescent flows and related liquid atomising device |
FR3145296A1 (en) | 2023-01-31 | 2024-08-02 | État français représenté par le Préfet de police, agissant au nom et pour le compte de la Ville de Paris, relativement à la Brigade de Sapeurs-Pompiers de Paris | Two-phase mist jet nozzle |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2548052A1 (en) | 1983-06-28 | 1985-01-04 | Cebal | Head for producing foam with air and liquid |
WO1990005000A1 (en) * | 1988-10-31 | 1990-05-17 | Dale Gordon Jones | Devices and method for cleaning gases |
EP0608140A2 (en) * | 1993-01-22 | 1994-07-27 | Cca, Inc. | Mechanical foam fire fighting equipment and method |
WO1995030452A1 (en) * | 1994-05-10 | 1995-11-16 | Ada Technologies, Inc. | Apparatus and method to control deflagration of gases |
CA2131109A1 (en) * | 1994-08-30 | 1996-03-01 | George P. Crampton | Foam nozzle |
FR2766108A1 (en) | 1997-07-17 | 1999-01-22 | France Etat | Device for generation of two-phase fluid for fire fighting equipment |
WO2000012177A1 (en) * | 1998-08-12 | 2000-03-09 | Edvardsen Odd J | Method for production of a fire fighting foam, nozzle head and an arrangement in a fire extinguishing installation |
EP1072320A1 (en) * | 1998-04-13 | 2001-01-31 | Nauchno-Issledovatelsky Inst. Nizkikh Temperatur pri MAI(Mosk. Gosudarstvennom Aviatsionnom Inst.-Tekhnicheskom Univers.) | Device for generating a gas-droplet stream and valve |
WO2002076624A1 (en) * | 2001-03-22 | 2002-10-03 | Dushkin Andrey L | Liquid sprayers |
WO2003041805A2 (en) * | 2001-11-15 | 2003-05-22 | National Research Council Of Canada | Rotary foam nozzle |
EP1629899A1 (en) * | 2004-08-23 | 2006-03-01 | Delphi Technologies, Inc. | Replaceable throat insert for a kinetic spray nozzle |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1484684A (en) * | 1922-09-18 | 1924-02-26 | William C Todd | Water sprinkler |
US2175160A (en) * | 1935-07-02 | 1939-10-03 | Linde Air Prod Co | Nozzle for cutting blowpipes |
US2583726A (en) * | 1948-01-26 | 1952-01-29 | Chalom Joseph Aaron | Nozzle |
US2678845A (en) * | 1952-05-29 | 1954-05-18 | Emil H Fitter | Automatically adjustable hydraulic mechanism |
US2970771A (en) * | 1956-11-09 | 1961-02-07 | Dancing Waters Inc | Nozzle arrangement for fountain displays |
US3302882A (en) * | 1964-07-01 | 1967-02-07 | Leland H Hutton | Oxygen alnce construction |
US3430939A (en) * | 1965-04-02 | 1969-03-04 | Berry Metal Co | Oxygen injection nozzle with externally projecting conduits |
US3428131A (en) * | 1966-08-16 | 1969-02-18 | Bliss Co | Method and apparatus for generating fire-fighting foam |
US3743814A (en) * | 1970-12-18 | 1973-07-03 | G Oakes | Oxygen lance |
US4052005A (en) * | 1976-03-11 | 1977-10-04 | Berry Metal Company | Oxygen lance nozzle |
US4301969A (en) * | 1980-02-25 | 1981-11-24 | Sharp Kenneth C | Oxygen lance nozzle |
DE3412319C1 (en) * | 1984-04-03 | 1985-06-27 | Woma-Apparatebau Wolfgang Maasberg & Co Gmbh, 4100 Duisburg | Working tool designed as a hydraulic vortex jet nozzle |
US4815665A (en) * | 1984-04-19 | 1989-03-28 | Spraying Systems | Air assisted nozzle with deflector discharge means |
GB8724973D0 (en) * | 1987-10-24 | 1987-11-25 | Bp Oil Ltd | Fire fighting |
US4919853A (en) * | 1988-01-21 | 1990-04-24 | The United States Of America As Represented By The United States Department Of Energy | Apparatus and method for spraying liquid materials |
AT389710B (en) * | 1988-04-25 | 1990-01-25 | Voest Alpine Ind Anlagen | BLOWING |
US5169069A (en) * | 1989-02-21 | 1992-12-08 | Sybron Chemicals, Inc. | Fluid driven tank cleaning apparatus |
US5706842A (en) * | 1995-03-29 | 1998-01-13 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Balanced rotating spray tank and pipe cleaning and cleanliness verification system |
AT406234B (en) * | 1996-02-02 | 2000-03-27 | Voest Alpine Ind Anlagen | METHOD FOR DESCALING A WORKPIECE |
US6991362B1 (en) * | 1998-04-02 | 2006-01-31 | Seaman Anthony E | Agitators for wave-making or mixing as for tanks, and pumps and filters |
US6599464B1 (en) * | 1999-10-06 | 2003-07-29 | Bernd Feldhaus | Steelmaking lance with integral temperature probe |
US6315221B1 (en) * | 1999-12-22 | 2001-11-13 | Visteon Global Tech., Inc. | Nozzle |
CA2401725A1 (en) * | 2000-03-14 | 2001-09-20 | Crane Pumps & Systems, Inc. | Improved turbine drive rotary spray cleaner |
US6241164B1 (en) * | 2000-08-31 | 2001-06-05 | The United States Of America As Represented By The Secretary Of The Navy | Effervescent liquid fine mist apparatus and method |
JP2002336370A (en) | 2001-05-16 | 2002-11-26 | Yamato Protec Co | Fine water jetting nozzle header |
NZ532902A (en) * | 2001-12-11 | 2006-03-31 | Nivis Gmbh Srl | Snow making apparatus and method for operating the same |
US7311004B2 (en) * | 2003-03-10 | 2007-12-25 | Capstan Ag Systems, Inc. | Flow control and operation monitoring system for individual spray nozzles |
US20050011652A1 (en) * | 2003-07-17 | 2005-01-20 | Jinsong Hua | Spray head and nozzle arrangement for fire suppression |
US20060027679A1 (en) * | 2004-08-03 | 2006-02-09 | Mr. Jack Gratteau | Ejector Nozzle |
US7131598B2 (en) * | 2004-10-04 | 2006-11-07 | Ratnik Industries, Inc. | Snow-gun |
AU2005322912B8 (en) * | 2004-12-30 | 2009-02-05 | Tempress Technologies, Inc. | Floating head reaction turbine rotor with improved jet quality |
AU2006228987A1 (en) * | 2005-03-31 | 2006-10-05 | Podmajersky, Karol | A dispersion and aeration apparatus for compressed air foam systems |
EP1728535B1 (en) * | 2005-05-26 | 2010-09-29 | Kidde IP Holdings Limited | Extinguishing fires and suppressing explosions |
US7494071B2 (en) * | 2006-04-25 | 2009-02-24 | Shamrock Research & Development, Inc. | Energy efficient water sprinkler |
WO2008036298A2 (en) * | 2006-09-19 | 2008-03-27 | Hypro, Llc | Spray head with covers |
US8133328B2 (en) * | 2008-09-03 | 2012-03-13 | Gamajet Cleaning Systems Inc. | Rotary apparatus and method for cleaning liquid storage tanks |
-
2006
- 2006-10-04 EP EP06291557A patent/EP1908526A1/en not_active Withdrawn
-
2007
- 2007-08-27 UA UAA200903212A patent/UA99264C2/en unknown
- 2007-08-27 WO PCT/EP2007/007488 patent/WO2008040418A1/en active Application Filing
- 2007-08-27 EP EP07801913.0A patent/EP2069073B1/en active Active
- 2007-08-27 US US12/444,432 patent/US9352340B2/en not_active Expired - Fee Related
- 2007-08-27 CA CA2665265A patent/CA2665265C/en active Active
- 2007-08-27 KR KR1020097009237A patent/KR101384012B1/en active IP Right Grant
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2548052A1 (en) | 1983-06-28 | 1985-01-04 | Cebal | Head for producing foam with air and liquid |
WO1990005000A1 (en) * | 1988-10-31 | 1990-05-17 | Dale Gordon Jones | Devices and method for cleaning gases |
EP0608140A2 (en) * | 1993-01-22 | 1994-07-27 | Cca, Inc. | Mechanical foam fire fighting equipment and method |
WO1995030452A1 (en) * | 1994-05-10 | 1995-11-16 | Ada Technologies, Inc. | Apparatus and method to control deflagration of gases |
CA2131109A1 (en) * | 1994-08-30 | 1996-03-01 | George P. Crampton | Foam nozzle |
FR2766108A1 (en) | 1997-07-17 | 1999-01-22 | France Etat | Device for generation of two-phase fluid for fire fighting equipment |
EP1072320A1 (en) * | 1998-04-13 | 2001-01-31 | Nauchno-Issledovatelsky Inst. Nizkikh Temperatur pri MAI(Mosk. Gosudarstvennom Aviatsionnom Inst.-Tekhnicheskom Univers.) | Device for generating a gas-droplet stream and valve |
WO2000012177A1 (en) * | 1998-08-12 | 2000-03-09 | Edvardsen Odd J | Method for production of a fire fighting foam, nozzle head and an arrangement in a fire extinguishing installation |
WO2002076624A1 (en) * | 2001-03-22 | 2002-10-03 | Dushkin Andrey L | Liquid sprayers |
WO2003041805A2 (en) * | 2001-11-15 | 2003-05-22 | National Research Council Of Canada | Rotary foam nozzle |
EP1629899A1 (en) * | 2004-08-23 | 2006-03-01 | Delphi Technologies, Inc. | Replaceable throat insert for a kinetic spray nozzle |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011087383A1 (en) * | 2010-01-12 | 2011-07-21 | Telesto Sp. Z.O.O. | Apparatus for regulating two-phase flow and portable atomizer based on two-phase flow |
CN102612387A (en) * | 2010-01-12 | 2012-07-25 | 特利斯多公司 | Apparatus for regulating two-phase flow and portable atomizer based on two-phase flow |
RU2534912C2 (en) * | 2010-01-12 | 2014-12-10 | Телесто Сп. З.О.О. | Device for two-phase flow adjustment and portable sprayer of two-phase flow |
CN102612387B (en) * | 2010-01-12 | 2014-12-31 | 特利斯多公司 | Apparatus for regulating two-phase flow and portable atomizer based on two-phase flow |
US9248460B2 (en) | 2010-01-12 | 2016-02-02 | Telesto Sp. Z.O.O. | Apparatus for regulating two-phase flow and portable atomizer based on two-phase flow |
CN109485168A (en) * | 2019-01-08 | 2019-03-19 | 威海百克环保工程有限公司 | A kind of jet mixing aerator |
CN114602104A (en) * | 2022-03-15 | 2022-06-10 | 刘龙平 | Automatic spraying device capable of spraying in large range and used for indoor fire fighting |
Also Published As
Publication number | Publication date |
---|---|
WO2008040418A1 (en) | 2008-04-10 |
EP2069073A1 (en) | 2009-06-17 |
KR20090098788A (en) | 2009-09-17 |
KR101384012B1 (en) | 2014-04-09 |
US20100006670A1 (en) | 2010-01-14 |
CA2665265C (en) | 2012-12-11 |
EP2069073B1 (en) | 2016-01-13 |
UA99264C2 (en) | 2012-08-10 |
CA2665265A1 (en) | 2008-04-10 |
US9352340B2 (en) | 2016-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2069073B1 (en) | Nozzle for a diphasic mixture | |
CA2320270C (en) | Method for extinguishing fires from an aircraft and related device | |
Rizk et al. | Prediction of velocity coefficient and spray cone angle for simplex swirl atomizers | |
EP0933594B1 (en) | Method of operating a gas turbine combustion chamber for liquid fuel | |
CA2198420C (en) | Fuel injection device for aircraft ramjet | |
FR2987081A1 (en) | Propulsion assembly for aerospace machine, has rocket engines forming ejectors to accelerate air flow in channel at supersonic speed, and conduit provided in interior wall downstream from output opening of channel | |
JP2016001078A (en) | Spray nozzle, combustion device equipped with spray nozzle, and gas turbine plant | |
EP3368826B1 (en) | Aerodynamic injection system for aircraft turbine engine, having improved air/fuel mixing | |
Lacava et al. | Design procedure and experimental evaluation of pressure-swirl atomizers | |
EP0956883B1 (en) | Fire extinguishing device with thermochemical gas generator | |
da Silva Couto et al. | Experimental evaluation of a low pressure-swirl atomizer applied engineering design procedure | |
EP2874870B1 (en) | Camouflaging method and apparatus, and naval vessel provided with at least such an apparatus | |
EP4132664B1 (en) | Fire extinguishing equipment with fire nozzle | |
CA1153685A (en) | Method and means for dispersing combustion gases in the atmosphere | |
EP3019746A1 (en) | Two-phase expansion device capable of maximizing the amount of movement produced by a two-phase flow | |
JPH0861150A (en) | Injection device for hybrid rocket | |
Peretz et al. | Development of a laboratory-scale system for hybrid rocket motor testing | |
Ferreira et al. | Experimental investigation of polyethylene combustion in a solid fuel ramjet | |
EP3303232A1 (en) | Sonic injection furnace | |
RU2096625C1 (en) | Dust and gas suppressing device | |
Besser | Development testing of throttleable ducted rockets | |
FR3061948A1 (en) | TURBOMACHINE COMBUSTION CHAMBER WITH HIGH PERMEABILITY | |
Strokin et al. | Compact Combustor Integrated (CI) with Compressor and Turbine for Perspective Turbojet Engine | |
Love Jr | An experimental investigation on micro-sized coaxial swirl injectors: Part I | |
FR2969515A1 (en) | Mechanically-assisted method for sputtering e.g. liquid fuel, for heating hearth of furnace, involves spraying gas into sputtering zone around turbulent water such that gas is in contact with water and forms liquid-gas spray |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
AKX | Designation fees paid | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20081010 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |