Nothing Special   »   [go: up one dir, main page]

EP1963748B1 - Combustion chamber with burner and associated operating method - Google Patents

Combustion chamber with burner and associated operating method Download PDF

Info

Publication number
EP1963748B1
EP1963748B1 EP06830438.5A EP06830438A EP1963748B1 EP 1963748 B1 EP1963748 B1 EP 1963748B1 EP 06830438 A EP06830438 A EP 06830438A EP 1963748 B1 EP1963748 B1 EP 1963748B1
Authority
EP
European Patent Office
Prior art keywords
burner
combustion chamber
synthesis gas
proportion
pilot burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06830438.5A
Other languages
German (de)
French (fr)
Other versions
EP1963748A1 (en
Inventor
Richard Carroni
Timothy Griffin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1963748A1 publication Critical patent/EP1963748A1/en
Application granted granted Critical
Publication of EP1963748B1 publication Critical patent/EP1963748B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/40Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means

Definitions

  • the present invention relates to a method for operating a combustion chamber of a gas turbine, in particular a power plant.
  • a catalytic burner which, when operating from a rich fuel / air mixture, can generate a syngas containing hydrogen gas and which can be used as a pilot burner for a normally lean burn burner of a gas turbine combustor.
  • a synthesis gas containing hydrogen gas By injecting a synthesis gas containing hydrogen gas into the burner or into a combustion chamber of the combustion chamber, the homogeneous combustion reaction which takes place in the combustion chamber during operation of the combustion chamber can be stabilized. In particular, this can be used to lower the extinguishing temperature of the combustion reaction in lean burners. Overall, this allows the combustion temperatures in the combustion chamber of the combustion chamber can be reduced. This is of particular advantage because the formation of nitrogen oxides increases exponentially with the reaction temperature. Generic stabilized combustion process with Low emissions are also in the documents WO 2004/020901 and WO 2004/020905 described.
  • WO 2004/020901 discloses a hybrid burner and a method of operation thereof, wherein the hybrid burner includes in parallel within a housing a Volloxidationskatalysator and a partial oxidation catalyst, which are traversed by a first and a second fuel-oxidizer mixture.
  • the two mixtures have a different fuel-to-oxidant ratio such that the former is a rich mixture and the second is a lean mixture and that the partial oxidation catalyst is designed to produce a hydrogen-containing off-gas.
  • WO 2004/020905 discloses a method of combusting a fuel-oxidizer mixture and an apparatus for carrying it out, wherein a total oxidizer stream is split into a main and a side stream, the former lean-burned and burned with a main fuel stream in a premix burner and the second split again in a pilot oxidizer stream and a heat exchanger oxidizer stream downstream of preheating the pilot oxidizer stream, the pilot oxidizer stream is fat blended with fuel and partially oxidized in contact with a catalyst to form hydrogen and then co-currently with the second substream is introduced into a combustion zone of the main fuel oxidizer stream.
  • the invention deals with the problem of pointing out a way for a combustion chamber of the type mentioned that allows for varying combustion chamber performance safe operation and low pollutant emissions.
  • the inventive method is based on the general idea of controlling the pilot burner as a function of the combustion chamber performance such that the synthesis gas produced therewith contains a comparatively high proportion of hydrogen gas at a low combustion chamber power, while it contains a relatively low proportion of hydrogen gas at a comparatively high combustion chamber power .
  • the invention uses the knowledge that synthesis gas with a relatively low proportion of hydrogen gas at high flame temperatures reduces the formation of nitrogen relatively strongly. At the same time, lowering the extinguishing limit is not necessary at high flame temperatures. In contrast, a synthesis gas with a high hydrogen gas content at high flame temperatures would increase pollutant emissions, in particular nitrogen oxide emissions.
  • the invention uses the knowledge that at lower flame temperatures, the injection of synthesis gas with a relatively high proportion of hydrogen gas significantly stabilizes the homogeneous combustion reaction by significantly lowering the extinction limit. At the same time, there is no increase in nitrogen oxide formation.
  • the operating method according to the invention thus leads to a stabilized operation of the combustion chamber with a comparatively small combustion chamber power, For example, at low load or partial load, while at the same time with greater combustion chamber performance, for example at full load, the pollutant emissions are reduced compared to a operation without pilot burner.
  • the synthesis gas production of the pilot burner can be controlled by the amount of fuel supplied to the pilot burner, while at the same time the amount of air supplied to the pilot burner is kept constant.
  • the hydrogen gas content in the synthesis gas is thus controlled by the fuel / air ratio supplied to the catalytic pilot burner.
  • a common air supply can be provided for the burner and the associated pilot burner, which is designed so that it distributes the supplied air with a constant distribution to the burner and the associated pilot burner.
  • a burner designed in this way can be realized comparatively inexpensively, because said control and regulation devices for the air supply of the pilot burner can be dispensed with.
  • the burner is designed so that a larger proportion of the synthesis gas is introduced radially into the burner and / or into the combustion chamber with respect to a longitudinal axis of the respective burner, while a smaller proportion of the synthesis gas with respect to the longitudinal axis axially into the burner or . is introduced into the combustion chamber. It has been found that with a predominantly radial introduction of the synthesis gas, the best results with regard to pollutant emissions and combustion stabilization can be achieved.
  • Fig. 1 and 2a comprises a burner 1 a combustion chamber 2 (see. Fig. 3
  • the burner 1 comprises a fuel supply 4, which is indicated here merely by an arrow and which supplies it with fuel during operation of the burner 1.
  • an additional fuel supply 5 is provided, which is likewise symbolized by an arrow and which supplies the pilot burner 3 with fuel during operation of the burner 1.
  • an air supply 6 is provided, which is provided jointly for the burner 1 and its pilot burner 3. This common air supply 6 is designed in a manner not further explained in such a way that it distributes the supplied air to the burner 1, see arrows 7, and the pilot burner 3, see arrow 8.
  • the burner 1 is used to generate a homogeneous combustion reaction in a combustion chamber 9 of the combustion chamber 2, which is arranged downstream of the burner 1 in the assembled state.
  • the combustion chamber 2 in turn serves to generate hot gases for acting on a gas turbine, in particular a power plant.
  • the burner 1 also has a mixture forming space 10, which is open in the assembled state to the combustion chamber 9.
  • the air supply 6 brings the burner 1 associated air quantity 7 in this mixture forming space 10 a.
  • the introduction takes place here in a tangential flow over axially aligned gaps in the burner wall 11, which encloses the mixture forming space 10 circumferentially with respect to a longitudinal axis 12 of the burner 1.
  • the fuel supply 4 supplies the amount of fuel allocated to the burner 1 to the mixture-forming space 10, which is symbolized here by a plurality of arrows 13.
  • the fuel supply 4 extends within the burner wall 11. Usually, such a burner 1 is operated lean to achieve the lowest possible combustion reaction in the combustion chamber 9.
  • the catalytically operating pilot burner 3 is a certain proportion of the total amount of air supplied to the burner 1 via the air supply 6
  • the auxiliary fuel supply 5 is now operated so that a rich fuel / air mixture is adjusted, which is supplied to the pilot burner 3.
  • a synthesis gas containing hydrogen gas is produced as combustion exhaust gas.
  • This synthesis gas is then introduced according to arrows 14 and 15 from the pilot burner 3 into the mixture-forming space 10 or into the combustion chamber 9.
  • a part of the synthesis gas with respect to the longitudinal axis 12 is introduced substantially radially into the mixture formation space 10.
  • a different part of the synthesis gas with respect to the longitudinal axis 12 is injected substantially axially into the mixture formation space 10 and into the combustion chamber 9, respectively.
  • the radially introduced synthesis gas fraction 14 is now greater than the axially introduced synthesis gas fraction 15.
  • This particular division of the synthesis gas introduction into the mixture formation space 10 or into the combustion chamber 9 is based on the finding that with the aid of this distribution of the synthesis gas injection, particularly favorable results for low nitrogen oxide production and a stabilizing effect for the homogeneous combustion reaction in the combustion chamber 9 can be achieved.
  • the pilot burner 3 can be configured, for example, such that at least 50% to 70% of the synthesis gas generated by the pilot burner 3 enters the mixture-forming space 10 radially. Accordingly, the proportion of the synthesis gas, which is introduced axially from the pilot burner 3 into the mixture formation space 10 or into the combustion space 9, is at most 30% to 50%.
  • pilot burner 3 it may be expedient to design the pilot burner 3 in addition such that the amount of synthesis gas 14 introduced radially at least partially also has a tangential with respect to the longitudinal axis 12 component.
  • the pilot burner 3 may have a lance 16.
  • the lance 16 extends coaxially with the longitudinal axis 12 of the burner 1. Furthermore, the lance 16 projects axially from a burner head 17 and protrudes into the mixture-forming space 10.
  • the lance 16 has corresponding, only partially indicated radial outlet openings 18 and at least one axial outlet opening 19th
  • the burner 1 in another embodiment, a pilot burner 3, which is integrated into the burner wall 11.
  • a catalytically active channel is integrated into the burner wall 11 for this purpose.
  • the burner wall 11 includes a plurality of radial outlet openings 20 through which the larger radial synthesis gas portion 14 enters the mixture formation space 10.
  • the burner wall 11 contains a plurality of axial outlet openings 21, through which then the smaller axial proportion of synthesis gas 15 can be injected into the combustion chamber 9.
  • Corresponding Fig. 3 comprises a combustion chamber 2, which is designed here as an annular combustion chamber, a plurality of burners 1 upstream of the in Fig. 3 not shown combustion chamber 9 are arranged distributed in a ring.
  • Each of these burners 1 is equipped with a pilot burner 3, which operates catalytically and can generate the hydrogen gas-containing synthesis gas.
  • a common air supply 22 is provided for all burners 1, which is symbolized here by an arrow.
  • the burners 1 are usually divided into fuel supply groups. For example, two burner groups are provided to which each half of all burners 1 is assigned. Each burner group has its own fuel supply 23 or 23 '.
  • the burners 1 of one group are expediently arranged alternately with the burners 1 of the other group.
  • the pilot burners 3 of one group can be supplied with fuel via a common auxiliary fuel supply 24, while the pilot burners 3 of the other burner group are supplied with fuel via a further common additional fuel supply 24 '.
  • the air supply within the individual burners 1 takes place again together, with a constant distribution of the supplied air quantity to the respective burner 1 and the associated pilot burner 3.
  • the burners 1 are supplied with a correspondingly increased amount of fuel.
  • the pilot burners 3 are controlled so that the synthesis gas generated by them contains a lower proportion of hydrogen gas.
  • the increased fuel supply via the burner 1 leads to an increase in the temperature in the combustion chamber 9, whereby the combustion chamber power increases and the outlet temperature is at least 1800 K.
  • the comparatively low proportion of hydrogen gas in the synthesis gas leads to a significant reduction in nitrogen oxide formation at high combustion chamber temperatures. Accordingly, pollutant emissions can be significantly reduced with the help of synthesis gas injection. In the experiment, the nitrogen oxide formation could be reduced by about 33%.
  • the synthesis gas injected from the pilot burners 3 contains at the low burner chamber capacity a hydrogen gas content of at least 30% by volume.
  • the hydrogen gas content at the low combustor power is between 30% by volume and 50% by volume.
  • the hydrogen gas content in the synthesis gas at a high combustion chamber capacity is at most 30% by volume, in particular in a range from 5% by volume to 30% by volume.
  • the synthesis gas production or the hydrogen gas fraction in the synthesis gas can be changed particularly easily in the catalytically operating pilot burners 3 by varying the fuel / air ratio.
  • This fuel / air ratio can be particularly easy to change by varying the amount of fuel supplied to the pilot burners 3, which is relatively easy to implement.
  • the amount of air supplied remains substantially constant, so that can be dispensed with complex control and regulation facilities here.
  • the inventive operation of the combustion chamber 2 and its burner 1 ensures that the combustion chamber 2 can be operated comparatively stable at low power, while at high combustion chamber performance, the production of nitrogen oxides can be greatly reduced.
  • pilot burners 3 in the burner 1 of the annular combustion chamber 2 has an additional valuable advantage.
  • annular combustion chambers 2 there are usually undesirable interactions of the individual burner 1 with each other. These interactions can lead to pulsations and thus to an undesirable vibration load of the components and to an undesirable noise pollution of the environment.
  • the interactions can reduce the stability of the combustion reactions, locally increase the temperature and thus support the formation of nitrogen oxides.
  • the amount of air supplied to the individual burners 1 can deviate from an ideal air quantity or set air quantity. Since, as explained above, the distribution of the quantity of air supplied to the individual burner 1 to the burner 1 and its pilot burner 3 is constant, the quantity of air supplied to the individual pilot burner 3 changes in the same proportion as the total quantity of air supplied to the individual burner 1 , If the total amount of air or actual air quantity actually supplied to the individual burner 1 deviates from the desired setpoint air quantity, the quantity of air supplied to the respective pilot burner 3 also changes as a result. Since in a stationary operation of the combustion chamber 2, the amount of fuel supplied to the pilot burner 3 remains constant, a change in the amount of air leads to a change in the fuel / air ratio. However, the fuel / air ratio correlates with the synthesis gas production or with the hydrogen gas content in the synthesis gas generated by the catalytic pilot burners 3.
  • the combustion air / fuel ratio increases.
  • An increased combustion air / fuel ratio increases the hydrogen gas content in the synthesis gas and leads to an increased exhaust gas temperature of the respective pilot burner 3, ie to an increased synthesis gas temperature.
  • the portion of the flame front associated with this burner 1 or this pilot burner 3 is moved upstream in the combustion chamber 9.
  • This local change in position of the flame front increases the pressure drop at this burner 1, that is, its flow resistance, and leads to a sequence in the sequence Reduction of this burner 1 supplied amount of air. In this way, the actual air quantity decreases and approaches the set air quantity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

Technisches GebietTechnical area

Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben einer Brennkammer einer Gasturbine, insbesondere einer Kraftwerksanlage.The present invention relates to a method for operating a combustion chamber of a gas turbine, in particular a power plant.

Stand der TechnikState of the art

Aus der US 6,358,040 ist ein katalytischer Brenner bekannt, der im Betrieb aus einem fetten Brennstoff/Luft-Gemisch ein Wasserstoffgas enthaltendes Synthesegas generieren kann und der als Pilot-Brenner für einen üblicherweise mager betriebenen Brenner einer Brennkammer einer Gasturbine verwendet werden kann. Durch die Eindüsung eines Wasserstoffgas enthaltenden Synthesegases in den Brenner bzw. in einen Brennraum der Brennkammer kann die homogene Verbrennungsreaktion, die im Betrieb der Brennkammer in deren Brennraum abläuft, stabilisiert werden. Insbesondere kann dadurch die Löschtemperatur der Verbrennungsreaktion bei mager betriebenen Brennern gesenkt werden. Insgesamt können dadurch die Verbrennungstemperaturen im Brennraum der Brennkammer reduziert werden. Dies ist von besonderem Vorteil, da die Bildung von Stickoxiden exponentiell mit der Reaktionstemperatur ansteigt. Gattungsgemäße stabilisierte Verbrennungsverfahren mit niedrigen Emissionen sind außerdem in den Dokumenten WO 2004/020901 und WO 2004/020905 beschrieben.From the US 6,358,040 For example, a catalytic burner is known which, when operating from a rich fuel / air mixture, can generate a syngas containing hydrogen gas and which can be used as a pilot burner for a normally lean burn burner of a gas turbine combustor. By injecting a synthesis gas containing hydrogen gas into the burner or into a combustion chamber of the combustion chamber, the homogeneous combustion reaction which takes place in the combustion chamber during operation of the combustion chamber can be stabilized. In particular, this can be used to lower the extinguishing temperature of the combustion reaction in lean burners. Overall, this allows the combustion temperatures in the combustion chamber of the combustion chamber can be reduced. This is of particular advantage because the formation of nitrogen oxides increases exponentially with the reaction temperature. Generic stabilized combustion process with Low emissions are also in the documents WO 2004/020901 and WO 2004/020905 described.

WO 2004/020901 offenbart einen Hybridbrenner sowie ein Verfahren zu dessen Betrieb, wobei der Hybridbrenner innerhalb eines Gehäuses parallelgeschaltet einen Volloxidationskatalysator und einen Teiloxidationskatalysator enthält, welche von einem ersten und einem zweiten Brennstoff-Oxidator-Gemisch durchströmt werden. Die beiden Gemische besitzen ein unterschiedliches Brennstoff-Oxidator-Verhältnis dergestalt, dass das erstere ein fettes Gemisch ist und das zweite ein mageres Gemisch ist und dass der Teiloxidationskatalysator so ausgebildet ist, dass ein wasserstoffhaltiges Abgas erzeugt wird. WO 2004/020905 offenbart ein Verfahren zum Verbrennen eines Brennstoff-Oxidator-Gemischs sowie eine Vorrichtung zu dessen Durchführung, wobei ein Gesamtoxidatorstrom in einen Haupt- und einen Nebenstrom aufgeteilt wird, wobei der erstere mit einem Hauptbrennstoffstrom in einem Vormischbrenner mager vorgemischt und verbrannt wird und der zweite nochmals aufgeteilt wird und zwar in einen Pilot-Oxidatorstrom und einen Wärmeübertrager-Oxidatorstrom, welcher stromab zum Vorwärmen des Pilot-Oxidatorstroms dient, der Pilot-Oxidatorstrom mit Brennstoff fett vermischt und in Kontakt mit einem Katalysator unter Ausbildung von Wasserstoff teiloxidiert und anschließend gemeinsam mit dem zweiten Teilstrom in eine Verbrennungszone des Hauptbrennstoff-Oxidatorstroms eingeleitet wird. WO 2004/020901 discloses a hybrid burner and a method of operation thereof, wherein the hybrid burner includes in parallel within a housing a Volloxidationskatalysator and a partial oxidation catalyst, which are traversed by a first and a second fuel-oxidizer mixture. The two mixtures have a different fuel-to-oxidant ratio such that the former is a rich mixture and the second is a lean mixture and that the partial oxidation catalyst is designed to produce a hydrogen-containing off-gas. WO 2004/020905 discloses a method of combusting a fuel-oxidizer mixture and an apparatus for carrying it out, wherein a total oxidizer stream is split into a main and a side stream, the former lean-burned and burned with a main fuel stream in a premix burner and the second split again in a pilot oxidizer stream and a heat exchanger oxidizer stream downstream of preheating the pilot oxidizer stream, the pilot oxidizer stream is fat blended with fuel and partially oxidized in contact with a catalyst to form hydrogen and then co-currently with the second substream is introduced into a combustion zone of the main fuel oxidizer stream.

Diese Verfahren erreichen aufgrund der verminderten Brennraumtemperaturen geringere Schadstoffemissionen. Um jedoch die Brennkammer mit einer höheren Leistung betreiben zu können, muss die Brennkammer so betrieben werden, dass sie eine höhere Austrittstemperatur erreicht.These methods achieve lower pollutant emissions due to the reduced combustion chamber temperatures. However, in order to operate the combustion chamber with a higher power, the combustion chamber must be operated so that it reaches a higher outlet temperature.

Darstellung der ErfindungPresentation of the invention

Hier setzt die vorliegende Erfindung an. Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, beschäftigt sich mit dem Problem, für eine Brennkammer der eingangs genannten Art einen Weg aufzuzeigen, der bei variierender Brennkammerleistung einen sicheren Betrieb sowie niedrige Schadstoffemissionen ermöglicht.This is where the present invention begins. The invention, as characterized in the claims, deals with the problem of pointing out a way for a combustion chamber of the type mentioned that allows for varying combustion chamber performance safe operation and low pollutant emissions.

Diese Aufgabe wird erfindungsgemäß durch den Gegenstand des unabhängigen Anspruchs gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.This object is achieved by the subject of the independent claim. Advantageous embodiments are the subject of the dependent claims.

Das erfindungsgemäße Verfahren beruht auf dem allgemeinen Gedanken, den Pilotbrenner in Abhängigkeit von der Brennkammerleistung so anzusteuern, dass das damit erzeugte Synthesegas bei einer niedrigen Brennkammerleistung einen vergleichsweise hohen Anteil an Wasserstoffgas enthält, während es bei einer vergleichsweise hohen Brennkammerleistung einen relativ niedrigen Anteil an Wasserstoffgas enthält. Die Erfindung nutzt hierbei die Erkenntnis, dass Synthesegas mit einem relativ niedrigen Anteil an Wasserstoffgas bei hohen Flammentemperaturen die Stickstoffbildung relativ stark reduziert. Gleichzeitig ist bei hohen Flammentemperaturen eine Absenkung der Löschgrenze nicht erforderlich. Im Unterschied dazu würde ein Synthesegas mit hohem Wasserstoffgasanteil bei hohen Flammentemperaturen die Schadstoffemission, insbesondere die Stickoxidemission, verstärken. Des weiteren nutzt die Erfindung die Erkenntnis, dass bei niedrigeren Flammentemperaturen die Eindüsung von Synthesegas mit einem relativ hohen Wasserstoffgasanteil die homogene Verbrennungsreaktion signifikant stabilisiert, indem die Löschgrenze deutlich herabgesenkt wird. Gleichzeitig kommt es dabei nicht zu einer Erhöhung der Stickoxidbildung.The inventive method is based on the general idea of controlling the pilot burner as a function of the combustion chamber performance such that the synthesis gas produced therewith contains a comparatively high proportion of hydrogen gas at a low combustion chamber power, while it contains a relatively low proportion of hydrogen gas at a comparatively high combustion chamber power , The invention uses the knowledge that synthesis gas with a relatively low proportion of hydrogen gas at high flame temperatures reduces the formation of nitrogen relatively strongly. At the same time, lowering the extinguishing limit is not necessary at high flame temperatures. In contrast, a synthesis gas with a high hydrogen gas content at high flame temperatures would increase pollutant emissions, in particular nitrogen oxide emissions. Furthermore, the invention uses the knowledge that at lower flame temperatures, the injection of synthesis gas with a relatively high proportion of hydrogen gas significantly stabilizes the homogeneous combustion reaction by significantly lowering the extinction limit. At the same time, there is no increase in nitrogen oxide formation.

Das erfindungsgemäße Betriebsverfahren führt somit zu einem stabilisierten Betrieb der Brennkammer bei vergleichsweise kleiner Brennkammerleistung, zum Beispiel bei Niedriglast oder Teillast, während gleichzeitig bei größerer Brennkammerleistung, zum Beispiel bei Volllast, die Schadstoffemissionen im Vergleich zu einem Betrieb ohne Pilot-Brenner reduziert sind.The operating method according to the invention thus leads to a stabilized operation of the combustion chamber with a comparatively small combustion chamber power, For example, at low load or partial load, while at the same time with greater combustion chamber performance, for example at full load, the pollutant emissions are reduced compared to a operation without pilot burner.

Gemäß einer vorteilhaften Ausführungsform, kann die Synthesegaserzeugung des Pilot-Brenners durch die dem Pilot-Brenner zugeführte Brennstoffmenge gesteuert werden, während gleichzeitig die dem Pilot-Brenner zugeführte Luftmenge konstant gehalten wird. Der Wasserstoffgasanteil im Synthesegas wird somit über das dem katalytischen Pilot-Brenner zugeführte Brennstoff/LuftVerhältnis gesteuert. Bei einer derartigen Vorgehensweise können aufwändige Regelungs- und Steuerungseinrichtungen für die Luftversorgung des Pilot-Brenners eingespart werden.According to an advantageous embodiment, the synthesis gas production of the pilot burner can be controlled by the amount of fuel supplied to the pilot burner, while at the same time the amount of air supplied to the pilot burner is kept constant. The hydrogen gas content in the synthesis gas is thus controlled by the fuel / air ratio supplied to the catalytic pilot burner. With such a procedure, elaborate control and regulating devices for the air supply of the pilot burner can be saved.

Auf diese Weise kann für den Brenner und den zugehörigen Pilot-Brenner eine gemeinsame Luftversorgung vorgesehen werden, die so ausgestaltet ist, dass sie die zugeführte Luft mit einer konstanten Aufteilung auf den Brenner und den zugehörigen Pilot-Brenner verteilt. Ein auf diese Weise ausgestalteter Brenner kann vergleichsweise kostengünstig realisiert werden, da auf besagte Regelungs- und Steuerungseinrichtungen für die Luftversorgung des Pilot-Brenners verzichtet werden kann.In this way, a common air supply can be provided for the burner and the associated pilot burner, which is designed so that it distributes the supplied air with a constant distribution to the burner and the associated pilot burner. A burner designed in this way can be realized comparatively inexpensively, because said control and regulation devices for the air supply of the pilot burner can be dispensed with.

Bei einer anderen wichtigen Ausführungsform wird der Brenner so ausgestaltet, dass ein größerer Anteil des Synthesegases bezüglich einer Längsachse des jeweiligen Brenners radial in den Brenner und/oder in die Brennkammer eingebracht wird, während ein kleinerer Anteil des Synthesegases bezüglich der Längsachse axial in den Brenner bzw. in die Brennkammer eingebracht wird. Es hat sich gezeigt, dass bei einer vorwiegend radialen Einbringung des Synthesegases die besten Ergebnisse im Hinblick auf Schadstoffemissionen und Verbrennungsstabilisierung erzielt werden können.In another important embodiment, the burner is designed so that a larger proportion of the synthesis gas is introduced radially into the burner and / or into the combustion chamber with respect to a longitudinal axis of the respective burner, while a smaller proportion of the synthesis gas with respect to the longitudinal axis axially into the burner or . is introduced into the combustion chamber. It has been found that with a predominantly radial introduction of the synthesis gas, the best results with regard to pollutant emissions and combustion stabilization can be achieved.

Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.Other important features and advantages of the invention will become apparent from the dependent claims, from the drawings and from the associated figure description with reference to the drawings.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Komponenten beziehen. Es zeigen, jeweils schematisch,

Fig. 1
einen stark vereinfachten, prinzipiellen Längsschnitt durch einen Brenner zur Durchführung des Verfahrens,
Fig. 2a
einen Längsschnitt wie in Fig. 1, jedoch bei einer anderen Ausführungsform,
Fig. 2b
einen Querschnitt durch den Brenner gemäß Fig. 2a,
Fig. 3
eine stark vereinfachte axiale Ansicht einer Ringbrennkammer.
Preferred embodiments of the invention are illustrated in the drawings and will be described in more detail in the following description, wherein like reference numerals refer to the same or similar or functionally identical components. Show, in each case schematically,
Fig. 1
a highly simplified, fundamental longitudinal section through a burner for carrying out the method,
Fig. 2a
a longitudinal section as in Fig. 1 but in another embodiment,
Fig. 2b
a cross section through the burner according to Fig. 2a .
Fig. 3
a greatly simplified axial view of an annular combustion chamber.

Wege zur Ausführung der ErfindungWays to carry out the invention

Entsprechend den Fig. 1 und 2a umfasst ein Brenner 1 einer Brennkammer 2 (vgl. Fig. 3) zur Durchführung des erfindungsgemäßen Verfahrens einen katalytisch arbeitenden Pilot-Brenner 3. Der Brenner 1 umfasst eine Brennstoffversorgung 4, die hier lediglich durch einen Pfeil angedeutet ist und die im Betrieb des Brenners 1 diesen mit Brennstoff versorgt. Des weiteren ist eine Zusatzbrennstoffversorgung 5 vorgesehen, die ebenfalls durch einen Pfeil symbolisiert ist und die im Betrieb des Brenners 1 den Pilot-Brenner 3 mit Brennstoff versorgt. Außerdem ist eine Luftversorgung 6 vorgesehen, die für den Brenner 1 und dessen Pilot-Brenner 3 gemeinsam vorgesehen ist. Diese gemeinsame Luftversorgung 6 ist auf nicht näher erläuterte Weise so ausgestaltet, dass sie die zugeführte Luft auf den Brenner 1, vergleiche Pfeile 7, und den Pilot-Brenner 3, vergleiche Pfeil 8, verteilt.According to the Fig. 1 and 2a comprises a burner 1 a combustion chamber 2 (see. Fig. 3 For carrying out the method according to the invention, a catalytically operating pilot burner 3. The burner 1 comprises a fuel supply 4, which is indicated here merely by an arrow and which supplies it with fuel during operation of the burner 1. Furthermore, it is an additional fuel supply 5 is provided, which is likewise symbolized by an arrow and which supplies the pilot burner 3 with fuel during operation of the burner 1. In addition, an air supply 6 is provided, which is provided jointly for the burner 1 and its pilot burner 3. This common air supply 6 is designed in a manner not further explained in such a way that it distributes the supplied air to the burner 1, see arrows 7, and the pilot burner 3, see arrow 8.

Der Brenner 1 dient zur Erzeugung einer homogenen Verbrennungsreaktion in einem Brennraum 9 der Brennkammer 2, der im montierten Zustand stromab des Brenners 1 angeordnet ist. Die Brennkammer 2 dient ihrerseits zur Erzeugung von Heißgasen zur Beaufschlagung einer Gasturbine, insbesondere einer Kraftwerksanlage.The burner 1 is used to generate a homogeneous combustion reaction in a combustion chamber 9 of the combustion chamber 2, which is arranged downstream of the burner 1 in the assembled state. The combustion chamber 2 in turn serves to generate hot gases for acting on a gas turbine, in particular a power plant.

Der Brenner 1 weist außerdem einen Gemischbildungsraum 10 auf, der im montierten Zustand zum Brennraum 9 hin offen ist. Die Luftversorgung 6 bringt die dem Brenner 1 zugeordnete Luftmenge 7 in diesen Gemischbildungsraum 10 ein. Die Einbringung erfolgt hierbei in einer tangentialen Strömung über axial ausgerichtete Spalte in der Brennerwand 11, welche den Gemischbildungsraum 10 bezüglich einer Längsachse 12 des Brenners 1 umfangsmäßig umhüllt. Ebenfalls im Bereich der axialen Spalte zur Einbringung der Verbrennungsluft führt die Brennstoffversorgung 4 die dem Brenner 1 zugeordnete Brennstoffmenge dem Gemischbildungsraum 10 zu, was hier durch mehrere Pfeile 13 symbolisiert ist. Die Brennstoffversorgung 4 erstreckt sich dabei innerhalb der Brennerwand 11. Üblicherweise wird ein derartiger Brenner 1 mager betrieben, um eine möglichst schadstoffarme Verbrennungsreaktion im Brennraum 9 zu erzielen.The burner 1 also has a mixture forming space 10, which is open in the assembled state to the combustion chamber 9. The air supply 6 brings the burner 1 associated air quantity 7 in this mixture forming space 10 a. The introduction takes place here in a tangential flow over axially aligned gaps in the burner wall 11, which encloses the mixture forming space 10 circumferentially with respect to a longitudinal axis 12 of the burner 1. Also in the region of the axial gap for introducing the combustion air, the fuel supply 4 supplies the amount of fuel allocated to the burner 1 to the mixture-forming space 10, which is symbolized here by a plurality of arrows 13. The fuel supply 4 extends within the burner wall 11. Usually, such a burner 1 is operated lean to achieve the lowest possible combustion reaction in the combustion chamber 9.

Dem katalytisch arbeitenden Pilot-Brenner 3 wird über die Luftversorgung 6 ein bestimmter Anteil der dem Brenner 1 insgesamt zugeführten Luftmenge zugeführt, nämlich die Teilluftmenge 8. Die Zusatzbrennstoffversorgung 5 wird nun so betätigt, dass sich ein fettes Brennstoff/Luft-Gemisch einstellt, das dem Pilot-Brenner 3 zugeführt wird. Durch die Auswahl des jeweiligen Brennstoff/Luft-Verhältnisses sowie der zugehörigen Betriebsparameter erfolgt im Katalysator des Pilot-Brenners 3 eine Teiloxidation des Brennstoffs, bei dem ein Wasserstoffgas enthaltendes Synthesegas als Verbrennungsabgas entsteht. Dieses Synthesegas wird dann entsprechend Pfeilen 14 und 15 vom Pilot-Brenner 3 in den Gemischbildungsraum 10 bzw. in den Brennraum 9 eingebracht. Entsprechend den Pfeilen 14 wird ein Teil des Synthesegases bezüglich der Längsachse 12 im wesentlichen radial in den Gemischbildungsraum 10 eingebracht. Im Unterschied dazu wird gemäß den Pfeilen 15 ein anderer Teil des Synthesegases bezüglich der Längsachse 12 im wesentlichen axial in den Gemischbildungsraum 10 bzw. in den Brennraum 9 eingedüst.The catalytically operating pilot burner 3 is a certain proportion of the total amount of air supplied to the burner 1 via the air supply 6 The auxiliary fuel supply 5 is now operated so that a rich fuel / air mixture is adjusted, which is supplied to the pilot burner 3. By selecting the respective fuel / air ratio and the associated operating parameters in the catalyst of the pilot burner 3 is a partial oxidation of the fuel, in which a synthesis gas containing hydrogen gas is produced as combustion exhaust gas. This synthesis gas is then introduced according to arrows 14 and 15 from the pilot burner 3 into the mixture-forming space 10 or into the combustion chamber 9. Corresponding to the arrows 14, a part of the synthesis gas with respect to the longitudinal axis 12 is introduced substantially radially into the mixture formation space 10. In contrast, according to the arrows 15, a different part of the synthesis gas with respect to the longitudinal axis 12 is injected substantially axially into the mixture formation space 10 and into the combustion chamber 9, respectively.

Erfindungsgemäß ist nun der radial eingebrachte Synthesegasanteil 14 größer als der axial eingebrachte Synthesegasanteil 15. Diese spezielle Aufteilung der Synthesegaseinbringung in den Gemischbildungsraum 10 bzw. in den Brennraum 9 beruht auf der Erkenntnis, dass mit Hilfe dieser Verteilung der Synthesegaseindüsung besonders günstige Resultate für eine niedrige Stickoxidproduktion und eine stabilisierende Wirkung für die homogene Verbrennungsreaktion im Brennraum 9 erzielt werden können. Der Pilot-Brenner 3 kann dabei gemäß einer bevorzugten Ausführungsform beispielsweise so ausgestaltet sein, dass mindestens 50% bis 70% des vom Pilot-Brenner 3 generierten Synthesegases radial in den Gemischbildungsraum 10 eintreten. Dementsprechend liegt der Anteil des Synthesegases, das vom Pilot-Brenner 3 axial in den Gemischbildungsraum 10 bzw. in den Brennraum 9 eingebracht wird, bei höchstens 30% bis 50%.According to the invention, the radially introduced synthesis gas fraction 14 is now greater than the axially introduced synthesis gas fraction 15. This particular division of the synthesis gas introduction into the mixture formation space 10 or into the combustion chamber 9 is based on the finding that with the aid of this distribution of the synthesis gas injection, particularly favorable results for low nitrogen oxide production and a stabilizing effect for the homogeneous combustion reaction in the combustion chamber 9 can be achieved. According to a preferred embodiment, the pilot burner 3 can be configured, for example, such that at least 50% to 70% of the synthesis gas generated by the pilot burner 3 enters the mixture-forming space 10 radially. Accordingly, the proportion of the synthesis gas, which is introduced axially from the pilot burner 3 into the mixture formation space 10 or into the combustion space 9, is at most 30% to 50%.

Darüber hinaus kann es zweckmäßig sein, den Pilot-Brenner 3 außerdem so auszugestalten, dass die radial eingebrachte Synthesegasmenge 14 zumindest teilweise auch eine bezüglich der Längsachse 12 tangentiale Komponente aufweist.In addition, it may be expedient to design the pilot burner 3 in addition such that the amount of synthesis gas 14 introduced radially at least partially also has a tangential with respect to the longitudinal axis 12 component.

Entsprechend der Ausführungsform gemäß Fig. 1 kann der Pilot-Brenner 3 eine Lanze 16 aufweisen. Die Lanze 16 erstreckt sich dabei koaxial zur Längsachse 12 des Brenners 1. Des weiteren steht die Lanze 16 von einem Brennerkopf 17 axial ab und ragt dabei in den Gemischbildungsraum 10 hinein. Zur Verwirklichung der radialen und der axialen Eindüsung des Synthesegases in den Gemischbildungsraum 10 und/oder in den Brennraum 9 verfügt die Lanze 16 über entsprechende, hier nur zum Teil angedeutete radiale Austrittsöffnungen 18 sowie über zumindest eine axiale Austrittsöffnung 19.According to the embodiment according to Fig. 1 For example, the pilot burner 3 may have a lance 16. The lance 16 extends coaxially with the longitudinal axis 12 of the burner 1. Furthermore, the lance 16 projects axially from a burner head 17 and protrudes into the mixture-forming space 10. In order to achieve the radial and axial injection of the synthesis gas into the mixture formation space 10 and / or into the combustion chamber 9, the lance 16 has corresponding, only partially indicated radial outlet openings 18 and at least one axial outlet opening 19th

Alternativ kann gemäß den Fig. 2a und 2b der Brenner 1 bei einer anderen Ausführungsform einen Pilot-Brenner 3 aufweisen, der in die Brennerwand 11 integriert ist. Beispielsweise ist hierzu ein katalytisch aktiver Kanal in die Brennerwand 11 integriert. Ebenso ist es möglich, einen Katalysator weiter stromauf anzuordnen und lediglich die Abgaskanäle in die Brennerwand 11 zu integrieren, die dann das Synthesegas transportieren. Jedenfalls enthält die Brennerwand 11 mehrere radiale Austrittsöffnungen 20, durch welche der größere radiale Synthesegasanteil 14 in den Gemischbildungsraum 10 eintritt. Des weiteren enthält die Brennerwand 11 mehrere axiale Austrittsöffnungen 21, durch welche dann der kleinere axiale Synthesegasanteil 15 in den Brennraum 9 eingedüst werden kann.Alternatively, according to the Fig. 2a and 2b the burner 1 in another embodiment, a pilot burner 3, which is integrated into the burner wall 11. For example, a catalytically active channel is integrated into the burner wall 11 for this purpose. It is also possible to arrange a catalyst further upstream and to integrate only the exhaust gas channels in the burner wall 11, which then transport the synthesis gas. In any case, the burner wall 11 includes a plurality of radial outlet openings 20 through which the larger radial synthesis gas portion 14 enters the mixture formation space 10. Furthermore, the burner wall 11 contains a plurality of axial outlet openings 21, through which then the smaller axial proportion of synthesis gas 15 can be injected into the combustion chamber 9.

Hinsichtlich der Brennstoffversorgung 4 und der Luftversorgung 7 des Brenners 1 arbeitet der in Fig. 2a gezeigte Brenner 1 im wesentlichen identisch wie der in Fig. 1 gezeigte Brenner 1, wobei die radiale Brennstoffeindüsung 13 in Fig. 2a vereinfacht wiedergegeben ist.With regard to the fuel supply 4 and the air supply 7 of the burner 1, the works in Fig. 2a shown burner 1 substantially identical to that in Fig. 1 shown burner 1, wherein the radial fuel injection 13 in Fig. 2a is rendered simplified.

Entsprechend Fig. 3 umfasst eine Brennkammer 2, die hier als Ringbrennkammer ausgestaltet ist, mehrere Brenner 1, die stromauf des in Fig. 3 nicht gezeigten Brennraums 9 ringförmig verteilt angeordnet sind. Jeder dieser Brenner 1 ist mit einem Pilot-Brenner 3 ausgestattet, der katalytisch arbeitet und das wasserstoffgashaltige Synthesegas generieren kann. Üblicherweise ist für sämtliche Brenner 1 eine gemeinsame Luftversorgung 22 vorgesehen, die hier durch einen Pfeil symbolisiert ist. Des weiteren sind die Brenner 1 üblicherweise für die Versorgung mit Brennstoff in Gruppen eingeteilt. Beispielsweise sind zwei Brennergruppen vorgesehen, denen jeweils die Hälfte aller Brenner 1 zugeordnet ist. Jede Brennergruppe verfügt über eine eigene Brennstoffversorgung 23 bzw. 23'. Zweckmäßig sind die Brenner 1 der einen Gruppe wechselweise mit den Brennern 1 der anderen Gruppe angeordnet. In entsprechender Weise können die Pilot-Brenner 3 der einen Gruppe über eine gemeinsame Zusatzbrennstoffversorgung 24 mit Brennstoff versorgt werden, während die Pilot-Brenner 3 der anderen Brennergruppe über eine weitere gemeinsame Zusatz-Brennstoffversorgung 24' mit Brennstoff versorgt werden. Die Luftversorgung innerhalb der einzelnen Brenner 1 erfolgt wieder gemeinsam, und zwar mit einer konstanten Aufteilung der zugeführten Luftmenge auf den jeweiligen Brenner 1 und den zugehörigen Pilot-Brenner 3.Corresponding Fig. 3 comprises a combustion chamber 2, which is designed here as an annular combustion chamber, a plurality of burners 1 upstream of the in Fig. 3 not shown combustion chamber 9 are arranged distributed in a ring. Each of these burners 1 is equipped with a pilot burner 3, which operates catalytically and can generate the hydrogen gas-containing synthesis gas. Usually, a common air supply 22 is provided for all burners 1, which is symbolized here by an arrow. Furthermore, the burners 1 are usually divided into fuel supply groups. For example, two burner groups are provided to which each half of all burners 1 is assigned. Each burner group has its own fuel supply 23 or 23 '. The burners 1 of one group are expediently arranged alternately with the burners 1 of the other group. Correspondingly, the pilot burners 3 of one group can be supplied with fuel via a common auxiliary fuel supply 24, while the pilot burners 3 of the other burner group are supplied with fuel via a further common additional fuel supply 24 '. The air supply within the individual burners 1 takes place again together, with a constant distribution of the supplied air quantity to the respective burner 1 and the associated pilot burner 3.

Erfindungsgemäß können die Brenner 1 bei der Brennkammer 2 wie folgt betrieben werden:

  • Wenn die Brennkammer 2 eine vergleichsweise niedrige Brennkammerleistung erzeugen soll, wird zum einen die Brennstoffversorgung 23 bzw. 23' der Brenner 1 entsprechend reduziert. Zum anderen werden die Pilot-Brenner 3 so angesteuert, dass sie jeweils ein Synthesegas erzeugen, das einen vergleichsweise hohen Anteil an Wasserstoffgas enthält. Dieses Synthesegas wird über die Pilot-Brenner 3 in die Gemischbildungsräume 10 der Brenner 1 bzw. in den Brennraum 9 der Brennkammer 2 eingebracht und bewirkt dort aufgrund seines hohen Wasserstoffgas-Anteils eine Absenkung der Löschgrenze. Im Experiment konnte die Löschgrenze um etwa 100 K abgesenkt werden. Auf diese Weise kann die Verbrennungsreaktion im Brennraum 9 stabil ablaufen, auch wenn die Temperatur im Brennraum 9 aufgrund der reduzierten Brennkammerleistung vergleichsweise niedrig ist. Beispielsweise charakterisiert sich eine niedrige Brennkammerleistung durch eine Austrittstemperatur der Verbrennungsabgase aus dem Brennraum 9 von maximal 1600 K. Die niedrigen Brennraumtemperaturen führen dabei trotz des relativ hohen Wasserstoffgasanteils nicht zu einer Zunahme der Stickoxidbildung.
According to the invention, the burners 1 in the combustion chamber 2 can be operated as follows:
  • If the combustion chamber 2 is to generate a comparatively low combustion chamber power, the fuel supply 23 or 23 'of the burner 1 is correspondingly reduced on the one hand. On the other hand, the pilot burners 3 are controlled in such a way that they each generate a synthesis gas which contains a comparatively high proportion of hydrogen gas. This synthesis gas is introduced via the pilot burner 3 into the mixture-forming chambers 10 of the burner 1 or into the combustion chamber 9 of the combustion chamber 2, where it causes its action high hydrogen gas content, a reduction of the extinction limit. In the experiment, the extinction limit was lowered by about 100 K. In this way, the combustion reaction in the combustion chamber 9 can proceed stably, even if the temperature in the combustion chamber 9 is comparatively low due to the reduced combustion chamber power. For example, a low combustion chamber performance is characterized by an exit temperature of the combustion exhaust gases from the combustion chamber 9 of at most 1600 K. The low combustion chamber temperatures do not lead to an increase in nitrogen oxide formation despite the relatively high proportion of hydrogen gas.

Für den Fall, dass die Brennkammer 2 eine vergleichsweise hohe Brennkammerleistung abgeben soll, werden zum einen die Brenner 1 mit einer entsprechend erhöhten Brennstoffmenge versorgt. Zum anderen werden die Pilot-Brenner 3 so angesteuert, dass das von ihnen erzeugte Synthesegas einen niedrigeren Anteil an Wasserstoffgas enthält. Die erhöhte Brennstoffzufuhr über die Brenner 1 führt zu einer Anhebung der Temperatur im Brennraum 9, wodurch die Brennkammerleistung zunimmt und die Austrittstemperatur mindestens 1800 K beträgt. Der vergleichsweise niedrige Wasserstoffgasanteil im Synthesegas führt bei hohen Brennraumtemperaturen zu einer signifikanten Absenkung der Stickoxidbildung. Dementsprechend können mit Hilfe der Synthesegaseindüsung die Schadstoffemissionen deutlich reduziert werden. Im Experiment konnte die Stickoxidbildung um etwa 33% reduziert werden.In the event that the combustion chamber 2 is to deliver a comparatively high combustion chamber power, on the one hand the burners 1 are supplied with a correspondingly increased amount of fuel. On the other hand, the pilot burners 3 are controlled so that the synthesis gas generated by them contains a lower proportion of hydrogen gas. The increased fuel supply via the burner 1 leads to an increase in the temperature in the combustion chamber 9, whereby the combustion chamber power increases and the outlet temperature is at least 1800 K. The comparatively low proportion of hydrogen gas in the synthesis gas leads to a significant reduction in nitrogen oxide formation at high combustion chamber temperatures. Accordingly, pollutant emissions can be significantly reduced with the help of synthesis gas injection. In the experiment, the nitrogen oxide formation could be reduced by about 33%.

Vorzugsweise enthält das von den Pilot-Brennern 3 eingedüste Synthesegas bei der niedrigen Brennerkammerleistung einen Wasserstoffgasanteil von mindestens 30 Vol%. Vorzugsweise liegt der Wasserstoffgasanteil bei der niedrigen Brennkammerleistung zwischen 30 Vol% und 50 Vol%. Im Unterschied dazu liegt der Wasserstoffgasanteil im Synthesegas bei hoher Brennkammerleistung bei maximal 30 Vol%, insbesondere in einem Bereich von 5 Vol% bis 30 Vol%.Preferably, the synthesis gas injected from the pilot burners 3 contains at the low burner chamber capacity a hydrogen gas content of at least 30% by volume. Preferably, the hydrogen gas content at the low combustor power is between 30% by volume and 50% by volume. In contrast, the hydrogen gas content in the synthesis gas at a high combustion chamber capacity is at most 30% by volume, in particular in a range from 5% by volume to 30% by volume.

Die Synthesegasproduktion bzw. der Wasserstoffgasanteil im Synthesegas können bei den katalytisch arbeitenden Pilot-Brennern 3 besonders einfach durch Variation des Brennstoff/Luft-Verhältnisses verändert werden. Dieses Brennstoff/Luft-Verhältnis lässt sich seinerseits besonders einfach durch Variation der den Pilot-Brennern 3 zugeführten Brennstoffmenge verändern, was relativ einfach realisierbar ist. Im Unterschied dazu bleibt die zugeführte Luftmenge im wesentlichen konstant, so dass hier auf aufwändige Steuerungs- und Regelungseinrichtungen verzichtet werden kann.The synthesis gas production or the hydrogen gas fraction in the synthesis gas can be changed particularly easily in the catalytically operating pilot burners 3 by varying the fuel / air ratio. This fuel / air ratio can be particularly easy to change by varying the amount of fuel supplied to the pilot burners 3, which is relatively easy to implement. In contrast, the amount of air supplied remains substantially constant, so that can be dispensed with complex control and regulation facilities here.

Durch die erfindungsgemäße Betriebsweise der Brennkammer 2 bzw. deren Brenner 1 wird erreicht, dass die Brennkammer 2 bei niedriger Leistung vergleichsweise stabil betrieben werden kann, wobei gleichzeitig bei hoher Brennkammerleistung die Produktion von Stickoxiden stark reduziert werden kann.The inventive operation of the combustion chamber 2 and its burner 1 ensures that the combustion chamber 2 can be operated comparatively stable at low power, while at high combustion chamber performance, the production of nitrogen oxides can be greatly reduced.

Des weiteren hat die Integration von Pilot-Brennern 3 in die Brenner 1 der Ringbrennkammer 2 einen zusätzlichen wertvollen Vorteil. Bei Ringbrennkammern 2 kommt es üblicherweise zu unerwünschten Wechselwirkungen der einzelnen Brenner 1 untereinander. Diese Wechselwirkungen können zu Pulsationen und somit zu einer unerwünschten Schwingungsbelastung der Bauteile sowie zu einer unerwünschten Geräuschbelastung der Umgebung führen. Des weiteren können die Wechselwirkungen die Stabilität der Verbrennungsreaktionen reduzieren, lokal die Temperatur erhöhen und somit die Stickoxidbildung unterstützen.Furthermore, the integration of pilot burners 3 in the burner 1 of the annular combustion chamber 2 has an additional valuable advantage. In annular combustion chambers 2, there are usually undesirable interactions of the individual burner 1 with each other. These interactions can lead to pulsations and thus to an undesirable vibration load of the components and to an undesirable noise pollution of the environment. Furthermore, the interactions can reduce the stability of the combustion reactions, locally increase the temperature and thus support the formation of nitrogen oxides.

Eine Ursache dieser unerwünschten Wechselwirkungen wird darin gesehen, dass die gemeinsame Luftversorgung der Brenner 1 derselben Brennergruppe die einzelnen Brenner 1 nicht exakt mit derselben Luftmenge versorgt, was beispielsweise auf Herstellungstoleranzen zurückzuführen ist. Um dies auszugleichen, ist es grundsätzlich möglich, die Luftversorgung und/oder die Brennstoffversorgung für jeden Brenner 1 separat zu steuern. Dies ist jedoch mit einem enormen Aufwand verbunden. Hier schafft die Ausstattung der Brenner 1 mit den Pilot-Brennern 3 Abhilfe.One cause of these undesirable interactions is seen in the fact that the common air supply to the burner 1 of the same burner group does not supply the individual burners 1 exactly with the same amount of air, which is due, for example, to manufacturing tolerances. To this In principle, it is possible to control the air supply and / or the fuel supply for each burner 1 separately. However, this is associated with a huge effort. Here the equipment of the burner 1 with the pilot burners 3 remedy.

Wie erwähnt, kann die den einzelnen Brennern 1 zugeführte Luftmenge von einer idealen Luftmenge oder Sollluftmenge abweichen. Da - wie oben erläutert - die Aufteilung der dem einzelnen Brenner 1 zugeführten Luftmenge auf den Brenner 1 und dessen Pilot-Brenner 3 konstant ist, ändert sich die dem einzelnen Pilot-Brenner 3 zugeführte Luftmenge im gleichen Verhältnis wie die dem einzelnen Brenner 1 zugeführte Gesamtluftmenge. Weicht nun die dem einzelnen Brenner 1 tatsächlich zugeführte Gesamtluftmenge oder Istluftmenge von der gewünschten Sollluftmenge ab, ändert sich dadurch auch die dem jeweiligen Pilot-Brenner 3 zugeführte Luftmenge. Da bei einem stationären Betrieb der Brennkammer 2 die dem Pilot-Brenner 3 zugeführte Brennstoffmenge konstant bleibt, führt eine Änderung der Luftmenge zu einer Änderung des Brennstoff/Luft-Verhältnisses. Das Brennstoff/Luft-Verhältnis korreliert jedoch mit der Synthesegasproduktion bzw. mit dem Wasserstoffgasanteil in dem von den katalytischen Pilot-Brennern 3 generierten Synthesegas.As mentioned, the amount of air supplied to the individual burners 1 can deviate from an ideal air quantity or set air quantity. Since, as explained above, the distribution of the quantity of air supplied to the individual burner 1 to the burner 1 and its pilot burner 3 is constant, the quantity of air supplied to the individual pilot burner 3 changes in the same proportion as the total quantity of air supplied to the individual burner 1 , If the total amount of air or actual air quantity actually supplied to the individual burner 1 deviates from the desired setpoint air quantity, the quantity of air supplied to the respective pilot burner 3 also changes as a result. Since in a stationary operation of the combustion chamber 2, the amount of fuel supplied to the pilot burner 3 remains constant, a change in the amount of air leads to a change in the fuel / air ratio. However, the fuel / air ratio correlates with the synthesis gas production or with the hydrogen gas content in the synthesis gas generated by the catalytic pilot burners 3.

Für den Fall, dass die Istluftmenge größer ist als die Sollluftmenge, nimmt das Verbrennungsluft/Brennstoff-Verhältnis zu. Ein erhöhtes Verbrennungsluft/Brennstoff-Verhältnis erhöht den Wasserstoffgasanteil im Synthesegas und führt zu einer erhöhten Abgastemperatur des jeweiligen Pilot-Brenners 3, also zu einer erhöhten Synthesegastemperatur. Dies führt dazu, dass der diesem Brenner 1 bzw. diesem Pilot-Brenner 3 zugeordnete Abschnitt der Flammenfront im Brennraum 9 stromauf bewegt wird. Diese lokale Positionsveränderung der Flammenfront erhöht den Druckbfall an diesem Brenner 1, also dessen Strömungswiderstand, und führt in der Folge zu einer Reduzierung der diesem Brenner 1 zugeführten Luftmenge. Auf diese Weise nimmt die Istluftmenge also ab und nähert sich an die Sollluftmenge an.In the event that the actual amount of air is greater than the target air quantity, the combustion air / fuel ratio increases. An increased combustion air / fuel ratio increases the hydrogen gas content in the synthesis gas and leads to an increased exhaust gas temperature of the respective pilot burner 3, ie to an increased synthesis gas temperature. As a result, the portion of the flame front associated with this burner 1 or this pilot burner 3 is moved upstream in the combustion chamber 9. This local change in position of the flame front increases the pressure drop at this burner 1, that is, its flow resistance, and leads to a sequence in the sequence Reduction of this burner 1 supplied amount of air. In this way, the actual air quantity decreases and approaches the set air quantity.

Wenn anderenfalls die Istluftmenge kleiner ist als die Sollluftmenge, sinkt das Verbrennungsluft/Brennstoff-Verhältnis. Dies führt dazu, dass sich der zugehörige Flammenfrontabschnitt stromab bewegt, wodurch der Druckverlust durch diesen Brenner 1 entsprechend abnimmt. In der Folge kann die Luftströmung durch diesen Brenner 1 wieder zunehmen und die Istluftmenge steigt.Otherwise, if the actual air amount is smaller than the target air amount, the combustion air / fuel ratio decreases. This causes the associated flame front section moves downstream, whereby the pressure loss through this burner 1 decreases accordingly. As a result, the air flow through this burner 1 can increase again and the actual amount of air increases.

In der Folge kommt es somit an jedem einzelnen Brenner 1 zu einer individuellen, selbsttätig ablaufenden Regelung der Luftmenge auf einen zuvor bei der Auslegung des jeweiligen Brenners 1 festgelegten Wert. Aufwändige Regelungsstrategien, -einrichtungen und dergleichen sind nicht erforderlich.As a result, it comes thus to each burner 1 to an individual, self-running control of the amount of air to a previously set in the design of the respective burner 1 value. Elaborate control strategies, facilities and the like are not required.

Gleichzeitig können mit Hilfe der Pilot-Brenner 3 akustische Wechselwirkungen dadurch reduziert werden, dass das Synthesegas in den Brennraum 9 eingebracht wird. Denn die Zuführung von Brennstoffen höherer Reaktivität führt zu einer Absenkung der akustischen Wechselwirkungen.At the same time 3 acoustic interactions can be reduced by means of the pilot burner, that the synthesis gas is introduced into the combustion chamber 9. Because the supply of fuels of higher reactivity leads to a reduction of the acoustic interactions.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Brennerburner
22
Brennkammercombustion chamber
33
Pilot-BrennerPilot burner
44
Brennstoffversorgungfuel supply
55
Zusatz-BrennstoffversorgungAdditional fuel supply
66
Luftversorgungair supply
77
Luftmengenanteil für 1Air flow rate for 1
88th
Luftmengenanteil für 3Air flow rate for 3
99
Brennraumcombustion chamber
1010
GemischbildungsraumMixture formation chamber
1111
Brennerwandburner wall
1212
Längsachse von 1Longitudinal axis of 1
1313
Brennstoffmengeamount of fuel
1414
radiale Synthesegaseindüsungradial synthesis gas injection
1515
axiale Synthesegaseindüsungaxial synthesis gas injection
1616
Lanzelance
1717
Brennerkopfburner head
1818
radiale Austrittsöffnungradial outlet opening
1919
axiale Austrittsöffnungaxial outlet opening
2020
radiale Austrittsöffnungradial outlet opening
2121
axiale Austrittsöffnungaxial outlet opening
2222
Luftversorgungair supply
2323
Brennstoffversorgungfuel supply
2424
Zusatz-BrennstoffversorgungAdditional fuel supply

Claims (11)

  1. Method for operating a combustion chamber (2) of a gas turbine, in particular of a power plant,
    - the combustion chamber (2) having at least one burner (1) which is provided with a catalytic pilot burner (3),
    - characterized in that the pilot burner (3) is actuated at low power of the combustion chamber (2) such that it generates as a reaction product a synthesis gas with a high proportion of hydrogen gas,
    - and in that the pilot burner (3) is actuated at high power of the combustion chamber (2) such that the synthesis gas generated has a low proportion of hydrogen gas.
  2. Method according to Claim 1,
    characterized
    - in that at low combustion chamber power, the synthesis gas contains a proportion of at least 30% by volume of hydrogen gas.
  3. Method according to Claim 2,
    characterized
    - in that at low combustion chamber power, the hydrogen gas proportion in the synthesis gas is between 30% by volume and 50% by volume.
  4. Method according to Claim 1,
    characterized
    - in that the synthesis gas at high combustion chamber power contains a proportion of at most 30% by volume of hydrogen gas.
  5. Method according to Claim 4,
    characterized
    - in that at high combustion chamber power, the hydrogen gas proportion in the synthesis gas is between 5% by volume and 30% by volume.
  6. Method according to one of Claims 1 to 5,
    characterized
    - in that at low combustion chamber power, the combustion chamber (2) has an outlet temperature of a maximum of 1600 K, and/or
    - in that at high combustion chamber power, the combustion chamber (2) has an outlet temperature of at least 1800 K.
  7. Method according to one of Claims 1 to 6,
    characterized
    - in that a relatively large proportion (14) of the synthesis gas is introduced into the burner (1) and/or into the combustion chamber (2) radially relative to a longitudinal axis (12) of the respective burner (1), and
    - in that a relatively small proportion (15) of the synthesis gas is introduced into the burner (1) and/or into the combustion chamber (2) axially relative to the longitudinal axis (12).
  8. Method according to Claim 7,
    characterized
    - in that a proportion of the synthesis gas of at least 50% to 70% is introduced radially, and
    - in that a proportion of the synthesis gas of at most 30% to 50% is introduced axially.
  9. Method according to Claim 7 or 8,
    characterized
    in that the radially introduced synthesis gas at least partially also has a tangential component relative to the longitudinal axis (12).
  10. Method according to one of Claims 1 to 9,
    characterized
    in that the burner (1) and the associated pilot burner (3) are provided with a common air supply (6) with constant division of the air between the burner (1) and the pilot burner (3).
  11. Method according to one of Claims 1 to 10,
    characterized
    in that the synthesis gas generation of the pilot burner (3) is controlled by means of the fuel quantity supplied to the pilot burner (3), while the air quantity supplied to the pilot burner (3) is kept constant.
EP06830438.5A 2005-12-22 2006-12-07 Combustion chamber with burner and associated operating method Not-in-force EP1963748B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005061486.8A DE102005061486B4 (en) 2005-12-22 2005-12-22 Method for operating a combustion chamber of a gas turbine
PCT/EP2006/069429 WO2007074033A1 (en) 2005-12-22 2006-12-07 Combustion chamber with burner and associated operating method

Publications (2)

Publication Number Publication Date
EP1963748A1 EP1963748A1 (en) 2008-09-03
EP1963748B1 true EP1963748B1 (en) 2015-08-05

Family

ID=37776558

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06830438.5A Not-in-force EP1963748B1 (en) 2005-12-22 2006-12-07 Combustion chamber with burner and associated operating method

Country Status (5)

Country Link
US (1) US7568907B2 (en)
EP (1) EP1963748B1 (en)
DE (1) DE102005061486B4 (en)
MY (1) MY153409A (en)
WO (1) WO2007074033A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7841180B2 (en) * 2006-12-19 2010-11-30 General Electric Company Method and apparatus for controlling combustor operability
EP2072899B1 (en) * 2007-12-19 2016-03-30 Alstom Technology Ltd Fuel injection method
US8286594B2 (en) * 2008-10-16 2012-10-16 Lochinvar, Llc Gas fired modulating water heating appliance with dual combustion air premix blowers
EP2299091A1 (en) * 2009-09-07 2011-03-23 Alstom Technology Ltd Method for Switching over a Gas Turbine Burner Operation from Liquid to Gas Fuel and Vice-Versa
CH701905A1 (en) * 2009-09-17 2011-03-31 Alstom Technology Ltd Method of burning hydrogen-rich, gaseous fuels in a burner and burner for carrying out the method.
US11774093B2 (en) 2020-04-08 2023-10-03 General Electric Company Burner cooling structures
JP7435328B2 (en) * 2020-07-13 2024-02-21 三浦工業株式会社 combustion device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1063699B (en) * 1975-09-16 1985-02-11 Westinghouse Electric Corp STARTING METHOD OF A HIGH-POWER GAS TURBINE WITH A CATALYTIC COMBUSTOR
DE3474714D1 (en) * 1983-12-07 1988-11-24 Toshiba Kk Nitrogen oxides decreasing combustion method
DE4426351B4 (en) * 1994-07-25 2006-04-06 Alstom Combustion chamber for a gas turbine
DE4439619A1 (en) * 1994-11-05 1996-05-09 Abb Research Ltd Method and device for operating a premix burner
DE19654022A1 (en) * 1996-12-21 1998-06-25 Abb Research Ltd Process for operating a gas turbine group
US6358040B1 (en) 2000-03-17 2002-03-19 Precision Combustion, Inc. Method and apparatus for a fuel-rich catalytic reactor
US6415608B1 (en) * 2000-09-26 2002-07-09 Siemens Westinghouse Power Corporation Piloted rich-catalytic lean-burn hybrid combustor
EP1286112A1 (en) * 2001-08-09 2003-02-26 Siemens Aktiengesellschaft Premix burner and method of operating the same
AU2003219845A1 (en) * 2002-02-22 2003-09-09 Catalytica Energy Systems, Inc. Catalytically piloted combustion system and methods of operation
WO2004020905A1 (en) 2002-08-30 2004-03-11 Alstom Technology Ltd Method and device for combusting a fuel-oxidising agent mixture
AU2003240374A1 (en) 2002-08-30 2004-03-19 Alstom Technology Ltd Hybrid burner and corresponding operating method
DE10329162A1 (en) * 2003-06-27 2005-01-13 Alstom Technology Ltd Catalytic reactor and associated operating method
EP1510761A1 (en) * 2003-08-13 2005-03-02 Siemens Aktiengesellschaft Method for burning a fluid fuel as well as burner, in particular for a gas turbine, for carrying out the method
EP1568942A1 (en) * 2004-02-24 2005-08-31 Siemens Aktiengesellschaft Premix Burner and Method for Combusting a Low-calorific Gas

Also Published As

Publication number Publication date
US7568907B2 (en) 2009-08-04
MY153409A (en) 2015-02-13
WO2007074033A1 (en) 2007-07-05
DE102005061486B4 (en) 2018-07-12
DE102005061486A1 (en) 2007-07-12
US20080314045A1 (en) 2008-12-25
EP1963748A1 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
EP1532400B1 (en) Method and device for combusting a fuel-oxidising agent mixture
EP1621811B1 (en) Operating Method for a Combustion Apparatus
EP1730441B1 (en) Device and method for stabilizing the flame in a burner
EP1255080B1 (en) Catalytic burner
EP1963748B1 (en) Combustion chamber with burner and associated operating method
DE3854666T2 (en) GAS TURBINE BURNER.
EP1532394B1 (en) Hybrid burner and corresponding operating method
EP2116766B1 (en) Burner with fuel lance
EP2115353B1 (en) Combustion chamber for a gas turbine
EP1205653B1 (en) Burner with staged fuel injection and method of operation
DE69719688T2 (en) Gas turbine burners and operating methods therefor
EP2329196B1 (en) Burner and method for operating a burner
EP0576697A1 (en) Combustor chamber for a gas turbine
EP1754002A2 (en) Injector for liquid fuels and sequential premix burner comprising said injector
EP1319895A2 (en) Lean-burn premix burner for gas turbine and its method of operation
EP1673576B1 (en) Method and device for the combustion of fuel
EP1062461B1 (en) Combustion chamber and method for operating a combustion chamber
EP1510755A1 (en) Burner with lance and staged fuel supply.
EP1555484B1 (en) Process to operate a gas turbine combustor
EP3246558B1 (en) Method for operating a rocket propulsion system and rocket propulsion system
EP1491824B1 (en) Catalytic reactor and associated operating method
DE10334228A1 (en) Operating premix burner involves selecting second, third further fuel nozzle opening groups, applying fuel to them independently of each other so second, third groups form premixing, diffusion stages
EP3584501A1 (en) Burner system and method for generating hot gas in a gas turbine plant
EP2808612A1 (en) Gas turbine combustion chamber with tangential late lean injection
EP3926238B1 (en) Gas turbine module with combustion chamber air bypass

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080609

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20131206

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150410

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 740934

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006014463

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151207

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006014463

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151207

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006014463

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006014463

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151207

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH; CH

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), VERANDERING VAN NAAM VAN DE EIGENAAR(S); FORMER OWNER NAME: ALSTOM TECHNOLOGY LTD

Effective date: 20161006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 740934

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151207

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: ANSALDO ENERGIA SWITZERLAND AG; CH

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: GENERAL ELECTRIC TECHNOLOGY GMBH

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151207

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20061207

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170727 AND 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006014463

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20171219

Year of fee payment: 12

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211210

Year of fee payment: 16

Ref country code: GB

Payment date: 20211221

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006014463

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221207

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230701