EP1820582A1 - Aerogel containing core for light alloy and/or lost wax casting - Google Patents
Aerogel containing core for light alloy and/or lost wax casting Download PDFInfo
- Publication number
- EP1820582A1 EP1820582A1 EP07100597A EP07100597A EP1820582A1 EP 1820582 A1 EP1820582 A1 EP 1820582A1 EP 07100597 A EP07100597 A EP 07100597A EP 07100597 A EP07100597 A EP 07100597A EP 1820582 A1 EP1820582 A1 EP 1820582A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- core
- sand
- airgel
- mixture
- binder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005495 investment casting Methods 0.000 title claims abstract description 10
- 239000004964 aerogel Substances 0.000 title abstract description 11
- 229910001234 light alloy Inorganic materials 0.000 title 1
- 239000011230 binding agent Substances 0.000 claims abstract description 37
- 239000004576 sand Substances 0.000 claims abstract description 27
- 239000008187 granular material Substances 0.000 claims abstract description 24
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 238000001035 drying Methods 0.000 claims abstract description 11
- 238000005058 metal casting Methods 0.000 claims abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 47
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 12
- 239000012530 fluid Substances 0.000 claims description 10
- 235000019353 potassium silicate Nutrition 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000002243 precursor Substances 0.000 claims description 4
- 238000005056 compaction Methods 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 238000002156 mixing Methods 0.000 abstract description 4
- 239000011162 core material Substances 0.000 description 48
- 238000005266 casting Methods 0.000 description 20
- 239000012778 molding material Substances 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 239000010453 quartz Substances 0.000 description 7
- 239000006004 Quartz sand Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000009835 boiling Methods 0.000 description 6
- 238000009736 wetting Methods 0.000 description 6
- 239000004965 Silica aerogel Substances 0.000 description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910052593 corundum Inorganic materials 0.000 description 3
- 239000010431 corundum Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910001092 metal group alloy Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004966 Carbon aerogel Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 229910052631 glauconite Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 229910052900 illite Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 239000003110 molding sand Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- VGIBGUSAECPPNB-UHFFFAOYSA-L nonaaluminum;magnesium;tripotassium;1,3-dioxido-2,4,5-trioxa-1,3-disilabicyclo[1.1.1]pentane;iron(2+);oxygen(2-);fluoride;hydroxide Chemical compound [OH-].[O-2].[O-2].[O-2].[O-2].[O-2].[F-].[Mg+2].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[K+].[K+].[K+].[Fe+2].O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2 VGIBGUSAECPPNB-UHFFFAOYSA-L 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C1/00—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
- B22C1/16—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
- B22C1/18—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
- B22C1/183—Sols, colloids or hydroxide gels
Definitions
- the invention relates to a water-soluble core which can be used in the field of light metal casting and / or investment casting.
- Castings of different metals or metallic alloys are produced by different casting methods. Equal to all is the use of permanent models (wood, ceramic, plastic) or lost models of sand, or polystyrene. If cavities are to be realized in a casting, a lost core is mainly made of sand. Because of the high thermal and mechanical stress prevailing in the foundry process, they generally consist of chemically bonded molding materials, such as plastic-bonded ceramic powders or synthetic resin-bonded sands. Here, the molding materials consist of sands, which are connected by binders in the desired shape of the core with the aim after the casting production to destroy the binder and thus to remove the core.
- Binders for core sands used today mean that cores are difficult to remove from the workpieces (because they are thermally very stable). Especially in aluminum casting, low casting temperatures require only lower temperatures for the thermal Decomposition of the binder. If the binder bridges are insufficiently destroyed, this will cause the cores to have higher strength even after casting, and be difficult to remove by mechanical vibration or high pressure water jets.
- High-pressure water jets can not always lead to the complete release of the core to damage the workpiece, or in geometrically complicated cores with undercuts. This mechanical removal of the cores is especially critical in light metal casting, since the desired filigree cast structures can be easily destroyed here. Partially polluting (organic) substances are used in the common resin bound cores.
- the molding material is a suitable sand (molding sand), which is mixed with a chemical binder or a molding material binder, which is then hardened, for example, again by a liquid or solid catalyst or hardener or by additional heat.
- a suitable sand molding sand
- quartz sand is used.
- Chromite, zircon and olivine sand are also used for special applications.
- mold bases based on fireclay, magnesite, silimanite and corundum are used.
- Binders for the molding sands may be inorganic or organic in nature, the inorganic binders being divided into natural and synthetic inorganic binders.
- Natural inorganic binders include clays such as montmorillonite, glauconite, kaolinite, illite or attapulgite.
- Synthetic inorganic binders include, among others, water glass, cement and gypsum.
- Organic binders include synthetic resins such as the phenolic, urea, Furan resins and ethyl silicate.
- Oils, carbohydrate binders, water-soluble liquid binders based on sulfite waste liquors, molasses, dextrose processes, alkanolamines and pitch binders are still used ( KE Höner "foundry”, Ullmann's Encyclopedia of Industrial Chemistry, pp. 271-287, vol. 12, 4th edition, Verlag Chemie Weinheim, 1976 ).
- DE102 16 464 B4 describes core materials for the fine and casting of metals and metal alloys, a process for their production and their use as a core in fine and cast molding.
- new binder components for the sands are used here.
- the present object is achieved in a first embodiment by a mechanically and thermally stable core for light metal and / or precision casting, the core containing hydrophilic airgel granules, sand and binder.
- the aerogels are used as a partial replacement of the sand.
- the invention is based in particular on a combination of classic foundry sands and hydrophilic airgel granules.
- the inorganic mixture of sand and airgel granules is bound, for example, with different types of waterglass.
- the core After drying, the core is poured over with boiling water. After a period of seconds to minutes, the originally solid composite decays completely. The core remnants can be removed from the casting without further mechanical effort. It should be noted, however, that a higher water glass binder content results in an exponential increase in disintegration time.
- Aerogels according to the invention include colloidal substances which are gelled and dried. They have a lower density and high, open porosity. They consist of only about one to fifteen percent of a solid, while the rest of their volume is filled by the surrounding gas or vacuum, that is, they have a high surface area (up to 1000m 2 / g). Inorganic aerogels are usually inherently hydrophilic. Aerogels are considered to be one of the lightest materials and best thermal insulators.
- a hydrophilic airgel in the form of a granulate is to be used as a further molding material.
- Airgel granules are obtained in particular by grinding airgel monoliths won.
- Hydrophilic means water-loving, ie the airgel granules used show a pronounced interaction with polar solvents such as water.
- the hydrophilic airgel granules used have a wetting angle with water less than 10 °.
- the hydrophilic airgel granules comprise silica aerogels since they are not wetted or chemically attacked by liquid metals.
- Silica aerogels are molten metals to chemically inert. Its sintering point is around 1050 ° C. In addition, they are non-flammable and non-toxic.
- aerogels There are various types of aerogels, with the silicate-based (silica airgel) being commercially available. Plastic or carbon based aerogels are important for special applications. Also, metal oxide based aerogels are known. According to the invention, these aerogels can also be used if the surface is hydrophilic in the meaning of the invention by appropriate treatment.
- the airgel granules should have a particle size in the order of magnitude of the sand, since both are used as mold bases and optimum mixing of equal particles is easier to carry out.
- corundum sands of similar size (0.1 to 0.9 mm) can also be used.
- the sand content may be 83 to 95 wt .-%, the binder content and the Airogelgranulatanteil adds up to 100 wt .-%.
- the binder content is 2 to 10 wt .-%.
- the proportion of airgel granules is preferably 2 to 6 wt .-%.
- the quartz sands shown above are new sands, in fact these are only added to the "old sands" in foundries to a limited extent.
- Used sand is the sand that accumulates when the castings are emptied out of the molds, which, after appropriate cooling and reconditioning, is returned to the molding shop.
- the reprocessing has two tasks to accomplish: cleaning the quartz grain from adhering binders and removing dusty constituents.
- any remaining agglomerates are mechanically comminuted and thus the binder coats partially removed from the quartz grains.
- the originally rather rounded surface of the grain of sand undergoes a change. From around she is too fragmented. This grain shape is important for the process of forming, thus ensuring that only one comparatively low binder content is needed.
- waterglass and / or airgel precursor are used as binders for binding airgel granules and sand.
- the use of viscous aqueous water glass has the advantage that it is available as a mass product and this is suitable as a molding material binder.
- precursors for airgel production around a core by means of the process DE 102 16 464 B4 manufacture.
- silica airgel precursors such as tetraethoxysilane (TEOS) or TEOS formamide mixtures with solvents such as water and / or ethanol should be used as a binder, since the resulting silica aerogels can be easily destroyed by well-wetting fluids.
- the blend contains a sand content of 83 to 95 weight percent, using here 1 to 20 weight percent virgin sand and 80 to 99 weight percent reclaim (circuit molding, i.e., purified recycled sand).
- the compaction is done for example by core shooting, shaking, tapping and stomping.
- Temperatures from 20 ° C to 80 ° C proved to be particularly suitable.
- the duration of the drying is preferably a few seconds to minutes.
- the inorganic cores according to the invention can be used in the foundry industry, in particular in light metal and / or investment casting, where cores which are easy to dislodge, especially in filigree cast structures, are required.
- the core can be removed by a fluid which wets it. This is particularly advantageous since here the core decomposes without residue through the fluid which wets it.
- these are well-wetting fluids such as water. Wettability refers to the ability of liquids to spread on a surface; the better the wettability, the smaller is the contact angle that occurs during wetting. Surfaces are also referred to as (incompletely) wettable when the contact angle with the surface is up to 90 °. The higher the temperature of the wetting fluid, the better the cores can be removed. Particular preference is therefore given to fluids having a temperature of from 30 to 100.degree.
- silica aerogels can easily be destroyed by well wetting liquids (for example, boiling water).
- the core may be destroyed by alcoholic fluids or short chain alcohols having a chain length of up to six carbon atoms.
- alcoholic fluids or short chain alcohols having a chain length of up to six carbon atoms.
- non-flammable alcohol mixtures should be used.
- the object according to the invention is achieved, for example, by mixing quartz sands or corundum sands with hydrophilic airgel granules (for example Airglass in Sweden) and bound with water glass in different proportions.
- the sample After drying, the sample can be used as a core for light metal and / or investment casting.
- the core After cooling the sample, the core can be removed by a hot fluid (eg, boiling water). After a period of seconds or minutes, the nucleus decays completely. The core remnants can be removed from the casting without further mechanical effort.
- the embodiments shown here aim at a complete decay of the core with the addition of boiling water, a thermal stability (> 1000 ° C) and the lowest possible binder content.
- the flexural strengths of the obtained airgel granulate quartz sand-waterglass-bonded molding sands are between 1 and 3 MPa, at a density of about 1.5 g / cm 3 , ie the density is determined by the quartz sand and a specific surface in the range of 4 to 8, in particular 6m 2 / g.
- Airgel granules and quartz sand were first mixed. The complete mixture was then treated with the waterglass binder. Once sufficient mixing had occurred, the mixture was placed in a core negative and compacted by pounding. The final drying took place in a drying oven at 60 to 70 ° C for about one day. After complete drying, the core could be inserted into the cavity and cast. After cooling the casting, the core was doused with boiling water. After a period of a few seconds, the sample completely disintegrated in the water. The core remnants could be removed from the casting without further mechanical effort.
- Example 2 As in Example 1, a core was prepared. After drying, the core was fired in the oven for one hour at 850 ° C to simulate the investment casting conditions. Thereafter, the core was placed in the cavity and poured (cast alloy A357 (AlSi7Mg 0.6)). After cooling the casting, the core was doused with boiling water. In contrast to Example 1, the resolution of the core now took about 10 minutes.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Mold Materials And Core Materials (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
Gegenstand der Erfindung ist ein wasserlöslicher Kern, der im Bereich des Leichtmetallgusses und/oder des Feingusses eingesetzt werden kann.The invention relates to a water-soluble core which can be used in the field of light metal casting and / or investment casting.
Gussteile aus verschiedenen Metallen oder metallischen Legierungen werden mit unterschiedlichen Gießverfahren hergestellt. Bei allen gleich ist der Einsatz von Dauermodellen (Holz, Keramik, Kunststoff) oder verlorenen Modellen aus Sand, oder Polystyrol. Sollen Hohlräume in einem Gussstück realisiert werden, so bedient man sich eines verlorenen Kernes hauptsächlich aus Sand. Sie bestehen in der Regel wegen der im Gießereiprozess herrschenden hohen thermischen und mechanischen Belastung aus chemisch gebundenen Formstoffen, wie kunststoffgebundene keramischen Pulver oder kunstharzgebundene Sande. Hierbei bestehen die Formstoffe aus Sanden, die durch Bindemittel in der erwünschten Form des Kernes verbunden sind mit dem Ziel nach der Gussherstellung die Bindemittel zu zerstören und somit den Kern zu entfernen. Nachteil der bekannten Verfahren zur Kernherstellung ist, dass in der Regel die Entfernung der Kerne aus dem Gussstück nur mit hohen Aufwand möglich ist, die Verteilung der Sande im Kern inhomogen ist oder Risskeime existieren, die unter anderem zum Bruch unter thermisch-mechanischer Belastung führen können. Heute verwendete Bindemittel für Kernsande führen dazu, dass Kerne nur schwer aus den Werkstücken entfernt werden können (denn sie sind thermisch sehr stabil). Insbesondere beim Aluminiumguss bedingen tiefe Gießtemperaturen nur niedrigere Temperaturen zur thermischen Zersetzung des Binders. Wenn die Bindemittelbrücken nur unzureichend zerstört werden bewirkt dies, dass die Kerne auch nach dem Abguss eine höhere Festigkeit aufweisen und sich nur schwer durch mechanische Vibration oder Hochdruckwasserstrahlen entfernen lassen. Hochdruckwasserstrahlen können zur Beschädigung des Werkstückes, bzw. bei geometrisch komplizierten Kernen mit Hinterschneidungen nicht immer zur vollständigen Auslösung des Kernes führen. Diese mechanische Entfernung der Kerne ist speziell beim Leichtmetallguss kritisch, da hier die gewünschten, filigranen Gussstrukturen leicht zerstört werden können. Bei den gängigen Kunstharz gebundenen Kernen werden zum Teil umweltschädliche (organische) Substanzen eingesetzt.Castings of different metals or metallic alloys are produced by different casting methods. Equal to all is the use of permanent models (wood, ceramic, plastic) or lost models of sand, or polystyrene. If cavities are to be realized in a casting, a lost core is mainly made of sand. Because of the high thermal and mechanical stress prevailing in the foundry process, they generally consist of chemically bonded molding materials, such as plastic-bonded ceramic powders or synthetic resin-bonded sands. Here, the molding materials consist of sands, which are connected by binders in the desired shape of the core with the aim after the casting production to destroy the binder and thus to remove the core. Disadvantage of the known processes for core production is that usually the removal of the cores from the casting is possible only with great effort, the distribution of the sands in the core is inhomogeneous or cracking germs exist, which can lead to fracture under thermal-mechanical stress among others , Binders for core sands used today mean that cores are difficult to remove from the workpieces (because they are thermally very stable). Especially in aluminum casting, low casting temperatures require only lower temperatures for the thermal Decomposition of the binder. If the binder bridges are insufficiently destroyed, this will cause the cores to have higher strength even after casting, and be difficult to remove by mechanical vibration or high pressure water jets. High-pressure water jets can not always lead to the complete release of the core to damage the workpiece, or in geometrically complicated cores with undercuts. This mechanical removal of the cores is especially critical in light metal casting, since the desired filigree cast structures can be easily destroyed here. Partially polluting (organic) substances are used in the common resin bound cores.
Der Formgrundstoff ist ein geeigneter Sand (Formsand), der mit einem chemischen Bindemittel bzw. einen Formstoffbindemittel versetzt wird, die dann beispielsweise wiederum durch einen flüssigen oder festen Katalysator oder Härter oder durch zusätzliche Wärmeeinwirkung ausgehärtet wird. Als Sand wird überwiegend Quarzsand verwendet. Für besondere Anwendungen kommen auch Chromit-, Zirkon- und Olivinsand zur Anwendung. Ebenfalls werden Formgrundstoffe auf Schamott-, Magnesit-, Silimanit- und Korundbasis eingesetzt.The molding material is a suitable sand (molding sand), which is mixed with a chemical binder or a molding material binder, which is then hardened, for example, again by a liquid or solid catalyst or hardener or by additional heat. As sand predominantly quartz sand is used. Chromite, zircon and olivine sand are also used for special applications. Likewise, mold bases based on fireclay, magnesite, silimanite and corundum are used.
Bindemittel für die Formsande können anorganischer oder organischer Natur sein, wobei die anorganischen Bindemittel in natürliche und synthetische anorganische Bindemittel unterteilt werden. Natürliche anorganische Bindemittel umfassen Tone wie Montmorrillonit, Glaukonit, Kaolinit, Illit oder Attapulgit. Synthetische anorganische Bindemittel umfassen unter anderem Wasserglas, Zement und Gips. Organische Bindemittel umfassen Kunstharze wie die Phenol-, Harnstoff-, Furanharze sowie Ethylsilicat. Öle, Kohlehydratbinder, wasserlösliche Flüssigkeitsbinder auf Basis von Sulfit-Ablaugen, Melasse, Dextrose-Abläufen, Alkanolaminen und Pechbindern werden auch noch eingesetzt (
Die Herstellungsverfahren der sandgebundenen Gießformen und -kerne sind in der Literatur ausreichend dokumentiert (
Insbesondere für Aluminium-Feinguss existiert ein Bedarf an mechanisch und thermisch stabilen Kernen, die sich leicht aus dem Gussstück entfernen lassen. Das Verfahren des Feingusses von Aluminiumlegierungen beinhaltet hierbei besondere Probleme, die bei der Entwicklung eines Kernwerkstoffes berücksichtigt werden müssen:
- 1. Die keramischen Formen sind regelmäßig aus einem Stück, selten mehrfach geteilt;
- 2. das Wachsmodell wird im Heißdampfautoklaven entfernt;
- 3. die keramische Formschale wird bei 800 bis 950 °C gebrannt.
- 1. The ceramic forms are regularly one piece, rarely divided several times;
- 2. the wax model is removed in a hot steam autoclave;
- 3. The ceramic shell mold is fired at 800 to 950 ° C.
Gegenstand der
Aufgabe der vorliegenden Erfindung ist es Kerne für den Fein- und/oder Formguss herzustellen, die
- 1. thermisch stabil sind, das heißt Temperaturen bis ca. 900°C aushalten,
- 2. mechanisch stabil sind, das heißt sich bei den üblichen Gießereitemperaturen nicht verändern,
- 3. chemisch inert gegenüber den eingesetzten Metallen oder Metalllegierungen wie beispielsweise Aluminium, Magnesium und Titan sind,
- 4. umweltfreundliche Materialen während des gesamten Herstellprozesses verwenden und
- 5. aufgrund ihrer Eigenschaften sich möglichst rückstandsfrei aus dem Gussteil entfernen lassen.
- 1. are thermally stable, that is temperatures up to about 900 ° C endure,
- 2. are mechanically stable, that is do not change at the usual Gießereitemperaturen
- 3. are chemically inert to the metals or metal alloys used, such as aluminum, magnesium and titanium,
- 4. use environmentally friendly materials throughout the manufacturing process and
- 5. due to their properties can be removed as far as possible without residue from the casting.
Die vorliegende Aufgabe wird in einer ersten Ausführungsform gelöst durch einen mechanisch und thermisch stabilen Kern für den Leichtmetall- und/oder den Feinguss, wobei der Kern hydrophiles Aerogelgranulat, Sand und Bindemittel enthält. Erfindungsgemäß werden die Aerogele als teilweiser Ersatz des Sandes eingesetzt.The present object is achieved in a first embodiment by a mechanically and thermally stable core for light metal and / or precision casting, the core containing hydrophilic airgel granules, sand and binder. According to the invention, the aerogels are used as a partial replacement of the sand.
Die Erfindung beruht insbesondere auf einer Kombination von klassischen Gießereisanden und hydrophilen Aerogelgranulaten. Das anorganische Gemisch aus Sand und Aerogelgranulat wird beispielsweise mit verschiedenen Wasserglassorten gebunden. Nach der Trocknung wird der Kern mit kochendem Wasser übergossen. Nach einer Dauer von Sekunden bis Minuten zerfällt der ursprünglich feste Verbund vollständig. Die Kernreste können ohne weiteren mechanischen Aufwand aus dem Gussstück entnommen werden. Es ist jedoch zu beachten, dass ein höherer Wasserglasbindemittelgehalt zu einem exponentiellen Anstieg der Zerfallsdauer führt.The invention is based in particular on a combination of classic foundry sands and hydrophilic airgel granules. The inorganic mixture of sand and airgel granules is bound, for example, with different types of waterglass. After drying, the core is poured over with boiling water. After a period of seconds to minutes, the originally solid composite decays completely. The core remnants can be removed from the casting without further mechanical effort. It should be noted, however, that a higher water glass binder content results in an exponential increase in disintegration time.
Aerogele im Sinne der Erfindung umfassen kolloidale Substanzen, die geliert und getrocknet werden. Sie haben eine geringere Dichte und hohe, offene Porosität. Sie bestehen nur zu circa einem bis fünfzehn Prozent aus einem Feststoff, während der Rest ihres Volumens durch das sie umgebende Gas bzw. auch Vakuum ausgefüllt wird, das heißt sie besitzen eine hohe Oberfläche (bis zu 1000m2/g). Anorganische Aerogele sind üblicherweise von sich aus hydrophil Aerogele gelten als eines der leichtesten Materialien und der besten Wärmeisolatoren.Aerogels according to the invention include colloidal substances which are gelled and dried. They have a lower density and high, open porosity. They consist of only about one to fifteen percent of a solid, while the rest of their volume is filled by the surrounding gas or vacuum, that is, they have a high surface area (up to 1000m 2 / g). Inorganic aerogels are usually inherently hydrophilic. Aerogels are considered to be one of the lightest materials and best thermal insulators.
Erfindungsgemäß soll ein hydrophiles Aerogel in Form eines Granulats als weiterer Formgrundstoff eingesetzt werden. Aerogelgranulate werden insbesondere durch das Mahlen von Aerogelmonolithen gewonnen. Hydrophil bedeutet wasserliebend, d.h. das eingesetzte Aerogelgranulat zeigt eine ausgeprägte Wechselwirkung mit polaren Lösemitteln wie Wasser. So haben die eingesetzten hydrophilen Aerogelgranulate einen Benetzungswinkel mit Wasser kleiner als 10°.According to the invention, a hydrophilic airgel in the form of a granulate is to be used as a further molding material. Airgel granules are obtained in particular by grinding airgel monoliths won. Hydrophilic means water-loving, ie the airgel granules used show a pronounced interaction with polar solvents such as water. Thus, the hydrophilic airgel granules used have a wetting angle with water less than 10 °.
Besonders bevorzugt umfasst das hydrophile Aerogelgranulat Silika-Aerogelen, da sie nicht von flüssigen Metallen benetzt oder chemisch angegriffen werden. Silika-Aerogele sind Metallschmelzen gegenüber chemisch inert. Ihr Sinterpunkt liegt bei etwa 1050 °C. Zudem sind sie unbrennbar und ungiftig.Most preferably, the hydrophilic airgel granules comprise silica aerogels since they are not wetted or chemically attacked by liquid metals. Silica aerogels are molten metals to chemically inert. Its sintering point is around 1050 ° C. In addition, they are non-flammable and non-toxic.
Es gibt verschiedene Arten von Aerogelen, wobei die auf Silikatbasis (Silika-Aerogel) handelsüblich sind. Aerogele auf Kunststoff- oder Kohlenstoffbasis haben eine Bedeutung für Spezialanwendungen. Auch Aerogele auf Metalloxidbasis sind bekannt. Erfindungsgemäß können diese Aeogelgranulate auch eingesetzt werden, wenn die Oberfläche durch entsprechende Behandlung hydrophil im Sinne der Erfindung ist.There are various types of aerogels, with the silicate-based (silica airgel) being commercially available. Plastic or carbon based aerogels are important for special applications. Also, metal oxide based aerogels are known. According to the invention, these aerogels can also be used if the surface is hydrophilic in the meaning of the invention by appropriate treatment.
Vorteilhafterweise sollte das Aerogelgranulat eine Korngröße in der Größenordnung des Sandes aufweisen, da beide als Formgrundstoffe verwendet werden und eine optimale Durchmischung gleich großer Partikel einfacher durchzuführen ist.Advantageously, the airgel granules should have a particle size in the order of magnitude of the sand, since both are used as mold bases and optimum mixing of equal particles is easier to carry out.
Als Sande können unter anderem die in Deutschland handelsüblichen Quarz-Neusande folgender Herkunft mit folgender mittlerer Korngröße in mm verwendet werden:
- Dorsten 0,84 mm (Sorte D020), 0,56 mm (D030), 0,39 mm (D040), 0,13 mm (DO110) ;
- Frechen 0,32 mm (Sorte F31), 0,23 mm (F32), 0,22 mm (F33), 0,20 mm (F34), 0,18 mm (F35), 0,16 mm (F36)
- Gambach 0,37 mm (Sorte G30), 0,29 mm (G31), 0,23 mm (G32), 0,21 mm (G33), 0,19 mm (G34),
- Haltern 0,36 mm (Sorte H31), 0,32 mm (H32), 0,26 mm (H33), 0,21 mm (H34) und 0,19 mm (H35)
- Dorsten 0.84 mm (grade D020), 0.56 mm (D030), 0.39 mm (D040), 0.13 mm (DO110);
- Frechen 0.32 mm (grade F31), 0.23 mm (F32), 0.22 mm (F33), 0.20 mm (F34), 0.18 mm (F35), 0.16 mm (F36)
- Gambach 0.37 mm (grade G30), 0.29 mm (G31), 0.23 mm (G32), 0.21 mm (G33), 0.19 mm (G34),
- Holders 0.36 mm (grade H31), 0.32 mm (H32), 0.26 mm (H33), 0.21 mm (H34) and 0.19 mm (H35)
Alternativ zu den eingesetzten Quarzsanden können auch Korundsande ähnlicher Größenordnung (0,1 bis 0,9 mm) eingesetzt werden.As an alternative to the quartz sands used, corundum sands of similar size (0.1 to 0.9 mm) can also be used.
Der Sandanteil kann 83 bis 95 Gew.-% betragen, der Bindemittelanteil und der Aerogelgranulatanteil addiert sich entsprechend auf 100 Gew.-%. Insbesondere beträgt der Bindemittelanteil 2 bis 10 Gew.-%. Der Anteil an Aerogelgranulat beträgt vorzugsweise 2 bis 6 Gew.-%.The sand content may be 83 to 95 wt .-%, the binder content and the Airogelgranulatanteil adds up to 100 wt .-%. In particular, the binder content is 2 to 10 wt .-%. The proportion of airgel granules is preferably 2 to 6 wt .-%.
Die oben gezeigten Quarzsande sind Neusande, tatsächlich werden diese in Gießereien nur in geringem Maße den "Altsanden" zugesetzt. Altsand ist der beim Ausleeren der Gussstücke aus den Formen anfallende Sand, welcher nach entsprechender Kühlung und Neuaufbereitung der Formerei wieder zugeführt wird. Die Neuaufbereitung hat zwei Aufgaben zu erfüllen: Die Reinigung des Quarzkornes von anhaftenden Bindemitteln und die Entfernung staubförmiger Bestandteile.The quartz sands shown above are new sands, in fact these are only added to the "old sands" in foundries to a limited extent. Used sand is the sand that accumulates when the castings are emptied out of the molds, which, after appropriate cooling and reconditioning, is returned to the molding shop. The reprocessing has two tasks to accomplish: cleaning the quartz grain from adhering binders and removing dusty constituents.
Bei diesem Prozess werden noch vorhandene Agglomerate mechanisch zerkleinert und so die Bindemittelhüllen teilweise von den Quarzkörnern entfernt. Bei diesem Prozess erfährt die ursprünglich eher abgerundete Oberfläche des Sandkornes eine Veränderung. Von rund wird sie zu splitterig. Diese Kornform ist wichtig für den Prozess der Formstoffbindung, auf diese Weise wird gewährleistet, dass nur ein vergleichsweise geringer Bindemittelanteil gebraucht wird.In this process, any remaining agglomerates are mechanically comminuted and thus the binder coats partially removed from the quartz grains. In this process, the originally rather rounded surface of the grain of sand undergoes a change. From around she is too fragmented. This grain shape is important for the process of forming, thus ensuring that only one comparatively low binder content is needed.
In einer Ausführungsform werden als Bindemittel Wasserglas und/oder Aerogelvorprodukt zur Bindung von Aerogelgranulat und Sand eingesetzt. Die Verwendung von viskosem wässrigen Wasserglas hat den Vorteil, dass dieses als Massenprodukt erhältlich ist und dieses sich als Formstoffbindemittel eignet. Möglich ist auch die Verwendung von Vorprodukten für die Aerogelherstellung um einen Kern mittels des Verfahrens nach
Bei einer weiteren Ausführungsform enthält die Mischung einen Sandanteil von 83 bis 95 Gew.-%, wobei hier 1 bis 20 Gew.-% Neusand und 80 bis 99 Gew.-% Regenerat (Kreislaufformstoff, d.h. gereinigter wiederverwendeter Sand) verwendet wird.In another embodiment, the blend contains a sand content of 83 to 95 weight percent, using here 1 to 20 weight percent virgin sand and 80 to 99 weight percent reclaim (circuit molding, i.e., purified recycled sand).
Erfindungsgemäß hat es sich als sinnvoll erwiesen folgende Schritte durchzuführen:
- 1. Mischung des Aerogelgranulats mit Sand und Bindemittel,
- 2. Einbringung der Mischung in eine Negativform des Kerns,
- 3. Verdichtung der eingebrachten Mischung in der Negativform,
- 4. Trocknung der verdichteten Mischung und
- 5. Kernentnahme aus der Negativform.
- 1. mixture of airgel granules with sand and binder,
- 2. introduction of the mixture into a negative mold of the core,
- 3. compaction of the introduced mixture in the negative mold,
- 4. Drying of the compressed mixture and
- 5. Core removal from the negative mold.
Die Verdichtung wird beispielsweise durch Kernschießen, Rütteln, Klopfen und Stampen vorgenommen. Für die Trocknung haben sich Temperaturen von 20°C bis 80°C als besonders geeignet herausgestellt. Die Dauer der Trocknung beträgt vorzugsweise wenige Sekunden bis Minuten.The compaction is done for example by core shooting, shaking, tapping and stomping. For drying have become Temperatures from 20 ° C to 80 ° C proved to be particularly suitable. The duration of the drying is preferably a few seconds to minutes.
Die erfindungsgemäßen anorganischen Kerne können in der Gießereiindustrie insbesondere im Leichtmetall- und/oder Feinguss verwendet werden, wo speziell bei filigranen Gussstrukturen leicht herauszulösende Kerne gefordert sind.The inorganic cores according to the invention can be used in the foundry industry, in particular in light metal and / or investment casting, where cores which are easy to dislodge, especially in filigree cast structures, are required.
Nach dem Gießprozess kann der Kern durch ein ihn benetzendes Fluid entfernt werden. Dies ist insbesondere von Vorteil, da hier sich der Kern durch das ihm benetzende Fluid rückstandsfrei zersetzt.After the casting process, the core can be removed by a fluid which wets it. This is particularly advantageous since here the core decomposes without residue through the fluid which wets it.
Insbesondere eignen sich hierbei gut benetzende Fluide wie Wasser. Die Benetzbarkeit bezeichnet die Fähigkeit von Flüssigkeiten, sich auf einer Oberfläche auszubreiten; je besser die Benetzbarkeit, umso kleiner ist der bei der Benetzung auftretende Kontaktwinkel. Oberflächen werden auch als (unvollständig) benetzbar bezeichnet, wenn der Kontaktwinkel mit der Oberfläche von bis zu 90° beträgt. Je höher die Temperatur des benetzenden Fluids ist, desto besser lassen sich die Kerne entfernen. Besonders bevorzugt sind daher Fluide mit einer Temperatur von 30 bis 100 °C. Hier wird ausgenutzt, dass Silica-Aerogele durch gut benetzende Flüssigkeiten (beispielsweise kochendes Wasser) leicht zerstört werden können.In particular, these are well-wetting fluids such as water. Wettability refers to the ability of liquids to spread on a surface; the better the wettability, the smaller is the contact angle that occurs during wetting. Surfaces are also referred to as (incompletely) wettable when the contact angle with the surface is up to 90 °. The higher the temperature of the wetting fluid, the better the cores can be removed. Particular preference is therefore given to fluids having a temperature of from 30 to 100.degree. Here is exploited that silica aerogels can easily be destroyed by well wetting liquids (for example, boiling water).
In einer weiteren Ausführungsform kann der Kern durch alkoholische Fluide oder kurzkettigen Alkohole mit einer Kettenlänger mit bis zu sechs C-Atomen zerstört werden. Um die Brandgefahr zu vermeiden, sollten nicht brennbare Alkoholmischungen eingesetzt werden.In another embodiment, the core may be destroyed by alcoholic fluids or short chain alcohols having a chain length of up to six carbon atoms. To avoid the risk of fire, non-flammable alcohol mixtures should be used.
Die erfindungsgemäße Aufgabe wird beispielsweise dadurch gelöst, dass Quarzsande oder Korundsande mit hydrophilem Aerogelgranulat (z.B. Firma Airglass in Schweden) gemischt werden und mit Wasserglas in unterschiedlichen Mengenanteilen gebunden werden. Nach der Trocknung kann die Probe als Kern für den Leichtmetall- und/oder Feinguss eingesetzt werden. Nach Abkühlen der Probe kann der Kern durch ein heißes Fluid (beispielsweise kochendes Wasser) entfernt werden. Nach einer Dauer von Sekunden oder Minuten zerfällt der Kern vollständig. Die Kernreste können ohne weiteren mechanischen Aufwand aus dem Gussstück entfernt werden.The object according to the invention is achieved, for example, by mixing quartz sands or corundum sands with hydrophilic airgel granules (for example Airglass in Sweden) and bound with water glass in different proportions. After drying, the sample can be used as a core for light metal and / or investment casting. After cooling the sample, the core can be removed by a hot fluid (eg, boiling water). After a period of seconds or minutes, the nucleus decays completely. The core remnants can be removed from the casting without further mechanical effort.
Die hier dargestellten Ausführungsbeispiele zielen auf einen vollständigen Zerfall des Kerns bei Zugabe von kochendem Wasser, auf eine thermische Stabilität (>1000°C) und auf den geringst möglichen Bindemittelanteil.The embodiments shown here aim at a complete decay of the core with the addition of boiling water, a thermal stability (> 1000 ° C) and the lowest possible binder content.
Die Biegefestigkeiten der erhaltenen Aerogelgranulat-Quarzsand-Wasserglas-gebundenen Formsande liegen zwischen 1 und 3 MPa, bei einer Dichte von ca. 1,5 g/ cm3, d.h. die Dichte wird durch den Quarzsand bestimmt und einer Spezifischen Oberfläche im Bereich von 4 bis 8, insbesondere 6m2/g.The flexural strengths of the obtained airgel granulate quartz sand-waterglass-bonded molding sands are between 1 and 3 MPa, at a density of about 1.5 g / cm 3 , ie the density is determined by the quartz sand and a specific surface in the range of 4 to 8, in particular 6m 2 / g.
Eine Aerogelgranulat-Quarzsand Mischung mit folgender Zusammensetzung angesetzt:
- 3,5 Gew.% hydrophiles Aerogelgranulat ca. Korngröße Mittelwert 220 µm (Firma Airglass Schweden)
- 87,7 Gew.% Quarzsand (Quarzwerke Frechen Deutschland), Korngröße 0,16-0,32 mm
- 8,8% Gew.% Carsil™ (Wasserglasbindemittel, Firma Foseco Deutschland).
- 3.5% by weight of hydrophilic airgel granules approx. Grain size mean value 220 μm (Airglass Sweden)
- 87.7% by weight of quartz sand (Quarzwerke Frechen Germany), grain size 0.16-0.32 mm
- 8.8% by weight of Carsil ™ (water glass binder, Foseco Germany).
Aerogelgranulat und Quarzsand wurden zunächst vermischt. Die vollständige Mischung wurde hiernach mit dem Wasserglasbindemittel versetzt. Sobald eine ausreichende Durchmischung stattgefunden hatte, wurde die Mischung in ein Kernnegativ gebracht und durch Stampfen verdichtet. Die abschließende Trocknung erfolgte in einem Trockenschrank bei 60 bis 70°C für ca. einen Tag. Nach vollständiger Trocknung konnte der Kern in den Hohlraum eingelegt werden und der Abguss erfolgen. Nach der Abkühlung des Gussteils wurde der Kern mit kochendem Wasser übergossen. Nach einer Dauer von wenigen Sekunden zerfiel die Probe vollständig im Wasser. Die Kernreste konnten ohne weiteren mechanischen Aufwand aus dem Gussstück entnommen werden.Airgel granules and quartz sand were first mixed. The complete mixture was then treated with the waterglass binder. Once sufficient mixing had occurred, the mixture was placed in a core negative and compacted by pounding. The final drying took place in a drying oven at 60 to 70 ° C for about one day. After complete drying, the core could be inserted into the cavity and cast. After cooling the casting, the core was doused with boiling water. After a period of a few seconds, the sample completely disintegrated in the water. The core remnants could be removed from the casting without further mechanical effort.
Analog zu Beispiel 1 wurde eine Mischung mit einen geänderten Sandanteil eingesetzt:
- 3,5 Gew.-% hydrophiles Aerogelgranulat ca. Korngröße Mittelwert 0,22 mm (Firma Airglass Schweden)
- 4 % Gew.% Quarzsand (Quarzwerke Frechen Deutschland), Korngröße 0,16 bis 0,32 mm
- 83,7 Gew.% Regenerat (gereinigter wiederverwendeter Sand)
- 8,8% Gew.% Carsil (Wasserglasbinder, Firma Foseco).
- 3.5% by weight of hydrophilic airgel granules approx. Grain size average 0.22 mm (Airglass Sweden)
- 4% wt.% Quartz sand (Quarzwerke Frechen Germany), grain size 0.16 to 0.32 mm
- 83.7% by weight regrind (purified reused sand)
- 8.8% wt.% Carsil (waterglass binder, Foseco company).
Wie in Beispiel 1 wurde ein Kern hergestellt. Nach der Trocknung wurde der Kern noch für 1 h bei 850 °C im Ofen gebrannt, um die Bedingungen des Feinguss zu simulieren. Danach wurde der Kern in den Hohlraum eingelegt und abgegossen (Gusslegierung A357 (AlSi7Mg 0,6)). Nach Abkühlung des Gussteils wurde der Kern mit kochendem Wasser übergossen. Im Gegensatz zu Beispiel 1 dauerte die Auflösung des Kerns jetzt ca. 10 Minuten.As in Example 1, a core was prepared. After drying, the core was fired in the oven for one hour at 850 ° C to simulate the investment casting conditions. Thereafter, the core was placed in the cavity and poured (cast alloy A357 (AlSi7Mg 0.6)). After cooling the casting, the core was doused with boiling water. In contrast to Example 1, the resolution of the core now took about 10 minutes.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL07100597T PL1820582T3 (en) | 2006-01-24 | 2007-01-16 | Aerogel containing core for light alloy and/or lost wax casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006003198A DE102006003198A1 (en) | 2006-01-24 | 2006-01-24 | Mechanically and thermally stable core, used for light metal- and/or investment casting, comprises hydrophilic aerogel granulates, sand and binding agent |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1820582A1 true EP1820582A1 (en) | 2007-08-22 |
EP1820582B1 EP1820582B1 (en) | 2009-07-01 |
Family
ID=38219722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07100597A Not-in-force EP1820582B1 (en) | 2006-01-24 | 2007-01-16 | Aerogel containing core for light alloy and/or lost wax casting |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1820582B1 (en) |
AT (1) | ATE435081T1 (en) |
DE (2) | DE102006003198A1 (en) |
ES (1) | ES2328526T3 (en) |
PL (1) | PL1820582T3 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2204246A2 (en) | 2008-11-12 | 2010-07-07 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Foundry core with improved gutting properties I |
CN106881446A (en) * | 2015-12-15 | 2017-06-23 | 罗伯特·博世有限公司 | For the coating being coated on the porous surface of the mould of metal casting and/or core rod |
CN108367337A (en) * | 2015-12-15 | 2018-08-03 | 罗伯特·博世有限公司 | The method and sand mixture used in the method for casting sand type, especially casting sand core are manufactured under 3 D-printing technique |
EP3406672A1 (en) * | 2017-05-26 | 2018-11-28 | Gebrüder Dorfner GmbH & Co. Kaolin- und Kristallquarzsand-Werke KG | Composite particle comprising hydrophilic and hydrophobic surface coatings |
WO2022152846A1 (en) | 2021-01-18 | 2022-07-21 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Production of monodisperse aerogel particles |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008056842A1 (en) | 2008-11-12 | 2010-05-20 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Foundry cores with improved gutting properties II |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19632293A1 (en) * | 1996-08-09 | 1998-02-19 | Thomas Prof Dr In Steinhaeuser | Process for the production of core moldings for foundry technology |
EP1077097A1 (en) * | 1999-08-18 | 2001-02-21 | DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. | Use of plastic and/or carbon aerogels as core material |
DE10216464A1 (en) * | 2002-04-12 | 2003-10-30 | Deutsch Zentr Luft & Raumfahrt | Core material for precision casting and finished casting of metals and metal alloys contains open pore aerogels and inorganic fillers obtained by sol-gel polymerization of inorganic silica gel |
WO2005046909A1 (en) * | 2003-11-11 | 2005-05-26 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Filler-containing aerogels |
WO2005056643A2 (en) * | 2003-12-10 | 2005-06-23 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Production of aerogels containing fillers |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3814968A1 (en) * | 1988-05-03 | 1989-11-16 | Basf Ag | DENSITY DENSITY 0.1 TO 0.4 G / CM (UP ARROW) 3 (UP ARROW) |
DE19702240A1 (en) * | 1997-01-24 | 1998-07-30 | Hoechst Ag | Multilayer composite materials which have at least one airgel-containing layer and at least one further layer, processes for their production and their use |
DE10038419A1 (en) * | 2000-08-07 | 2002-02-21 | Volkswagen Ag | Method for regenerating foundry sand bound to waterglass comprises mechanical pretreatment of the foundry sand, the addition of water, movement of the pulp by external forces |
-
2006
- 2006-01-24 DE DE102006003198A patent/DE102006003198A1/en not_active Withdrawn
-
2007
- 2007-01-16 AT AT07100597T patent/ATE435081T1/en active
- 2007-01-16 EP EP07100597A patent/EP1820582B1/en not_active Not-in-force
- 2007-01-16 ES ES07100597T patent/ES2328526T3/en active Active
- 2007-01-16 PL PL07100597T patent/PL1820582T3/en unknown
- 2007-01-16 DE DE502007000952T patent/DE502007000952D1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19632293A1 (en) * | 1996-08-09 | 1998-02-19 | Thomas Prof Dr In Steinhaeuser | Process for the production of core moldings for foundry technology |
EP1077097A1 (en) * | 1999-08-18 | 2001-02-21 | DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. | Use of plastic and/or carbon aerogels as core material |
DE10216464A1 (en) * | 2002-04-12 | 2003-10-30 | Deutsch Zentr Luft & Raumfahrt | Core material for precision casting and finished casting of metals and metal alloys contains open pore aerogels and inorganic fillers obtained by sol-gel polymerization of inorganic silica gel |
WO2005046909A1 (en) * | 2003-11-11 | 2005-05-26 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Filler-containing aerogels |
WO2005056643A2 (en) * | 2003-12-10 | 2005-06-23 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Production of aerogels containing fillers |
Non-Patent Citations (2)
Title |
---|
BRÜCK AND RATKE: "RF-Aerogels: A New Binding Material for Foundry Application", JOURNAL OF SOL-GEL SCIENCE TECHNOLOGY, 2003, NL, XP002442103 * |
LORENZ RATKE ET AL: "Mechanical properties of aerogel composites for casting purposes", JOURNAL OF MATERIALS SCIENCE, KLUWER ACADEMIC PUBLISHERS, BO, vol. 41, no. 4, 1 February 2006 (2006-02-01), pages 1019 - 1024, XP019211565, ISSN: 1573-4803 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2204246A2 (en) | 2008-11-12 | 2010-07-07 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Foundry core with improved gutting properties I |
EP2204246A3 (en) * | 2008-11-12 | 2012-01-04 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Foundry core with improved gutting properties I |
CN106881446A (en) * | 2015-12-15 | 2017-06-23 | 罗伯特·博世有限公司 | For the coating being coated on the porous surface of the mould of metal casting and/or core rod |
CN108367337A (en) * | 2015-12-15 | 2018-08-03 | 罗伯特·博世有限公司 | The method and sand mixture used in the method for casting sand type, especially casting sand core are manufactured under 3 D-printing technique |
EP3406672A1 (en) * | 2017-05-26 | 2018-11-28 | Gebrüder Dorfner GmbH & Co. Kaolin- und Kristallquarzsand-Werke KG | Composite particle comprising hydrophilic and hydrophobic surface coatings |
US11111389B2 (en) | 2017-05-26 | 2021-09-07 | Gebrüder Dorfner GmbH & Co. Kaolin- und Kristallquarzsand-Werke KG | Composite particles having hydrophilic and hydrophobic surface coatings |
WO2022152846A1 (en) | 2021-01-18 | 2022-07-21 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Production of monodisperse aerogel particles |
DE102021100898A1 (en) | 2021-01-18 | 2022-07-21 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Production of monodisperse airgel particles |
Also Published As
Publication number | Publication date |
---|---|
PL1820582T3 (en) | 2009-12-31 |
ES2328526T3 (en) | 2009-11-13 |
DE102006003198A1 (en) | 2007-07-26 |
ATE435081T1 (en) | 2009-07-15 |
DE502007000952D1 (en) | 2009-08-13 |
EP1820582B1 (en) | 2009-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2097192B2 (en) | Moulding material mixture containing phosphorus for producing casting moulds for machining metal | |
EP1934001B8 (en) | Borosilicate glass-containing molding material mixtures | |
EP1820582B1 (en) | Aerogel containing core for light alloy and/or lost wax casting | |
DE60123476T2 (en) | FORM FOR METAL CASTING | |
EP3606690A1 (en) | Method for producing casting molds, cores and basic mold materials regenerated therefrom | |
DE102018200607A1 (en) | Process for the production of molds and cores suitable for the manufacture of fiber composite bodies or castings of metal or plastic, mold bases and binders usable in the process and molds and cores produced by the process | |
EP3137246A1 (en) | Method for the layer-wise building of bodies comprising refractory mold base material and resoles, and molds or cores manufactured according to said method | |
DE102006056093B4 (en) | Aerogelsand core material containing additive sand and its use | |
DE102007012489A1 (en) | Composition for the production of feeders | |
WO2011054920A2 (en) | Salt-based cores, method for the production thereof and use thereof | |
EP2193858B1 (en) | Foundry core with improved gutting properties II | |
EP1697273B1 (en) | Production of aerogels containing fillers | |
WO2006097278A1 (en) | Exothermic and insulating feeder insert have high gas permeability | |
EP2308614B1 (en) | Green aerosand | |
EP2204246B1 (en) | Foundry core with improved gutting properties I | |
DE10216464B4 (en) | Silica-bonded core materials, processes for their production and their use | |
EP2941327B1 (en) | Method for the production of core sand and or molding sand for casting purposes | |
DE10216403B4 (en) | Airgel-bound molded materials with high thermal conductivity | |
EP3727722A1 (en) | Method for producing a metal casting or a cured moulding by using aliphatic polymers comprising hydroxyl groups | |
WO2006010449A2 (en) | Ceramic cores | |
DE10352574A1 (en) | Filler containing aerogels | |
DE102018215957A1 (en) | Casting core for casting molds and process for its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20080220 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20080421 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 502007000952 Country of ref document: DE Date of ref document: 20090813 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2328526 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090701 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091101 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090701 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090701 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090701 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090701 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090701 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091102 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090701 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090701 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090701 |
|
26N | No opposition filed |
Effective date: 20100406 |
|
BERE | Be: lapsed |
Owner name: DEUTSCHES ZENTRUM FUR LUFT- UND RAUMFAHRT E.V. Effective date: 20100131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100131 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: IT Effective date: 20110501 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100102 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090701 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20131219 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20140102 Year of fee payment: 8 Ref country code: RO Payment date: 20140106 Year of fee payment: 8 Ref country code: CH Payment date: 20140127 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20140120 Year of fee payment: 8 Ref country code: IT Payment date: 20140120 Year of fee payment: 8 Ref country code: FR Payment date: 20131223 Year of fee payment: 8 Ref country code: AT Payment date: 20131227 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 435081 Country of ref document: AT Kind code of ref document: T Effective date: 20150116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150116 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150131 Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150116 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150131 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150116 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150117 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20180703 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20201218 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502007000952 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220802 |