Nothing Special   »   [go: up one dir, main page]

EP1820582A1 - Aerogel containing core for light alloy and/or lost wax casting - Google Patents

Aerogel containing core for light alloy and/or lost wax casting Download PDF

Info

Publication number
EP1820582A1
EP1820582A1 EP07100597A EP07100597A EP1820582A1 EP 1820582 A1 EP1820582 A1 EP 1820582A1 EP 07100597 A EP07100597 A EP 07100597A EP 07100597 A EP07100597 A EP 07100597A EP 1820582 A1 EP1820582 A1 EP 1820582A1
Authority
EP
European Patent Office
Prior art keywords
core
sand
airgel
mixture
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07100597A
Other languages
German (de)
French (fr)
Other versions
EP1820582B1 (en
Inventor
Lorenz Ratke
Sabine BRÜCK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority to PL07100597T priority Critical patent/PL1820582T3/en
Publication of EP1820582A1 publication Critical patent/EP1820582A1/en
Application granted granted Critical
Publication of EP1820582B1 publication Critical patent/EP1820582B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • B22C1/183Sols, colloids or hydroxide gels

Definitions

  • the invention relates to a water-soluble core which can be used in the field of light metal casting and / or investment casting.
  • Castings of different metals or metallic alloys are produced by different casting methods. Equal to all is the use of permanent models (wood, ceramic, plastic) or lost models of sand, or polystyrene. If cavities are to be realized in a casting, a lost core is mainly made of sand. Because of the high thermal and mechanical stress prevailing in the foundry process, they generally consist of chemically bonded molding materials, such as plastic-bonded ceramic powders or synthetic resin-bonded sands. Here, the molding materials consist of sands, which are connected by binders in the desired shape of the core with the aim after the casting production to destroy the binder and thus to remove the core.
  • Binders for core sands used today mean that cores are difficult to remove from the workpieces (because they are thermally very stable). Especially in aluminum casting, low casting temperatures require only lower temperatures for the thermal Decomposition of the binder. If the binder bridges are insufficiently destroyed, this will cause the cores to have higher strength even after casting, and be difficult to remove by mechanical vibration or high pressure water jets.
  • High-pressure water jets can not always lead to the complete release of the core to damage the workpiece, or in geometrically complicated cores with undercuts. This mechanical removal of the cores is especially critical in light metal casting, since the desired filigree cast structures can be easily destroyed here. Partially polluting (organic) substances are used in the common resin bound cores.
  • the molding material is a suitable sand (molding sand), which is mixed with a chemical binder or a molding material binder, which is then hardened, for example, again by a liquid or solid catalyst or hardener or by additional heat.
  • a suitable sand molding sand
  • quartz sand is used.
  • Chromite, zircon and olivine sand are also used for special applications.
  • mold bases based on fireclay, magnesite, silimanite and corundum are used.
  • Binders for the molding sands may be inorganic or organic in nature, the inorganic binders being divided into natural and synthetic inorganic binders.
  • Natural inorganic binders include clays such as montmorillonite, glauconite, kaolinite, illite or attapulgite.
  • Synthetic inorganic binders include, among others, water glass, cement and gypsum.
  • Organic binders include synthetic resins such as the phenolic, urea, Furan resins and ethyl silicate.
  • Oils, carbohydrate binders, water-soluble liquid binders based on sulfite waste liquors, molasses, dextrose processes, alkanolamines and pitch binders are still used ( KE Höner "foundry”, Ullmann's Encyclopedia of Industrial Chemistry, pp. 271-287, vol. 12, 4th edition, Verlag Chemie Weinheim, 1976 ).
  • DE102 16 464 B4 describes core materials for the fine and casting of metals and metal alloys, a process for their production and their use as a core in fine and cast molding.
  • new binder components for the sands are used here.
  • the present object is achieved in a first embodiment by a mechanically and thermally stable core for light metal and / or precision casting, the core containing hydrophilic airgel granules, sand and binder.
  • the aerogels are used as a partial replacement of the sand.
  • the invention is based in particular on a combination of classic foundry sands and hydrophilic airgel granules.
  • the inorganic mixture of sand and airgel granules is bound, for example, with different types of waterglass.
  • the core After drying, the core is poured over with boiling water. After a period of seconds to minutes, the originally solid composite decays completely. The core remnants can be removed from the casting without further mechanical effort. It should be noted, however, that a higher water glass binder content results in an exponential increase in disintegration time.
  • Aerogels according to the invention include colloidal substances which are gelled and dried. They have a lower density and high, open porosity. They consist of only about one to fifteen percent of a solid, while the rest of their volume is filled by the surrounding gas or vacuum, that is, they have a high surface area (up to 1000m 2 / g). Inorganic aerogels are usually inherently hydrophilic. Aerogels are considered to be one of the lightest materials and best thermal insulators.
  • a hydrophilic airgel in the form of a granulate is to be used as a further molding material.
  • Airgel granules are obtained in particular by grinding airgel monoliths won.
  • Hydrophilic means water-loving, ie the airgel granules used show a pronounced interaction with polar solvents such as water.
  • the hydrophilic airgel granules used have a wetting angle with water less than 10 °.
  • the hydrophilic airgel granules comprise silica aerogels since they are not wetted or chemically attacked by liquid metals.
  • Silica aerogels are molten metals to chemically inert. Its sintering point is around 1050 ° C. In addition, they are non-flammable and non-toxic.
  • aerogels There are various types of aerogels, with the silicate-based (silica airgel) being commercially available. Plastic or carbon based aerogels are important for special applications. Also, metal oxide based aerogels are known. According to the invention, these aerogels can also be used if the surface is hydrophilic in the meaning of the invention by appropriate treatment.
  • the airgel granules should have a particle size in the order of magnitude of the sand, since both are used as mold bases and optimum mixing of equal particles is easier to carry out.
  • corundum sands of similar size (0.1 to 0.9 mm) can also be used.
  • the sand content may be 83 to 95 wt .-%, the binder content and the Airogelgranulatanteil adds up to 100 wt .-%.
  • the binder content is 2 to 10 wt .-%.
  • the proportion of airgel granules is preferably 2 to 6 wt .-%.
  • the quartz sands shown above are new sands, in fact these are only added to the "old sands" in foundries to a limited extent.
  • Used sand is the sand that accumulates when the castings are emptied out of the molds, which, after appropriate cooling and reconditioning, is returned to the molding shop.
  • the reprocessing has two tasks to accomplish: cleaning the quartz grain from adhering binders and removing dusty constituents.
  • any remaining agglomerates are mechanically comminuted and thus the binder coats partially removed from the quartz grains.
  • the originally rather rounded surface of the grain of sand undergoes a change. From around she is too fragmented. This grain shape is important for the process of forming, thus ensuring that only one comparatively low binder content is needed.
  • waterglass and / or airgel precursor are used as binders for binding airgel granules and sand.
  • the use of viscous aqueous water glass has the advantage that it is available as a mass product and this is suitable as a molding material binder.
  • precursors for airgel production around a core by means of the process DE 102 16 464 B4 manufacture.
  • silica airgel precursors such as tetraethoxysilane (TEOS) or TEOS formamide mixtures with solvents such as water and / or ethanol should be used as a binder, since the resulting silica aerogels can be easily destroyed by well-wetting fluids.
  • the blend contains a sand content of 83 to 95 weight percent, using here 1 to 20 weight percent virgin sand and 80 to 99 weight percent reclaim (circuit molding, i.e., purified recycled sand).
  • the compaction is done for example by core shooting, shaking, tapping and stomping.
  • Temperatures from 20 ° C to 80 ° C proved to be particularly suitable.
  • the duration of the drying is preferably a few seconds to minutes.
  • the inorganic cores according to the invention can be used in the foundry industry, in particular in light metal and / or investment casting, where cores which are easy to dislodge, especially in filigree cast structures, are required.
  • the core can be removed by a fluid which wets it. This is particularly advantageous since here the core decomposes without residue through the fluid which wets it.
  • these are well-wetting fluids such as water. Wettability refers to the ability of liquids to spread on a surface; the better the wettability, the smaller is the contact angle that occurs during wetting. Surfaces are also referred to as (incompletely) wettable when the contact angle with the surface is up to 90 °. The higher the temperature of the wetting fluid, the better the cores can be removed. Particular preference is therefore given to fluids having a temperature of from 30 to 100.degree.
  • silica aerogels can easily be destroyed by well wetting liquids (for example, boiling water).
  • the core may be destroyed by alcoholic fluids or short chain alcohols having a chain length of up to six carbon atoms.
  • alcoholic fluids or short chain alcohols having a chain length of up to six carbon atoms.
  • non-flammable alcohol mixtures should be used.
  • the object according to the invention is achieved, for example, by mixing quartz sands or corundum sands with hydrophilic airgel granules (for example Airglass in Sweden) and bound with water glass in different proportions.
  • the sample After drying, the sample can be used as a core for light metal and / or investment casting.
  • the core After cooling the sample, the core can be removed by a hot fluid (eg, boiling water). After a period of seconds or minutes, the nucleus decays completely. The core remnants can be removed from the casting without further mechanical effort.
  • the embodiments shown here aim at a complete decay of the core with the addition of boiling water, a thermal stability (> 1000 ° C) and the lowest possible binder content.
  • the flexural strengths of the obtained airgel granulate quartz sand-waterglass-bonded molding sands are between 1 and 3 MPa, at a density of about 1.5 g / cm 3 , ie the density is determined by the quartz sand and a specific surface in the range of 4 to 8, in particular 6m 2 / g.
  • Airgel granules and quartz sand were first mixed. The complete mixture was then treated with the waterglass binder. Once sufficient mixing had occurred, the mixture was placed in a core negative and compacted by pounding. The final drying took place in a drying oven at 60 to 70 ° C for about one day. After complete drying, the core could be inserted into the cavity and cast. After cooling the casting, the core was doused with boiling water. After a period of a few seconds, the sample completely disintegrated in the water. The core remnants could be removed from the casting without further mechanical effort.
  • Example 2 As in Example 1, a core was prepared. After drying, the core was fired in the oven for one hour at 850 ° C to simulate the investment casting conditions. Thereafter, the core was placed in the cavity and poured (cast alloy A357 (AlSi7Mg 0.6)). After cooling the casting, the core was doused with boiling water. In contrast to Example 1, the resolution of the core now took about 10 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

A mechanically and thermally stable core for the light metal- and/or investment casting, comprises hydrophilic aerogel granulate, sand and binding agent. An independent claim is included for the production of a core comprising: mixing the aerogel granulates with sand and binding agent; bringing the mixture into a negative form of the core; condensing the mixture in the negative form; drying the condensed mixture; and drafting the core in the negative form.

Description

Gegenstand der Erfindung ist ein wasserlöslicher Kern, der im Bereich des Leichtmetallgusses und/oder des Feingusses eingesetzt werden kann.The invention relates to a water-soluble core which can be used in the field of light metal casting and / or investment casting.

Gussteile aus verschiedenen Metallen oder metallischen Legierungen werden mit unterschiedlichen Gießverfahren hergestellt. Bei allen gleich ist der Einsatz von Dauermodellen (Holz, Keramik, Kunststoff) oder verlorenen Modellen aus Sand, oder Polystyrol. Sollen Hohlräume in einem Gussstück realisiert werden, so bedient man sich eines verlorenen Kernes hauptsächlich aus Sand. Sie bestehen in der Regel wegen der im Gießereiprozess herrschenden hohen thermischen und mechanischen Belastung aus chemisch gebundenen Formstoffen, wie kunststoffgebundene keramischen Pulver oder kunstharzgebundene Sande. Hierbei bestehen die Formstoffe aus Sanden, die durch Bindemittel in der erwünschten Form des Kernes verbunden sind mit dem Ziel nach der Gussherstellung die Bindemittel zu zerstören und somit den Kern zu entfernen. Nachteil der bekannten Verfahren zur Kernherstellung ist, dass in der Regel die Entfernung der Kerne aus dem Gussstück nur mit hohen Aufwand möglich ist, die Verteilung der Sande im Kern inhomogen ist oder Risskeime existieren, die unter anderem zum Bruch unter thermisch-mechanischer Belastung führen können. Heute verwendete Bindemittel für Kernsande führen dazu, dass Kerne nur schwer aus den Werkstücken entfernt werden können (denn sie sind thermisch sehr stabil). Insbesondere beim Aluminiumguss bedingen tiefe Gießtemperaturen nur niedrigere Temperaturen zur thermischen Zersetzung des Binders. Wenn die Bindemittelbrücken nur unzureichend zerstört werden bewirkt dies, dass die Kerne auch nach dem Abguss eine höhere Festigkeit aufweisen und sich nur schwer durch mechanische Vibration oder Hochdruckwasserstrahlen entfernen lassen. Hochdruckwasserstrahlen können zur Beschädigung des Werkstückes, bzw. bei geometrisch komplizierten Kernen mit Hinterschneidungen nicht immer zur vollständigen Auslösung des Kernes führen. Diese mechanische Entfernung der Kerne ist speziell beim Leichtmetallguss kritisch, da hier die gewünschten, filigranen Gussstrukturen leicht zerstört werden können. Bei den gängigen Kunstharz gebundenen Kernen werden zum Teil umweltschädliche (organische) Substanzen eingesetzt.Castings of different metals or metallic alloys are produced by different casting methods. Equal to all is the use of permanent models (wood, ceramic, plastic) or lost models of sand, or polystyrene. If cavities are to be realized in a casting, a lost core is mainly made of sand. Because of the high thermal and mechanical stress prevailing in the foundry process, they generally consist of chemically bonded molding materials, such as plastic-bonded ceramic powders or synthetic resin-bonded sands. Here, the molding materials consist of sands, which are connected by binders in the desired shape of the core with the aim after the casting production to destroy the binder and thus to remove the core. Disadvantage of the known processes for core production is that usually the removal of the cores from the casting is possible only with great effort, the distribution of the sands in the core is inhomogeneous or cracking germs exist, which can lead to fracture under thermal-mechanical stress among others , Binders for core sands used today mean that cores are difficult to remove from the workpieces (because they are thermally very stable). Especially in aluminum casting, low casting temperatures require only lower temperatures for the thermal Decomposition of the binder. If the binder bridges are insufficiently destroyed, this will cause the cores to have higher strength even after casting, and be difficult to remove by mechanical vibration or high pressure water jets. High-pressure water jets can not always lead to the complete release of the core to damage the workpiece, or in geometrically complicated cores with undercuts. This mechanical removal of the cores is especially critical in light metal casting, since the desired filigree cast structures can be easily destroyed here. Partially polluting (organic) substances are used in the common resin bound cores.

Der Formgrundstoff ist ein geeigneter Sand (Formsand), der mit einem chemischen Bindemittel bzw. einen Formstoffbindemittel versetzt wird, die dann beispielsweise wiederum durch einen flüssigen oder festen Katalysator oder Härter oder durch zusätzliche Wärmeeinwirkung ausgehärtet wird. Als Sand wird überwiegend Quarzsand verwendet. Für besondere Anwendungen kommen auch Chromit-, Zirkon- und Olivinsand zur Anwendung. Ebenfalls werden Formgrundstoffe auf Schamott-, Magnesit-, Silimanit- und Korundbasis eingesetzt.The molding material is a suitable sand (molding sand), which is mixed with a chemical binder or a molding material binder, which is then hardened, for example, again by a liquid or solid catalyst or hardener or by additional heat. As sand predominantly quartz sand is used. Chromite, zircon and olivine sand are also used for special applications. Likewise, mold bases based on fireclay, magnesite, silimanite and corundum are used.

Bindemittel für die Formsande können anorganischer oder organischer Natur sein, wobei die anorganischen Bindemittel in natürliche und synthetische anorganische Bindemittel unterteilt werden. Natürliche anorganische Bindemittel umfassen Tone wie Montmorrillonit, Glaukonit, Kaolinit, Illit oder Attapulgit. Synthetische anorganische Bindemittel umfassen unter anderem Wasserglas, Zement und Gips. Organische Bindemittel umfassen Kunstharze wie die Phenol-, Harnstoff-, Furanharze sowie Ethylsilicat. Öle, Kohlehydratbinder, wasserlösliche Flüssigkeitsbinder auf Basis von Sulfit-Ablaugen, Melasse, Dextrose-Abläufen, Alkanolaminen und Pechbindern werden auch noch eingesetzt ( K.E. Höner "Gießereiwesen", Ullmanns Encyklopädie der technischen Chemie, S. 271-287, Bd 12, 4. Auflage, Verlag Chemie Weinheim, 1976 ).Binders for the molding sands may be inorganic or organic in nature, the inorganic binders being divided into natural and synthetic inorganic binders. Natural inorganic binders include clays such as montmorillonite, glauconite, kaolinite, illite or attapulgite. Synthetic inorganic binders include, among others, water glass, cement and gypsum. Organic binders include synthetic resins such as the phenolic, urea, Furan resins and ethyl silicate. Oils, carbohydrate binders, water-soluble liquid binders based on sulfite waste liquors, molasses, dextrose processes, alkanolamines and pitch binders are still used ( KE Höner "foundry", Ullmann's Encyclopedia of Industrial Chemistry, pp. 271-287, vol. 12, 4th edition, Verlag Chemie Weinheim, 1976 ).

Die Herstellungsverfahren der sandgebundenen Gießformen und -kerne sind in der Literatur ausreichend dokumentiert ( C.Henry, R. Showman, G. Wandtke, Giesserei-Praxis Nr.12, 1999 ; P. Carey, M. Swartzlander, Sand Binder Systems, Part II - Resin/Sand Interactions, Foundry Management and Technology 97, 1995 ; W. Tilch, E. Flemming Formstoffe und Formverfahren, dt. Verlag für Grundstoffindustrie Leipzig/Stuttgart 1993 ; Giesserei Jahrbuch, Giesserei-Verlag GmbH Düsseldorf, Band 1, 2000 ; P. Carey, J. Archibald, Sand Binder Systems, Part X - The Phenolic Urethane Amine ColdBox system, Foundry Management and Technology 98, 1995 ; G. S. Cole, R. M. Nowicki, Sand Cores and Their Removal From Aluminium Semipermanent Molded Castings, Trans. Amer. Foundrym. Soc. 87, 1979 ; I. Bindernagel, Formstoffe und Formverfahren in der Gießereitechnik, VDG-Tschenbuch 12, Giesserei - Verlag, Düsseldorf 1983 ; D. Boenisch, J. Nitsche, W. Patterson, Eigenschaften harzgebundener Formstoffe, Aluminium 46, (3), 1970 ).The production methods of the sand-bonded casting molds and cores are sufficiently documented in the literature ( C. Henry, R. Showman, G. Wandtke, Foundry Practice No. 12, 1999 ; P. Carey, M. Swartzlander, Sand Binder Systems, Part II - Resin / Sand Interactions, Foundry Management and Technology 97, 1995 ; W. Tilch, E. Flemming Forming and Forming, German publisher for basic industry Leipzig / Stuttgart 1993 ; Foundry Yearbook, Giesserei-Verlag GmbH Düsseldorf, Volume 1, 2000 ; P. Carey, J. Archibald, Sand Binder Systems, Part X - The Phenolic Urethane Amine Cold Box System, Foundry Management and Technology 98, 1995 ; GS Cole, RM Nowicki, Sand Cores and Their Removal From Aluminum Semipermanent Molded Castings, Trans. Amer. Foundrym. Soc. 87, 1979 ; I. Bindernagel, molding materials and molding processes in foundry technology, VDG-Tschenbuch 12, foundry - publishing house, Dusseldorf 1983 ; D. Boenisch, J. Nitsche, W. Patterson, Properties of Resin-Bonded Shapes, Aluminum 46, (3), 1970 ).

Insbesondere für Aluminium-Feinguss existiert ein Bedarf an mechanisch und thermisch stabilen Kernen, die sich leicht aus dem Gussstück entfernen lassen. Das Verfahren des Feingusses von Aluminiumlegierungen beinhaltet hierbei besondere Probleme, die bei der Entwicklung eines Kernwerkstoffes berücksichtigt werden müssen:

  1. 1. Die keramischen Formen sind regelmäßig aus einem Stück, selten mehrfach geteilt;
  2. 2. das Wachsmodell wird im Heißdampfautoklaven entfernt;
  3. 3. die keramische Formschale wird bei 800 bis 950 °C gebrannt.
Especially for aluminum investment casting there is a need for mechanically and thermally stable cores that can be easily removed from the casting. The method of investment casting of aluminum alloys involves special problems that must be considered in the development of a core material:
  1. 1. The ceramic forms are regularly one piece, rarely divided several times;
  2. 2. the wax model is removed in a hot steam autoclave;
  3. 3. The ceramic shell mold is fired at 800 to 950 ° C.

Gegenstand der EP 1 077 097 B1 beschreibt die Verwendung von hochporösen, offenporigen Kunststoff/Kohlenstoff-Aerogelen erhältlich durch Sol-Gel-Polymerisation als Kernwerkstoff im Formguss.Subject of the EP 1 077 097 B1 describes the use of highly porous, open-pored plastic / carbon aerogels obtainable by sol-gel polymerization as a core material in casting.

DE102 16 464 B4 beschreibt Kernwerkstoffe für den Fein- und Formguss von Metallen und Metalllegierungen, ein Verfahren zu deren Herstellung sowie deren Verwendung als Kern im Fein- und Formguss. Hierbei werden insbesondere neue Bindemittelkomponenten für die Sande eingesetzt. DE102 16 464 B4 describes core materials for the fine and casting of metals and metal alloys, a process for their production and their use as a core in fine and cast molding. In particular, new binder components for the sands are used here.

Aufgabe der vorliegenden Erfindung ist es Kerne für den Fein- und/oder Formguss herzustellen, die

  1. 1. thermisch stabil sind, das heißt Temperaturen bis ca. 900°C aushalten,
  2. 2. mechanisch stabil sind, das heißt sich bei den üblichen Gießereitemperaturen nicht verändern,
  3. 3. chemisch inert gegenüber den eingesetzten Metallen oder Metalllegierungen wie beispielsweise Aluminium, Magnesium und Titan sind,
  4. 4. umweltfreundliche Materialen während des gesamten Herstellprozesses verwenden und
  5. 5. aufgrund ihrer Eigenschaften sich möglichst rückstandsfrei aus dem Gussteil entfernen lassen.
Object of the present invention is to produce cores for fine and / or cast molding, the
  1. 1. are thermally stable, that is temperatures up to about 900 ° C endure,
  2. 2. are mechanically stable, that is do not change at the usual Gießereitemperaturen
  3. 3. are chemically inert to the metals or metal alloys used, such as aluminum, magnesium and titanium,
  4. 4. use environmentally friendly materials throughout the manufacturing process and
  5. 5. due to their properties can be removed as far as possible without residue from the casting.

Die vorliegende Aufgabe wird in einer ersten Ausführungsform gelöst durch einen mechanisch und thermisch stabilen Kern für den Leichtmetall- und/oder den Feinguss, wobei der Kern hydrophiles Aerogelgranulat, Sand und Bindemittel enthält. Erfindungsgemäß werden die Aerogele als teilweiser Ersatz des Sandes eingesetzt.The present object is achieved in a first embodiment by a mechanically and thermally stable core for light metal and / or precision casting, the core containing hydrophilic airgel granules, sand and binder. According to the invention, the aerogels are used as a partial replacement of the sand.

Die Erfindung beruht insbesondere auf einer Kombination von klassischen Gießereisanden und hydrophilen Aerogelgranulaten. Das anorganische Gemisch aus Sand und Aerogelgranulat wird beispielsweise mit verschiedenen Wasserglassorten gebunden. Nach der Trocknung wird der Kern mit kochendem Wasser übergossen. Nach einer Dauer von Sekunden bis Minuten zerfällt der ursprünglich feste Verbund vollständig. Die Kernreste können ohne weiteren mechanischen Aufwand aus dem Gussstück entnommen werden. Es ist jedoch zu beachten, dass ein höherer Wasserglasbindemittelgehalt zu einem exponentiellen Anstieg der Zerfallsdauer führt.The invention is based in particular on a combination of classic foundry sands and hydrophilic airgel granules. The inorganic mixture of sand and airgel granules is bound, for example, with different types of waterglass. After drying, the core is poured over with boiling water. After a period of seconds to minutes, the originally solid composite decays completely. The core remnants can be removed from the casting without further mechanical effort. It should be noted, however, that a higher water glass binder content results in an exponential increase in disintegration time.

Aerogele im Sinne der Erfindung umfassen kolloidale Substanzen, die geliert und getrocknet werden. Sie haben eine geringere Dichte und hohe, offene Porosität. Sie bestehen nur zu circa einem bis fünfzehn Prozent aus einem Feststoff, während der Rest ihres Volumens durch das sie umgebende Gas bzw. auch Vakuum ausgefüllt wird, das heißt sie besitzen eine hohe Oberfläche (bis zu 1000m2/g). Anorganische Aerogele sind üblicherweise von sich aus hydrophil Aerogele gelten als eines der leichtesten Materialien und der besten Wärmeisolatoren.Aerogels according to the invention include colloidal substances which are gelled and dried. They have a lower density and high, open porosity. They consist of only about one to fifteen percent of a solid, while the rest of their volume is filled by the surrounding gas or vacuum, that is, they have a high surface area (up to 1000m 2 / g). Inorganic aerogels are usually inherently hydrophilic. Aerogels are considered to be one of the lightest materials and best thermal insulators.

Erfindungsgemäß soll ein hydrophiles Aerogel in Form eines Granulats als weiterer Formgrundstoff eingesetzt werden. Aerogelgranulate werden insbesondere durch das Mahlen von Aerogelmonolithen gewonnen. Hydrophil bedeutet wasserliebend, d.h. das eingesetzte Aerogelgranulat zeigt eine ausgeprägte Wechselwirkung mit polaren Lösemitteln wie Wasser. So haben die eingesetzten hydrophilen Aerogelgranulate einen Benetzungswinkel mit Wasser kleiner als 10°.According to the invention, a hydrophilic airgel in the form of a granulate is to be used as a further molding material. Airgel granules are obtained in particular by grinding airgel monoliths won. Hydrophilic means water-loving, ie the airgel granules used show a pronounced interaction with polar solvents such as water. Thus, the hydrophilic airgel granules used have a wetting angle with water less than 10 °.

Besonders bevorzugt umfasst das hydrophile Aerogelgranulat Silika-Aerogelen, da sie nicht von flüssigen Metallen benetzt oder chemisch angegriffen werden. Silika-Aerogele sind Metallschmelzen gegenüber chemisch inert. Ihr Sinterpunkt liegt bei etwa 1050 °C. Zudem sind sie unbrennbar und ungiftig.Most preferably, the hydrophilic airgel granules comprise silica aerogels since they are not wetted or chemically attacked by liquid metals. Silica aerogels are molten metals to chemically inert. Its sintering point is around 1050 ° C. In addition, they are non-flammable and non-toxic.

Es gibt verschiedene Arten von Aerogelen, wobei die auf Silikatbasis (Silika-Aerogel) handelsüblich sind. Aerogele auf Kunststoff- oder Kohlenstoffbasis haben eine Bedeutung für Spezialanwendungen. Auch Aerogele auf Metalloxidbasis sind bekannt. Erfindungsgemäß können diese Aeogelgranulate auch eingesetzt werden, wenn die Oberfläche durch entsprechende Behandlung hydrophil im Sinne der Erfindung ist.There are various types of aerogels, with the silicate-based (silica airgel) being commercially available. Plastic or carbon based aerogels are important for special applications. Also, metal oxide based aerogels are known. According to the invention, these aerogels can also be used if the surface is hydrophilic in the meaning of the invention by appropriate treatment.

Vorteilhafterweise sollte das Aerogelgranulat eine Korngröße in der Größenordnung des Sandes aufweisen, da beide als Formgrundstoffe verwendet werden und eine optimale Durchmischung gleich großer Partikel einfacher durchzuführen ist.Advantageously, the airgel granules should have a particle size in the order of magnitude of the sand, since both are used as mold bases and optimum mixing of equal particles is easier to carry out.

Als Sande können unter anderem die in Deutschland handelsüblichen Quarz-Neusande folgender Herkunft mit folgender mittlerer Korngröße in mm verwendet werden:

  • Dorsten 0,84 mm (Sorte D020), 0,56 mm (D030), 0,39 mm (D040), 0,13 mm (DO110) ;
  • Frechen 0,32 mm (Sorte F31), 0,23 mm (F32), 0,22 mm (F33), 0,20 mm (F34), 0,18 mm (F35), 0,16 mm (F36)
  • Gambach 0,37 mm (Sorte G30), 0,29 mm (G31), 0,23 mm (G32), 0,21 mm (G33), 0,19 mm (G34),
  • Haltern 0,36 mm (Sorte H31), 0,32 mm (H32), 0,26 mm (H33), 0,21 mm (H34) und 0,19 mm (H35)
The sands which may be used include, inter alia, commercially available quartz new sands of the following origin in Germany with the following average grain size in mm:
  • Dorsten 0.84 mm (grade D020), 0.56 mm (D030), 0.39 mm (D040), 0.13 mm (DO110);
  • Frechen 0.32 mm (grade F31), 0.23 mm (F32), 0.22 mm (F33), 0.20 mm (F34), 0.18 mm (F35), 0.16 mm (F36)
  • Gambach 0.37 mm (grade G30), 0.29 mm (G31), 0.23 mm (G32), 0.21 mm (G33), 0.19 mm (G34),
  • Holders 0.36 mm (grade H31), 0.32 mm (H32), 0.26 mm (H33), 0.21 mm (H34) and 0.19 mm (H35)

Alternativ zu den eingesetzten Quarzsanden können auch Korundsande ähnlicher Größenordnung (0,1 bis 0,9 mm) eingesetzt werden.As an alternative to the quartz sands used, corundum sands of similar size (0.1 to 0.9 mm) can also be used.

Der Sandanteil kann 83 bis 95 Gew.-% betragen, der Bindemittelanteil und der Aerogelgranulatanteil addiert sich entsprechend auf 100 Gew.-%. Insbesondere beträgt der Bindemittelanteil 2 bis 10 Gew.-%. Der Anteil an Aerogelgranulat beträgt vorzugsweise 2 bis 6 Gew.-%.The sand content may be 83 to 95 wt .-%, the binder content and the Airogelgranulatanteil adds up to 100 wt .-%. In particular, the binder content is 2 to 10 wt .-%. The proportion of airgel granules is preferably 2 to 6 wt .-%.

Die oben gezeigten Quarzsande sind Neusande, tatsächlich werden diese in Gießereien nur in geringem Maße den "Altsanden" zugesetzt. Altsand ist der beim Ausleeren der Gussstücke aus den Formen anfallende Sand, welcher nach entsprechender Kühlung und Neuaufbereitung der Formerei wieder zugeführt wird. Die Neuaufbereitung hat zwei Aufgaben zu erfüllen: Die Reinigung des Quarzkornes von anhaftenden Bindemitteln und die Entfernung staubförmiger Bestandteile.The quartz sands shown above are new sands, in fact these are only added to the "old sands" in foundries to a limited extent. Used sand is the sand that accumulates when the castings are emptied out of the molds, which, after appropriate cooling and reconditioning, is returned to the molding shop. The reprocessing has two tasks to accomplish: cleaning the quartz grain from adhering binders and removing dusty constituents.

Bei diesem Prozess werden noch vorhandene Agglomerate mechanisch zerkleinert und so die Bindemittelhüllen teilweise von den Quarzkörnern entfernt. Bei diesem Prozess erfährt die ursprünglich eher abgerundete Oberfläche des Sandkornes eine Veränderung. Von rund wird sie zu splitterig. Diese Kornform ist wichtig für den Prozess der Formstoffbindung, auf diese Weise wird gewährleistet, dass nur ein vergleichsweise geringer Bindemittelanteil gebraucht wird.In this process, any remaining agglomerates are mechanically comminuted and thus the binder coats partially removed from the quartz grains. In this process, the originally rather rounded surface of the grain of sand undergoes a change. From around she is too fragmented. This grain shape is important for the process of forming, thus ensuring that only one comparatively low binder content is needed.

In einer Ausführungsform werden als Bindemittel Wasserglas und/oder Aerogelvorprodukt zur Bindung von Aerogelgranulat und Sand eingesetzt. Die Verwendung von viskosem wässrigen Wasserglas hat den Vorteil, dass dieses als Massenprodukt erhältlich ist und dieses sich als Formstoffbindemittel eignet. Möglich ist auch die Verwendung von Vorprodukten für die Aerogelherstellung um einen Kern mittels des Verfahrens nach DE 102 16 464 B4 herzustellen. Hierbei sollten insbesondere Silica-Aerogelvorprodukte wie Tetraethoxysilan (TEOS) oder TEOS-Formamidmischungen mit Lösemitteln wie Wasser und/oder Ethanol als Bindemittel eingesetzt werden, da die entstandenen Silika-Aerogele sich durch gut benetzende Fluide leicht zerstören lassen.In one embodiment, waterglass and / or airgel precursor are used as binders for binding airgel granules and sand. The use of viscous aqueous water glass has the advantage that it is available as a mass product and this is suitable as a molding material binder. It is also possible to use precursors for airgel production around a core by means of the process DE 102 16 464 B4 manufacture. Here, in particular silica airgel precursors such as tetraethoxysilane (TEOS) or TEOS formamide mixtures with solvents such as water and / or ethanol should be used as a binder, since the resulting silica aerogels can be easily destroyed by well-wetting fluids.

Bei einer weiteren Ausführungsform enthält die Mischung einen Sandanteil von 83 bis 95 Gew.-%, wobei hier 1 bis 20 Gew.-% Neusand und 80 bis 99 Gew.-% Regenerat (Kreislaufformstoff, d.h. gereinigter wiederverwendeter Sand) verwendet wird.In another embodiment, the blend contains a sand content of 83 to 95 weight percent, using here 1 to 20 weight percent virgin sand and 80 to 99 weight percent reclaim (circuit molding, i.e., purified recycled sand).

Erfindungsgemäß hat es sich als sinnvoll erwiesen folgende Schritte durchzuführen:

  1. 1. Mischung des Aerogelgranulats mit Sand und Bindemittel,
  2. 2. Einbringung der Mischung in eine Negativform des Kerns,
  3. 3. Verdichtung der eingebrachten Mischung in der Negativform,
  4. 4. Trocknung der verdichteten Mischung und
  5. 5. Kernentnahme aus der Negativform.
According to the invention, it has proven useful to carry out the following steps:
  1. 1. mixture of airgel granules with sand and binder,
  2. 2. introduction of the mixture into a negative mold of the core,
  3. 3. compaction of the introduced mixture in the negative mold,
  4. 4. Drying of the compressed mixture and
  5. 5. Core removal from the negative mold.

Die Verdichtung wird beispielsweise durch Kernschießen, Rütteln, Klopfen und Stampen vorgenommen. Für die Trocknung haben sich Temperaturen von 20°C bis 80°C als besonders geeignet herausgestellt. Die Dauer der Trocknung beträgt vorzugsweise wenige Sekunden bis Minuten.The compaction is done for example by core shooting, shaking, tapping and stomping. For drying have become Temperatures from 20 ° C to 80 ° C proved to be particularly suitable. The duration of the drying is preferably a few seconds to minutes.

Die erfindungsgemäßen anorganischen Kerne können in der Gießereiindustrie insbesondere im Leichtmetall- und/oder Feinguss verwendet werden, wo speziell bei filigranen Gussstrukturen leicht herauszulösende Kerne gefordert sind.The inorganic cores according to the invention can be used in the foundry industry, in particular in light metal and / or investment casting, where cores which are easy to dislodge, especially in filigree cast structures, are required.

Nach dem Gießprozess kann der Kern durch ein ihn benetzendes Fluid entfernt werden. Dies ist insbesondere von Vorteil, da hier sich der Kern durch das ihm benetzende Fluid rückstandsfrei zersetzt.After the casting process, the core can be removed by a fluid which wets it. This is particularly advantageous since here the core decomposes without residue through the fluid which wets it.

Insbesondere eignen sich hierbei gut benetzende Fluide wie Wasser. Die Benetzbarkeit bezeichnet die Fähigkeit von Flüssigkeiten, sich auf einer Oberfläche auszubreiten; je besser die Benetzbarkeit, umso kleiner ist der bei der Benetzung auftretende Kontaktwinkel. Oberflächen werden auch als (unvollständig) benetzbar bezeichnet, wenn der Kontaktwinkel mit der Oberfläche von bis zu 90° beträgt. Je höher die Temperatur des benetzenden Fluids ist, desto besser lassen sich die Kerne entfernen. Besonders bevorzugt sind daher Fluide mit einer Temperatur von 30 bis 100 °C. Hier wird ausgenutzt, dass Silica-Aerogele durch gut benetzende Flüssigkeiten (beispielsweise kochendes Wasser) leicht zerstört werden können.In particular, these are well-wetting fluids such as water. Wettability refers to the ability of liquids to spread on a surface; the better the wettability, the smaller is the contact angle that occurs during wetting. Surfaces are also referred to as (incompletely) wettable when the contact angle with the surface is up to 90 °. The higher the temperature of the wetting fluid, the better the cores can be removed. Particular preference is therefore given to fluids having a temperature of from 30 to 100.degree. Here is exploited that silica aerogels can easily be destroyed by well wetting liquids (for example, boiling water).

In einer weiteren Ausführungsform kann der Kern durch alkoholische Fluide oder kurzkettigen Alkohole mit einer Kettenlänger mit bis zu sechs C-Atomen zerstört werden. Um die Brandgefahr zu vermeiden, sollten nicht brennbare Alkoholmischungen eingesetzt werden.In another embodiment, the core may be destroyed by alcoholic fluids or short chain alcohols having a chain length of up to six carbon atoms. To avoid the risk of fire, non-flammable alcohol mixtures should be used.

Die erfindungsgemäße Aufgabe wird beispielsweise dadurch gelöst, dass Quarzsande oder Korundsande mit hydrophilem Aerogelgranulat (z.B. Firma Airglass in Schweden) gemischt werden und mit Wasserglas in unterschiedlichen Mengenanteilen gebunden werden. Nach der Trocknung kann die Probe als Kern für den Leichtmetall- und/oder Feinguss eingesetzt werden. Nach Abkühlen der Probe kann der Kern durch ein heißes Fluid (beispielsweise kochendes Wasser) entfernt werden. Nach einer Dauer von Sekunden oder Minuten zerfällt der Kern vollständig. Die Kernreste können ohne weiteren mechanischen Aufwand aus dem Gussstück entfernt werden.The object according to the invention is achieved, for example, by mixing quartz sands or corundum sands with hydrophilic airgel granules (for example Airglass in Sweden) and bound with water glass in different proportions. After drying, the sample can be used as a core for light metal and / or investment casting. After cooling the sample, the core can be removed by a hot fluid (eg, boiling water). After a period of seconds or minutes, the nucleus decays completely. The core remnants can be removed from the casting without further mechanical effort.

Die hier dargestellten Ausführungsbeispiele zielen auf einen vollständigen Zerfall des Kerns bei Zugabe von kochendem Wasser, auf eine thermische Stabilität (>1000°C) und auf den geringst möglichen Bindemittelanteil.The embodiments shown here aim at a complete decay of the core with the addition of boiling water, a thermal stability (> 1000 ° C) and the lowest possible binder content.

Die Biegefestigkeiten der erhaltenen Aerogelgranulat-Quarzsand-Wasserglas-gebundenen Formsande liegen zwischen 1 und 3 MPa, bei einer Dichte von ca. 1,5 g/ cm3, d.h. die Dichte wird durch den Quarzsand bestimmt und einer Spezifischen Oberfläche im Bereich von 4 bis 8, insbesondere 6m2/g.The flexural strengths of the obtained airgel granulate quartz sand-waterglass-bonded molding sands are between 1 and 3 MPa, at a density of about 1.5 g / cm 3 , ie the density is determined by the quartz sand and a specific surface in the range of 4 to 8, in particular 6m 2 / g.

Ausführungsbeispiele:EXAMPLES Beispiel 1:Example 1:

Eine Aerogelgranulat-Quarzsand Mischung mit folgender Zusammensetzung angesetzt:

  • 3,5 Gew.% hydrophiles Aerogelgranulat ca. Korngröße Mittelwert 220 µm (Firma Airglass Schweden)
  • 87,7 Gew.% Quarzsand (Quarzwerke Frechen Deutschland), Korngröße 0,16-0,32 mm
  • 8,8% Gew.% Carsil (Wasserglasbindemittel, Firma Foseco Deutschland).
An airgel granulate quartz sand mixture prepared with the following composition:
  • 3.5% by weight of hydrophilic airgel granules approx. Grain size mean value 220 μm (Airglass Sweden)
  • 87.7% by weight of quartz sand (Quarzwerke Frechen Germany), grain size 0.16-0.32 mm
  • 8.8% by weight of Carsil (water glass binder, Foseco Germany).

Aerogelgranulat und Quarzsand wurden zunächst vermischt. Die vollständige Mischung wurde hiernach mit dem Wasserglasbindemittel versetzt. Sobald eine ausreichende Durchmischung stattgefunden hatte, wurde die Mischung in ein Kernnegativ gebracht und durch Stampfen verdichtet. Die abschließende Trocknung erfolgte in einem Trockenschrank bei 60 bis 70°C für ca. einen Tag. Nach vollständiger Trocknung konnte der Kern in den Hohlraum eingelegt werden und der Abguss erfolgen. Nach der Abkühlung des Gussteils wurde der Kern mit kochendem Wasser übergossen. Nach einer Dauer von wenigen Sekunden zerfiel die Probe vollständig im Wasser. Die Kernreste konnten ohne weiteren mechanischen Aufwand aus dem Gussstück entnommen werden.Airgel granules and quartz sand were first mixed. The complete mixture was then treated with the waterglass binder. Once sufficient mixing had occurred, the mixture was placed in a core negative and compacted by pounding. The final drying took place in a drying oven at 60 to 70 ° C for about one day. After complete drying, the core could be inserted into the cavity and cast. After cooling the casting, the core was doused with boiling water. After a period of a few seconds, the sample completely disintegrated in the water. The core remnants could be removed from the casting without further mechanical effort.

Beispiel 2:Example 2:

Analog zu Beispiel 1 wurde eine Mischung mit einen geänderten Sandanteil eingesetzt:

  • 3,5 Gew.-% hydrophiles Aerogelgranulat ca. Korngröße Mittelwert 0,22 mm (Firma Airglass Schweden)
  • 4 % Gew.% Quarzsand (Quarzwerke Frechen Deutschland), Korngröße 0,16 bis 0,32 mm
  • 83,7 Gew.% Regenerat (gereinigter wiederverwendeter Sand)
  • 8,8% Gew.% Carsil (Wasserglasbinder, Firma Foseco).
Es wurden die gleichen Beobachtungen wie in Beispiel 1 gemacht.Analogously to Example 1, a mixture with a modified sand content was used:
  • 3.5% by weight of hydrophilic airgel granules approx. Grain size average 0.22 mm (Airglass Sweden)
  • 4% wt.% Quartz sand (Quarzwerke Frechen Germany), grain size 0.16 to 0.32 mm
  • 83.7% by weight regrind (purified reused sand)
  • 8.8% wt.% Carsil (waterglass binder, Foseco company).
The same observations were made as in Example 1.

Beispiel 3:Example 3:

Wie in Beispiel 1 wurde ein Kern hergestellt. Nach der Trocknung wurde der Kern noch für 1 h bei 850 °C im Ofen gebrannt, um die Bedingungen des Feinguss zu simulieren. Danach wurde der Kern in den Hohlraum eingelegt und abgegossen (Gusslegierung A357 (AlSi7Mg 0,6)). Nach Abkühlung des Gussteils wurde der Kern mit kochendem Wasser übergossen. Im Gegensatz zu Beispiel 1 dauerte die Auflösung des Kerns jetzt ca. 10 Minuten.As in Example 1, a core was prepared. After drying, the core was fired in the oven for one hour at 850 ° C to simulate the investment casting conditions. Thereafter, the core was placed in the cavity and poured (cast alloy A357 (AlSi7Mg 0.6)). After cooling the casting, the core was doused with boiling water. In contrast to Example 1, the resolution of the core now took about 10 minutes.

Claims (9)

Mechanisch und thermisch stabiler Kern für den Leichtmetall- und/oder den Feinguss, dadurch gekennzeichnet, dass der Kern hydrophiles Aerogelgranulat, Sand und Bindemittel enthält.Mechanically and thermally stable core for light metal and / or precision casting, characterized in that the core contains hydrophilic airgel granules, sand and binder. Kern gemäß Anspruch 1, dadurch gekennzeichnet, dass das Aerogelgranulat Silica-Aerogel umfasst.Core according to claim 1, characterized in that the airgel granulate comprises silica airgel. Kern gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Aerogelgranulat eine Korngröße in der Größenordnung des Sandes aufweist.Core according to claim 1 or 2, characterized in that the airgel granules have a particle size in the order of magnitude of the sand. Kern gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Bindemittel Wasserglas und/oder ein Aerogelvorprodukt umfasst.Core according to one of claims 1 to 3, characterized in that the binder comprises water glass and / or an airgel precursor. Verfahren zur Herstellung eines Kerns gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man folgende Schritte durchführt: a. Mischung des Aerogelgranulats mit Sand und Bindemittel, b. Einbringung der Mischung in eine Negativform des Kerns, c. Verdichtung der eingebrachten Mischung in der Negativform, d. Trocknung der verdichteten Mischung und e. Kernentnahme aus der Negativform. Process for producing a core according to one of Claims 1 to 4, characterized in that the following steps are carried out: a. Mixture of airgel granules with sand and binder, b. Introduction of the mixture into a negative mold of the core, c. Compaction of the introduced mixture in the negative mold, d. Drying of the compressed mixture and e. Core removal from the negative mold. Verwendung eines Kernes nach einem der Ansprüche 1 bis 4 im Leichtmetallformguss- oder im Leichtmetallfeinguss.Use of a core according to one of claims 1 to 4 in Leichtmetallformguss- or in Leichtmetallfeinguss. Verwendung nach Anspruch 6, wobei der Kern durch ein ihn benetzendes Fluid aus der Gussform entfernt wird.Use according to claim 6, wherein the core is removed from the mold by a fluid which wets it. Verwendung nach Anspruch 7, wobei der Kern durch Wasser mit einer Temperatur von wenigstens 95 °C entfernt wird.Use according to claim 7, wherein the core is removed by water at a temperature of at least 95 ° C. Verwendung nach Anspruche 7, wobei der Kern durch Alkohol enthaltene Fluide aus der Gussform entfernt wird.Use according to claim 7, wherein the core of alcohol contained by fluids is removed from the mold.
EP07100597A 2006-01-24 2007-01-16 Aerogel containing core for light alloy and/or lost wax casting Not-in-force EP1820582B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07100597T PL1820582T3 (en) 2006-01-24 2007-01-16 Aerogel containing core for light alloy and/or lost wax casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006003198A DE102006003198A1 (en) 2006-01-24 2006-01-24 Mechanically and thermally stable core, used for light metal- and/or investment casting, comprises hydrophilic aerogel granulates, sand and binding agent

Publications (2)

Publication Number Publication Date
EP1820582A1 true EP1820582A1 (en) 2007-08-22
EP1820582B1 EP1820582B1 (en) 2009-07-01

Family

ID=38219722

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07100597A Not-in-force EP1820582B1 (en) 2006-01-24 2007-01-16 Aerogel containing core for light alloy and/or lost wax casting

Country Status (5)

Country Link
EP (1) EP1820582B1 (en)
AT (1) ATE435081T1 (en)
DE (2) DE102006003198A1 (en)
ES (1) ES2328526T3 (en)
PL (1) PL1820582T3 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2204246A2 (en) 2008-11-12 2010-07-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Foundry core with improved gutting properties I
CN106881446A (en) * 2015-12-15 2017-06-23 罗伯特·博世有限公司 For the coating being coated on the porous surface of the mould of metal casting and/or core rod
CN108367337A (en) * 2015-12-15 2018-08-03 罗伯特·博世有限公司 The method and sand mixture used in the method for casting sand type, especially casting sand core are manufactured under 3 D-printing technique
EP3406672A1 (en) * 2017-05-26 2018-11-28 Gebrüder Dorfner GmbH & Co. Kaolin- und Kristallquarzsand-Werke KG Composite particle comprising hydrophilic and hydrophobic surface coatings
WO2022152846A1 (en) 2021-01-18 2022-07-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Production of monodisperse aerogel particles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008056842A1 (en) 2008-11-12 2010-05-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Foundry cores with improved gutting properties II

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19632293A1 (en) * 1996-08-09 1998-02-19 Thomas Prof Dr In Steinhaeuser Process for the production of core moldings for foundry technology
EP1077097A1 (en) * 1999-08-18 2001-02-21 DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. Use of plastic and/or carbon aerogels as core material
DE10216464A1 (en) * 2002-04-12 2003-10-30 Deutsch Zentr Luft & Raumfahrt Core material for precision casting and finished casting of metals and metal alloys contains open pore aerogels and inorganic fillers obtained by sol-gel polymerization of inorganic silica gel
WO2005046909A1 (en) * 2003-11-11 2005-05-26 Deutsches Zentrum für Luft- und Raumfahrt e.V. Filler-containing aerogels
WO2005056643A2 (en) * 2003-12-10 2005-06-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Production of aerogels containing fillers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3814968A1 (en) * 1988-05-03 1989-11-16 Basf Ag DENSITY DENSITY 0.1 TO 0.4 G / CM (UP ARROW) 3 (UP ARROW)
DE19702240A1 (en) * 1997-01-24 1998-07-30 Hoechst Ag Multilayer composite materials which have at least one airgel-containing layer and at least one further layer, processes for their production and their use
DE10038419A1 (en) * 2000-08-07 2002-02-21 Volkswagen Ag Method for regenerating foundry sand bound to waterglass comprises mechanical pretreatment of the foundry sand, the addition of water, movement of the pulp by external forces

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19632293A1 (en) * 1996-08-09 1998-02-19 Thomas Prof Dr In Steinhaeuser Process for the production of core moldings for foundry technology
EP1077097A1 (en) * 1999-08-18 2001-02-21 DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. Use of plastic and/or carbon aerogels as core material
DE10216464A1 (en) * 2002-04-12 2003-10-30 Deutsch Zentr Luft & Raumfahrt Core material for precision casting and finished casting of metals and metal alloys contains open pore aerogels and inorganic fillers obtained by sol-gel polymerization of inorganic silica gel
WO2005046909A1 (en) * 2003-11-11 2005-05-26 Deutsches Zentrum für Luft- und Raumfahrt e.V. Filler-containing aerogels
WO2005056643A2 (en) * 2003-12-10 2005-06-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Production of aerogels containing fillers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BRÜCK AND RATKE: "RF-Aerogels: A New Binding Material for Foundry Application", JOURNAL OF SOL-GEL SCIENCE TECHNOLOGY, 2003, NL, XP002442103 *
LORENZ RATKE ET AL: "Mechanical properties of aerogel composites for casting purposes", JOURNAL OF MATERIALS SCIENCE, KLUWER ACADEMIC PUBLISHERS, BO, vol. 41, no. 4, 1 February 2006 (2006-02-01), pages 1019 - 1024, XP019211565, ISSN: 1573-4803 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2204246A2 (en) 2008-11-12 2010-07-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Foundry core with improved gutting properties I
EP2204246A3 (en) * 2008-11-12 2012-01-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Foundry core with improved gutting properties I
CN106881446A (en) * 2015-12-15 2017-06-23 罗伯特·博世有限公司 For the coating being coated on the porous surface of the mould of metal casting and/or core rod
CN108367337A (en) * 2015-12-15 2018-08-03 罗伯特·博世有限公司 The method and sand mixture used in the method for casting sand type, especially casting sand core are manufactured under 3 D-printing technique
EP3406672A1 (en) * 2017-05-26 2018-11-28 Gebrüder Dorfner GmbH & Co. Kaolin- und Kristallquarzsand-Werke KG Composite particle comprising hydrophilic and hydrophobic surface coatings
US11111389B2 (en) 2017-05-26 2021-09-07 Gebrüder Dorfner GmbH & Co. Kaolin- und Kristallquarzsand-Werke KG Composite particles having hydrophilic and hydrophobic surface coatings
WO2022152846A1 (en) 2021-01-18 2022-07-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Production of monodisperse aerogel particles
DE102021100898A1 (en) 2021-01-18 2022-07-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Production of monodisperse airgel particles

Also Published As

Publication number Publication date
PL1820582T3 (en) 2009-12-31
ES2328526T3 (en) 2009-11-13
DE102006003198A1 (en) 2007-07-26
ATE435081T1 (en) 2009-07-15
DE502007000952D1 (en) 2009-08-13
EP1820582B1 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
EP2097192B2 (en) Moulding material mixture containing phosphorus for producing casting moulds for machining metal
EP1934001B8 (en) Borosilicate glass-containing molding material mixtures
EP1820582B1 (en) Aerogel containing core for light alloy and/or lost wax casting
DE60123476T2 (en) FORM FOR METAL CASTING
EP3606690A1 (en) Method for producing casting molds, cores and basic mold materials regenerated therefrom
DE102018200607A1 (en) Process for the production of molds and cores suitable for the manufacture of fiber composite bodies or castings of metal or plastic, mold bases and binders usable in the process and molds and cores produced by the process
EP3137246A1 (en) Method for the layer-wise building of bodies comprising refractory mold base material and resoles, and molds or cores manufactured according to said method
DE102006056093B4 (en) Aerogelsand core material containing additive sand and its use
DE102007012489A1 (en) Composition for the production of feeders
WO2011054920A2 (en) Salt-based cores, method for the production thereof and use thereof
EP2193858B1 (en) Foundry core with improved gutting properties II
EP1697273B1 (en) Production of aerogels containing fillers
WO2006097278A1 (en) Exothermic and insulating feeder insert have high gas permeability
EP2308614B1 (en) Green aerosand
EP2204246B1 (en) Foundry core with improved gutting properties I
DE10216464B4 (en) Silica-bonded core materials, processes for their production and their use
EP2941327B1 (en) Method for the production of core sand and or molding sand for casting purposes
DE10216403B4 (en) Airgel-bound molded materials with high thermal conductivity
EP3727722A1 (en) Method for producing a metal casting or a cured moulding by using aliphatic polymers comprising hydroxyl groups
WO2006010449A2 (en) Ceramic cores
DE10352574A1 (en) Filler containing aerogels
DE102018215957A1 (en) Casting core for casting molds and process for its production

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080220

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080421

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007000952

Country of ref document: DE

Date of ref document: 20090813

Kind code of ref document: P

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2328526

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091101

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091102

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

26N No opposition filed

Effective date: 20100406

BERE Be: lapsed

Owner name: DEUTSCHES ZENTRUM FUR LUFT- UND RAUMFAHRT E.V.

Effective date: 20100131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100102

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20131219

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20140102

Year of fee payment: 8

Ref country code: RO

Payment date: 20140106

Year of fee payment: 8

Ref country code: CH

Payment date: 20140127

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140120

Year of fee payment: 8

Ref country code: IT

Payment date: 20140120

Year of fee payment: 8

Ref country code: FR

Payment date: 20131223

Year of fee payment: 8

Ref country code: AT

Payment date: 20131227

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 435081

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150116

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150116

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150116

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150117

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201218

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007000952

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220802