Nothing Special   »   [go: up one dir, main page]

EP1800062A1 - Brenner zur verbrennung eines niederkalorischen brenngases und verfahren zum betrieb eines brenners - Google Patents

Brenner zur verbrennung eines niederkalorischen brenngases und verfahren zum betrieb eines brenners

Info

Publication number
EP1800062A1
EP1800062A1 EP05801280A EP05801280A EP1800062A1 EP 1800062 A1 EP1800062 A1 EP 1800062A1 EP 05801280 A EP05801280 A EP 05801280A EP 05801280 A EP05801280 A EP 05801280A EP 1800062 A1 EP1800062 A1 EP 1800062A1
Authority
EP
European Patent Office
Prior art keywords
burner
air
combustion
gas
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05801280A
Other languages
English (en)
French (fr)
Other versions
EP1800062B1 (de
Inventor
Andreas Heilos
Berthold Köstlin
Bernd Prade
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP05801280A priority Critical patent/EP1800062B1/de
Publication of EP1800062A1 publication Critical patent/EP1800062A1/de
Application granted granted Critical
Publication of EP1800062B1 publication Critical patent/EP1800062B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14021Premixing burners with swirling or vortices creating means for fuel or air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14241Post-mixing with swirling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00002Gas turbine combustors adapted for fuels having low heating value [LHV]

Definitions

  • the invention relates to a burner for the combustion of a low-calorie combustible gas, with an air duct extending along a burner axis for the supply of combustion air and with a fuel gas channel, which is designed for a high volume flow on low calorific fuel gas, wherein the fuel gas channel and the air duct open in a mixing area ,
  • the invention further relates to a method for operating a burner in which a fossil fuel gasified and gasified fossil fuel fed as a low calorific synthesis gas to the burner, mixed with combustion air to a synthesis gas-air mixture and is burned in a combustion chamber.
  • EP 0956475 B1 shows a burner for high calorie fuels, e.g. Natural gas or oil which has a largely homogeneous mixture of high calorific fuels and combustion air.
  • a swirling element is introduced within the air supply annular channel in such a way that the inlet of the high-calorie fuel is arranged downstream of the swirling element within the air channel.
  • the fuel is introduced to achieve a homogeneous mixing by means of a plurality of inlet channels which are arranged in the swirl vanes within the air supply channel. This mixture is then introduced into the combustion chamber for combustion.
  • burners and operating methods for burners have been developed in recent years, which have particularly low emissions of nitrogen oxides (NO x ). It will In many cases, it is important that such burners can be operated not only with one fuel but, if possible, with different fuels, for example oil, natural gas and / or coal gas, either selectively or even in combination, in order to ensure security of supply and supply
  • fuels for example oil, natural gas and / or coal gas
  • Hydrocarbon compounds exist, the combustible components of synthesis gases are substantially carbon monoxide and hydrogen.
  • the calorific value of the synthesis gas is about 5 to 10 times smaller compared to the calorific value of natural gas.
  • Main constituents in addition to carbon monoxide and hydrogen are inert components such as nitrogen and / or water vapor and possibly also carbon dioxide. Due to the low calorific value consequently high volume flows of fuel gas must be supplied through the burner of the combustion chamber.
  • a separate fuel gas channel which is designed for a high volume flow of low calorific fuel gas, must be provided.
  • the burner in the combustion chamber associated with the gas turbine for selectively operating a gas and steam turbine plant with a synthesis gas from a gasification or a secondary or substitute fuel, the burner in the combustion chamber associated with the gas turbine as two- or
  • Be designed multi-fuel burner which can be applied to both the synthesis gas and with the secondary fuel, such as natural gas or fuel oil as needed.
  • the respective fuel is supplied via a specially constructed fuel passage in the burner of the combustion zone.
  • EP 1 277 920 A1 a method for operating a burner of a gas turbine and a power plant with integrated coal gasification is shown. In the method of operating the burner, a fossil fuel is gasified and gassed fossil fuel as synthesis gas of the
  • Gas turbine associated burner is sent for combustion.
  • the synthesis gas is divided into a first partial flow and a second partial flow and the partial flows are fed to the burner for combustion separately.
  • a stepped synthesis gas operation is possible, which is adapted to the load of the gas turbine.
  • the object of the invention is a burner for the combustion of low calorific fuel gases, in particular synthesis gases, indicate that leads to a lower nitrogen oxide formation.
  • Another object of the invention is to provide a method of operating a burner in which a low calorie fuel gas is burned.
  • a burner for combustion of a low calorific fuel gas with an extending along a burner axis air duct for the supply of combustion air and a fuel gas channel, which is designed for a high volume flow of low calorific fuel gas is, wherein the fuel gas channel and the air channel open into a mixing region, wherein the air channel has an orifice region directly fluidically adjacent to the mixing region and wherein in the mouth region, a swirling element is provided for generating turbulent combustion air.
  • the invention is based on the consideration that in the known burners for combustion of low-calorie combustion gases, the nitrogen oxide formation is too high due to insufficient mixing of the low calorific fuel gas with the combustion air in the mixing area in view of future pollutant limits.
  • a swirling element into the air duct, the degree of turbulence of the air mass flow is increased even before the combustion air is mixed with the low-calorie combustion gas.
  • the invention has recognized that it is particularly important in this context to carry out a turbulence gradient increase only in the microscopic range, ie large eddy bales with pronounced trailing regions and in particular with upstream flow components must be avoided, otherwise there is a risk of a flashback in the burner itself.
  • the air duct in this case has an orifice region which is arranged directly adjacent to the mixing region in terms of flow, wherein the swirling element is arranged in the mouth area. It has been found that the arrangement of the swirling element in the immediate vicinity of the mixing region in the mouth region leads to a particularly effective formation of air vortex, so that the generated turbulences propagate to the adjoining mixing region largely trouble-free in the microscopic range. As a result, both a spatial and a temporally largely homogeneous mixture of low calorific fuel gas and combustion air and thus a reduced nitrogen production is achieved. Surprisingly, it has been shown that the exact positioning of the swirling element in the immediate vicinity of the mixing region in the mouth region leads to a particularly effective formation of air vortex, so that the generated turbulences propagate to the adjoining mixing region largely trouble-free in the microscopic range. As a result, both a spatial and a temporally largely homogeneous mixture of low calorific fuel gas and combustion air and
  • Verwirbelungselements in the air duct is particularly critical for the mixing result in the mixing area.
  • a significant advantage of the invention is that a particularly good mixture of combustion air and fuel gas is achieved by the microturbulent flow of combustion air, at the same time caused by the swirling pressure loss is low. It is achieved by the mixture of low-calorie fuel gas and turbulence-prone combustion air in the mixing region, a significantly improved spatial homogeneity of the fuel gas-air mixture in the mixing region.
  • the microturbulences ensure a particularly intimate mixing while avoiding a flashback.
  • Another advantage of the invention is the arrangement of the swirling element in the immediate vicinity of the mixing area in the mouth region. This leads to a particularly effective turbulence. In order to achieve a good mixing result as far as possible further installations in the wake region of the swirling element should be avoided.
  • the swirling element is designed so that the producible turbulent flow of the Combustion air at Verwirbelungselement has substantially no areas of back-flowing combustion air. In this way, a safe operation of the burner is ensured in the combustion of low-calorie fuel gas and in particular the risk of a flashback in the burner itself prevented.
  • the air channel is formed as an annular channel which surrounds the fuel gas channel concentrically.
  • the swirling element hereby comprises:
  • the swirling element is particularly suitable for use in an annular air duct. There are at least two, preferably three circles provided.
  • the connecting surface is less than half of the area enclosed by the larger boundary ring circular area in the swirling element. Further preferably, the diameter of the larger boundary ring is less than about 1 m, in particular 50 to 80 cm.
  • the swirl element is for use in small flow channels, such as e.g. in the air duct of the burner, suitable.
  • the deflection elements associated with a circle are equally spaced from one another. This achieves a uniform turbulence over the entire connecting surface and thus brings about a particularly homogeneous mixing of the low-calorie combustible gas, in particular of the synthesis gas, with the combustion air in the mixing region.
  • each deflection element tapers from the connection surface to a tear-off edge for generating vertebrae.
  • it has approximately trapezoidal or triangular shape.
  • Preferred dimensions of the associated at a respective circle deflecting elements are inclined in the same direction. Preference is given to arranged on adjacent circles
  • the burner is designed so that upstream of the
  • Swirling element swirl vanes are arranged in the air duct. This ensures that the combustion air in the air duct is already pre-impounded by means of a swirl blade, before the swirling combustion air flow through the swirling element experiences a turbulence increase in the microscopic range downstream of the swirling element. Furthermore, this achieves that a swirling element with the advantageous effects described above on the homogeneity of the mixture of low calorific fuel gas and
  • Combustion air in the mixing area can also be used in conjunction with swirl blades, which ultimately act favorably on the stability of the combustion of the low-calorie combustible gas.
  • at least one of the swirl blades can be formed as a hollow blade, from which, if required, a high-calorie fuel, in particular natural gas, can be introduced into the air duct.
  • a high-calorie fuel in particular natural gas
  • the burner can be designed as a premix or hybrid burner for use in gas turbine systems, with an air supply channel, in particular an annular channel, which encloses at least three further, in particular concentric to the air supply channel arranged annular channels for supplying fluidic media, two of these channels for supplying a Serving pilot burner and wherein the pilot burner, a pilot flame to maintain combustion is generated.
  • the object directed to a method according to the invention is achieved by a method for operating a burner in which a fossil fuel gasified and gasified fossil fuel fed as a low calorific synthesis gas to the burner, and the combustion air mixed into a synthesis gas and air mixture and in a combustion chamber is burned, and immediately before the mixture of the synthesis gas with the combustion air, the degree of turbulence of the air mass flow is increased.
  • a fossil fuel gasified and gasified fossil fuel fed as a low calorific synthesis gas to the burner, and the combustion air mixed into a synthesis gas and air mixture and in a combustion chamber is burned, and immediately before the mixture of the synthesis gas with the combustion air, the degree of turbulence of the air mass flow is increased.
  • microturbulences are generated.
  • this is used in the operation of a burner of a gas turbine.
  • 3 shows a swirling element in plan view
  • 4 shows a swirling element in side view
  • the power plant 24 comprises a gas turbine plant 25 with a gasification plant 23 upstream of the gas turbine plant 25 for a fossil fuel B.
  • the gas turbine plant 25 comprises a compressor 14, a combustion chamber 16 and a turbine 18 connected downstream of the combustion chamber 16.
  • the compressor 14 and the turbine 18 are coupled together via a common rotor shaft 15. Downstream of the turbine 18, an electric generator 19 is coupled via a generator shaft 22 to the turbine.
  • the combustion chamber 16 includes a
  • air 10 is sucked into the compressor 14 and is highly compressed there.
  • the compressed air 10 is then supplied as combustion air 10 to the burner 1 and mixed with the low-calorie fuel gas SG.
  • the resulting fuel gas-air mixture is burned in the combustion chamber 17, with very hot combustion gases.
  • the hot combustion gases are fed to the turbine 18 where they relax to perform work and put both the compressor-side rotor shaft 15 and the generator shaft 22 in rotation. In this way, electric power is generated, which the generator 19 emits for distribution in an electrical network.
  • the partially cooled and expanded combustion gases are discharged as exhaust 20. These exhaust gases 20 are polluting, in particular nitrogen oxides are present in the exhaust gas, which form at the high combustion temperatures in the combustion chamber 17.
  • Increased nitrogen oxide emission also occurs when the fuel gas / air mixture is not mixed sufficiently homogeneously or experiences a temporal or spatial change in the mixture field. This generally leads to an unfavorable mixture of the low-calorie combustible gas SG with the combustion air 10 and to a considerable increase in the nitrogen oxide formation rate in the combustion process.
  • the invention provides a remedy in which it proposes a solution which substantially improves the quality of mixing between the synthesis gas SG and the combustion air 10 at the flame front, thus ensuring a low pollutant synthesis gas Be ⁇ operation of the burner 1, wherein temperature peaks are avoided and Thus, a reduction of the thermal nitrogen oxide formation is achieved over conventional synthesis gas burners.
  • FIG. 2 shows a burner 1 for burning the low calorie burner
  • Fuel gas SG according to the invention.
  • the burner 1 is approximately rotationally symmetrical with respect to an axis 12.
  • a directed along the axis 12 pilot burner 9 with a fuel supply channel 8 is concentrically surrounded by an air supply annular channel 7.
  • the fuel supply channel 8 is designed for fuels with high calorific value, such for exposure to natural gas or fuel oil.
  • the fuel gas channel 26 is designed for a high volume flow of low-calorie fuel gas SG.
  • the fuel gas channel 26 is in the flow direction of the fuel gas SG viewed downstream partially concentrically enclosed by an air supply annular channel 2.
  • an air supply annular channel 2 In the air supply annular channel 2 is a - schematically illustrated - ring of swirl vanes 5 is installed, wherein one of these swirl blades 5 as
  • Hollow blade 5a may be formed.
  • the swirl blade 5 may, if necessary, an inlet formed by openings for a fuel supply of a have high calorific fuel.
  • Downstream of the swirl vane ring 5 is a - shown schematically - swirling element 4 is installed in the air duct 2.
  • the fuel gas channel 26 and the air channel 2 each open into a common mixing region 27, where the low-calorie fuel gas SG is mixed intensively with the combustion air 10.
  • the swirling element 4 in the air channel 2 provides for the generation of turbulent combustion air 10, so that a good mixing result in the mixing region 27 and thus a low-emission synthesis gas operation of the burner 1 is achieved. It is particularly advantageous for the mixing result if, as shown in FIG.
  • the air duct 2 has an opening region 28 directly fluidically adjacent to the mixing region 27, wherein the swirling element 4 is arranged in the mouth region.
  • the swirling element 4 is designed such that the producible turbulent flow of the combustion air 10 at the swirling element 4 has substantially no regions of combustion air 10 flowing back. This ensures that no flammable combustible gas-air mixture to the swirling element 4 can flow back appreciably and thus no combustion at the swirling element 4 is stabilized, which could have a damage of the swirling element result. A permanent operation of the burner 1 with synthesis gas SG with low nitrogen oxide formation is thus achieved.
  • the burner 1 can be operated via the pilot burner 9 as a diffusion burner, wherein a high-calorie fuel is used. Alternatively, it can also be used as a premix burner; ie a high calorific fuel and combustion air 10 are first mixed and then fed to the combustion. In that case, the pilot burner 9 serves to maintain a pilot flame which stabilizes combustion during premix burner operation with a possibly varying fuel-air ratio. In a synthesis gas operation of the burner 1, the low-calorie synthesis gas SG with the combustion air 10 is first transferred downstream into the mixing region 27 where it is intimately mixed and burned in a combustion zone, not shown.
  • FIG. 3 A possible particularly advantageous design is shown in FIG. 3 in a plan view of a swirling element 4.
  • the swirling element 4 does not necessarily have to occupy the entire channel height of the air channel 2.
  • FIG 3 which shows a plan view of a swirling element 4 and FIG 4, with a the same reference numerals provided turbulator 4 in a side view, are discussed in more detail:
  • the connecting surface 56 constitutes the lateral surface of a
  • trapezoidal, planar deflection elements 51 are arranged in the interior of the truncated cone.
  • the wide side 51 a of each deflecting element 51 is connected to a web 54.
  • Deflection elements are arranged at equal distances from each other along three concentric circles 55a, 55b, 55c, which are concentric with the axis of symmetry 59.
  • the deflection elements 51 are inclined relative to a normal one of the connection axis 56, the deflection elements 51 being inclined in the same direction along a circle 55a, 55b, 55c from one circle 55a, 55b, 55c to an adjacent circle 55a, 55b, 55c.
  • the combustion air 10 is impressed on a microturbulence, which continues into the mixing region 27 inside.
  • the volumetric flows of low calorific fuel gas SG and turbulent combustion air 10 out of the air duct 2 which are introduced into the mixing region 27 are mixed particularly intensively and homogeneously by these microturbulences in the combustion air 10.
  • the inclination of the deflection elements 51 characterizes the main flow of the
  • Combustion air 10 in addition to secondary flows 58 which in addition to the local good mixing due to the turbulence, a homogenization of the fuel gas-air mixture over the entire cross-sectional area of the mixing region 27 (see FIG. 2).
  • This embodiment of the swirling element 4 which only influences the air flow in the air duct 2 during the synthesis gas operation, has the consequence that the pressure loss caused by the turbulence is particularly low.
  • the burner 1 of the invention is therefore particularly suitable for operation in a power plant 24 with integrated gasification of a fossil fuel to a synthesis gas SG, for example coal gas.
  • the burner 1 is arranged in a combustion chamber 16 of a gas turbine plant 25.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

Die Erfindung betrifft einen Brenner (1) zur Verbrennung eines niederkalorischen Brenngases (SG) , mit einem sich entlang einer Brennerachse (12) erstreckenden Luftkanal (2) für die Zufuhr von Verbrennungsluft (10) und mit einem Brenngaskanal (26), der auf einen hohen Volumenstrom an niederkalorischen Brenngas (SG) ausgelegt ist, wobei der Brenngaskanal (26) und der Luftkanal (2) in einen Mischbereich (27) einmünden. Zur Erzielung eines stickoxidarmen Synthesegas-Betriebs des Brenners (1) ist in dem Luftkanal (2) ein Verwirbelungselement (4) zur Erzeugung von turbulenter Verbrennungsluft (10) vorgesehen. Das Verwirbelungselement ist in einem Mündungsbereich (28) unmittelbar strömungstechnisch angrenzend an den Mischbereich (27) vorgesehen. Die Erfindung betrifft weiterhin ein Verfahren zum Betrieb eines Synthesegas-Brenners (1), bei dem unmittelbar vor der Mischung des Synthesegases (SG) mit der Verbrennungsluft (10) der Turbulenzgrad des Luftmassenstroms auf einer mikroskopischen Skala deutlich erhöht wird, um eine zeitlich und räumlich homogene Mischung des Synthesegas-Luft-Gemischs zu erreichen.

Description

Beschreibung
Brenner zur Verbrennung eines niederkalorischen Brenngases und Verfahren zum Betrieb eines Brenners
Die Erfindung betrifft einen Brenner zur Verbrennung eines niederkalorischen Brenngases, mit einem sich entlang einer Brennerachse erstreckenden Luftkanal für die Zufuhr von Verbrennungsluft und mit einem Brenngaskanal, der auf einem hohen Volumenstrom am niederkalorischen Brenngas ausgelegt ist, wobei der Brenngaskanal und der Luftkanal in einem Mischbereich einmünden.
Die Erfindung betrifft weiterhin ein Verfahren zum Betrieb eines Brenners, bei dem ein fossiler Brennstoff vergast und vergaster fossiler Brennstoff als ein niederkalorisches Synthesegas dem Brenner zugeführt, mit Verbrennungsluft zu einem Synthesegas-Luft-Gemisch vermischt und in einem Brennraum verbrannt wird.
Die EP 0956475 Bl zeigt einen Brenner für hochkalorische Brennstoffe, z.B. Erdgas oder Öl der eine weitgehend homogene Mischung von hochkalorischen Brennstoffen und Verbrennungsluft aufweist. Dafür ist ein Verwirbelungselement innerhalb des Luftzufuhr-Ringkanals eingebracht und zwar dergestalt dass der Einlass des hochkalorischen Brennstoffs abströmseitig vom Verwirbelungselement innerhalb des Luftkanals angeordnet ist. Der Brennstoff wird zur Erzielung einer homogenen Durchmischung mittels mehreren Einlasskanäle die in den Drallschaufeln innerhalb des Luftzufuhrkanals angeordnet sind eingebracht. Diese Mischung wird anschließend zur Verbrennung in die Brennkammer eingebracht .
Im Hinblick auf die weltweiten Bemühungen zur Senkung des Schadstoffausstoßes von Feuerungsanlagen, insbesondere bei Gasturbinen, wurden in den letzten Jahren Brenner und Betriebsverfahren für Brenner entwickelt, welche besonders geringe Ausstöße an Stickoxiden (NOx) haben. Dabei wird vielfach Wert darauf gelegt, dass solche Brenner jeweils nicht nur mit einem Brennstoff, sondern möglichst mit verschiedenen Brennstoffen, beispielsweise Öl, Erdgas und/oder Kohlegas wahlweise oder sogar in Kombination betreibbar sind, um die Versorgungssicherheit und
Flexibilität beim Betrieb zu erhöhen. Solche Brenner sind beispielsweise in der EP 0 276 696 Bl beschrieben.
Verglichen mit den klassischen Gasturbinenbrennstoffen Erdgas und Erdöl, die im wesentlichen aus
Kohlenwasserstoffverbindungen bestehen, sind die brennbaren Bestandteile von Synthesegasen im wesentlichen Kohlenmonoxid und Wasserstoff. Abhängig vom Vergasungsverfahren und Gesamtanlagenkonzept ist der Heizwert des Synthesegases etwa 5 bis 10 mal kleiner verglichen mit dem Heizwert von Erdgas. Hauptbestandteile neben Kohlenmonoxid und Wasserstoff sind inerte Anteile wie Stickstoff und/oder Wasserdampf und gegebenenfalls noch Kohlendioxid. Bedingt durch den kleinen Heizwert müssen demzufolge hohe Volumenströme an Brenngas durch den Brenner der Brennkammer zugeführt werden. Dies hat zur Folge, dass für die Verbrennung von niederkalorischen Brennstoffen - wie z.B. Synthesegas - ein gesonderter Brenngaskanal, der auf einem hohen Volumenstrom an niederkalorischen Brenngas ausgelegt ist, zur Verfügung gestellt werden muss.
Zum wahlweisen Betrieb einer Gas- und Dampfturbinenanlage mit einem Synthesegas aus einer Vergasungseinrichtung oder einem Zweit- oder Ersatzbrennstoff muss der Brenner in der der Gasturbine zugeordneten Brennkammer als Zwei- oder
Mehrbrennstoffbrenner ausgelegt sein, der sowohl mit dem Synthesegas als auch mit dem Zweitbrennstoff, z.B. Erdgas oder Heizöl je nach Bedarf beaufschlagt werden kann. Der jeweilige Brennstoff wird hierbei über eine eigens konstruktiv ausgelegte Brennstoffpassage im Brenner der Verbrennungszone zugeführt. In der EP 1 277 920 Al ist ein Verfahren zum Betrieb eines Brenners einer Gasturbine sowie einer Kraftwerksanlage mit integrierter Kohlevergasung gezeigt. Bei dem Verfahren zum Betrieb des Brenners wird ein fossiler Brennstoff vergast und vergaster fossiler Brennstoff als Synthesegas dem der
Gasturbine zugeordneten Brenner zur Verbrennung zugeführt. Hierbei wird das Synthesegas in einen ersten Teilstrom und einen zweiten Teilstrom aufgeteilt und die Teilströme dem Brenner zur Verbrennung jeweils separat zugeführt. Durch diese Betriebsweise mit zwei Synthesegas-Teilströmen ist ein gestufter Synthesegasbetrieb möglich, der an die Last der Gasturbine angepasst ist.
Neben der stöchiometrischen Verbrennungstemperatur des Synthesegases ist die Mischungsgüte zwischen Synthesegas und Verbrennungsluft an der Flammenfront eine wesentliche Einflussgröße zur Vermeidung von Temperaturspitzen und somit zur Minimierung der thermischen Stickoxidbildung. Eine räumlich gute Mischung von Verbrennungsluft und Synthesegas ist aufgrund der hohen Volumenströme an erforderlichem
Synthesegas und der entsprechend großen räumlichen Ausdehnung des Mischungsgebiets besonders schwierig. Andererseits ist eine möglichst geringe Stickoxidproduktion schon aus Gründen des Umweltschutzes und entsprechenden gesetzlichen Richtlinien für Schadstoffemission eine wesentliche Anforderung an die Verbrennung, insbesondere an die Verbrennung in der Gasturbinenanlage eines Kraftwerks. Die Bildung von Stickoxiden erhöht sich exponentiell rapide mit der Flammentemperatur der Verbrennung. Bei einer inhomogenen Mischung von Brennstoff und Luft ergibt sich eine bestimmte Verteilung der Flammentemperaturen im Verbrennungsbereich. Die Maximaltemperatur einer solchen Verteilung bestimmen nach dem genannten exponentiellen Zusammenhang von Stickoxidbildung und Flammentemperatur maßgeblich die Menge der gebildeten unerwünschten Stickoxide.
Ausgehend von dieser Problematik ist die Aufgabe der Erfindung einen Brenner für die Verbrennung von niederkalorischen Brenngasen, insbesondere Synthesegasen, anzugeben, der zu einer niedrigeren Stickoxidbildung führt. Eine weitere Aufgabe der Erfindung ist es ein Verfahren zum Betrieb eines Brenners anzugeben, bei dem ein niederkalorisches Brenngas verbrannt wird.
Die Lösung der Aufgabe, die auf einen Brenner gerichtet ist, erfolgt erfindungsgemäß durch einen Brenner zur Verbrennung eines niederkalorischen Brenngases, mit einem sich entlang einer Brennerachse erstreckenden Luftkanal für die Zufuhr von Verbrennungsluft und mit einem Brenngaskanal, der auf einem hohen Volumenstrom an niederkalorischem Brenngas ausgelegt ist, wobei der Brenngaskanal und der Luftkanal in einen Mischbereich einmünden, wobei der Luftkanal einen Mündungsbereich unmittelbar strömungstechnisch angrenzend an den Mischbereich aufweist und wobei in dem Mündungsbereich ein Verwirbelungselement zur Erzeugung von turbulenter Verbrennungsluft vorgesehen ist.
Die Erfindung geht dabei von der Überlegung aus, dass bei den bekannten Brenner zur Verbrennung niederkalorischer Brenngase die Stickoxidbildung durch unzureichende Mischung des niederkalorischen Brenngases mit der Verbrennungsluft in dem Mischbereich in Anbetracht zukünftiger Schadstoffgrenzwerte zu hoch ist. Durch den Einbau eines Verwirbelungselements in den Luftkanal wird der Turbulenzgrad des Luftmassenstroms bereits vor der Mischung der Verbrennungsluft mit dem niederkalorischen Brenngas erhöht. Die Erfindung hat dabei erkannt, dass es in diesem Zusammenhang besonders wichtig ist eine Turbulenzgraderhöhung nur im mikroskopischen Bereich durchzuführen, d.h. große Wirbelballen mit stark ausgeprägten Nachlaufgebieten und insbesondere mit stromaufgerichteten Strömungskomponenten müssen vermieden werden, da ansonsten die Gefahr eines Flammenrückschlages in den Brenner selbst besteht. Um einen besonders stabilen Brennerbetrieb zu ermöglichen, weist der Luftkanal dabei einen Mündungsbereich auf, der unmittelbar strömungstechnisch angrenzend an den Mischbereich angeordnet ist, wobei das Verwirbelungselement in dem Mündungsbereich angeordnet ist. Es hat sich gezeigt, dass die Anordnung des Verwirbelungselements in unmittelbarer Nähe des Mischbereichs in dem Mündungsbereich zu einer besonders effektiven Luftwirbelausbildung führt, so dass sich die erzeugten Turbulenzen im mikroskopischen Bereich in den angrenzenden Mischbereich weitgehend störungsfrei ausbreiten. Hierdurch wird sowohl eine räumlich als auch eine zeitlich weitgehend homogene Mischung von niederkalorischen Brenngas und Verbrennungsluft und damit eine reduzierte Stickstoffproduktion erreicht. Überraschenderweise hat sich gezeigt, dass die genaue Positionierung des
Verwirbelungselements in dem Luftkanal besonders kritisch für das Mischungsergebnis in dem Mischbereich ist.
Ein wesentlicher Vorteil der Erfindung liegt darin, dass durch die mikroturbulente Strömung der Verbrennungsluft eine besonders gute Mischung von Verbrennungsluft und Brenngas erzielt ist, wobei gleichzeitig ein durch das Verwirbelungselement hervorgerufener Druckverlust gering ist. Es wird durch die Mischung von niederkalorischen Brenngas und turbulenzbehafteter Verbrennungsluft in dem Mischbereich eine erheblich verbesserte räumliche Homogenität des Brenngas- Luft-Gemischs in dem Mischbereich erzielt. Die Mikroturbulenzen gewährleisten dabei eine besonders innige Vermischung bei Vermeidung eines Flammenrückschlags.
Ein weiterer Vorteil der Erfindung ist die Anordnung des Verwirbelungselements in unmittelbarer Nähe des Mischbereichs in dem Mündungsbereich. Die führt zu einer besonders effektiven Verwirbelung. Zur Erzielung eines guten Mischungsergebnisses sollten möglichst weitere Einbauten in dem Nachlaufgebiet des Verwirbelungselements vermieden werden.
In bevorzugter Ausgestaltung ist das Verwirbelungselement so ausgebildet, dass die erzeugbare turbulente Strömung der Verbrennungsluft am Verwirbelungselement im wesentlichen keine Gebiete zurückströmender Verbrennungsluft aufweist. Auf diese Weise ist ein sicherer Betrieb des Brenners bei der Verbrennung von niederkalorischen Brenngas gewährleistet und insbesondere die Gefahr eines Flammenrückschlages in den Brenner selbst unterbunden.
Bevorzugt ist der Luftkanal als ein Ringkanal ausgebildet, der den Brenngaskanal konzentrisch umschließt.
Um für den Brenner eine möglichst effektive
Turbulenzgraderhöhung im mikroskopischen Bereich zu erzielen, sind besondere Anforderungen an die konstruktive Ausführung und Anordnung des Verwirbelungselements gegeben. Nach einer besonders bevorzugten Ausgestaltung der Erfindung weist das Verwirbelungselement hierbei auf:
a) Einen ersten Begrenzungsring mit einer Symmetrieachse, b) einen zweiten größeren Begrenzungsring, dessen Mittelpunkt auf der Symmetrieachse liegt, c) eine Verbindungsfläche, die durch die beiden Begrenzungsringe aufgespannt ist, und d) entlang auf der Verbindungsfläche liegender Kreise, deren jeweiliger Mittelpunkt auf der Symmetrieachse liegt, eine Vielzahl von flächigen Auslenkelementen, die jeweils gegen eine normale der Verbindungsfläche geneigt sind.
Das Verwirbelungselement ist insbesondere für den Einsatz in einem ringförmigen Luftkanal geeignet. Es sind mindestens zwei, vorzugsweise drei Kreise vorgesehen.
Bei einer Untersuchung der zeitlichen Schwankung des Mischungsverhältnisses in Versuchen hat sich gezeigt, dass durch die oben beschriebene konstruktive Auslegung des Verwirbelungselements lokal auftretende zeitliche
Schwankungen des Mischungsverhältnisses zwischen den niederkalorischen Brenngas und der Verbrennungsluft sehr gering sind. Gleichzeitig ist nur ein geringer Druckverlust mit dem derart konzipierten Verwirbelungselement verbunden, so dass der Wirkungsgrad des Brenners nahezu unbeeinträchtigt bleibt.
Bevorzugtermaßen beträgt die Verbindungsfläche weniger als die Hälfte der durch den größeren Begrenzungsring umschlossenen Kreisfläche bei dem Verwirbelungselement. Weiterhin bevorzugt ist der Durchmesser des größeren Begrenzungsringes kleiner als etwa 1 m, insbesondere 50 bis 80 cm. Damit ist das Verwirbelungselement für den Einsatz in kleinen Strömungskanälen, wie z.B. im Luftkanal des Brenners, geeignet .
In einer weiter bevorzugten Ausgestaltung sind die einem Kreis zugeordneten Auslenkelemente untereinander gleich beabstandet. Damit wird ein über die ganze Verbindungsfläche gleichmäßige Verwirbelung erzielt und somit eine besonders homogene Mischung des niederkalorischen Brenngases, insbesondere des Synthesegases, mit der Verbrennungsluft in dem Mischbereich bewirkt.
Weiterhin bevorzugt ist, dass sich jedes Auslenkelement aus der Verbindungsfläche zu einer Abrisskante zur Erzeugung von Wirbeln verjüngt. Vorzugsweise weist es etwa Trapez- oder Dreiecksform auf. Durch diese Ausgestaltung wird eine besonders intensive Verwirbelung erreicht.
Bevorzugtermaßen sind die an einem jeweiligen Kreis zugeordneten Auslenkelemente gleichsinnig geneigt. Bevorzugt sind auf einander benachbarten Kreisen angeordnete
Auslenkelemente gegensinnig geneigt. Diese Anordnung der Auslenkelemente bewirkt, dass zusätzlich zur lokal guten Durchmischung durch die Verwirbelung eine Homogenisierung über größere Bereiche der Luftströmung erfolgt. Dies ist besonders wichtig, um bei der Einmündung des niederkalorischen Brenngases und der Verbrennungsluft in den Mischbereich Turbulenzen im mikroskopischen Bereich sicherzustellen im Hinblick auf die Erzielung eines homogenen Synthesegas-Verbrennungsluft-Gemischs beim Brennerbetrieb.
In einer besonders bevorzugten Ausgestaltung ist der Brenner so ausgebildet, dass stromaufwärts von dem
Verwirbelungselement Drallschaufeln im Luftkanal angeordnet sind. Hierdurch wird erreicht, dass der Verbrennungsluft in dem Luftkanal bereits vorab ein Drall mittels der Drallschaufel aufgeprägt wird, bevor stromabwärts die drallbehaftete Verbrennungsluftströmung durch das Verwirbelungselement eine Turbulenzgraderhöhung im mikroskopischen Bereich erfährt. Ferner wird hierdurch erreicht, dass ein Verwirbelungselement mit den oben beschriebenen vorteilhaften Auswirkungen auf die Homogenität der Mischung von niederkalorischen Brenngas und
Verbrennungsluft in den Mischbereich auch in Verbindung mit Drallschaufeln einsetzbar ist, die letztendlich günstig auf die Stabilität der Verbrennung des niederkalorischen Brenngases einwirken. Dabei kann zumindest eine der Drallschaufeln als Hohlschaufel ausgebildet, aus dem bedarfsweise ein hochkalorischer Brennstoff, insbesondere Erdgas, in den Luftkanal einlassbar ist. Über diese zusätzliche Ausgestaltung ist es möglich, eine gleichmäßige Eindüsung von hochkalorischen Brennstoff, etwa bei einem Erdgasbetrieb des Brenners, aus einer als Hohlschaufel ausgebildeten Drallschaufel mit einer weiteren homogenisierenden Wirkung auf das Brennstoff/Luft-Gemisch in Kombination mit den oben erläuterten Vorteilen zu nutzen.
Der Brenner kann als ein Vormisch- oder Hybridbrenner für den Einsatz in Gasturbinenanlagen, mit einem Luftzufuhrkanal, insbesondere ein Ringkanal ausgebildet sein, welcher mindestens drei weitere, insbesondere konzentrisch zum Luftzufuhrkanal angeordnete Ringkanäle zur Zuführung von fluidischen Medien umschließt, wobei zwei dieser Kanäle zur Versorgung eines Pilotbrenners dienen und wobei durch den Pilotbrenner eine Pilotflamme zur Aufrechterhaltung der Verbrennung erzeugbar ist. Die auf ein Verfahren gerichtete Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zum Betrieb eines Brenners, bei dem ein fossiler Brennstoff vergast und vergaster fossiler Brennstoff als ein niederkalorisches Synthesegas dem Brenner zugeführt, und die Verbrennungsluft zu einem Synthesegas- Luft-Gemisch vermischt und in einem Brennraum verbrannt wird, wobei unmittelbar vor der Mischung des Synthesegases mit der Verbrennungsluft der Turbulenzgrad des Luftmassenstroms erhöht wird. Vorzugsweise werden dabei Mikroturbulenzen erzeugt .
Die Vorteile des Verfahrens zum Betrieb eines Brenners ergeben sich aus den oben beschriebenen Vorteilen des erfindungsgemäßen Brenners zur Verbrennung eines niederkalorischen Brenngases, insbesondere eines Synthesegases .
In bevorzugte Ausgestaltung des Verfahrens wird dieses beim Betrieb eines Brenners einer Gasturbine angewandt.
Weiter bevorzugt ist eine Anwendung des Verfahrens beim Betrieb einer Kraftwerksanlage mit integrierter Vergasung eines fossilen Brennstoffs zu einem Synthesegas, insbesondere Kohlegas.
Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels näher erläutert. Dabei zeigen schematisch und nicht maßstäblich
FIG 1 eine Kraftwerksanlage mit integrierter Vergasungseinrichtung,
FIG 2 einen Längsschnitt durch einen Brenner gemäß der Erfindung,
FIG 3 ein Verwirbelungselement in Draufsicht, und FIG 4 ein Verwirbelungselement in Seitenansicht.
Gleiche Bezugszeichen haben in den Figuren die gleiche Bedeutung.
Die Kraftwerksanlage 24 gemäß FIG 1 umfasst eine Gasturbinenanlage 25 mit einer der Gasturbinenanlage 25 vorgeschalteten Vergasungseinrichtung 23 für einen fossilen Brennstoff B. Die Gasturbinenanlage 25 umfasst einen Verdichter 14, eine Brennkammer 16 sowie eine der Brennkammer 16 nachgeschaltete Turbine 18. Der Verdichter 14 und die Turbine 18 sind über eine gemeinsame Rotorwelle 15 miteinander gekoppelt. Der Turbine 18 nachgeschaltet ist ein elektrischer Generator 19 über eine Generatorwelle 22 an die Turbine angekoppelt. Die Brennkammer 16 umfasst einen
Brennraum 17 sowie einen in den Brennraum 17 hineinragenden Brenner 1 zur Verbrennung eines niederkalorischen Brenngases SG, welches aus der Vergasungseinrichtung 23 durch Vergasung des fossilen Brennstoffs B gewonnen wird.
Im Betrieb der Gasturbine 18 wird Luft 10 in den Verdichter 14 angesaugt und dort hoch komprimiert. Die komprimierte Luft 10 wird sodann als Verbrennungsluft 10 dem Brenner 1 zugeführt und mit dem niederkalorischen Brenngas SG vermischt. Das dabei entstehende Brenngas-Luft-Gemisch wird in dem Brennraum 17 verbrannt, wobei sehr heiße Verbrennungsgase entstehen. Die heißen Verbrennungsgase werden der Turbine 18 zugeführt, wo diese sich arbeitsleistend entspannen und sowohl die verdichterseitige Rotorwelle 15 als auch die Generatorwelle 22 in Rotation versetzen. Auf diese Weise wird elektrische Leistung erzeugt, welche der Generator 19 zur Verteilung in ein elektrisches Netz abgibt. Abströmseitig der Turbine 18 werden die teilweise abgekühlten und entspannten Verbrennungsgase als Abgas 20 abgegeben. Diese Abgase 20 sind schadstoffbehaftet, insbesondere sind Stickoxide in dem Abgas vorhanden, welche sich bei den hohen Verbrennungstemperaturen im Brennraum 17 bilden. Zur erhöhten Stickoxidemission kommt es auch, wenn das Brenngas-Luft-Gemisch nicht hinreichend homogen gemischt ist bzw. eine zeitliche oder räumliche Veränderung des Mischungsfeldes erfährt. Dies führt im allgemeinen zu einer ungünstigen Mischung des niederkalorischen Brenngases SG mit der Verbrennungsluft 10 und zu einem erheblichen Anstieg der Stickoxidbildungsrate bei dem Verbrennungsprozess .
Hier schafft die Erfindung Abhilfe, in dem sie eine Lösung vorschlägt, die die Mischungsgüte zwischen dem Synthesegas SG und der Verbrennungsluft 10 an der Flammenfront wesentlich verbessert, um somit einen Schadstoffarmen Synthesegas-Be¬ trieb des Brenners 1 zu gewährleisten, wobei Temperaturspitzen vermieden werden und somit eine Absenkung der thermischen Stickoxidbildung gegenüber herkömmlichen Synthesegasbrennern erzielt ist.
Um das Konzept der Erfindung zu illustrieren zeigt FIG 2 einen Brenner 1 zur Verbrennung des niederkalorischen
Brenngases SG gemäß der Erfindung. Der Brenner 1 ist in etwa rotationssymmetrisch bezüglich einer Achse 12. Ein entlang der Achse 12 gerichteter Pilotbrenner 9 mit einem Brennstoff- Zufuhrkanal 8 ist konzentrisch umgeben von einem Luftzufuhr- Ringkanal 7. Der Brennstoff-Zufuhrkanal 8 ist für Brennstoffe mit hohen Heizwert ausgelegt, etwa für eine Beaufschlagung mit Erdgas oder Heizöl.
Der Brenngaskanal 26 ist auf einen hohen Volumenstrom an niederkalorischen Brenngas SG ausgelegt. Der Brenngaskanal 26 ist in Strömungsrichtung des Brenngases SG betrachtet stromabwärts teilweise konzentrisch umschlossen von einem Luftzufuhr-Ringkanal 2. In dem Luftzufuhr-Ringkanal 2 ist ein - schematisch dargestellter - Kranz von Drallschaufeln 5 eingebaut, wobei eine dieser Drallschaufeln 5 als
Hohlschaufel 5a ausgebildet sein kann. Die Drallschaufel 5 kann bei entprechendem Bedarf einen durch Öffnungen gebildeten Einlass für eine BrennstoffZuführung eines hochkalorischen Brennstoffs aufweisen. Stromabwärts vom Drallschaufelkranz 5 ist ein - schematisch dargestelltes - Verwirbelungselement 4 im Luftkanal 2 eingebaut . Der Brenngaskanal 26 und der Luftkanal 2 münden jeweils in einen gemeinsamen Mischbereich 27, wo das niederkalorische Brenngas SG mit der Verbrennungsluft 10 intensiv gemischt wird. Das Verwirbelungselement 4 in dem Luftkanal 2 sorgt für die Erzeugung von turbulenter Verbrennungsluft 10, so dass ein gutes Mischergebnis in dem Mischbereich 27 und somit ein Schadstoffarmer Synthesegas-Betrieb des Brenners 1 erzielt ist. Besonders vorteilhaft für das Mischungsergebnis ist es wenn - wie in FIG 2 gezeigt - der Luftkanal 2 einen Mündungsbereich 28 unmittelbar strömungstechnisch angrenzend an den Mischbereich 27 aufweist, wobei das Verwirbelungselement 4 in dem Mündungsbereich angeordnet ist. Das Verwirbelungselement 4 ist dabei so ausgebildet, dass die erzeugbare turbulente Strömung der Verbrennungsluft 10 am Verwirbelungselement 4 im wesentlichen keine Gebiete zurückströmender Verbrennungsluft 10 aufweist. Damit wird erreicht, dass kein zündfähiges Brenngas-Luft-Gemisch zum Verwirbelungselement 4 nennenswert zurückströmen kann und damit keine Verbrennung am Verwirbelungselement 4 stabilisiert wird, die eine Beschädigung des Verwirbelungselements zur Folge haben könnte. Ein dauerhafter Betrieb des Brenners 1 mit Synthesegas SG bei geringer Stickoxidbildung ist somit erreicht.
Der Brenner 1 kann über den Pilotbrenner 9 als Diffusionsbrenner betrieben werden, wobei ein hochkalorischer Brennstoff eingesetzt wird. Alternativ kann er aber auch als Vormischbrenner eingesetzt werden; d.h. ein hochkalorischer Brennstoff und Verbrennungsluft 10 werden erst gemischt und dann der Verbrennung zugeführt. In dem Fall dient der Pilotbrenner 9 zur Aufrechterhaltung einer Pilotflamme, die die Verbrennung während des Vormischbrennerbetriebes bei einem eventuell wechselnden Brennstoff-Luftverhältnis stabilisiert . Bei einem Synthesegas-Betrieb des Brenners 1 wird das niederkalorische Synthesegas SG mit der Verbrennungsluft 10 jeweils erst stromab in den Mischbereich 27 überführt und dort innig gemischt und in einer nicht näher dargestellten Verbrennungszone verbrannt.
Wie bereits erläutert, ist es wegen der großen Volumenströme an niederkalorischen Brenngas SG und damit der geometrischen Ausdehnung des Mischbereichs 27 bislang schwierig gewesen, eine zeitlich und räumlich homogene Mischung im Hinblick auf eine stickoxidarme Verbrennung zu gewährleisten. Mit dem Brenner 1 der Erfindung wird eine besonders homogene Mischung von Verbrennungsluft 10 und Brenngas SG erreicht. Dies wird durch das Verwirbelungselement 4 in dem Luftkanal erreicht, dass die Verbrennungsluft 10 unmittelbar stromauf des
Mischbereichs 27 in eine turbulente Strömung überführt. Hierbei kommt es auf eine Turbulenzgraderhöhung im mikroskopischen Bereich an, d.h. große Wirbelbahnen mit stark ausgeprägten Nachlaufgebieten und insbesondere stromauf gerichtete Strömungskomponenten müssen vermieden werden, da ansonsten die Gefahr eines Flammenrückschlages in den Brenner 1 selbst bestünde. Diese Anforderung hat direkten Einfluss auf die konstruktive Ausgestaltung des Verwirbelungselements 4. Ein mögliches besonders vorteilhaftes Design ist in FIG 3 in einer Aufsicht auf ein Verwirbelungselement 4 gezeigt. Das Verwirbelungselement 4 muss dabei nicht zwangsläufig die gesamte Kanalhöhe des Luftkanals 2 einnehmen.
Mit dem in FIG 3 gezeigten Verwirbelungselement 4 wird eine räumlich und zeitlich besonders homogene Mischung von Ver¬ brennungsluft 10 und Synthesegas SG erreicht. Gleichzeitig ist der durch das Verwirbelungselement 4 hervorgerufene Druckverlust sehr gering, wodurch der Wirkungsgrad des Synthesgas-Brenners 1 kaum beeinträchtigt wird.
Im folgenden soll die FIG 3, die eine Draufsicht auf ein Verwirbelungselement 4 zeigt sowie die FIG 4, die ein mit gleichen Bezugszeichen versehenes Verwirbelungselement 4 in einer Seitenansicht zeigt, näher diskutiert werden:
Von einem inneren Begrenzungsring 52 führen gleich verteilt über den Ringumfang eine Vielzahl von Stegen 54 zu einem äußeren Begrenzungsring 53. Der Mittelpunkt des äußeren Begrenzungsringes 53 liegt auf der Symmetrieachse 59 des inneren Begrenzungsringes 52 und die Stege 54 sind normal auf den inneren Begrenzungsring 52 gerichtet. Die Verbindungsfläche 56 stellt die Mantelfläche eines
Kegelstumpfes zwischen inneren Begrenzungsring 52 und äußeren Begrenzungsring 53 dar. An jedem Steg 54 sind in das innere des Kegelstumpfes weisende, trapezförmige, ebene Auslenkelemente 51 angeordnet. Die breite Seite 51a jedes Auslenkelement 51 ist mit einem Steg 54 verbunden. Die
Auslenkelemente sind entlang dreier, zur Symmetrieachse 59 konzentrischer Kreise 55a, 55b, 55c zueinander gleich beabstandet angeordnet. Die Auslenkelemente 51 sind gegen eine normale der Verbindungsachse 56 geneigt, wobei jeweils die Auslenkelemente 51 entlang eines Kreises 55a, 55b, 55c gleichsinnig, von einem Kreis 55a, 55b, 55c zu einem benachbarten Kreis 55a, 55b, 55c gegensinnig geneigt sind.
Eine Durchströmung des Verwirbelungselements 4 mit Verbrennungsluft 10, normal zur Verbindungsfläche 56 in das Innere des Kegelstumpfes hat zur Folge, dass sich an den Schmalseiten 51b der Auslenkelemente 51 Wirbel 57 bilden. Somit wird der Verbrennungsluft 10 eine Mikroturbulenz aufgeprägt, die sich in den Mischbereich 27 hinein fortsetzt. Die in den Mischbereich 27 einmündeten Volumenströme aus niederkalorischen Brenngas SG und turbulenter Verbrennungsluft 10 aus dem Luftkanal 2 werden durch diese Mikroturbulenzen in der Verbrennungsluft 10 besonders intensiv und homogen vermischt. Die Neigung der Auslenkelemente 51 prägt der Hauptströmung der
Verbrennungsluft 10 zudem Sekundärströmungen 58 auf, die zusätzlich zur lokal guten Durchmischung aufgrund der Verwirbelung eine Homogenisierung des Brenngas-Luft-Gemisches über die gesamte Querschnittsfläche des Mischbereichs 27 (siehe FIG 2), begünstigen. Diese Ausgestaltung des Verwirbelungselements 4, welches im Synthesegasbetrieb ausschließlich auf die Luftströmung in den Luftkanal 2 Einfluss nimmt, hat gleichzeitig zur Folge, dass der durch die Verwirbelung hervorgerufene Druckverlust besonders gering ist .
Der Brenner 1 der Erfindung ist daher in besonderer Weise geeignet für den Betrieb in einer Kraftwerksanlage 24 mit integrierter Vergasung eines fossilen Brennstoffs zu einem Synthesegas SG, beispielsweise Kohlegas. Der Brenner 1 ist dabei in einer Brennkammer 16 einer Gasturbinenanlage 25 angeordnet .

Claims

Patentansprüche
1. Brenner (1) zur Verbrennung eines niederkalorischen Brenngases (SG) , mit einem sich entlang einer Brennerachse (12) erstreckenden Luftkanal (2) für die Zufuhr von
Verbrennungsluft (10) und mit einem Brenngaskanal (26), der auf einen hohen Volumenstrom an niederkalorischem Brenngas (SG) ausgelegt ist, wobei der Brenngaskanal (26) und der Luftkanal (2) in einen Mischbereich (27) einmünden, d a d u r c h g e k e n n z e i c h n e t , dass der Luftkanal (2) einen Mündungsbereich (28) unmittelbar strömungstechnisch angrenzend an den Mischbereich (27) aufweist, wobei in dem Mündungsbereich ein Verwirbelungselement (4) zur Erzeugung von turbulenter Verbrennungsluft (10) vorgesehen ist.
2. Brenner (1) nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass das Verwirbelungselement (4) so ausgebildet ist, dass die erzeugbare turbulente Strömung der Verbrennungsluft (10) am Verwirbelungselement (4) im wesentlichen keine Gebiete zurückströmender Verbrennungsluft (10) aufweist.
3. Brenner (1) nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , dass der Luftkanal (2) als ein Ringkanal ausgebildet ist, der den Brenngaskanal (26) konzentrisch umschließt.
4. Brenner (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Verwirbelungselement (4) aufweist a) einen ersten Begrenzungsring (52) mit einer
Symmetrieachse (59) , b) einen zweiten, größeren Begrenzungsring (53), dessen
Mittelpunkt auf der Symmetrieachse (59) liegt, c) eine Verbindungsfläche (56), die durch die beiden Begrenzungsringe (52,53) aufgespannt ist, und d) entlang auf der Verbindungsfläche (56) liegender Kreise (55a, 55b, 55c) , deren jeweiliger Mittelpunkt auf der Symmetrieachse (59) liegt, eine Vielzahl von flächigen Auslenkelementen (51) , die jeweils gegen eine Normale der Verbindungsfläche (56) geneigt sind.
5. Brenner (1) nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , dass die Verbindungsfläche (56) des Verwirbelungselements (4) weniger als die Hälfte der durch den größeren Begrenzungsring (53) umschlossenen Kreisfläche beträgt.
6. Brenner (1) nach Anspruch 4 oder 5, d a d u r c h g e k e n n z e i c h n e t , dass die einem Kreis (55a, 55b, 55c) zugeordneten Auslenkelemente (51) des Verwirbelungselements (4) untereinander gleich beabstandet sind.
7. Brenner (1) nach Anspruch 4, 5 oder 6, d a d u r c h g e k e n n z e i c h n e t , dass sich jedes Auslenkelement (51) des Verwirbelungselements (4) aus der Verbindungsfläche (56) zu einer Abrisskante (51b) hin zur Erzeugung von Wirbeln verjüngt, wobei es insbesondere eine eta Trapez- oder Dreiecksform aufweist.
8. Brenner (1) nach einem der Ansprüche 4 bis 7, d a d u r c h g e k e n n z e i c h n e t , dass die einem Kreis (55a, 55b, 55c) zugeordneten Auslenkelemente (51) des Verwirbelungselements (4) gleichsinnig geneigt sind.
9. Brenner (1) nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t , dass auf einander benachbarten Kreisen (55a, 55b, 55c) des Verwirbelungselements (51) angeordnete Auslenkelemente (51) gegensinnig geneigt sind.
10. Brenner (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass stromaufwärts von dem Verwirbelungselement (2) Drallschaufeln (5) im Luftkanal (2) angeordnet sind.
11. Verfahren zum Betrieb eines Brenners (1), bei dem ein fossiler Brennstoff (B) vergast und vergaster fossiler Brennstoff als ein niederkalorisches Synthesegas (SG) dem Brenner (1) zugeführt, mit Verbrennungsluft (10) zu einem Synthesegas-Luft-Gemisch vermischt und in einem Brennraum (17) verbrannt wird, d a d u r c h g e k e n n z e i c h n e t , dass unmittelbar vor der Mischung des Sythesegases (SG) mit der Verbrennungsluft (10) der Turbulenzgrad des Luftmassenstroms erhöht wird.
12. Verfahren nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t , dass der Turbulenzgrad derart erhöht wird, dass eine räumliche und zeitliche Verbesserung der Mischungsgüte erzielt wird.
13. Verfahren nach Anspruch 11 oder 12, g e k e n n z e i c h n e t d u r c h eine Anwendung beim Betrieb eines Brenners einer Gasturbine (18) .
14. Verfahren nach Anspruch 13, g e k e n n z e i c h n e t d u r c h eine Anwendung beim Betrieb einer Kraftwerksanlage (24) mit integrierter Vergasung eines fossilen Brennstoffs (B) zu einem Synthesegas (SG), insbesondere Kohlegas.
EP05801280A 2004-10-11 2005-09-30 Brenner zur verbrennung eines niederkalorischen brenngases und verfahren zum betrieb eines brenners Not-in-force EP1800062B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05801280A EP1800062B1 (de) 2004-10-11 2005-09-30 Brenner zur verbrennung eines niederkalorischen brenngases und verfahren zum betrieb eines brenners

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04024186A EP1645807A1 (de) 2004-10-11 2004-10-11 Brenner zur Verbrennung eines niederkalorischen Brenngases und Verfahren zum Betrieb eines Brenners
PCT/EP2005/054948 WO2006040269A1 (de) 2004-10-11 2005-09-30 Brenner zur verbrennung eines niederkalorischen brenngases und verfahren zum betrieb eines brenners
EP05801280A EP1800062B1 (de) 2004-10-11 2005-09-30 Brenner zur verbrennung eines niederkalorischen brenngases und verfahren zum betrieb eines brenners

Publications (2)

Publication Number Publication Date
EP1800062A1 true EP1800062A1 (de) 2007-06-27
EP1800062B1 EP1800062B1 (de) 2010-11-03

Family

ID=34926939

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04024186A Withdrawn EP1645807A1 (de) 2004-10-11 2004-10-11 Brenner zur Verbrennung eines niederkalorischen Brenngases und Verfahren zum Betrieb eines Brenners
EP05801280A Not-in-force EP1800062B1 (de) 2004-10-11 2005-09-30 Brenner zur verbrennung eines niederkalorischen brenngases und verfahren zum betrieb eines brenners

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP04024186A Withdrawn EP1645807A1 (de) 2004-10-11 2004-10-11 Brenner zur Verbrennung eines niederkalorischen Brenngases und Verfahren zum Betrieb eines Brenners

Country Status (4)

Country Link
EP (2) EP1645807A1 (de)
CN (1) CN101040149B (de)
ES (1) ES2354703T3 (de)
WO (1) WO2006040269A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015055916A1 (fr) 2013-10-14 2015-04-23 Cogebio Brûleur de gaz pauvre
EP3584501A1 (de) 2018-06-20 2019-12-25 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennersystem und verfahren zur erzeugung von heissgas in einer gasturbinenanlage

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2161502A1 (de) 2008-09-05 2010-03-10 Siemens Aktiengesellschaft Vormischbrenner zur Verbrennung eines niederkalorischen sowie hochkalorischen Brennstoffes
US8959922B2 (en) 2008-09-29 2015-02-24 Siemens Aktiengesellschaft Fuel nozzle with flower shaped nozzle tube
EP2169307A1 (de) 2008-09-29 2010-03-31 Siemens Aktiengesellschaft Brennstoffdüse
EP2169308A1 (de) * 2008-09-29 2010-03-31 Siemens Aktiengesellschaft Brennstoffzufuhr und Verfahren zur Brennstoffeindüsung
EP2312215A1 (de) * 2008-10-01 2011-04-20 Siemens Aktiengesellschaft Brenner und Verfahren zum Betrieb eines Brenners
CN101581449B (zh) * 2009-06-25 2010-12-29 上海应用技术学院 一种生物质气天然气混烧低NOx烧嘴及其应用
DE102009038845A1 (de) * 2009-08-26 2011-03-03 Siemens Aktiengesellschaft Drallschaufel, Brenner und Gasturbine
CN103134078B (zh) 2011-11-25 2015-03-25 中国科学院工程热物理研究所 一种阵列驻涡燃料-空气预混器
JP5889754B2 (ja) * 2012-09-05 2016-03-22 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器
EP2948715B1 (de) * 2013-01-24 2019-04-17 Siemens Aktiengesellschaft Brennersystem mit turbulenzelementen
DE102014207428A1 (de) * 2014-04-17 2015-10-22 Siemens Aktiengesellschaft Brenner mit Drallschaufel
CN109237514B (zh) * 2018-08-08 2024-02-23 中国华能集团有限公司 一种用于燃气轮机的双管路气体燃料燃烧器
CN109489069A (zh) * 2018-11-28 2019-03-19 中国华能集团有限公司 一种燃气轮机多种气体燃料混烧燃烧器结构及使用方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH609438A5 (de) * 1976-02-27 1979-02-28 Fascione Pietro
JPS5913822A (ja) * 1982-07-14 1984-01-24 Mitsui Eng & Shipbuild Co Ltd 低発熱量ガスの燃焼方法および低発熱量ガス用バ−ナ
EP0276696B1 (de) 1987-01-26 1990-09-12 Siemens Aktiengesellschaft Hybridbrenner für Vormischbetrieb mit Gas und/oder Öl, insbesondere für Gasturbinenanlagen
US4833878A (en) * 1987-04-09 1989-05-30 Solar Turbines Incorporated Wide range gaseous fuel combustion system for gas turbine engines
ES2050791T3 (es) * 1988-03-04 1994-06-01 Northern Eng Ind Quemador para la combustion de combustible pulverizado.
KR100234569B1 (ko) * 1991-04-25 1999-12-15 피터 토마스 석탄가스 및 다른연료의 저공해 연소를 위한 버너장치
CN2107591U (zh) * 1991-11-07 1992-06-17 鞍山钢铁公司 自动火焰可调烧嘴
DE4409918A1 (de) * 1994-03-23 1995-09-28 Abb Management Ag Brenner zum Betrieb einer Brennkammer
DE19549140A1 (de) * 1995-12-29 1997-07-03 Asea Brown Boveri Verfahren zum Betrieb einer Gasturbogruppe mit niederkalorischem Brennstoff
WO1998028574A2 (de) * 1996-12-20 1998-07-02 Siemens Aktiengesellschaft Brenner für fluidische brennstoffe, verfahren zum betrieb eines brenners und verwirbelungselement
EP1277920A1 (de) 2001-07-19 2003-01-22 Siemens Aktiengesellschaft Verfahren zum Betrieb eines Brenners einer Gasturbine sowie Kraftwerksanlage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006040269A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015055916A1 (fr) 2013-10-14 2015-04-23 Cogebio Brûleur de gaz pauvre
EP3584501A1 (de) 2018-06-20 2019-12-25 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennersystem und verfahren zur erzeugung von heissgas in einer gasturbinenanlage

Also Published As

Publication number Publication date
EP1800062B1 (de) 2010-11-03
CN101040149B (zh) 2010-06-16
EP1645807A1 (de) 2006-04-12
WO2006040269A1 (de) 2006-04-20
CN101040149A (zh) 2007-09-19
ES2354703T3 (es) 2011-03-17

Similar Documents

Publication Publication Date Title
EP1723369B1 (de) Vormischbrenner sowie verfahren zur verbrennung eines niederkalorischen brenngases
EP0675322B1 (de) Vormischbrenner
EP0580683B1 (de) Brenneranordnung, insbesondere für gasturbinen, zur schadstoffarmen verbrennung von kohlegas und anderen brennstoffen
EP0781967B1 (de) Gasturbinenringbrennkammer
EP1504222B1 (de) Vormischbrenner
EP1800062B1 (de) Brenner zur verbrennung eines niederkalorischen brenngases und verfahren zum betrieb eines brenners
EP2329196B1 (de) Brenner und verfahren zum betrieb eines brenners
DE102010037412B4 (de) Zweibrennstoffdüse für eine Turbomaschine
DE102010017779B4 (de) Radiale Einlassleitschaufeln für einen Brenner
DE4411623A1 (de) Vormischbrenner
EP3087323A1 (de) Brenner, gasturbine mit einem solchen brenner und brennstoffdüse
DE102008037480A1 (de) Mager vorgemischte Dual-Fuel-Ringrohrbrennkammer mit Radial-Mehrring-Stufendüse
EP0956475A2 (de) Brenner für fluidische brennstoffe, verfahren zum betrieb eines brenners und verwirbelungselement
EP0687860A2 (de) Brennkammer mit Selbstzündung
EP2171353A1 (de) Vormischbrenner und verfahren zum betrieb eines vormischbrenners
CH699911B1 (de) Brennkammer und Verfahren zum Mischen eines Druckluftstroms.
EP2601447A2 (de) Gasturbinenbrennkammer
EP1754937B1 (de) Brennkopf und Verfahren zur Verbrennung von Brennstoff
DE102004027702A1 (de) Injektor für Flüssigbrennstoff sowie gestufter Vormischbrenner mit diesem Injektor
DE102010027808A1 (de) Drallerzeuger für einen Brenner
DE4415916A1 (de) Verfahren und Vorrichtung zur Verbrennung eines fließfähigen Brennstoffs
DE112010003677B4 (de) Verfahren zum verbrennen wasserstoffreicher, gasförmiger brennstoffe in einem brenner sowie brenner zur durchführung des verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): ES GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): ES GB IT NL

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): ES GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20110307

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150909

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150924

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20151028

Year of fee payment: 11

Ref country code: NL

Payment date: 20150903

Year of fee payment: 11

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20161001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001