Nothing Special   »   [go: up one dir, main page]

EP1844744A1 - Laser arrangement for ophthalmic surgery - Google Patents

Laser arrangement for ophthalmic surgery Download PDF

Info

Publication number
EP1844744A1
EP1844744A1 EP06007601A EP06007601A EP1844744A1 EP 1844744 A1 EP1844744 A1 EP 1844744A1 EP 06007601 A EP06007601 A EP 06007601A EP 06007601 A EP06007601 A EP 06007601A EP 1844744 A1 EP1844744 A1 EP 1844744A1
Authority
EP
European Patent Office
Prior art keywords
lens
eye
applanation
applanation lens
laser radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06007601A
Other languages
German (de)
French (fr)
Other versions
EP1844744B1 (en
Inventor
Christian Wüllner
Michael Dr. Mrochen
Christof Donitzky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wavelight GmbH
Original Assignee
Wavelight GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wavelight GmbH filed Critical Wavelight GmbH
Priority to EP10008851A priority Critical patent/EP2277481B1/en
Priority to EP20060007601 priority patent/EP1844744B1/en
Priority to ES10008851T priority patent/ES2407996T3/en
Priority to ES06007601T priority patent/ES2368339T3/en
Publication of EP1844744A1 publication Critical patent/EP1844744A1/en
Application granted granted Critical
Publication of EP1844744B1 publication Critical patent/EP1844744B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/009Auxiliary devices making contact with the eyeball and coupling in laser light, e.g. goniolenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00825Methods or devices for eye surgery using laser for photodisruption
    • A61F9/00827Refractive correction, e.g. lenticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00872Cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00802Methods or devices for eye surgery using laser for photoablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00825Methods or devices for eye surgery using laser for photodisruption
    • A61F9/00836Flap cutting

Definitions

  • the invention relates to a laser device for ophthalmological surgery, with a laser radiation source providing pulsed laser radiation and means for coupling the laser radiation into an ocular treatment site, wherein the coupling means comprise an applanation lens to be placed on an eye surface.
  • Pulsed laser radiation is used in ophthalmic surgery, for example, to apply corneal (corneal) incisions or to ablate (ablate) material from the surface of the cornea.
  • the irradiated laser radiation causes a photodisruptive process in the corneal tissue, which leads to tissue separation or to the evaporation of tissue material.
  • Such treatments of the cornea take place, for example, in the context of refractive methods for the reduction or complete correction of refractive errors of the eye, in which the cornea is reshaped and thereby its refractive properties are changed.
  • LASIK Laser Keratomileusis
  • a lid is cut out of the corneal epithelium either mechanically (by means of an oscillating cutting blade in a so-called microkeratome) or optically (by means of laser radiation), which still hangs on the cornea in part of its edge.
  • this lid usually referred to as a flap, is folded to the side, whereby the underlying stroma becomes accessible.
  • laser radiation stromal tissue is then removed in accordance with a previously determined for each patient ablation. The flap is then folded back, allowing the wound to heal relatively quickly.
  • laser radiation of different wavelengths and / or pulse durations is used in laser-optical eye surgery.
  • NIR low infrared
  • pulse durations in the femtosecond range or in the low picosecond range are customary to use in the low infrared (NIR) wavelength range, for example between 1000 and 1100 nm, with pulse durations in the femtosecond range or in the low picosecond range.
  • the photoablation of stromal tissue usually laser radiation in the ultraviolet wavelength range, for example 193 nm or 347 nm, the pulse durations used can also be longer, down to the nanosecond range.
  • fixation device For a precise coupling of the laser radiation in the eye, it is known to fix the eye by means of a fixation device, which is sucked by vacuum on the eye.
  • the fixation device comprises an applanation lens which serves as a distal coupling element for the laser radiation and which comes to sit in direct contact with the ocular surface when the fixation device is aspirated.
  • the applanation lens creates a defined, stable interface between the eye and the laser system. Examples of fixation devices and applanation lenses can be found in US 2002/0103481 A1 . EP 0 608 052 A2 . EP 0 993 814 A1 and US 5,549,632 ,
  • Previous applanation lenses extend over large areas of the cornea and sit unmoving on the cornea. They are available in many different forms. By sucking the fixation device, they are pressed against the eye so that the cornea deforms and clings flat to the lens. Particularly in the case of plane-parallel applanation lenses and convexly curved lenses, a comparatively high biomechanical load is exerted on the cornea. In addition, the intraocular pressure is comparatively greatly increased by the deformation of the eye. There are also known applanation lenses with a concave, rotationally symmetrical contact surface on their side facing the eye, both with spherical and with aspheric curvature. Although the biomechanical loading of the cornea and the increased intraocular pressure can be alleviated with both concave lens variants. However, further improvements are needed in this regard.
  • the object of the invention is therefore to specify geometries for applanation lenses, which allow a further reduction of the intraocular pressure and the corneal load.
  • the applanation lens has an at least approximately bitorische contact surface on its side facing the eye.
  • the applanation lens is configured as a rod lens, wherein the applanation lens is associated with movement drive means for moving the applanation lens over the ocular surface.
  • the first aspect makes use of the knowledge that the corneal surface of the human eye is not rotationally symmetrical but has different curvature along different meridians.
  • the corneal surface can be modeled in good approximation and with good generality by a bitoric surface which has different radii of curvature in two mutually perpendicular meridian sections and is aspheric in both meridian directions.
  • a bitoric surface which has different radii of curvature in two mutually perpendicular meridian sections and is aspheric in both meridian directions.
  • the contact surface of the applanation lens according to the invention can be modeled, for example, this formula. It is understood that the contact surface of the applanation lens does not have to be exactly bitoric in the strictly mathematical sense as long as it has aspherical contours with different radii of curvature in two transverse (not necessarily exactly perpendicular) meridional directions.
  • the contact surface of the applanation lens may, for example, be formed on the basis of data obtained by measuring the corneal surface of one or more persons. Thus, for example, the applanation lens can be made individually for each patient or the data of a large number of persons can be converted into one or more standard lenses.
  • the cornea Due to the better adaptation of the contact surface of the lens to the actual shape of the corneal surface, the cornea must deform less so as to conform perfectly to the contact surface. Therefore, their biomechanical load is lower and also the intraocular pressure does not increase so much.
  • the applanation lens used is a rod lens which can be moved over the cornea by means of its associated movement drive means.
  • the movable support allows the rod lens to be in contact with the ocular surface only in a relatively small local area.
  • By moving the rod lens over the cornea a larger area of the eye surface can be swept over, so that even with a rod lens larger areas of the eye, especially the cornea, can be processed.
  • the small-surface contact with the ocular surface leads to the fact that the cornea is only locally deformed and loaded, which has a favorable effect on the total biomechanical load of the cornea and the intraocular pressure.
  • the movement driving means may be adapted to move the rod lens transversely to its longitudinal direction substantially linearly over the cornea. Alternatively or additionally, they may be adapted to rotate the rod lens about a lens vertical axis in order thereby to be able to cover larger areas of the corneal surface.
  • the rod lens When viewed in a section transverse to the rod longitudinal direction, the rod lens preferably has a convexly rounded contact surface for the abutment with the cornea.
  • the curvature of this contact surface may be spherical or aspherical.
  • the contact surface of the lens When viewed along the rod longitudinal direction, the contact surface of the lens may be substantially rectilinear. It is of course not excluded that the contact surface of the rod lens is concavely curved in view of the curvature of the corneal surface when viewed along its rod longitudinal direction, for example in at least approximately correspondence to the curvature of the corneal surface in one of the two main meridian directions.
  • the invention further provides an applanation lens for use in a laser device according to one of the above-described two modes.
  • the applanation lens has an at least approximately bitoric contact surface or, in the case of a design as a rod lens, a convex-cylindrical contact surface on a lens side intended for contact with an ocular surface. Based on empirical data that can be obtained by surveying the corneal surface of a large number of individuals, it is possible to make a set of applanation lenses that differ in their radii of curvature and / or different asphericities of their interface.
  • the laser device 12 comprises a laser radiation source 14, which generates pulsed laser radiation in the NIR or UV wavelength range.
  • the pulse duration of the laser radiation generated is in the range of femtoseconds, but it can also be in the pico or even in the nanosecond range.
  • the laser radiation source 14 may include, for example, a fiber laser, a solid-state laser or an excimer laser. Limitations on the type of the laser radiation source 14, the wavelength of the laser radiation generated by it and the pulse lengths are not intended in the context of the invention.
  • the radiation pulses provided by the laser radiation source 14 are conducted via a beam guiding arrangement 16 to a coupling-in unit 18, by means of which the pulses are coupled into the cornea of the eye 10.
  • the coupling-in unit 18 comprises fixing means by means of which the coupling-in unit 18 or at least one eye-near part thereof can be fixed to the eye 10 by vacuum suction.
  • the fixing means have a preferably annular suction chamber 20, which is closed when placing the coupling unit 18 on the eye 10 through the eye surface and is connected in a manner not shown to a vacuum pump.
  • the fixation of the eye by suction of a fixation component is known per se in the art, which is why details of the fixation means of the coupling-in unit 18 need not be discussed here.
  • the beam guiding arrangement 16 or / and the coupling-in unit 18 furthermore contain deflection means (usually referred to as scanners), not shown in more detail, in order to prevent the Laser radiation over a target area to be processed to move away, and focusing means for focusing the injected into the eye 10 radiation to a target point (focus).
  • deflection means usually referred to as scanners
  • focusing means for focusing the injected into the eye 10 radiation to a target point (focus).
  • Such deflecting and focusing means are well known in the art. A more detailed description of these components can therefore be omitted here.
  • the coupling-in unit 18 contains an applanation lens 22 which, in the course of fixing the coupling-in unit 18, reaches the eye 10 for support on the surface of the cornea.
  • the applanation lens has, on its side facing the eye, a contact surface designated by 24 in FIG. 1, which, in one embodiment, is designed substantially in a bidirectional adaptation to the actual contour of the human corneal surface.
  • the applanation lens 22 extends over the entire area of the cornea to be processed; she sits motionless on the cornea during the operation.
  • the applanation lens is a rod lens
  • the contact surface is round-convex when viewed in a section transverse to the rod longitudinal direction.
  • the rod lens may be a cylindrical lens, which extends in the direction of its longitudinal extent substantially rectilinear.
  • the rod lens is indicated at 22 '. Due to its comparatively small-area contact area with the corneal surface of the eye 10, it is movably arranged in the coupling-in unit 18, wherein a motor, for example electromotive or piezomotor, drive unit 25 is provided for driving the rod lens 22 ', which is driven by a suitable drive connection (indicated at 26). drivingly coupled or couplable with the rod lens 22 '.
  • a motor for example electromotive or piezomotor
  • Figure 2 shows the eye 10 in an enlarged view obliquely from the front.
  • the cornea is indicated at 28.
  • its surface does not have an exact spherical contour, but rather an approximate bitoric shape.
  • Bitterness means that the corneal surface runs along each of two main meridians that run transversely to one another aspherically, each with a different radius of curvature.
  • the two meridians are shown in dashed lines in Figure 2 and designated 30, 32.
  • the angle between the two meridians 30, 32 is often not exactly 90 degrees. Nevertheless, it has been shown that the human surface of the cornea can be mathematically well modeled by a bitorus surface with mutually perpendicular meridians.
  • the meridians of the contact surface 24 are preferably perpendicular to one another. It is certainly not excluded, for even better adaptation to the actual conditions of the human corneal surface, for example, depending on the particular patient, the meridians of the bitorischen contact surface 24 is not exactly perpendicular to each other, but for example at an angle of 85 degrees or another angle other than 90 degrees.
  • FIG. 3 schematically shows the applanation lens 22 in a state in which it is placed on the cornea 28 of the eye 10.
  • the sectional view of Figure 3 shows the course of the contact surface 24 along the meridian larger radius of curvature.
  • the rotated by 90 degrees sectional view of Figure 4 shows the course of the contact surface 24 along the meridian smaller radius of curvature.
  • the asphericity of the contact surface 24 in the two meridian directions may be the same or different.
  • the applanation lens 22 On its side facing away from the eye, the applanation lens 22 is shown in FIGS. 3 and 4 with a convexly curved shape. Other geometries of the eye-facing lens side of the applanation lens 22 are also possible. For example, in a modified embodiment, the eye-facing lens side of the applanation lens 22 may be a plane surface. Restrictions on the geometry of the eye-facing lens surface are by no means intended in the context of the invention.
  • the rod lens 22 ' is shown enlarged in a cross-sectional view transversely to its rod longitudinal direction in Figure 5.
  • Their eye-facing contact surface - now designated by 24 'to distinguish it from the bitoric contact surface 24 of the applanation lens 22 - is aspherically convexly curved and can be rectilinear or curved in the direction of the rod longitudinal direction of the lens 22 that is normal to the plane of the figure.
  • the rod lens 22 is a true cylindrical lens.
  • FIG. 6 illustrates how, by linear displacement of the rod lens 22 'transversely to its rod longitudinal direction along a displacement direction 34, a larger area of the cornea 28 can be swept over. It is understood that when moving the rod lens 22 'and the coupled into the eye laser beam (indicated in Figure 6 by a point 36) must be carried by appropriate control of the above-mentioned deflection so as not to the rod lens 22' passing directly into the Callus invade.
  • the laser beam 36 can be moved back and forth along the longitudinal extension of the rod lens 22, ie transversely to the feed direction 34, by means of the deflection means, so that the laser beam 36 while the advancing movement of the rod lens 22 'continuously back and forth along the same. In this way, for example, it is possible to produce the areal depth cut in the cornea which is required for the flap preparation.
  • FIG. 7 illustrates the rotational adjustment of the rod lens 22 '.
  • it is rotated about the cornea 28 about a substantially central axis of rotation 38. If the laser beam 36 is held substantially at the same rotational axis offset longitudinal position of the rod lens 22 ', a circular cut 40 indicated by dashed lines can be generated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Laser Surgery Devices (AREA)
  • Radiation-Therapy Devices (AREA)
  • Lasers (AREA)

Abstract

The laser apparatus (12), for ophthalmic surgery e.g. laser assisted in situ keratomileusis (LASIK), has a pulsed laser unit (14) with an applicator (18) to direct the laser beam at the cornea of the eye (10), fixed in position by the vacuum in a suction chamber (20). The applicator incorporates an applanation lens (22) with a contact surface (24) and drives (25,26) to move the lens over the eye surface.

Description

Die Erfindung betrifft eine Lasereinrichtung für die ophthalmologische Chirurgie, mit einer gepulste Laserstrahlung bereitstellenden Laserstrahlungsquelle und Mitteln zur Einkopplung der Laserstrahlung in einen okularen Behandlungsort, wobei die Einkopplungsmittel eine auf eine Augenoberfläche aufzusetzende Applanationslinse umfassen.The invention relates to a laser device for ophthalmological surgery, with a laser radiation source providing pulsed laser radiation and means for coupling the laser radiation into an ocular treatment site, wherein the coupling means comprise an applanation lens to be placed on an eye surface.

Gepulste Laserstrahlung wird in der Augenchirurgie beispielsweise zur Anbringung von Schnitten in der Hornhaut (Kornea) oder zum Abtrag (Ablation) von Material von der Hornhautoberfläche verwendet. Die eingestrahlte Laserstrahlung bewirkt im Hornhautgewebe einen photodisruptiven Prozess, der zur Gewebetrennung bzw. zur Verdampfung von Gewebematerial führt. Solche Bearbeitungen der Kornea finden beispielsweise im Rahmen von refraktiven Verfahren zur Minderung oder vollständigen Behebung von Fehlsichtigkeiten des Auges statt, bei denen die Kornea neugeformt wird und hierdurch ihre Brechungseigenschaften verändert werden.Pulsed laser radiation is used in ophthalmic surgery, for example, to apply corneal (corneal) incisions or to ablate (ablate) material from the surface of the cornea. The irradiated laser radiation causes a photodisruptive process in the corneal tissue, which leads to tissue separation or to the evaporation of tissue material. Such treatments of the cornea take place, for example, in the context of refractive methods for the reduction or complete correction of refractive errors of the eye, in which the cornea is reshaped and thereby its refractive properties are changed.

Eines von mehreren gängigen refraktiven Verfahren der Hornhautchirurgie ist die sogenannte LASIK (Laser Keratomileusis). Hierbei wird aus dem Hornhautepithel entweder mechanisch (mittels einer oszillierenden Schneidklinge in einem sogenannten Mikrokeratom) oder optisch (mittels Laserstrahlung) ein Deckelchen herausgeschnitten, das in einem Teil seines Rands noch an der Hornhaut hängt. Anschließend wird dieses üblicherweise als Flap bezeichnete Deckelchen zur Seite geklappt, wodurch das darunter liegende Stroma zugänglich wird. Mit Laserstrahlung wird dann nach Maßgabe eines zuvor für den jeweiligen Patienten ermittelten Ablationsprofils Stromagewebe abgetragen. Der Flap wird danach wieder zurückgeklappt, wodurch die Wunde relativ schnell verheilen kann.One of several common refractive procedures of corneal surgery is the so-called LASIK (Laser Keratomileusis). Here, a lid is cut out of the corneal epithelium either mechanically (by means of an oscillating cutting blade in a so-called microkeratome) or optically (by means of laser radiation), which still hangs on the cornea in part of its edge. Subsequently, this lid, usually referred to as a flap, is folded to the side, whereby the underlying stroma becomes accessible. With laser radiation stromal tissue is then removed in accordance with a previously determined for each patient ablation. The flap is then folded back, allowing the wound to heal relatively quickly.

Je nach Art der Bearbeitung (z.B. Inzision oder Ablation) oder/und Gewebetyp wird in der laseroptischen Augenchirurgie Laserstrahlung unterschiedlicher Wellenlängen oder/und Pulsdauern eingesetzt. Für die Anbringung von Schnitten in der Hornhaut (etwa für die Präparation eines Flaps) beispielsweise ist es üblich, Laserstrahlung im niederen infraroten (NIR) Wellenlängenbereich, beispielsweise zwischen 1000 und 1100 nm, mit Pulsdauern im Femtosekundenbereich oder im niederen Pikosekundenbereich einzusetzen. Dagegen wird für die Photoablation von Stromagewebe in der Regel auf Laserstrahlung im ultravioletten Wellenlängenbereich, beispielsweise 193 nm oder 347 nm, zurückgegriffen, wobei die verwendeten Pulsdauern auch länger sein können, bis hin in den Nanosekundenbereich.Depending on the type of processing (eg incision or ablation) and / or tissue type, laser radiation of different wavelengths and / or pulse durations is used in laser-optical eye surgery. For the attachment of cuts in the cornea (for example for the preparation of a flap), for example, it is customary to use laser radiation in the low infrared (NIR) wavelength range, for example between 1000 and 1100 nm, with pulse durations in the femtosecond range or in the low picosecond range. In contrast, for the photoablation of stromal tissue usually laser radiation in the ultraviolet wavelength range, for example 193 nm or 347 nm, the pulse durations used can also be longer, down to the nanosecond range.

Für eine präzise Einkopplung der Laserstrahlung in das Auge ist es bekannt, das Auge mittels einer Fixationsvorrichtung zu fixieren, welche durch Vakuum am Auge angesaugt wird. Die Fixationsvorrichtung umfasst eine als distales Einkoppelelement für die Laserstrahlung dienende Applanationslinse, die beim Ansaugen der Fixationsvorrichtung in direktem Kontakt mit der Augenoberfläche zu Sitzen kommt. Durch die Applanationslinse wird eine definierte, stabile Schnittstelle zwischen dem Auge und dem Lasersystem geschaffen. Beispiele von Fixationsvorrichtungen und Applanationslinsen finden sich in US 2002/0103481 A1 , EP 0 608 052 A2 , EP 0 993 814 A1 und US 5,549,632 .For a precise coupling of the laser radiation in the eye, it is known to fix the eye by means of a fixation device, which is sucked by vacuum on the eye. The fixation device comprises an applanation lens which serves as a distal coupling element for the laser radiation and which comes to sit in direct contact with the ocular surface when the fixation device is aspirated. The applanation lens creates a defined, stable interface between the eye and the laser system. Examples of fixation devices and applanation lenses can be found in US 2002/0103481 A1 . EP 0 608 052 A2 . EP 0 993 814 A1 and US 5,549,632 ,

Bisherige Applanationslinsen erstrecken sich über weite Bereiche der Hornhaut und sitzen unbewegt auf der Hornhaut. Es gibt sie in unterschiedlichsten Formen. Durch das Ansaugen der Fixationsvorrichtung werden sie so gegen das Auge gedrückt, dass sich die Hornhaut verformt und flächig an die Linse anschmiegt. Besonders bei planparallelen Applanationslinsen und bei konvex gekrümmten Linsen wird dabei eine vergleichsweise hohe biomechanische Belastung auf die Hornhaut ausgeübt. Außerdem wird durch die Verformung des Auges der Augeninnendruck vergleichsweise stark erhöht. Es sind auch Applanationslinsen mit einer konkav geformten, rotationssymmetrischen Anlagefläche auf ihrer augenzugewandten Seite bekannt, und zwar sowohl mit sphärischer als auch mit asphärischer Krümmung. Mit beiden konkaven Linsenvarianten lassen sich zwar die biomechanische Belastung der Hornhaut und der erhöhte Augeninnendruck abschwächen. Es sind jedoch weitere Verbesserungen in dieser Hinsicht nötig.Previous applanation lenses extend over large areas of the cornea and sit unmoving on the cornea. They are available in many different forms. By sucking the fixation device, they are pressed against the eye so that the cornea deforms and clings flat to the lens. Particularly in the case of plane-parallel applanation lenses and convexly curved lenses, a comparatively high biomechanical load is exerted on the cornea. In addition, the intraocular pressure is comparatively greatly increased by the deformation of the eye. There are also known applanation lenses with a concave, rotationally symmetrical contact surface on their side facing the eye, both with spherical and with aspheric curvature. Although the biomechanical loading of the cornea and the increased intraocular pressure can be alleviated with both concave lens variants. However, further improvements are needed in this regard.

Aufgabe der Erfindung ist es deshalb, Geometrien für Applanationslinsen anzugeben, die eine weitere Reduzierung des Augeninnendrucks und der Hornhautbelastung gestatten.The object of the invention is therefore to specify geometries for applanation lenses, which allow a further reduction of the intraocular pressure and the corneal load.

Zur Lösung dieser Aufgabe ist nach einem Aspekt der Erfindung bei einer Lasereinrichtung der eingangs bezeichneten gattungsgemäßen Art vorgesehen, dass die Applanationslinse auf ihrer augenzugewandten Seite eine zumindest näherungsweise bitorische Kontaktfläche besitzt. Nach einem anderen Aspekt ist die Applanationslinse als Stablinse ausgebildet, wobei der Applanationslinse Bewegungsantriebsmittel zur Bewegung der Applanationslinse über die Augenoberfläche zugeordnet sind.To solve this problem, it is provided according to one aspect of the invention in a laser device of the generic type described above that the applanation lens has an at least approximately bitorische contact surface on its side facing the eye. In another aspect, the applanation lens is configured as a rod lens, wherein the applanation lens is associated with movement drive means for moving the applanation lens over the ocular surface.

Der erste Aspekt macht sich der Erkenntnis zunutze, dass die Hornhautoberfläche des menschlichen Auges nicht rotationssymmetrisch ist, sondern entlang unterschiedlicher Meridiane unterschiedlichen Krümmungsverlauf besitzt. Insbesondere kann die Hornhautoberfläche in guter Näherung und mit guter Allgemeingültigkeit durch eine bitorische Fläche modelliert werden, welche in zwei zueinander senkrechten Meridianschnitten unterschiedliche Krümmungsradien besitzt und in beiden Meridianrichtungen asphärisch ist. In dem Artikel " Custom photorefractive keratectomy of sperical and cylindrical refractive error and higher-order aberration" von Jim Schwiegerling und Robert W. Snyder, erschienen in J. Opt. Soc. Am. A, Bd. 15, Nr. 9, September 1998, Seiten 2572-2579 , ist eine mathematische Formel (dort Gleichung (6)) zur Beschreibung einer bitorischen Fläche in Polarkoordinaten angegeben. Die Kontaktfläche der erfindungsgemäßen Applanationslinse kann beispielsweise dieser Formel nachgebildet sein. Es versteht sich, dass die Kontaktfläche der Applanationslinse nicht im streng mathematischen Sinn exakt bitorisch sein muss, solange sie in zwei quer (nicht notwendigerweise exakt senkrecht) zueinander verlaufenden Meridianrichtungen jeweils asphärische Kontur mit unterschiedlichen Krümmungsradien hat. Die Kontaktfläche der Applanationslinse kann beispielsweise auf der Basis von Daten gebildet sein, welche durch Vermessung der Hornhautoberfläche einer oder mehrerer Personen gewonnen wurden. So kann beispielsweise die Applanationslinse für jeden Patienten individuell angefertigt werden oder es können die Daten einer Vielzahl von Personen in eine oder mehrere Standardlinsen umgesetzt werden.The first aspect makes use of the knowledge that the corneal surface of the human eye is not rotationally symmetrical but has different curvature along different meridians. In particular, the corneal surface can be modeled in good approximation and with good generality by a bitoric surface which has different radii of curvature in two mutually perpendicular meridian sections and is aspheric in both meridian directions. In the article " Custom photorefractive keratectomy of sperical and cylindrical refractive error and higher-order aberration "by Jim Schwiegerling and Robert W. Snyder, published in J. Opt. Soc. Am. A, Vol. 15, No. 9, September 1998, pages 2572- 2579 , a mathematical formula (there equation (6)) is given for describing a bitoric surface in polar coordinates. The contact surface of the applanation lens according to the invention can be modeled, for example, this formula. It is understood that the contact surface of the applanation lens does not have to be exactly bitoric in the strictly mathematical sense as long as it has aspherical contours with different radii of curvature in two transverse (not necessarily exactly perpendicular) meridional directions. The contact surface of the applanation lens may, for example, be formed on the basis of data obtained by measuring the corneal surface of one or more persons. Thus, for example, the applanation lens can be made individually for each patient or the data of a large number of persons can be converted into one or more standard lenses.

Aufgrund der besseren Anpassung der Kontaktfläche der Linse an die tatsächliche Form der Hornhautoberfläche muss sich die Hornhaut weniger verformen, um sich perfekt an die Kontaktfläche anzuschmiegen. Deshalb ist ihre biomechanische Belastung geringer und auch der Augeninnendruck steigt nicht so stark an.Due to the better adaptation of the contact surface of the lens to the actual shape of the corneal surface, the cornea must deform less so as to conform perfectly to the contact surface. Therefore, their biomechanical load is lower and also the intraocular pressure does not increase so much.

Gemäß dem zweiten Aspekt wird als Applanationslinse eine Stablinse verwendet, welche durch ihr zugeordnete Bewegungsantriebsmittel über die Hornhaut bewegbar ist. Die bewegliche Halterung ermöglicht es, dass die Stablinse nur in einem vergleichsweise kleinflächigen, lokalen Bereich Kontakt mit der Augenoberfläche haben kann. Durch Bewegung der Stablinse über die Hornhaut kann ein größerer Bereich der Augenoberfläche überstrichen werden, so dass auch mit einer Stablinse größere Bereiche des Auges, insbesondere der Hornhaut, bearbeitet werden können. Der kleinflächige Kontakt mit der Augenoberfläche führt dazu, dass auch die Hornhaut nur lokal verformt und belastet wird, was sich günstig auf die biomechanische Gesamtbelastung der Hornhaut und den Augeninnendruck auswirkt.According to the second aspect, the applanation lens used is a rod lens which can be moved over the cornea by means of its associated movement drive means. The movable support allows the rod lens to be in contact with the ocular surface only in a relatively small local area. By moving the rod lens over the cornea, a larger area of the eye surface can be swept over, so that even with a rod lens larger areas of the eye, especially the cornea, can be processed. The small-surface contact with the ocular surface leads to the fact that the cornea is only locally deformed and loaded, which has a favorable effect on the total biomechanical load of the cornea and the intraocular pressure.

Die Bewegungsantriebsmittel können dazu eingerichtet sein, die Stablinse quer zu ihrer Längsrichtung im wesentlichen linear über die Hornhaut zu bewegen. Alternativ oder zusätzlich können sie dazu eingerichtet sein, die Stablinse um eine Linsenhochachse zu drehen, um hierdurch größere Bereiche der Hornhautoberfläche überstreichen zu können.The movement driving means may be adapted to move the rod lens transversely to its longitudinal direction substantially linearly over the cornea. Alternatively or additionally, they may be adapted to rotate the rod lens about a lens vertical axis in order thereby to be able to cover larger areas of the corneal surface.

Bei Betrachtung in einem Schnitt quer zur Stablängsrichtung hat die Stablinse vorzugsweise eine konvex gerundete Kontaktfläche für die Anlage an der Hornhaut. Der Krümmungsverlauf dieser Kontaktfläche kann sphärisch oder asphärisch sein. Bei Betrachtung entlang der Stablängsrichtung kann die Kontaktfläche der Linse im wesentlichen geradlinig verlaufen. Es ist freilich nicht ausgeschlossen, dass die Kontaktfläche der Stablinse angesichts der Krümmung der Hornhautoberfläche bei Betrachtung entlang ihrer Stablängsrichtung konkav gekrümmt ist, beispielsweise in wenigstens näherungsweiser Entsprechung zum Krümmungsverlauf der Hornhautoberfläche in einer der beiden Hauptmeridianrichtungen.When viewed in a section transverse to the rod longitudinal direction, the rod lens preferably has a convexly rounded contact surface for the abutment with the cornea. The curvature of this contact surface may be spherical or aspherical. When viewed along the rod longitudinal direction, the contact surface of the lens may be substantially rectilinear. It is of course not excluded that the contact surface of the rod lens is concavely curved in view of the curvature of the corneal surface when viewed along its rod longitudinal direction, for example in at least approximately correspondence to the curvature of the corneal surface in one of the two main meridian directions.

Die Erfindung stellt ferner eine Applanationslinse zur Verwendung in einer Lasereinrichtung nach einer der vorstehend beschriebenen beiden Arten bereit. Die Applanationslinse besitzt hierbei auf einer zur Anlage an einer Augenoberfläche bestimmten Linsenseite eine zumindest näherungsweise bitorische Kontaktfläche oder - bei Ausführung als Stablinse - eine konvex-zylindrische Kontaktfläche. Basierend auf empirischen Daten, die durch Vermessung der Hornhautoberfläche einer Vielzahl von Personen gewonnen werden können, ist es möglich, einen Satz von Applanationslinsen anzufertigen, die sich durch unterschiedliche Krümmungsradien oder/und unterschiedliche Asphärizitäten ihrer Kontaktfläche unterscheiden.The invention further provides an applanation lens for use in a laser device according to one of the above-described two modes. In this case, the applanation lens has an at least approximately bitoric contact surface or, in the case of a design as a rod lens, a convex-cylindrical contact surface on a lens side intended for contact with an ocular surface. Based on empirical data that can be obtained by surveying the corneal surface of a large number of individuals, it is possible to make a set of applanation lenses that differ in their radii of curvature and / or different asphericities of their interface.

Die Erfindung wird nachfolgend anhand der beigefügten Zeichnungen weiter erläutert. Es stellen dar:

  • Figur 1 in starker schematischer Vereinfachung eine Lasereinrichtung für die ophthalmologische Chirurgie,
  • Figur 2 schematisch die menschliche Hornhautoberfläche,
  • Figur 3 im Schnitt und schematisch eine auf ein Auge aufgesetzte bitorische Applanationslinse gemäß einem Ausführungsbeispiel,
  • Figur 4 eine Schnittansicht der Applanationslinse der Figur 3 entlang der dortigen Schnittrichtung IV-IV,
  • Figur 5 im Schnitt schematisch eine auf ein Auge aufgesetzte Stablinse gemäß einem Ausführungsbeispiel,
  • Figur 6 in schematischer Draufsicht eine linear über eine Hornhautoberfläche bewegte Stablinse und
  • Figur 7 in schematischer Draufsicht eine durch Drehung über eine Hornhautoberfläche bewegbare Stablinse.
The invention will be further explained with reference to the accompanying drawings. They show:
  • FIG. 1 shows a highly schematic simplification of a laser device for ophthalmological surgery,
  • FIG. 2 schematically shows the human corneal surface,
  • FIG. 3 in section and schematically a bitoric applanation lens applied to an eye according to an embodiment,
  • FIG. 4 shows a sectional view of the applanation lens of FIG. 3 along the sectioning direction IV-IV there,
  • FIG. 5 is a schematic sectional view of a rod lens mounted on an eye according to an exemplary embodiment;
  • FIG. 6 is a schematic plan view of a linear lens moved over a corneal surface and FIG
  • FIG. 7 is a schematic plan view of a rod lens which can be moved by rotation over a corneal surface.

Es wird zunächst auf Figur 1 verwiesen. Dort ist schematisch ein menschliches Auge 10 angedeutet, dessen Hornhaut mit einer Lasereinrichtung 12 bearbeitet wird, beispielsweise zur Erzeugung eines Flap-Schnitts im Rahmen einer LASIK-Behandlung. Die Lasereinrichtung 12 umfasst eine Laserstrahlungsquelle 14, welche gepulste Laserstrahlung im NIR- oder UV-Wellenlängenbereich erzeugt. Vorzugsweise liegt die Pulsdauer der erzeugten Laserstrahlung im Bereich von Femtosekunden, sie kann aber auch im Piko- oder sogar im Nanosekundenbereich liegen. Die Laserstrahlungsquelle 14 kann beispielsweise einen Faserlaser, einen Festkörperlaser oder einen Excimer-Laser enthalten. Beschränkungen hinsichtlich des Typs der Laserstrahlungsquelle 14, der Wellenlänge der von ihr erzeugten Laserstrahlung und der Pulslängen sind im Rahmen der Erfindung nicht beabsichtigt.Reference is first made to FIG. There, a human eye 10 is schematically indicated, the cornea is processed with a laser device 12, for example, to produce a flap section in the context of a LASIK treatment. The laser device 12 comprises a laser radiation source 14, which generates pulsed laser radiation in the NIR or UV wavelength range. Preferably, the pulse duration of the laser radiation generated is in the range of femtoseconds, but it can also be in the pico or even in the nanosecond range. The laser radiation source 14 may include, for example, a fiber laser, a solid-state laser or an excimer laser. Limitations on the type of the laser radiation source 14, the wavelength of the laser radiation generated by it and the pulse lengths are not intended in the context of the invention.

Die von der Laserstrahlungsquelle 14 bereitgestellten Strahlungspulse werden über eine Strahlführungsanordnung 16 zu einer Einkoppeleinheit 18 geleitet, mittels welcher die Pulse in die Hornhaut des Auges 10 eingekoppelt werden. Die Einkoppeleinheit 18 umfasst Fixationsmittel, mittels welcher die Einkoppeleinheit 18 oder zumindest ein augennaher Teil derselben an dem Auge 10 durch Vakuumansaugung fixierbar ist. Hierzu weisen die Fixationsmittel eine vorzugsweise ringförmige Ansaugkammer 20 auf, welche bei Aufsetzen der Einkoppeleinheit 18 auf das Auge 10 durch die Augenoberfläche geschlossen wird und in nicht näher dargestellter Weise an eine Vakuumpumpe angeschlossen ist. Die Fixation des Auges durch Ansaugen einer Fixationskomponente ist in der Fachwelt an sich bekannt, weswegen auf Details der Fixationsmittel der Einkoppeleinheit 18 hier nicht näher eingegangen werden muss.The radiation pulses provided by the laser radiation source 14 are conducted via a beam guiding arrangement 16 to a coupling-in unit 18, by means of which the pulses are coupled into the cornea of the eye 10. The coupling-in unit 18 comprises fixing means by means of which the coupling-in unit 18 or at least one eye-near part thereof can be fixed to the eye 10 by vacuum suction. For this purpose, the fixing means have a preferably annular suction chamber 20, which is closed when placing the coupling unit 18 on the eye 10 through the eye surface and is connected in a manner not shown to a vacuum pump. The fixation of the eye by suction of a fixation component is known per se in the art, which is why details of the fixation means of the coupling-in unit 18 need not be discussed here.

Die Strahlführungsanordnung 16 oder/und die Einkoppeleinheit 18 enthalten ferner nicht näher dargestellte Ablenkmittel (üblicherweise als Scanner bezeichnet), um die Laserstrahlung über ein zu bearbeitendes Zielgebiet hinwegbewegen zu können, sowie Fokussiermittel zur Fokussierung der in das Auge 10 eingekoppelten Strahlung auf einen Zielpunkt (Fokus). Solche Ablenk- und Fokussiermittel sind in der Fachwelt hinlänglich bekannt. Auf eine genauere Beschreibung dieser Komponenten kann deshalb an dieser Stelle verzichtet werden.The beam guiding arrangement 16 or / and the coupling-in unit 18 furthermore contain deflection means (usually referred to as scanners), not shown in more detail, in order to prevent the Laser radiation over a target area to be processed to move away, and focusing means for focusing the injected into the eye 10 radiation to a target point (focus). Such deflecting and focusing means are well known in the art. A more detailed description of these components can therefore be omitted here.

Als distales Einkoppelelement enthält die Einkoppeleinheit 18 eine Applanationslinse 22, welche im Zuge der Fixierung der Einkoppeleinheit 18 am Auge 10 zur Auflage auf der Hornhautoberfläche gelangt. Die Applanationslinse besitzt auf ihrer augenzugewandten Seite eine in Figur 1 mit 24 bezeichnete Kontaktfläche, welche bei einer Ausführungsform in näherungsweiser Anpassung an die tatsächliche Kontur der menschlichen Hornhautoberfläche im wesentlichen bitorisch ausgebildet ist. Bei dieser Ausführungsform erstreckt sich die Applanationslinse 22 über den gesamten zu bearbeitenden Bereich der Hornhaut; sie sitzt während der Operation unbewegt auf der Hornhaut. Bei einer anderen Ausführungsform, die in Figur 1 gestrichelt eingezeichnet ist, ist die Applanationslinse eine Stablinse, deren Kontaktfläche bei Betrachtung in einem Schnitt quer zur Stablängsrichtung rundlich konvex ist. Insbesondere kann die Stablinse eine Zylinderlinse sein, welche in Richtung ihrer Längserstreckung im wesentlichen geradlinig verläuft. In Figur 1 ist die Stablinse bei 22' angedeutet. Aufgrund ihres vergleichsweise kleinflächigen Kontaktbereichs mit der Hornhautoberfläche des Auges 10 ist sie bewegbar in der Einkoppeleinheit 18 angeordnet, wobei zum Antrieb der Stablinse 22' eine motorische, beispielsweise elektromotorische oder piezomotorische, Antriebseinheit 25 vorgesehen ist, welche über eine geeignete Antriebsverbindung (bei 26 angedeutet) antriebsmäßig mit der Stablinse 22' gekoppelt oder koppelbar ist.As a distal coupling element, the coupling-in unit 18 contains an applanation lens 22 which, in the course of fixing the coupling-in unit 18, reaches the eye 10 for support on the surface of the cornea. The applanation lens has, on its side facing the eye, a contact surface designated by 24 in FIG. 1, which, in one embodiment, is designed substantially in a bidirectional adaptation to the actual contour of the human corneal surface. In this embodiment, the applanation lens 22 extends over the entire area of the cornea to be processed; she sits motionless on the cornea during the operation. In another embodiment, which is shown in dashed lines in Figure 1, the applanation lens is a rod lens, the contact surface is round-convex when viewed in a section transverse to the rod longitudinal direction. In particular, the rod lens may be a cylindrical lens, which extends in the direction of its longitudinal extent substantially rectilinear. In Figure 1, the rod lens is indicated at 22 '. Due to its comparatively small-area contact area with the corneal surface of the eye 10, it is movably arranged in the coupling-in unit 18, wherein a motor, for example electromotive or piezomotor, drive unit 25 is provided for driving the rod lens 22 ', which is driven by a suitable drive connection (indicated at 26). drivingly coupled or couplable with the rod lens 22 '.

Figur 2 zeigt das Auge 10 in einer vergrößerten Darstellung von schräg vorne. Die Hornhaut ist bei 28 angedeutet. Ihre Oberfläche hat im Regelfall keine exakte Kugelkontur, sondern eine angenähert bitorische Form. Bitorisch bedeutet, dass die Hornhautoberfläche entlang zweier quer zueinander verlaufender Hauptmeridiane jeweils asphärisch mit jeweils unterschiedlichem Krümmungsradius verläuft. Die beiden Meridiane sind in Figur 2 gestrichelt eingezeichnet und mit 30, 32 bezeichnet. Beim menschlichen Auge ist der Winkel zwischen den beiden Meridianen 30, 32 oftmals nicht exakt 90 Grad. Dennoch hat sich gezeigt, dass sich die menschliche Hornhautoberfläche mathematisch durch eine Bitorus-Fläche mit senkrecht aufeinanderstehenden Meridianen gut modellieren lässt. Dementsprechend liegen bei der bitorischen Applanationslinse 22 die Meridiane der Kontaktfläche 24 vorzugsweise senkrecht zueinander. Es ist freilich nicht ausgeschlossen, zur noch besseren Anpassung an die tatsächlichen Gegebenheiten der menschlichen Hornhautoberfläche, beispielsweise abhängig vom jeweiligen Patienten, die Meridiane der bitorischen Kontaktfläche 24 nicht exakt senkrecht aufeinanderzulegen, sondern beispielsweise in einem Winkel von 85 Grad oder einem anderen von 90 Grad verschiedenen Winkel.Figure 2 shows the eye 10 in an enlarged view obliquely from the front. The cornea is indicated at 28. As a rule, its surface does not have an exact spherical contour, but rather an approximate bitoric shape. Bitterness means that the corneal surface runs along each of two main meridians that run transversely to one another aspherically, each with a different radius of curvature. The two meridians are shown in dashed lines in Figure 2 and designated 30, 32. In the human eye, the angle between the two meridians 30, 32 is often not exactly 90 degrees. Nevertheless, it has been shown that the human surface of the cornea can be mathematically well modeled by a bitorus surface with mutually perpendicular meridians. Accordingly, in the case of the bitoric applanation lens 22, the meridians of the contact surface 24 are preferably perpendicular to one another. It is certainly not excluded, for even better adaptation to the actual conditions of the human corneal surface, for example, depending on the particular patient, the meridians of the bitorischen contact surface 24 is not exactly perpendicular to each other, but for example at an angle of 85 degrees or another angle other than 90 degrees.

Figur 3 zeigt die Applanationslinse 22 schematisch in einem Zustand, in dem sie auf die Hornhaut 28 des Auges 10 aufgesetzt ist. Die Schnittdarstellung der Figur 3 zeigt den Verlauf der Kontaktfläche 24 längs des Meridians größeren Krümmungsradius. Die um 90 Grad gedrehte Schnittdarstellung der Figur 4 dagegen zeigt den Verlauf der Kontaktfläche 24 längs des Meridians kleineren Krümmungsradius. Die Asphärizität der Kontaktfläche 24 in den beiden Meridianrichtungen kann gleich oder unterschiedlich sein.FIG. 3 schematically shows the applanation lens 22 in a state in which it is placed on the cornea 28 of the eye 10. The sectional view of Figure 3 shows the course of the contact surface 24 along the meridian larger radius of curvature. The rotated by 90 degrees sectional view of Figure 4, however, shows the course of the contact surface 24 along the meridian smaller radius of curvature. The asphericity of the contact surface 24 in the two meridian directions may be the same or different.

Auf ihrer augenabgewandten Seite ist die Applanationslinse 22 in den Figuren 3 und 4 mit einer konvex gekrümmten Form dargestellt. Andere Geometrien der augenabgewandten Linsenseite der Applanationslinse 22 sind ebenso möglich. Beispielsweise kann bei einer abgewandelten Ausführungsform die augenabgewandte Linsenseite der Applanationslinse 22 eine Planfläche sein. Beschränkungen hinsichtlich der Geometrie der augenabgewandten Linsenfläche sind im Rahmen der Erfindung keinesfalls beabsichtigt.On its side facing away from the eye, the applanation lens 22 is shown in FIGS. 3 and 4 with a convexly curved shape. Other geometries of the eye-facing lens side of the applanation lens 22 are also possible. For example, in a modified embodiment, the eye-facing lens side of the applanation lens 22 may be a plane surface. Restrictions on the geometry of the eye-facing lens surface are by no means intended in the context of the invention.

Die Stablinse 22' ist in einer Schnittansicht quer zu ihrer Stablängsrichtung in Figur 5 vergrößert gezeigt. Ihre augenzugewandte Kontaktfläche - zur Unterscheidung von der bitorischen Kontaktfläche 24 der Applanationslinse 22 nunmehr mit 24' bezeichnet - ist asphärisch konvex gekrümmt und kann in Richtung der normal zur Blattebene der Figur 5 verlaufenden Stablängsrichtung der Linse 22 geradlinig oder ebenfalls gekrümmt verlaufen. Bei geradem Längsverlauf der Kontaktfläche 22 ist die Stablinse 22 eine echte Zylinderlinse.The rod lens 22 'is shown enlarged in a cross-sectional view transversely to its rod longitudinal direction in Figure 5. Their eye-facing contact surface - now designated by 24 'to distinguish it from the bitoric contact surface 24 of the applanation lens 22 - is aspherically convexly curved and can be rectilinear or curved in the direction of the rod longitudinal direction of the lens 22 that is normal to the plane of the figure. In a straight longitudinal course of the contact surface 22, the rod lens 22 is a true cylindrical lens.

In Figur 6 ist veranschaulicht, wie durch Linearverschiebung der Stablinse 22' quer zu ihrer Stablängsrichtung längs einer Verschieberichtung 34 ein größerer Bereich der Hornhaut 28 überstrichen werden kann. Es versteht sich, dass bei Bewegung der Stablinse 22' auch der in das Auge eingekoppelte Laserstrahl (in Figur 6 durch einen Punkt 36 angedeutet) durch entsprechende Steuerung der oben erwähnten Ablenkmittel mitgeführt werden muss, um nicht an der Stablinse 22' vorbei direkt in die Hornhaut einzufallen. Will man die Hornhaut 28 flächig bearbeiten, kann der Laserstrahl 36 entlang der Längserstreckung der Stablinse 22, also quer zur Vorschubrichtung 34, mittels der Ablenkmittel hin- und herbewegt werden, so dass der Laserstrahl 36 während der Vorschubbewegung der Stablinse 22' fortwährend längs derselben hin- und herwandert. Auf diese Weise kann beispielsweise der für die Flap-Präparation benötigte flächige Tiefenschnitt in der Hornhaut erzeugt werden.FIG. 6 illustrates how, by linear displacement of the rod lens 22 'transversely to its rod longitudinal direction along a displacement direction 34, a larger area of the cornea 28 can be swept over. It is understood that when moving the rod lens 22 'and the coupled into the eye laser beam (indicated in Figure 6 by a point 36) must be carried by appropriate control of the above-mentioned deflection so as not to the rod lens 22' passing directly into the Callus invade. If one wishes to machine the cornea 28 in a planar manner, the laser beam 36 can be moved back and forth along the longitudinal extension of the rod lens 22, ie transversely to the feed direction 34, by means of the deflection means, so that the laser beam 36 while the advancing movement of the rod lens 22 'continuously back and forth along the same. In this way, for example, it is possible to produce the areal depth cut in the cornea which is required for the flap preparation.

Figur 7 veranschaulicht dagegen die Drehverstellung der Stablinse 22'. Hier wird sie um eine im wesentlichen mittig liegende Drehachse 38 über die Hornhaut 28 gedreht. Wird dabei der Laserstrahl 36 im wesentlichen an derselben drehachsversetzten Längsstelle der Stablinse 22' gehalten, kann ein gestrichelt angedeuteter Zirkularschnitt 40 erzeugt werden.In contrast, FIG. 7 illustrates the rotational adjustment of the rod lens 22 '. Here it is rotated about the cornea 28 about a substantially central axis of rotation 38. If the laser beam 36 is held substantially at the same rotational axis offset longitudinal position of the rod lens 22 ', a circular cut 40 indicated by dashed lines can be generated.

Claims (6)

Lasereinrichtung für die ophthalmologische Chirurgie, mit einer gepulste Laserstrahlung bereitstellenden Laserstrahlungsquelle (14) und Mitteln (18) zur Einkopplung der Laserstrahlung in einen okularen Behandlungsort, wobei die Einkopplungsmittel eine auf eine Augenoberfläche aufzusetzende Applanationslinse (22) umfassen,
dadurch gekennzeichnet, dass die Applanationslinse (22) auf ihrer augenzugewandten Seite eine zumindest näherungsweise bitorische Kontaktfläche (24) besitzt.
Laser device for ophthalmic surgery, comprising a laser radiation source (14) providing pulsed laser radiation and means (18) for coupling the laser radiation into an ocular treatment site, the coupling means comprising an applanation lens (22) to be placed on an ocular surface,
characterized in that the applanation lens (22) has an at least approximately bitoric contact surface (24) on its side facing the eye.
Lasereinrichtung für die ophthalmologische Chirurgie, mit einer gepulste Laserstrahlung bereitstellenden Laserstrahlungsquelle (14) und Mitteln (18) zur Einkopplung der Laserstrahlung in einen okularen Behandlungsort, wobei die Einkopplungsmittel eine auf eine Augenoberfläche aufzusetzende Applanationslinse (22') umfassen,
dadurch gekennzeichnet, dass die Applanationslinse als Stablinse ausgebildet ist und dass der Applanationslinse Bewegungsantriebsmittel (25, 26) zur Bewegung der Applanationslinse über die Augenoberfläche zugeordnet sind.
Laser device for ophthalmic surgery, comprising a laser radiation source (14) providing pulsed laser radiation and means (18) for coupling the laser radiation into an ocular treatment site, the coupling means comprising an applanation lens (22 ') to be placed on an ocular surface,
characterized in that the applanation lens is designed as a rod lens and in that the applanation lens is associated with movement drive means (25, 26) for moving the applanation lens over the eye surface.
Lasereinrichtung nach Anspruch 2,
dadurch gekennzeichnet, dass die Bewegungsantriebsmittel (25, 26) dazu eingerichtet sind, die Applanationslinse (22') quer zu ihrer Stablängsrichtung im wesentlichen linear über die Augenoberfläche zu bewegen.
Laser device according to claim 2,
characterized in that the movement drive means (25, 26) are arranged to move the applanation lens (22 ') transversely to its rod longitudinal direction substantially linearly over the eye surface.
Lasereinrichtung nach Anspruch 2 oder 3,
dadurch gekennzeichnet, dass die Bewegungsantriebsmittel (25, 26) dazu eingerichtet sind, zur Bewegung der Applanationslinse (22') über die Augenoberfläche die Applanationslinse um eine Linsenhochachse (38) zu drehen.
Laser device according to claim 2 or 3,
characterized in that the movement drive means (25, 26) are arranged to rotate the applanation lens about a lens vertical axis (38) to move the applanation lens (22 ') above the ocular surface.
Lasereinrichtung nach einem der Ansprüche 2 bis 4,
dadurch gekennzeichnet, dass die Applanationslinse (22') bei Betrachtung in einem Schnitt quer zur Stablängsrichtung eine konvex gerundete Kontaktfläche (24') für die Anlage an der Augenoberfläche besitzt.
Laser device according to one of claims 2 to 4,
characterized in that the applanation lens (22 ') when viewed in a section transverse to the rod longitudinal direction has a convexly rounded contact surface (24') for engagement with the ocular surface.
Applanationslinse (22, 22') zur Verwendung in einer Lasereinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie auf einer zur Anlage an einer Augenoberfläche bestimmten Linsenseite eine zumindest näherungsweise bitorische Kontaktfläche (24) oder eine konvex-zylindrische Kontaktfläche (24') besitzt.Applanation lens (22, 22 ') for use in a laser device according to one of the preceding claims, characterized in that it has an at least approximately bitoric contact surface (24) or a convex-cylindrical contact surface (24') on a lens surface intended for contact with an ocular surface. has.
EP20060007601 2006-04-11 2006-04-11 Laser arrangement for ophthalmic surgery Active EP1844744B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10008851A EP2277481B1 (en) 2006-04-11 2006-04-11 Laser arrangement for ophthalmic surgery
EP20060007601 EP1844744B1 (en) 2006-04-11 2006-04-11 Laser arrangement for ophthalmic surgery
ES10008851T ES2407996T3 (en) 2006-04-11 2006-04-11 Laser device for ophthalmic surgery
ES06007601T ES2368339T3 (en) 2006-04-11 2006-04-11 LASER DEVICE FOR OPHTHALMOLOGICAL SURGERY.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20060007601 EP1844744B1 (en) 2006-04-11 2006-04-11 Laser arrangement for ophthalmic surgery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP10008851.7 Division-Into 2010-08-25

Publications (2)

Publication Number Publication Date
EP1844744A1 true EP1844744A1 (en) 2007-10-17
EP1844744B1 EP1844744B1 (en) 2011-07-27

Family

ID=36791833

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10008851A Active EP2277481B1 (en) 2006-04-11 2006-04-11 Laser arrangement for ophthalmic surgery
EP20060007601 Active EP1844744B1 (en) 2006-04-11 2006-04-11 Laser arrangement for ophthalmic surgery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10008851A Active EP2277481B1 (en) 2006-04-11 2006-04-11 Laser arrangement for ophthalmic surgery

Country Status (2)

Country Link
EP (2) EP2277481B1 (en)
ES (2) ES2368339T3 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013126653A1 (en) * 2012-02-22 2013-08-29 Amo Development, Llc Preformed lens systems and methods
US9398979B2 (en) 2013-03-11 2016-07-26 Technolas Perfect Vision Gmbh Dimensional compensator for use with a patient interface
US9603744B2 (en) 2012-11-09 2017-03-28 Technolas Perfect Vision Gmbh Adaptable patient interface
WO2022258630A3 (en) * 2021-06-07 2023-01-19 Technolas Perfect Vision Gmbh Method and system for forming intracorneal cuts using a convex contact surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994009849A1 (en) * 1992-10-26 1994-05-11 Swinger Casimir A Method of performing ophthalmic surgery
US5347326A (en) * 1992-10-05 1994-09-13 Volk Donald A Diagnostic or therapeutic contact lens
US6325792B1 (en) * 1991-11-06 2001-12-04 Casimir A. Swinger Ophthalmic surgical laser and method
WO2001095842A1 (en) * 2000-06-16 2001-12-20 Volk Optical, Inc. Aspheric iridectomy/iridotomy treatment lens
EP1537841A2 (en) * 1999-08-26 2005-06-08 Carl Zeiss Meditec AG Method and device for treating opaqueness and/or hardening of a closed eye

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549632A (en) 1992-10-26 1996-08-27 Novatec Laser Systems, Inc. Method and apparatus for ophthalmic surgery
US5336215A (en) 1993-01-22 1994-08-09 Intelligent Surgical Lasers Eye stabilizing mechanism for use in ophthalmic laser surgery
US6254595B1 (en) 1998-10-15 2001-07-03 Intralase Corporation Corneal aplanation device
US6863667B2 (en) 2001-01-29 2005-03-08 Intralase Corp. Ocular fixation and stabilization device for ophthalmic surgical applications
US20040260321A1 (en) * 2002-12-19 2004-12-23 Ming-Kok Tai Apparatus and method for separating the epithelium layer from the cornea of an eye without corneal pre-applanation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6325792B1 (en) * 1991-11-06 2001-12-04 Casimir A. Swinger Ophthalmic surgical laser and method
US5347326A (en) * 1992-10-05 1994-09-13 Volk Donald A Diagnostic or therapeutic contact lens
WO1994009849A1 (en) * 1992-10-26 1994-05-11 Swinger Casimir A Method of performing ophthalmic surgery
EP1537841A2 (en) * 1999-08-26 2005-06-08 Carl Zeiss Meditec AG Method and device for treating opaqueness and/or hardening of a closed eye
WO2001095842A1 (en) * 2000-06-16 2001-12-20 Volk Optical, Inc. Aspheric iridectomy/iridotomy treatment lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013126653A1 (en) * 2012-02-22 2013-08-29 Amo Development, Llc Preformed lens systems and methods
US9603744B2 (en) 2012-11-09 2017-03-28 Technolas Perfect Vision Gmbh Adaptable patient interface
US9398979B2 (en) 2013-03-11 2016-07-26 Technolas Perfect Vision Gmbh Dimensional compensator for use with a patient interface
WO2022258630A3 (en) * 2021-06-07 2023-01-19 Technolas Perfect Vision Gmbh Method and system for forming intracorneal cuts using a convex contact surface

Also Published As

Publication number Publication date
EP2277481A3 (en) 2011-03-23
ES2368339T3 (en) 2011-11-16
ES2407996T3 (en) 2013-06-17
EP1844744B1 (en) 2011-07-27
EP2277481B1 (en) 2013-04-03
EP2277481A2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
EP2133048B1 (en) Apparatus for connecting an element to an eye
EP2231084B1 (en) Laser correction of vision conditions on the natural eye lens
EP3925584B1 (en) Device and method for producing control data for the surgical correction of defective eye vision
DE69230986T2 (en) Device for simultaneous cylindrical and spherical eye correction
EP2525750B1 (en) Device for cutting the human cornea
DE102006056711B4 (en) Device for generating a correction interface in the cornea of an eye for correction of defective vision and contact element for such a device
EP1834615B1 (en) Control program for ophthalmologic surgery
DE69024558T2 (en) Laser melting of surfaces
WO2013017513A2 (en) Ophthalmologic laser device and method for preventing and treating aftercataract
EP2907490A1 (en) Device for integrating ocular tissue with electromagnetic radiation
WO2016135111A1 (en) Ophthalmological laser therapy device for producing corneal access incisions
EP3454802B1 (en) Planning device and method for generating control data for an ophthalmic surgery device
EP2440164A1 (en) Device for laser-surgical ophthalmology
EP3200737B1 (en) Planning device and method for generating control data for an eye surgical treatment device
EP2317962B1 (en) Device for cutting a tissue part with focussed laser radiation
DE102017207529A1 (en) Aftercare for eye surgery refraction correction
WO2017153442A1 (en) Ophthalmological laser therapy system
EP1844744B1 (en) Laser arrangement for ophthalmic surgery
WO2021048114A1 (en) Eye-surgical treatment apparatus
EP2621428B1 (en) Device for lasering the human eye
EP3906903B1 (en) Method for providing control data for an ophthalmic laser, control device, treatment device, computer program, computer readable medium
DE102020123611B4 (en) System for controlling an eye surgical laser and method for determining control data for controlling an eye surgical laser
EP4027960A1 (en) Eye-surgical treatment apparatus
WO2021048116A1 (en) Treatment device for eye surgery
DE102020104681A1 (en) Treatment device for the separation of a solid from an eye, method, computer program and computer-readable medium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20071004

17Q First examination report despatched

Effective date: 20071119

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WAVELIGHT GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006009881

Country of ref document: DE

Effective date: 20110915

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2368339

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111116

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006009881

Country of ref document: DE

Effective date: 20120502

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190521

Year of fee payment: 14

Ref country code: IT

Payment date: 20190419

Year of fee payment: 14

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20200116 AND 20200122

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006009881

Country of ref document: DE

Representative=s name: WUESTHOFF & WUESTHOFF, PATENTANWAELTE PARTG MB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006009881

Country of ref document: DE

Owner name: ALCON INC., CH

Free format text: FORMER OWNER: WAVELIGHT GMBH, 91058 ERLANGEN, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ALCON INC.

Effective date: 20200423

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200412

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230505

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240321

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240321

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240319

Year of fee payment: 19