Nothing Special   »   [go: up one dir, main page]

EP1705673B1 - Induktiver Drehübertrager - Google Patents

Induktiver Drehübertrager Download PDF

Info

Publication number
EP1705673B1
EP1705673B1 EP05006641A EP05006641A EP1705673B1 EP 1705673 B1 EP1705673 B1 EP 1705673B1 EP 05006641 A EP05006641 A EP 05006641A EP 05006641 A EP05006641 A EP 05006641A EP 1705673 B1 EP1705673 B1 EP 1705673B1
Authority
EP
European Patent Office
Prior art keywords
winding
energy
data
turn
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP05006641A
Other languages
English (en)
French (fr)
Other versions
EP1705673A1 (de
Inventor
Rudolf Mecke
Christian Rathge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35447553&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1705673(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE502005003976T priority Critical patent/DE502005003976D1/de
Priority to EP05006641A priority patent/EP1705673B1/de
Priority to US11/886,246 priority patent/US7701315B2/en
Priority to CN2006800095950A priority patent/CN101147215B/zh
Priority to PCT/EP2006/060998 priority patent/WO2006100294A1/de
Publication of EP1705673A1 publication Critical patent/EP1705673A1/de
Application granted granted Critical
Publication of EP1705673B1 publication Critical patent/EP1705673B1/de
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/18Rotary transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/366Electric or magnetic shields or screens made of ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings

Definitions

  • the invention relates to a device for non-contact energy and data transmission with two relatively rotatable carriers on which primary and secondary windings of a transformer are arranged.
  • Such a device is used for example for energy and data transmission between two mutually movable components.
  • Such component arrangements can be found in particular in robot applications in which partial angles of rotation between components of a robot of 360 degrees and more are required and data and / or energy transmission between these components is necessary.
  • Another example of a field of application of such a device is the energy and data transmission between the steering shaft and the steering column of a motor vehicle.
  • the cables used in the area of the swivel joints must have a very high degree of flexibility in order to minimize wear and production losses. Therefore, an inductive non-contact energy and data transmission between relatively rotatably mounted parts is advantageous.
  • Out DE 199 14 395 A1 is an inductive transmitter for transmitting measurement data and / or electrical energy between two mutually movable components, in particular between the steering shaft and the steering column of a vehicle, known with a primary and a secondary transmission part.
  • the iron cores each serve for the frequency-selective transmission of the signals, which improves the efficiency of data transmission and reduces the size of the transformer. With the transformer both data signals and signals for electrical energy transmission between the rotating and the stationary part are transmitted.
  • the invention is based on the object to enable an inductive non-contact energy and data transmission between two mutually rotatable components, with the least possible interference of the data transmission is to be achieved by the energy transfer.
  • a device for non-contact power and data transmission with a rotatably mounted on a first carrier primary winding assembly and rotatably mounted on a second carrier secondary winding assembly, wherein the first and second carrier are rotated against each other and wherein the primary and Secondary winding arrangement each having at least one Energywicklung for inductive transmission of electrical energy, wherein primary and secondary winding arrangement each have at least one data winding for inductive data transmission and at least one data winding of the data winding at least one energy binding the energy winding so encloses that a first part of the data winding with the winding sense of the energy winding is wound and a second part of the data winding is wound against the winding sense of the energy winding.
  • the invention is based on the finding that in the case of an arrangement of the data winding and energy winding on a common carrier, an interference of the data winding with the energy winding can be virtually eliminated if the windings of the data winding enclose the energy winding. With such an enclosure, however, the winding sense of the energy winding must be taken into account. If the first part of the data winding is wound with the winding sense of the energy winding, the second part of the data winding must be wound against the winding sense of the energy winding. In this way it is achieved that a voltage induced by the energy winding in the first part of the data winding is compensated by a second voltage component, which is induced by the energy winding in the second part of the data winding.
  • the data winding in relation to the energy winding such that magnetic field strength components generated by the energy winding compensate each other within a surface enclosed by the data winding such that almost no magnetic flux results within the area.
  • the compensation effect can be explained physically by the fact that the voltage induced in a data winding is proportional to the time derivative of the magnetic flux within the area spanning this data winding. If, within the surface, virtually no magnetic flux results due to the desired compensation effect, then no voltage can be induced within the data winding that spans the relevant surface, and thus no interference can be coupled in.
  • the above-described minimization of the magnetic flux within the area spanned by the data winding can be achieved, in particular, by arranging the energy bonding substantially centrally between the first part of the data winding, which is wound with the winding sense of the energy winding and the second one Part of the data winding, which is wound contrary to the winding sense of the energy winding.
  • This achieves that about half of the area enclosed by the data winding is penetrated by a magnetic field strength that is opposite to the field strength that penetrates the other half of the enclosed area.
  • the field strength components of the two surface halves compensate each other and there is almost no magnetic flux on the total surface area. Due to the vanishing resulting magnetic flux no voltage can be induced in the data winding and thus no interference from the energy winding can be coupled into the data winding.
  • a compact size of the device for non-contact power and data transmission can be achieved that primary and secondary winding assembly are each designed as a flat coil.
  • the first and the second carrier are rotationally symmetrical and arranged offset from one another axially and have a common axis of rotation.
  • the first and second carrier are rotatable relative to each other via the common axis of rotation.
  • the primary and secondary winding arrangement in the form of a flat coil is advantageous for minimizing the leakage flux to perform the first and second carrier as a ferrite mirror.
  • Ferrites are ideal as core material for inductive transformers, as they cause only low eddy current losses even at high frequencies due to their low electrical conductivity.
  • the device is intended for mounting in rotatable systems, in particular for automation technology, wherein the first carrier is connected to a stationary part of the system and the second carrier with a rotatable part of the system connected is.
  • a robot having a rotatable gripping arm.
  • a rotation angle range of 0 to 360 ° or even more is required, over which the first carrier must be rotatable relative to the second carrier.
  • the first and second carrier carried out annular are.
  • the propeller shaft can be passed directly through the first and second carrier and thus through the device.
  • the first and second carrier are each divisible into a first and second sub-carrier, wherein the first and second sub-carrier in particular each having a semicircular recess. Due to the divisibility of the device, the transformer formed by the first and second carrier and the associated primary and secondary winding assemblies can be mounted on a propeller shaft without having to separate this propeller shaft. As a result, the installation and cost is significantly reduced. Due to the semicircular recesses, the sub-carriers can be very easily mounted around a propeller shaft.
  • the energy winding and the data winding each have a first and a second, in particular series-connected coil, wherein the first coil on the first sub-carrier and the second coil are arranged on the second sub-carrier.
  • Particularly advantageous in such a winding arrangement is that even with a large number of turns in the first and second coil only a cable connection between the two coils and thus between the two sub-carriers for the energy winding and one for the data winding are necessary.
  • the divisibility of the energy and data transmission can be achieved in that at least a first turn of the first coil within the first subcarrier and at least one second turn of the second coil within the second subcarrier are closed such that they each have an inner Winding part with an inner radius and a outer winding part having an outer radius which is greater than the inner radius, have.
  • the number of turns of the coils of a subcarrier is freely selectable and an optimal transmission behavior adjustable (separately for the energy and data transmission).
  • FIG. 1 shows a sectional view of a first coil arrangement for contactless energy and data transmission comprising a first carrier 5, on which a primary winding assembly is arranged rotationally fixed, and a second carrier 6, on which a secondary winding assembly 2 is arranged rotationally fixed.
  • the flat coil arrangement shown is used, for example, for inductive energy and data transmission in a robot with a rotatable joint.
  • the first carrier 5 is connected to a fixed part of the robot and the second carrier 6 is mounted with a rotatable relative to the first part of the robot Part connected.
  • the first and second beams 5, 6 are made annular and mounted on the pivot shaft of the robot.
  • the primary winding arrangement 1 has a primary-side energy winding 3a, which is supplied, for example, by a power converter and generates a field which couples into a secondary-side energy winding 3b, which is a component of the secondary winding arrangement 2. In this way, it is possible to transfer energy via the rotary joint of the robot, without requiring a wear-prone cable connection.
  • primary winding arrangement 1 has a primary-side data winding 4a and secondary winding arrangement has a secondary-side data winding 4b, wherein a magnetic field generated by the primary-side data winding 4a couples into the secondary-side data winding 4b.
  • the first and second carrier 5, 6 and the primary winding assembly 1 and the secondary winding assembly 2 are rotationally symmetrical, axially offset and have a common axis of rotation 7. Such an embodiment is particularly advantageous for mounting on a pivot shaft.
  • the first and second carrier 5, 6 are furthermore of annular design and have a saving in the region of the axis of rotation 7. The saving is used to carry out the pivot shaft of the robot.
  • the winding arrangements show that a conductor of the primary-side energy winding 3a is surrounded on both sides by a conductor of the primary-side data winding 4a. This, as well as the following consideration applies analogously to the secondary side, since the basic structure of primary and secondary winding assembly 1,2 is the same.
  • Each conductor of the primary-side energy winding 3a is arranged substantially centrally between the two conductors of the primary-side data winding 4a.
  • the winding sense of the primary-side data winding 4a is oriented on one side of the conductor of the primary-side energy winding 3a opposite to the winding sense of the primary-side data winding 4a on the other side of the primary-side energy winding 3a.
  • FIG. 2 shows a plan view of the first coil assembly for contactless power and data transmission. Since the winding concepts of the primary and secondary winding assemblies are generally not different, only one side of the transformer is shown, which can represent both the primary-side winding arrangement and the secondary-side winding arrangement.
  • FIG. 2 shows that a turn of the energy winding 3 is surrounded on both sides by a conductor of a data winding of the data winding 4. In the case of a data winding through which the current flows, the direction of the current within the data link adjacent to the energy connection is in each case opposite. By this type of winding, a compensation effect of the induced voltages is achieved within the windung, based on the FIG. 3 should be clarified.
  • FIG. 3 shows an energy conductor 10 and an integration path 11 for an induced electric field strength.
  • the integration path 11 Through the integration path 11, a rectangular area is spanned, in which the energy conductor piece 10 forms an axis of symmetry.
  • a current direction is indicated by an arrow.
  • Such a current direction generates a magnetic field strength which is directed into the drawing plane to the right of the energy conductor piece 10 and protrudes to the left of the energy conductor piece 10 from the plane of the drawing.
  • the field strength components on the right of the energy conductor piece 10 thus compensate with those on the left of the energy conductor piece 10, so that no magnetic flux results within the area spanned by the integration path 11. It follows that the induced voltage within a conductor loop indicated by the integration path 11 is just zero.
  • the arrangement of the integration path 11 with respect to the energy conductor piece 10 also characterizes the arrangement of the data winding with respect to the energy winding in the 1 and FIG.
  • FIG. 4 shows a second flat coil arrangement with two energy turns of a Energy windlung 3.
  • a data winding 4 with respect to the Energywicklung 3 so wound, that in each case a conductor of a data winding of the data winding 4 with and a conductor of the data winding opposite to the winding sense of the energy winding 3 is arranged.
  • two turns of the energy winding 3 are between two conductors of the data winding.
  • the desired compensation effect of the magnetic field strength within the data winding 4 is achieved.
  • FIG. 5 shows a third flat coil arrangement with two energy connections of a Energy winding 3.
  • the number of turns of a data winding 4, as already in the in FIG. 4 considered arrangement one.
  • the data winding 4 is wound in such a way that only one energy bond of the energy winding 3 is arranged between a forward and a return conductor of a data winding of the data winding 4.
  • the desired compensation effect of the induced electric field strength, which is caused by the magnetic field strength generated by the energy winding 3 is achieved.
  • FIG. 6 shows a fourth flat coil arrangement with two data turns of a data winding 4.
  • the number of turns of a Energy winding 3 one.
  • the illustrated winding of the energy winding 3 is surrounded on both sides by two conductors of the data winding 4.
  • the field strength components induced by the energy winding 3 compensate each other within the data windings Data winding 4.
  • an interference of the data winding 4 by the energy winding 3 can be largely excluded.
  • FIG. 7 shows a divisible flat coil assembly, which is provided for inductive contactless power and data transmission.
  • a flat coil arrangement is arranged, for example, on a divisible annular support. With such a carrier, the flat coil arrangement shown can be mounted very easily on a pivot shaft, in particular of a robot. Due to the divisibility of the flat coil arrangement of the transformer can be mounted directly on the propeller shaft without having to dismantle it before.
  • the illustrated flat coil arrangement has a first coil arrangement 8 comprising an energy winding 3 and a data winding 4 and a second coil arrangement 9, which likewise has an energy winding 3 and a data winding 4.
  • the first and second coil assembly 8, 9 is connected to each other only by a cable connection for the energy winding 3 and a cable connection for the data winding 4. Even with a much higher number of windings for the first and second coil arrangement 8,9 only one connection would be necessary for the data and energy winding 3,4.
  • the divisible flat coil arrangement is characterized in that the first coil arrangement 8 is connected in series with the second coil arrangement 9, the coil arrangements 8, 9 again being wound in such a way that at least one data winding of the data winding 4 encloses at least one energy gap of the energy winding 3 in such a way, that a first part of the data winding is wound with the winding sense of the energy winding 3 and a second part of the data winding is wound against the winding sense of the energy winding 3.
  • All flat coil arrangements shown in the figures have the advantage that 4 separate windings are provided for the energy winding 3 and the data winding.
  • the energy winding 3 for an optimal inductive Energy transmission between the primary winding arrangement and the secondary winding arrangement are optimized and the data winding 4 for optimum inductive data transmission between the first and second carrier or between the primary winding arrangement and the secondary winding arrangement.
  • the inventive arrangement of the data winding 4 with respect to the energy winding 3 that the magnetic field of the energy winding 3 induces almost no voltage within the data windings of the data winding 4 and thus exerts no interference on the data transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Near-Field Transmission Systems (AREA)
  • Coils Of Transformers For General Uses (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zur berührungslosen Energie- und Datenübertragung mit zwei relativ zueinander verdrehbaren Trägern, auf denen primär- und sekundärseitige Wicklungen eines Übertragers angeordnet sind.
  • Eine derartige Vorrichtung kommt beispielsweise zur Energie- und Datenübertragung zwischen zwei gegeneinander beweglichen Bauteilen zum Einsatz. Derartige Bauteilanordnungen finden sich insbesondere in Robotikanwendungen, bei denen teilweise Verdrehungswinkel zwischen Komponenten eines Roboters von 360 Grad und mehr gefordert sind und eine Daten- und oder Energieübertragung zwischen diesen Komponenten notwendig ist. Ein weiteres Beispiel für ein Anwendungsgebiet einer derartigen Vorrichtung ist die Energie- und Datenübertragung zwischen Lenkspindel und Lenksäule eines Kraftfahrzeugs.
  • Bei einer leitungsgebundenen Energie- bzw. Datenübertragung müssen die verwendeten Kabel im Bereich der Drehgelenke eine sehr hohe Flexibilität aufweisen um Verschleiß und Produktionsausfälle möglichst gering zu halten. Vorteilhaft ist daher eine induktive berührungslose Energie- und Datenübertragung zwischen relativ zueinander drehbar gelagerten Teilen.
  • Aus DE 199 14 395 A1 ist ein induktiver Übertrager zur Übertragung von Messdaten und/oder elektrischer Energie zwischen zwei gegeneinander beweglichen Bauteilen, insbesondere zwischen der Lenkspindel und der Lenksäule eines Fahrzeugs, mit einem primären und einem sekundären Übertragungsteil bekannt.
  • Aus EP 0 510 926 A2 , das als nächsliegender Stand der Technik angesehen wird, ist ein drehbarer Transformator zur kontaktlosen Signalübertragung zwischen einem rotierenden und einem stationären Teil des Transformators bekannt. Der Transformator umfasst verschiedene Eisenkerne mit verschiedenen
  • Frequenzcharakteristiken. Die Eisenkerne dienen jeweils zur frequenzselektiven Übertragung der Signale, wodurch die Effizienz der Datenübertragung verbessert und die Größe des Transformators reduziert wird. Mit dem Transformator werden sowohl Datensignale als auch Signale zur elektrischen Energieübertragung zwischen dem rotierenden und dem stationären Teil übertragen.
  • Der Erfindung liegt die Aufgabe zu Grunde, eine induktive berührungslose Energie- und Datenübertragung zwischen zwei gegeneinander drehbeweglichen Komponenten zu ermöglichen, wobei eine möglichst geringe Störbeeinflussung der Datenübertragung durch die Energieübertragung erzielt werden soll.
  • Diese Aufgabe wird gelöst durch eine Vorrichtung gemäß Anspruch 1 zur berührungslosen Energie- und Datenübertragung mit einer auf einem ersten Träger drehfest angeordneten Primärwicklungsanordnung und einer auf einem zweiten Träger drehfest angeordneten Sekundärwicklungsanordnung, wobei der erste und zweite Träger gegeneinander verdrehbar sind und wobei die Primär- und Sekundärwicklungsanordnung jeweils mindestens eine Energiewicklung zur induktiven Übertragung elektrischer Energie aufweisen, wobei Primär- und Sekundärwicklungsanordnung jeweils mindestens eine Datenwicklung zur induktiven Datenübertragung aufweisen und mindestens eine Datenwindung der Datenwicklung mindestens eine Energiewindung der Energiewicklung derart umschließt, dass ein erster Teil der Datenwindung mit dem Wicklungssinn der Energiewicklung gewickelt ist und ein zweiter Teil der Datenwindung entgegen dem Wicklungssinn der Energiewicklung gewickelt ist.
  • Der Erfindung liegt die Erkenntnis zugrunde, dass bei einer Anordnung der Datenwicklung und Energiewicklung auf einen gemeinsamen Träger eine Störbeeinflussung der Datenwicklung durch die Energiewicklung nahezu eliminiert werden kann, wenn die Windungen der Datenwicklung die Energiewicklung umschließt. Bei einer derartigen Umschließung ist jedoch der Wicklungssinn der Energiewicklung zu beachten. Wird der erste Teil der Datenwindung mit dem Wicklungssinn der Energiewicklung gewickelt, so muss der zweite Teil der Datenwindung entgegen dem Wicklungssinn der Energiewicklung gewickelt werden. Auf diese Art und Weise wird erreicht, dass eine von der Energiewicklung in den ersten Teil der Datenwindung induzierte Spannung durch einen zweiten Spannungsanteil, der von der Energiewindung in den zweiten Teil der Datenwindung induziert wird, kompensiert wird.
  • Da für Energie- und Datenübertragung jeweils ein eigener Übertrager verwendet wird, ist die Windungszahl für die induktive Datenübertragung unabhängig von der Windungszahl für die Energieübertragung wählbar. Somit können sowohl Energieals auch Datenübertragungssystem unabhängig voneinander optimiert werden.
  • Um einen möglichst großen Kompensationseffekt zu erzielen, ist es vorteilhaft, die Datenwicklung derartig in Bezug auf die Energiewicklung anzuordnen, dass von der Energiewicklung erzeugte magnetische Feldstärkeanteile sich innerhalb einer von der Datenwindung eingeschlossenen Fläche derart kompensieren, dass innerhalb der Fläche nahezu kein magnetischer Fluss resultiert. Der Kompensationseffekt lässt sich physikalisch dadurch erklären, dass die in einer Datenwindung induzierte Spannung proportional zur zeitlichen Ableitung des magnetischen Flusses innerhalb der Fläche ist, die diese Datenwindung aufspannt. Wenn nun innerhalb der Fläche durch den angestrebten Kompensationseffekt nahezu kein magnetischer Fluss resultiert, so kann auch innerhalb der Datenwindung, die die betreffende Fläche aufspannt, keine Spannung induziert werden und somit keine Störung eingekoppelt werden.
  • Die oben beschriebene Minimierung des magnetischen Flusses innerhalb der Fläche, die von der Datenwicklung aufgespannt wird, lässt sich insbesondere dadurch erzielen, dass die Energiewindung im wesentlichen mittig zwischen dem ersten Teil der Datenwindung angeordnet ist, der mit dem Wicklungssinn der Energiewicklung gewickelt ist und dem zweiten Teil der Datenwindung, der entgegen dem Wicklungssinn der Energiewicklung gewickelt ist. Hierdurch wird erreicht, dass etwa die Hälfte der von der Datenwindung eingeschlossenen Fläche von einer magnetischen Feldstärke durchsetzt wird, die entgegengesetzt gerichtet zu der Feldstärke ist, die die andere Hälfte der eingeschlossenen Fläche durchsetzt. Somit kompensieren sich die Feldstärkeanteile der beiden Flächenhälften und es resultiert auf die Gesamtfläche gesehen nahezu kein magnetischer Fluss. Aufgrund des verschwindenden resultierenden magnetischen Flusses kann auch in der Datenwindung keine Spannung induziert werden und somit keine Störung von der Energiewicklung in die Datenwindung eingekoppelt werden.
  • Eine kompakte Baugröße der Vorrichtung zur berührungslosen Energie- und Datenübertragung kann dadurch erzielt werden, dass Primär- und Sekundärwicklungsanordnung jeweils als Flachspule ausgeführt sind.
  • Bei einer vorteilhaften Ausführungsform der Erfindung sind der erste und der zweite Träger rotationssymmetrisch ausgeführt und gegeneinander axial versetzt angeordnet und weisen eine gemeinsame Rotationsachse auf. Bei einer solchen Ausführungsform sind der erste und zweite Träger über die gemeinsame Rotationsachse gegeneinander verdrehbar.
  • Insbesondere bei einer Ausführung der Primär- und Sekundärwicklungsanordnung in Form einer Flachspule ist zur Minimierung des Streuflusses vorteilhaft, den ersten und zweiten Träger als Ferritspiegel auszuführen. Ferrite eignen sich hervorragend als Kernmaterial für induktive Übertrager, da diese aufgrund ihrer geringen elektrischen Leitfähigkeit auch bei hohen Frequenzen nur geringe Wirbelstromverluste verursachen.
  • Bei einer besonders vorteilhaften Anwendung der Vorrichtung zur berührungslosen Energie- und Datenübertragung ist die Vorrichtung zur Montage in drehbeweglichen Anlagen, insbesondere für die Automatisierungstechnik vorgesehen, wobei der erste Träger mit einem feststehenden Teil der Anlage verbunden ist und der zweite Träger mit einem drehbeweglichen Teil der Anlage verbunden ist. Als Beispiel kann hier ein Roboter genannt werden, der einen drehbeweglichen Greifarm aufweist. Hierbei wird teilweise ein Drehwinkelbereich von 0 bis 360° oder noch mehr gefordert, über den der erste Träger gegenüber dem zweiten Träger verdrehbar sein muss. Z.B. bei einer Anwendung der Vorrichtung im Bereich der Robotik, bei der eine Energie- und Datenübertragung zwischen gegeneinander verdrehbaren Bauteilen realisiert werden soll, bietet es sich an, die Vorrichtung direkt auf eine entsprechende Gelenkwelle zu montieren. Bei einer solchen Ausführungsform ist es zweckmä-ßig, dass der erste und zweite Träger ringförmig ausgeführt sind. Durch die ringförmige Ausführung kann die Gelenkwelle direkt durch den ersten und zweiten Träger und somit durch die Vorrichtung hindurchgeführt werden.
  • Insbesondere dann, wenn die Vorrichtung zur berührungslosen Energie- und Datenübertragung bei einer bestehenden Anordnung gegeneinander verdrehbarer Bauteile nachgerüstet werden soll, ist es zweckmäßig, wenn der erste und zweite Träger jeweils in einen ersten und zweiten Teilträger teilbar sind, wobei der erste und zweite Teilträger insbesondere jeweils eine halbkreisförmige Aussparung aufweisen. Durch die Teilbarkeit der Vorrichtung kann der durch den ersten und zweiten Träger und die zugehörigen Primär- und Sekundärwicklungsanordnungen gebildeten Übertrager auf eine Gelenkwelle montiert werden, ohne hierzu diese Gelenkwelle auftrennen zu müssen. Hierdurch wird der Montage- und Kostenaufwand erheblich reduziert. Durch die halbkreisförmigen Aussparungen können die Teilsträger sehr leicht um eine Gelenkwelle herum angebracht werden.
  • Bei einem derartigen teilbaren Übertrager ist es besonders vorteilhaft, wenn die Energiewicklung und die Datenwicklung jeweils eine erste und eine zweite, insbesondere in Reihe geschaltete Spule aufweisen, wobei die erste Spule auf dem ersten Teilträger und die zweite Spule auf dem zweiten Teilträger angeordnet sind. Besonders vorteilhaft bei einer derartigen Wicklungsanordnung ist, dass auch bei einer großen Windungszahl in der ersten und zweiten Spule lediglich eine Kabelverbindung zwischen den beiden Spulen und somit zwischen den beiden Teilträgern für die Energiewicklung und eine für die Datenwicklung notwendig sind.
  • Insbesondere bei rotationssymmetrischen ringförmigen Übertragern kann die Teilbarkeit der Energie- und Datenübertragung dadurch erreicht werden, dass mindestens eine erste Windung der ersten Spule innerhalb des ersten Teilträgers und mindestens eine zweite Windung der zweiten Spule innerhalb des zweiten Teilträgers derart geschlossen sind, dass sie jeweils einen inneren Windungsteil mit einem Innenradius und einen äußeren Windungsteil mit einem Außenradius, der größer als der Innenradius ist, aufweisen. Dadurch ist die Windungszahl der Spulen eines Teilträgers frei wählbar und ein optimales Übertragungsverhalten einstellbar (separat für die Energie- und Datenübertragung). Für die Verbindung der Spulen auf den Teilträgern ist für die Energiewicklung und für die Datenwicklung jeweils nur eine Kabelverbindung nötig.
  • Im Folgenden wird die Erfindung anhand der in den Figuren dargestellten Ausführungsbeispiele näher beschrieben und erläutert. Es zeigen:
  • FIG 1
    eine Schnittdarstellung einer ersten Flachspulenanordnung zur berührungslosen Energie- und Datenübertragung,
    FIG 2
    eine Draufsicht der ersten Flachspulenanordnung zur berührungslosen Energie- und Datenübertragung,
    FIG 3
    ein Energieleiterstück und ein Integrationsweg für eine induzierte elektrische Feldstärke,
    FIG 4
    eine zweite Flachspulenanordnung mit zwei Energiewindungen,
    FIG 5
    eine dritte Flachspulenanordnung mit zwei Energiewindungen,
    FIG 6
    eine vierte Flachspulenanordnung mit zwei Datenwindungen und
    FIG 7
    eine teilbare Flachspulenanordnung.
  • FIG 1 zeigt eine Schnittdarstellung einer ersten Spulenanordnung zur berührungslosen Energie- und Datenübertragung umfassend einen ersten Träger 5, auf dem eine Primärwicklungsanordnung drehfest angeordnet ist, und einen zweiten Träger 6, auf dem eine Sekundärwicklungsanordnung 2 drehfest angeordnet ist. Die dargestellte Flachspulenanordnung wird beispielsweise zur induktiven Energie- und Datenübertragung bei einem Roboter mit einem drehbaren Gelenk eingesetzt. Beispielsweise ist hierbei der erste Träger 5 mit einem feststehenden Teil des Roboters verbunden und der zweite Träger 6 mit einem drehbar gegenüber dem ersten Teil des Roboters gelagerten Teil verbunden. In einer solchen Anwendung werden der erste und zweite Träger 5,6 ringförmig ausgeführt und auf der Drehgelenkwelle des Roboters angebracht. Die Primärwicklungsanordnung 1 weist eine primärseitige Energiewicklung 3a auf, die beispielsweise von einem Stromrichter gespeist wird und ein Feld erzeugt, welches in eine sekundärseitige Energiewicklung 3b einkoppelt, die Bestandteil der Sekundärwicklungsanordnung 2 ist. Auf diese Art und Weise ist es möglich, Energie über das Drehgelenk des Roboters zu übertragen, ohne hierbei eine verschleißanfällige Kabelverbindung zu benötigen.
  • Neben der Energieübertragung leistet die dargestellte Flachspulenanordnung auch eine berührungslose induktive Datenübertragung zwischen den drehbar gelagerten Teilen des Roboters. Hierzu weisen Primärwicklungsanordnung 1 eine primärseitige Datenwicklung 4a und Sekundärwicklungsanordnung eine sekundärseitige Datenwicklung 4b auf, wobei ein von der primärseitigen Datenwicklung 4a erzeugtes magnetisches Feld in die sekundärseitige Datenwicklung 4b einkoppelt.
  • Der erste und zweite Träger 5,6 sowie die Primärwicklungsanordnung 1 und die Sekundärwicklungsanordnung 2 sind rotationssymmetrisch ausgeführt, axial versetzt und weisen eine gemeinsame Rotationsachse 7 auf. Eine derartige Ausführung ist insbesondere für eine Montage auf einer Drehgelenkwelle vorteilhaft. Der erste und zweite Träger 5,6 sind ferner ringförmig ausgeführt und weisen eine Einsparung im Bereich der Rotationsachse 7 auf. Die Einsparung dient zur Durchführung der Drehgelenkwelle des Roboters.
  • Die Wicklungsanordnungen zeigen, dass ein Leiter der primärseitigen Energiewicklung 3a zu beiden Seiten von einem Leiter der primärseitigen Datenwicklung 4a umgeben ist. Dies, wie auch die folgende Betrachtung gelten in analoger Weise für die Sekundärseite, da der prinzipielle Aufbau von Primär- und Sekundärwicklungsanordnung 1,2 gleich ist.
  • Jeder Leiter der primärseitigen Energiewicklung 3a ist im Wesentlichen mittig zwischen den beiden Leitern der primärseitigen Datenwicklung 4a angeordnet. Insbesondere ist hierbei zu beachten, dass der Wicklungssinn der primärseitigen Datenwicklung 4a auf der einen Seite des Leiters der primärseitigen Energiewicklung 3a entgegengesetzt dem Wicklungssinn der primärseitigen Datenwicklung 4a auf der anderen Seite der primärseitigen Energiewicklung 3a orientiert ist. Bei einer stromdurchflossenen primärseitigen Energie- und Datenwicklung 3a,4a bedeutet dies, dass ein Leiter der primärseitigen Energiewicklung 3a linksseitig von einem Leiter der primärseitigen Datenwicklung 4a benachbart ist, dessen Strom in dieselbe Richtung fließt wie die des Energieleiters, wobei auf der anderen Seite des Energieleiters die Stromrichtung innerhalb des Datenleiters entgegengesetzt der Stromrichtung des Energieleiters ist. Hierdurch werden in den Datenleitern rechts und links des Energieleiters entgegengesetzt gerichtete Spannungen induziert die sich innerhalb einer Datenwindung aufheben. Diese Wicklungsanordnung wird auch anhand der FIG 2 noch einmal veranschaulicht.
  • FIG 2 zeigt eine Draufsicht der ersten Spulenanordnung zur berührungslosen Energie- und Datenübertragung. Da sich die Wicklungskonzepte der Primär- und Sekundärwicklungsanordnung im Allgemeinen nicht unterscheiden werden, ist hier nur eine Seite des Übertrager dargestellt, die sowohl die primärseitige Wicklungsanordnung als auch die sekundärseitige Wicklungsanordnung darstellen kann. FIG 2 zeigt, dass eine Windung der Energiewicklung 3 zu beiden Seiten von einem Leiter einer Datenwindung der Datenwicklung 4 umgeben ist. Bei einer stromdurchflossenen Datenwindung ist die Stromrichtung innerhalb der die Energiewindung benachbarten Datenleiter jeweils entgegengesetzt. Durch diese Art der Wicklung wird ein Kompensationseffekt der induzierten Spannungen innerhalb der Datenwindung erreicht, der anhand der FIG 3 verdeutlicht werden soll.
  • FIG 3 zeigt ein Energieleiterstück 10 und einen Integrationsweg 11 für eine induzierte elektrische Feldstärke. Durch den Integrationsweg 11 wird eine rechteckige Fläche aufgespannt, bei der das Energieleiterstück 10 eine Symmetrieachse bildet.
  • Für das Energieleiterstück 10 ist eine Stromrichtung durch einen Pfeil gekennzeichnet. Eine solche Stromrichtung erzeugt eine magnetische Feldstärke, die rechts des Energieleiterstücks 10 in die Zeichenebene hineingerichtet ist und links des Energieleiterstücks 10 aus der Zeichenebene herausragt. Innerhalb der Fläche, die von dem Integrationsweg 11 aufgespannt wird, kompensieren sich somit die Feldstärkeanteile rechts des Energieleiterstücks 10 mit denen links des Energieleiterstücks 10, so dass innerhalb der durch den Integrationsweg 11 aufgespannten Fläche kein magnetischer Fluss resultiert. Daraus folgt, dass die induzierte Spannung innerhalb einer durch den Integrationsweg 11 gekennzeichneten Leiterschleife gerade Null ergibt. Die Anordnung des Integrationsweges 11 in Bezug auf das Energieleiterstück 10 kennzeichnet ferner gerade die Anordnung der Datenwicklung in Bezug auf die Energiewicklung bei den in FIG 1 und FIG 2 dargestellten Ausführungsformen der erfindungsgemäßen Vorrichtung. Dies zeigt, dass bei den in den Figuren 1 und 2 dargestellten Wicklungsanordnungen keine Spannung von der Energiewicklung in die Datenwicklung induziert wird. Hierdurch wird erreicht, dass innerhalb der Datenwicklung keine Störbeeinflussung durch die Energiewicklung zu erwarten ist.
  • Bei den in den Figuren 1 und 2 gezeigten Wicklungsanordnungen mit einer Flachspulenanordnung wurde jeweils die Windungszahl Eins sowohl für die Energiewicklung als auch für die Datenwicklung vorausgesetzt. Selbstverständlich sind auch andere Ausführungsformen der Energiewicklung und der Datenwicklung möglich und von der Erfindung umfasst.
  • FIG 4 zeigt eine zweite Flachspulenanordnung mit zwei Energiewindungen einer Energiewicklung 3. In diesem Fall wird eine Datenwicklung 4 in Bezug auf die Energiewicklung 3 derart gewickelt, dass jeweils ein Leiter einer Datenwindung der Datenwicklung 4 mit und ein Leiter der Datenwindung entgegen des Wicklungssinns der Energiewicklung 3 angeordnet ist. Auf diese Art und Weise liegen zwischen zwei Leitern der Datenwindung jeweils zwei Windungen der Energiewicklung 3. Auch bei der hier dargestellten Ausführungsform wird der gewünschte Kompensationseffekt der magnetischen Feldstärke innerhalb der Datenwicklung 4 erzielt.
  • FIG 5 zeigt eine dritte Flachspulenanordnung mit zwei Energiewindungen einer Energiewicklung 3. Auch in diesem Fall beträgt die Windungszahl einer Datenwicklung 4, wie auch schon bei der in FIG 4 betrachteten Anordnung Eins. In diesem Fall ist die Datenwicklung 4 jedoch derart gewickelt, dass zwischen einem Hin- und einen Rückleiter einer Datenwindung der Datenwicklung 4 jeweils nur eine Energiewindung der Energiewicklung 3 angeordnet ist. Auch in diesem Fall wird der gewünschte Kompensationseffekt der induzierten elektrischen Feldstärke, die durch die von der Energiewicklung 3 erzeugte magnetische Feldstärke hervorgerufen wird, erzielt. Da sich jedoch bei einer derartig eng benachbarten Anordnung von Energieleitern entgegengesetzter Stromrichtung die durch die Energieleiter hervorgerufenen Teilmagnetfelder gegenseitig in horizontaler Richtung verdrängen, ist die Ausbreitung des Magnetfeldes in vertikaler Richtung (über den Luftspalt) relativ gering. Dadurch verringert sich die magnetische Kopplung zwischen Primär- und Sekundärseite für die Energieübertragung.
  • Selbstverständlich ist es auch möglich, die Datenwicklung 4 mit zwei Windungen auszuführen. FIG 6 zeigt eine vierte Flachspulenanordnung mit zwei Datenwindungen einer Datenwicklung 4. In dem hier dargestellten Fall beträgt die Windungszahl einer Energiewicklung 3 Eins. Hierbei ist die dargestellte Windung der Energiewicklung 3 zu beiden Seiten von zwei Leitern der Datenwicklung 4 umgeben. Auch hier kompensieren sich wiederum die durch die Energiewicklung 3 induzierten Feldstärkeanteile innerhalb der Datenwindungen der Datenwicklung 4. Somit kann auch hier eine Störbeeinflussung der Datenwicklung 4 durch die Energiewicklung 3 weitgehend ausgeschlossen werden.
  • FIG 7 zeigt eine teilbare Flachspulenanordnung, die zur induktiven berührungslosen Energie- und Datenübertragung vorgesehen ist. Eine derartige Flachspulenanordnung wird beispielsweise auf einen teilbaren ringförmigen Träger angeordnet. Mit einem solchen Träger kann die dargestellte Flachspulenanordnung sehr leicht auf eine Drehgelenkwelle insbesondere eines Roboters montiert werden. Durch die Teilbarkeit der Flachspulenanordnung kann der Übertrager direkt auf die Gelenkwelle angebracht werden, ohne diese zuvor demontieren zu müssen. Die dargestellte Flachspulenanordnung weist eine erste Spulenanordnung 8 bestehend aus einer Energiewicklung 3 und einer Datenwicklung 4 auf sowie eine zweite Spulenanordnung 9, die ebenfalls eine Energiewicklung 3 und eine Datenwicklung 4 aufweist. Die erste und zweite Spulenanordnung 8,9 ist lediglich durch eine Kabelverbindung für die Energiewicklung 3 und eine Kabelverbindung für die Datenwicklung 4 miteinander verbunden. Auch bei einer weitaus höheren Wicklungszahl für die erste und zweite Spulenanordnung 8,9 wäre lediglich jeweils eine Verbindung für die Daten- und Energiewicklung 3,4 notwendig. Die teilbare Flachspulenanordnung zeichnet sich dadurch aus, dass die erste Spulenanordnung 8 in Reihe zu der zweiten Spulenanordnung 9 geschaltet ist, wobei die Spulenanordnungen 8,9 wiederum derartig gewickelt sind, dass mindestens eine Datenwindung der Datenwicklung 4 mindestens eine Energiewindung der Energiewicklung 3 derart umschließt, dass ein erster Teil der Datenwindung mit dem Wicklungssinn der Energiewicklung 3 gewickelt ist und ein zweiter Teil der Datenwindung entgegen dem Wicklungssinn der Energiewicklung 3 gewickelt ist.
  • Alle in den Figuren dargestellten Flachspulenanordnungen haben den Vorteil, dass für die Energiewicklung 3 und die Datenwicklung 4 separate Wicklungen zur Verfügung gestellt werden. Somit kann die Energiewicklung 3 für eine optimale induktive Energieübertragung zwischen der Primärwicklungsanordnung und der Sekundärwicklungsanordnung optimiert werden und die Datenwicklung 4 für eine optimale induktive Datenübertragung zwischen dem ersten und zweiten Träger bzw. zwischen der Primärwicklungsanordnung und der Sekundärwicklungsanordnung. Darüber hinaus wird durch die erfindungsgemäße Anordnung der Datenwicklung 4 in Bezug auf die Energiewicklung 3 erreicht, dass das magnetische Feld der Energiewicklung 3 nahezu keine Spannung innerhalb der Datenwindungen der Datenwicklung 4 induziert und somit keine Störbeeinflussung auf die Datenübertragung ausübt.

Claims (11)

  1. Vorrichtung zur berührungslosen Energie- und Datenübertragung mit einer auf einem ersten Träger (5) drehfest angeordneten Primärwicklungsanordnung (1) und einer auf einem zweiten Träger (6) drehfest angeordneten Sekundärwicklungsanordnung (2), wobei der erste und zweite Träger (5,6) gegeneinander verdrehbar sind und wobei die Primär- und Sekundärwicklungsanordnung (1,2) jeweils mindestens eine Energiewicklung (3) zur induktiven Übertragung elektrischer Energie aufweisen und wobei Primär- und Sekundärwicklungsanordnung (1,2) jeweils mindestens eine Datenwicklung (4) zur induktiven Datenübertragung aufweisen,
    dadurch gekennzeichnet, dass
    mindestens eine Datenwindung der Datenwicklung (4) mindestens eine Energiewindung der Energiewicklung (3) derart umschließt, dass ein erster Teil der Datenwindung mit dem Wicklungssinn der Energiewicklung (3) gewickelt ist und ein zweiter Teil der Datenwindung entgegen dem Wicklungssinn der Energiewicklung (3) gewickelt ist.
  2. Vorrichtung nach Anspruch 1,
    wobei die Datenwicklung (4) derartig in Bezug auf die Energiewicklung (3) angeordnet ist, dass von der Energiewicklung (3) erzeugte magnetische Feldstärkeanteile sich innerhalb einer von der Datenwindung eingeschlossenen Fläche derart kompensieren, dass innerhalb der Fläche nahezu kein magnetischer Fluss resultiert.
  3. Vorrichtung nach Anspruch 1 oder 2,
    wobei die Energiewindung im Wesentlichen mittig zwischen dem ersten Teil der Datenwindung angeordnet ist, der mit dem Wicklungssinn der Energiewicklung (3) gewickelt ist und dem zweiten Teil der Datenwindung, der entgegen dem Wicklungssinn der Energiewicklung (3) gewickelt ist.
  4. Vorrichtung nach einem der vorhergehenden Ansprüche,
    wobei Primär- und Sekundärwicklungsanordnung (1,2) jeweils als Flachspule ausgeführt sind.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche,
    wobei der erste und zweite Träger (5,6) rotationssymmetrisch ausgeführt und gegeneinander axial versetzt angeordnet sind und eine gemeinsame Rotationsachse (7) aufweisen.
  6. Vorrichtung nach einem der vorhergehenden Ansprüche,
    wobei der erste und zweite Träger (5,6) als Ferritspiegel ausgeführt sind.
  7. Vorrichtung nach einem der vorhergehenden Ansprüche,
    wobei die Vorrichtung zur Montage in drehbeweglichen Anlagen insbesondere für die Automatisierungstechnik vorgesehen ist,
    wobei der erste Träger (5) mit einem feststehenden Teil der Anlage verbunden ist und der zweite Träger (6) mit einem drehbeweglichen Teil der Anlage verbunden ist.
  8. Vorrichtung nach einem der vorhergehenden Ansprüche,
    wobei der erste und zweite Träger (5,6) ringförmig ausgeführt sind.
  9. Vorrichtung nach einem der vorhergehenden Ansprüche,
    wobei der erste und zweite Träger (5,6) jeweils in einen ersten und einen zweiten Teilträger teilbar sind, wobei der erste und zweite Teilträger insbesondere jeweils eine halbkreisförmige Aussparung aufweisen.
  10. Vorrichtung nach Anspruch 9,
    wobei die Energiewicklung (3) und die Datenwicklung (4) jeweils eine erste und eine zweite insbesondere in Reihe geschaltete Spulen aufweisen, wobei die erste Spule auf dem ersten Teilträger und die zweite Spule auf dem zweiten Teilträger angeordnet sind.
  11. Vorrichtung nach Anspruch 9 und 10,
    wobei mindestens eine erste Windung der ersten Spule innerhalb des ersten Teilträgers und mindestens eine zweite Windung der zweiten Spule innerhalb des zweiten Teilträgers derart geschlossen sind, dass sie jeweils einen inneren Windungsteil mit einem Innenradius und einen äußeren Windungsteil mit einem Außenradius, der größer als der Innenradius ist, aufweisen.
EP05006641A 2005-03-24 2005-03-24 Induktiver Drehübertrager Revoked EP1705673B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE502005003976T DE502005003976D1 (de) 2005-03-24 2005-03-24 Induktiver Drehübertrager
EP05006641A EP1705673B1 (de) 2005-03-24 2005-03-24 Induktiver Drehübertrager
US11/886,246 US7701315B2 (en) 2005-03-24 2006-03-23 Inductive rotary transfer device
CN2006800095950A CN101147215B (zh) 2005-03-24 2006-03-23 电感式旋转传输装置
PCT/EP2006/060998 WO2006100294A1 (de) 2005-03-24 2006-03-23 Induktiver drehübertrager

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05006641A EP1705673B1 (de) 2005-03-24 2005-03-24 Induktiver Drehübertrager

Publications (2)

Publication Number Publication Date
EP1705673A1 EP1705673A1 (de) 2006-09-27
EP1705673B1 true EP1705673B1 (de) 2008-05-07

Family

ID=35447553

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05006641A Revoked EP1705673B1 (de) 2005-03-24 2005-03-24 Induktiver Drehübertrager

Country Status (5)

Country Link
US (1) US7701315B2 (de)
EP (1) EP1705673B1 (de)
CN (1) CN101147215B (de)
DE (1) DE502005003976D1 (de)
WO (1) WO2006100294A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010001484A1 (de) 2010-02-02 2011-09-29 Balluff Gmbh Übertragungsvorrichtung zur kontaktlosen Übertragung von Energie und Daten, Übertragungssystem und Verfahren zur kontaktlosen induktiven Energieübertragung und Datenübertragung
EP2700140B1 (de) 2011-04-21 2016-09-14 Sew-Eurodrive GmbH & Co. KG System zur induktiven energie-übertragung an einen verbraucher
DE102007051917B4 (de) 2006-11-27 2017-03-30 Sew-Eurodrive Gmbh & Co Kg Aktor, insbesondere Linearantrieb, und Anlage oder Maschine
DE102016206767A1 (de) * 2016-04-06 2017-10-12 Frauenhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System zur drahtlosen Übertragung von Energie und Daten
DE102011115092C5 (de) 2011-10-07 2018-04-05 Sew-Eurodrive Gmbh & Co Kg System zur kontaktlosen Übertragung von Energie und Daten
DE102017004279A1 (de) * 2017-05-03 2018-04-19 Eckhard P. Kaufmann Bifilar aufgebautes induktives Wandlerelement

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0802553D0 (en) * 2008-02-12 2008-03-19 Sentec Ltd Planar rotary data transformer for spinning high definition display system
JP5324856B2 (ja) * 2008-08-01 2013-10-23 三重電子株式会社 可動部のハーネスレス装置
DE102010025376A1 (de) 2010-06-28 2011-12-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur berührungslosen Energie- und Datenübertragung und Roboter
DE102010040366A1 (de) * 2010-09-07 2012-03-08 rc-direct Unternehmergesellschaft (haftungsbeschränkt) Leistungsübertrager für ein Windrad
KR101356623B1 (ko) * 2011-11-10 2014-02-03 주식회사 스파콘 전력전송코일 및 무선 전력전송장치
DE102012202472B4 (de) * 2012-02-17 2018-03-01 Siemens Aktiengesellschaft Vorrichtung zur kontaktlosen Übertragung von Energie auf eine korrespondierende Vorrichtung
DE102012205285A1 (de) * 2012-03-30 2013-10-02 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur induktiven Leistungsübertragung
JPWO2014111971A1 (ja) * 2013-01-16 2017-01-19 三重電子株式会社 無接触式伝送装置
JP6201380B2 (ja) 2013-04-03 2017-09-27 船井電機株式会社 非接触通信コイル、非接触給電装置、及び非接触受電装置
DE102013206563A1 (de) * 2013-04-12 2014-10-16 Reinhard Kögel EMV-kompensierte Spule
DE102014218067A1 (de) 2014-09-10 2016-03-10 Robert Bosch Gmbh Übertragungsspule zur induktiven Energieübertragung
JP6414820B2 (ja) * 2015-03-20 2018-10-31 公益財団法人鉄道総合技術研究所 非接触給電装置、非接触給電システム、制御方法及びプログラム
DE102015122244B9 (de) 2015-12-18 2024-05-02 Tdk Electronics Ag Anordnung zur Kompensierung von in einem Übertrager induzierten Störspannungen
EP3486927A4 (de) 2016-07-13 2020-03-25 Nippon Steel Corporation Induktivitätseinstellvorrichtung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA878140A (en) * 1969-05-12 1971-08-10 S. Mackelvie John Signal transmitting system for rotating apparatus
US4321572A (en) * 1980-11-13 1982-03-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Non-contacting power transfer device
US4425511A (en) * 1981-02-09 1984-01-10 Amnon Brosh Planar coil apparatus employing a stationary and a movable board
US4404559A (en) * 1981-05-26 1983-09-13 Battelle Memorial Institute Rotative power and signal coupling
US4590453A (en) * 1983-06-23 1986-05-20 Universal Manufacturing Corporation Autotransformer with common winding having oppositely wound sections
JPH04326709A (ja) * 1991-04-26 1992-11-16 Matsushita Electric Ind Co Ltd 回転トランス
DE19914395A1 (de) * 1999-03-30 2000-10-12 Bosch Gmbh Robert Induktiver Übertrager
JP2001015361A (ja) * 1999-07-02 2001-01-19 Sony Corp ロータリートランス
JP2001309013A (ja) * 2000-04-27 2001-11-02 Mitsubishi Electric Corp 非接触信号伝送装置
JP2002043151A (ja) * 2000-07-25 2002-02-08 Matsushita Electric Works Ltd 非接触充電用トランス及び充電式電動機器セットの製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007051917B4 (de) 2006-11-27 2017-03-30 Sew-Eurodrive Gmbh & Co Kg Aktor, insbesondere Linearantrieb, und Anlage oder Maschine
DE102010001484A1 (de) 2010-02-02 2011-09-29 Balluff Gmbh Übertragungsvorrichtung zur kontaktlosen Übertragung von Energie und Daten, Übertragungssystem und Verfahren zur kontaktlosen induktiven Energieübertragung und Datenübertragung
EP2700140B1 (de) 2011-04-21 2016-09-14 Sew-Eurodrive GmbH & Co. KG System zur induktiven energie-übertragung an einen verbraucher
DE102011018633B4 (de) 2011-04-21 2021-10-07 Sew-Eurodrive Gmbh & Co Kg System zur induktiven Energie-Übertragung an einen Verbraucher
DE102011115092C5 (de) 2011-10-07 2018-04-05 Sew-Eurodrive Gmbh & Co Kg System zur kontaktlosen Übertragung von Energie und Daten
DE102016206767A1 (de) * 2016-04-06 2017-10-12 Frauenhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System zur drahtlosen Übertragung von Energie und Daten
DE102017004279A1 (de) * 2017-05-03 2018-04-19 Eckhard P. Kaufmann Bifilar aufgebautes induktives Wandlerelement

Also Published As

Publication number Publication date
WO2006100294A1 (de) 2006-09-28
EP1705673A1 (de) 2006-09-27
CN101147215A (zh) 2008-03-19
US7701315B2 (en) 2010-04-20
DE502005003976D1 (de) 2008-06-19
US20080211614A1 (en) 2008-09-04
CN101147215B (zh) 2012-06-27

Similar Documents

Publication Publication Date Title
EP1705673B1 (de) Induktiver Drehübertrager
EP2030301B1 (de) Anlage zur berührungslosen energieübertragung
DE102006025458B4 (de) Übertragerkopf und Anlage zur berührungslosen Energieübertragung
DE10260246B4 (de) Spulenanordnung mit veränderbarer Induktivität
EP2201584B1 (de) Koppeleinrichtung
DE10053505C2 (de) Elektromagnetische Induktionssteckverbindung
DE69723435T2 (de) Steuerbarer induktor
EP0293617B1 (de) Hochfrequenz-Leistungsübertrager
DE102006025460B4 (de) Anlage mit einem Primärleitersystem
EP0525459A1 (de) Übertragungseinrichtung
DE102016201258A1 (de) Elektrischer Spannungswandler mit mehreren Speicherdrosseln
EP2614510B1 (de) Stromkompensierte drossel mit erhöhter streuinduktivität
EP3815118B1 (de) Transformator mit ringkern und system zur elektrischen versorgung einer last
DE102007023343A1 (de) Übertragerkopf und Anlage
EP1772940A2 (de) Rotierübertrager zur Übertragung von elektrischer Energie oder Information
EP1529296B1 (de) Wicklungsanordnung
WO2012079861A1 (de) Vorrichtung zur induktiven übertragung elektrischer energie
DE69126427T2 (de) Leitungskupplungstransformator
EP3139392A1 (de) Mittelfrequenztransformator sowie halbleiterumrichter mit einem mittelfrequenztransformator
DE102005051462A1 (de) Vorrichtung zur induktiven Leistungsüberwachung, Verfahren zur Herstellung einer solchen Vorrichtung, Drehübertrager
WO2023222329A1 (de) Näherungsschalter und verfahren zur erfassung eines auslösers
WO2005043567A1 (de) Drehtransformator
DE102020214444A1 (de) Transformator, elektrische Schaltungsanordnung und Magnetresonanzbildgebungseinrichtung
AT406204B (de) Transformator
DE102006042360B3 (de) Elektromagnetmetallkern aus Einzelblechen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20061120

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502005003976

Country of ref document: DE

Date of ref document: 20080619

Kind code of ref document: P

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SCHLEIFRING UND APPARATEBAU GMBH

Effective date: 20090206

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502005003976

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502005003976

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160310

Year of fee payment: 12

Ref country code: FR

Payment date: 20160311

Year of fee payment: 12

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160329

Year of fee payment: 12

27W Patent revoked

Effective date: 20160405

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20160405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170519

Year of fee payment: 13