Nothing Special   »   [go: up one dir, main page]

EP1765536B1 - Method for producing metal products - Google Patents

Method for producing metal products Download PDF

Info

Publication number
EP1765536B1
EP1765536B1 EP05748361A EP05748361A EP1765536B1 EP 1765536 B1 EP1765536 B1 EP 1765536B1 EP 05748361 A EP05748361 A EP 05748361A EP 05748361 A EP05748361 A EP 05748361A EP 1765536 B1 EP1765536 B1 EP 1765536B1
Authority
EP
European Patent Office
Prior art keywords
metal
gas
gas nozzle
nozzle
semifinished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05748361A
Other languages
German (de)
French (fr)
Other versions
EP1765536A2 (en
Inventor
Karl Rimmer
Gunther Schulz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEESE-MARKTSCHEFFEL, JULIANE
Original Assignee
Schulz Gunther
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AT0102804A external-priority patent/AT413702B/en
Application filed by Schulz Gunther filed Critical Schulz Gunther
Priority to AT05748361T priority Critical patent/ATE425832T1/en
Publication of EP1765536A2 publication Critical patent/EP1765536A2/en
Application granted granted Critical
Publication of EP1765536B1 publication Critical patent/EP1765536B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/003Moulding by spraying metal on a surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/115Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal

Definitions

  • the invention relates to a method for producing metal products, such as films, coatings and moldings, such as bolts, tubes or sheets, of metal in the form of semi-finished product, in which the metal of the semifinished product is melted and atomized and finally solidified again, wherein the Metal molten non-contact and the molten metal is atomized in a gas nozzle to a spray jet by the gas nozzle is supplied to at least one gas stream.
  • metal products such as films, coatings and moldings, such as bolts, tubes or sheets
  • reactive metals such as titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, rhenium and their alloys as well as superalloys (alloys based on nickel or cobalt), are crucial by their purity, especially by determines the absence of oxides and ceramic impurities. Because of the high melting points of the metals and alloys mentioned and the mechanical properties thereof, forming processes and processes for cutting shaping are very complicated.
  • a disadvantage of the US 6,043,451 A known method is due to the radial symmetry of the plasma torch forming a conical spray of molten metal, whereby wider films or coatings can be produced only by overlapping several spray cone or repeated spraying with the same Sprtihkegel.
  • the layers thus produced have an unusual, inhomogeneous surface profile (cf. Fig. 2a ).
  • the production output of only 3 kg / h (50g / min) is very small and thus less suitable for the production of thicker foils or coatings or semi-finished products such as bolts, tubes or sheets.
  • a method for producing metal powder is known.
  • the molten metal in the form of a film emerges from a nozzle with a slot-shaped outlet opening.
  • the film is stabilized by a laminar gas flow in a Laval gas nozzle and then finely atomized.
  • the productivity of the nozzle system can be varied as desired by extending the nozzle slot without adversely affecting powder quality.
  • the non-contact melting of metals is from the U.S. Patent 4,822,267 , of the DE 41 02 101 A1 or the JP 62 017103 A known.
  • a method for producing metal composites is further from the US-A-3,775,156 known.
  • the present invention has for its object to provide a method of the type mentioned, with a direct transfer of metal, which is present for example as commercially available semi-finished, in metal foils, surface coatings or other products (semifinished products) with hollow productivity cost and without the risk of introducing contaminants is possible.
  • metal in the form of a commercially available semi-finished product which, for example, has the shape of a cuboid
  • a linear, in particular wedge-shaped, spray jet This spray is used to produce the desired metal product.
  • various products can be made of metal. In any case, it is ensured that in the method according to the invention impurities of the metal are excluded or at least largely prevented.
  • metal products can be produced by, for example, coating surfaces or producing semi-finished products, such as films, sheets or bolts.
  • the metal of the semifinished product is melted, atomized, sprayed onto a carrier and solidified on the carrier.
  • the method according to the invention can also be used, for example, for coating workpieces.
  • semifinished product for example a bolt, of the metal, which has a substantially rectangular cross-sectional shape, can be inductive on the surface of its two longitudinal sides its front side are melted.
  • the melting end face is located within the laminar gas flow of a linear nozzle.
  • the two halves of the linear Venturi nozzle preferably consist of a non-coupling to the magnetic field of the induction heating material.
  • tubes made of metal, preferably copper, are inserted into the Venturi half-nozzle, which serve as conductors for the inductive excitation current with simultaneous cooling by a cooling fluid, for example water.
  • a cooling fluid for example water.
  • the tubes are connected to each other at the ends of the venturi half-nozzle via further tubes.
  • the gas streams strike over the melting surface of the semifinished product, for example in the form of a bolt and promote the melt in the form of two very thin films to the bolt tip.
  • both films unite and the resulting melt film is further stabilized by the laminar gas flow, accelerated and finally atomized into fine droplets.
  • the liquid (melt) film does not need to exit the nozzle with a downward movement.
  • the inventive method works regardless of the position, not only vertically upwards, but also horizontally or vertically downwards, as well as in any other orientation.
  • the guidance of the liquid film, in particular the film of molten metal, by the gas flow is stronger than the force acting on the melt gravity.
  • the independence of the position of the atomizing nozzle gives the designer of jet systems according to the invention design degrees of freedom that can be used in a reduction in the height of the plant.
  • the method according to the invention is carried out in a container, wherein in one embodiment a virtually continuous production of metal products is possible by connecting a new semifinished product, e.g. by at least one weld.
  • a new semifinished product e.g. by at least one weld.
  • FIG. 1 schematically an arrangement for carrying out the method according to the invention
  • Fig. 2 another arrangement for carrying out the method according to the invention
  • Fig. 3a a coating, as in the prior art ( US 6,043,451 A ) is available
  • Fig. 3b a coating, as it can be produced when applying the method according to the invention.
  • FIG. 1 The arrangement shown is an example application of the method according to the invention for producing a film of metal.
  • This arrangement consists of an elongated (linear) gas nozzle 1, in which water-cooled copper tubes 2 are arranged.
  • the copper pipes 2 serve to create an inductive magnetic field.
  • the semi-finished product 3 to be processed of metal with a substantially rectangular cross-section is introduced into the elongate inlet opening of the gas nozzle 1 and melted contactlessly on its longitudinal sides under the action of the inductive magnetic field.
  • the gas nozzle 1 used in the invention may be formed as a Laval nozzle or as a Venturi nozzle. After passing through the narrowest point of the gas nozzle 1 (elongated mouth thereof), the molten metal film 5 is atomized to a linear wedge-shaped, substantially tent-shaped spray 6.
  • the spray jet 6 is directed in the embodiment shown on an endless and cooled metal strip 7 as a carrier.
  • the droplets of molten metal are liquid or at least partially liquid at the time of impact with the metal strip 7 and solidify into a homogeneous surface metal foil 8 (excluding the two edges).
  • Fig. 3a shows the spray result with a conventional round die (see. US 6,043,451 A ), in which several metal caterpillars 1 to 4 are sprayed side by side.
  • Fig. 3b shows a metal foil 8, which has been produced by the method according to the invention, in which a uniformly thick metal layer (foil 8) is formed in a single spraying.
  • the productivity of the process of the invention can be adjusted as desired over the length of the spray jet as well as over the Abschmelzchip elegant induction heating.
  • the preferably added in the form of semi-finished raw material as metal is converted in one operation in the desired end product, therefore comes only with the atomizing gas in contact and, if the purity of the gas atmosphere is high enough, converted without an increase in impurities in the metal product become.
  • reactive metal or alloy is thermally compacted by spray compacting, the starting material being melted in the form of semifinished product without contact, in particular inductively, and atomized into a linear, wedge-shaped spray jet.
  • the particles of the spray jet are, for example, spray-compacted onto a substrate to form a product or applied to a component as a surface coating.
  • any metals in particular reactive metals, such as titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, rhenium or an alloy based on these metals.
  • the method according to the invention is suitable for processing a nickel-titanium alloy or a superalloy based on nickel or cobalt.
  • the semifinished product to be processed is a composite material of high-melting phases and low-melting binder matrix.
  • the refractory phase may be a carbide.
  • products in the form of films, sheets, tubes or bolts can be produced.
  • An advantage of the method according to the invention is that the purity of the product differs only slightly from the purity of the starting material (semifinished product).
  • dispersoids are deliberately introduced via a further nozzle.
  • Such dispersoids may be, for example, silicon carbide, tungsten carbide, corundum (Al 2 O 3 ) or zirconium oxide.
  • the purpose of adding such dispersoids and other additives, which may also be volatile, is to influence the properties of the process product in the desired direction.
  • a release agent may be applied to the substrate prior to spray compaction.
  • a rod made of titanium with a rectangular cross-section (initial dimension: width 50 mm, thickness 40 mm, length 3000 mm) is sealed without crucible with an induction frequency of 350 kHz and with 5 kg / min.
  • a new rod after having passed the pre-sluice chamber with inerting and pressure equalization, is brought to the end of the first rod away from the atomization, and the two rods are at the two of the Abschmelzaggregat opposite sides linearly welded together by laser beam without filler material.
  • FIG. 2 An example of this suitable device is in Fig. 2 shown.
  • This device has a linear gas nozzle 10 with internal supply of the primary atomizing gas 13.
  • an induction coil 12 is integrated in the linear gas nozzle 10. From the linear gas nozzle 10 occurs, as in Fig. 2 schematically indicated, primary atomizing gas 13 and although in the illustrated embodiment symmetrical, so that two streams of primary atomizing gas 13 are present.
  • a secondary gas flow 14 is provided in the linear gas nozzle 10, which forms a melt film 21 on the metal melting off from the metal rod 15 of rectangular cross-section.
  • the melting metal rod 15 is advanced by rotationally driven guide rollers 18 to the gas nozzle 10 down.
  • the primary gas streams 13 are generated by the atomizing gas supplied primarily within the gas nozzle 10.
  • the primary gas streams 13 generate a local negative pressure through which gas is drawn in, which forms the secondary gas streams 14 serving as support gas.
  • the entire assembly is housed in a housing 19 which is filled with an inert gas, in particular argon, with the gas in the housing 19 being at the same pressure as the container environment.
  • an inert gas in particular argon
  • the metal rod 15 may be, for example, a rod made of titanium. Under the action of the primary atomizing gas streams 13, a spray of metal droplets 22 is formed from the melt film 21. These droplets of molten metal 22. can, as indicated by Fig. 1 and 2 B described, spray-compacted.
  • a further metal rod with a rectangular cross-section are added by being connected to the metal rod 15 by two welds 17, in particular parallel to the plane of the Fig. 2 aligned.
  • the tracked metal bar 16 is also guided by rotationally driven guide rollers 18.
  • a container 25 is still provided, in which the molten metal (metal droplets or powder particles 22) divided into droplets solidifies to form a metal powder.
  • the metal of the semifinished product 15 is melted by an inductive magnetic field 12, atomized and in a chamber 25th solidified to a powder or sprayed on a carrier and solidified on the carrier.
  • the molten metal is supplied in a gas nozzle 10, which is formed either as a Laval nozzle or Venturi nozzle, as a film 21 which is stabilized by gas streams 14, and then atomized by further gas streams 13.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

To produce products from metal, such as powders, foils, coatings and molded parts, such as pins, pipes or sheets, from metal in the form of a semifinished product ( 15 ), the metal of the semifinished product ( 15 ) is melted by an inductive magnetic field ( 12 ), atomized and allowed to solidify in a chamber ( 25 ) into a powder or sprayed onto a carrier and hardened on the carrier. The molten metal is supplied in a gas nozzle ( 10 ) which is made either as a Laval nozzle or as a Venturi nozzle, as a film ( 21 ) which is stabilized by gas flows ( 14 ), and is then atomized by other gas flows ( 13 ).

Description

Die Erfindung betrifft ein Verfahren zum Herstellen von Erzeugnissen aus Metall, wie Folien, Beschichtungen und Formteilen, wie Bolzen, Rohren oder Blechen, aus Metall in Form von Halbzeug, bei dem das Metall des Halbzeuges geschmolzen und zerstäubt und schließlich wieder verfestigt wird, wobei das Metall berührungslos geschmolzen und das geschmolzene Metall in einer Gasdüse zu einem Sprühstrahl zerstäubt wird, indem der Gasdüse wenigstens ein Gasstrom zugeführt wird.The invention relates to a method for producing metal products, such as films, coatings and moldings, such as bolts, tubes or sheets, of metal in the form of semi-finished product, in which the metal of the semifinished product is melted and atomized and finally solidified again, wherein the Metal molten non-contact and the molten metal is atomized in a gas nozzle to a spray jet by the gas nozzle is supplied to at least one gas stream.

Die werkstofftechnischen Eigenschaften reaktiver Metalle, wie Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän, Wolfram, Rhenium und ihrer Legierungen sowie von Superlegierungen (Legierungen auf Basis von Nickel oder Kobalt), werden entscheidend durch ihre Reinheit, insbesondere durch die Abwesenheit von Oxiden und keramischen Verunreinigungen bestimmt. Wegen der hohen Schmelzpunkte der genannten Metalle und Legierungen und der mechanischen Eigenschaften derselben sind Umformverfahren und Verfahren zur spanabhebenden Formgebung sehr aufwändig.The material properties of reactive metals such as titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, rhenium and their alloys as well as superalloys (alloys based on nickel or cobalt), are crucial by their purity, especially by determines the absence of oxides and ceramic impurities. Because of the high melting points of the metals and alloys mentioned and the mechanical properties thereof, forming processes and processes for cutting shaping are very complicated.

Aus der US 6,043,451 A ist ein Verfahren zum Plasmabeschichten von Bauteilen und zum Sprühkompaktieren von Folien aus Nickel-Titan-Legierungen bekannt. Das Metall wird bei dem aus der US 6,043,451 A bekannten Verfahren einem Plasmabrenner als Pulver oder Draht zugeführt. Das Herstellen von Pulver und Draht ist sehr aufwändig und teuer und erfordert mindestens eine Fertigungsstufe ausgehend von (großformatigem) Halbzeug. Bei pulverförmigem Metall besteht wegen der großen Oberfläche überdies erhöhte Gefahr der Aufnahme von Sauerstoff.From the US 6,043,451 A discloses a method of plasma coating of components and spray compacting of films of nickel-titanium alloys. The metal is at the out of the US 6,043,451 A known method supplied to a plasma torch as a powder or wire. The production of powder and wire is very complicated and expensive and requires at least one stage of production starting from (large-sized) semifinished product. In the case of powdered metal, because of the large surface area, there is also an increased risk of absorbing oxygen.

Nachteilig bei dem aus der US 6,043,451 A bekannten Verfahren ist die durch die Radialsymmetrie des Plasmabrenners bedingte Ausbildung eines kegelförmigen sprühstrahles aus geschmolzenem Metall, wodurch breitere Folien oder Beschichtungen nur durch Überlappen mehrerer Sprühkegel bzw. mehrmaliges Besprühen mit demselben Sprtihkegel erzeugt werden können. Die so erzeugten Schichten haben ein ungewunsches, inhomogenes oberflächenprofil (vgl. Fig. 2a). Die Produktionsleistung ist mit nur 3 kg/h (50g/min) sehr klein und somit für das Erzeugen dickerer Folien oder Beschichtungen oder von Halbzeugen, wie Bolzen, Rohren oder Blechen, wenig geeignet.A disadvantage of the US 6,043,451 A known method is due to the radial symmetry of the plasma torch forming a conical spray of molten metal, whereby wider films or coatings can be produced only by overlapping several spray cone or repeated spraying with the same Sprtihkegel. The layers thus produced have an unusual, inhomogeneous surface profile (cf. Fig. 2a ). The production output of only 3 kg / h (50g / min) is very small and thus less suitable for the production of thicker foils or coatings or semi-finished products such as bolts, tubes or sheets.

Das Zerstäuben von Flüssigkeiten durch Gasverdüsung ist bekannt.The atomization of liquids by gas atomization is known.

Beispielsweise ist aus der DE 197 58 111 A ein Verfahren zum Herstellen von Metallpulver bekannt. Bei diesen bekannten Verfahren tritt die Metallschmelze in Form eines Films aus einer Düse mit schlitzförmiger Austrittsöffnung aus. Der Film wird von einer laminaren Gasströmung in einer Laval-Gasdüse stabilisiert und anschließend fein zerstäubt. Die Produktivität des Düsensystems kann durch Verlängern des Düsenschlitzes ohne nachteilige Auswirkungen auf die Pulverqualitat beliebig verändert werden. Beim Schmelzen in Behältern besteht jedoch grundsätzlich die Gefahr der verunreinigung des erhaltenen Metallpulvers durch Werkstoffe der Behälter.For example, is from the DE 197 58 111 A a method for producing metal powder is known. In these known methods, the molten metal in the form of a film emerges from a nozzle with a slot-shaped outlet opening. The film is stabilized by a laminar gas flow in a Laval gas nozzle and then finely atomized. The productivity of the nozzle system can be varied as desired by extending the nozzle slot without adversely affecting powder quality. When melting in containers, however, there is basically the risk of contamination of the resulting metal powder by materials of the container.

Das berührungslose Aufschmelzen von Metallen ist aus der US-A-4 822 267 , der DE 41 02 101 A1 oder der JP 62 017103 A bekannt.The non-contact melting of metals is from the U.S. Patent 4,822,267 , of the DE 41 02 101 A1 or the JP 62 017103 A known.

Aus der DE 41 02 101 A ist ein Verfahren bekannt, bei dem Metalle in Form einer vertikal angeordneten Stange mit radial-symmetrischem Querschnitt unter inerter Atmosphäre durch Induktion am unteren Ende abgeschmolzen werden. Die Schmelze tropft unter dem Einfluss der Schwerkraft und des elektromagnetischen Drucks (resultierend aus der Induktionsspule) ab. Die Tropfen werden dann durch einen aus einer Ring- spaltdüse austretenden Gasstrom zu einem relativ groben Pulver mit einer mittleren Korngröße von etwa 50µm mit breiter Korngrößenverteilung zerstäubt. Die Metallstange wird während des Abschmelzens um ihre Längsachse gedreht und entsprechend dem Verzehr in die Induktionsspule nachgeführt. Dazu ist ein aufwändiger Antrieb erforderlich. Der Gasverbrauch je Kilogramm Metallpulver ist hoch. Feine Pulver mit einer Korngröße unter 30µm können nur mit geringer Ausbeute hergestellt werden. Die Gesamtproduktivität des aus der DE 41 02 101 A bekannten Verfahrens ist mit etwa 20kg/Stunde gering und kann nicht ohne Qualitätseinbußen des Pulvers erhöht werden.From the DE 41 02 101 A For example, a method is known in which metals are melted in the form of a vertically arranged bar with radially symmetrical cross-section under inert atmosphere by induction at the lower end. The melt drips off under the influence of gravity and electromagnetic pressure (resulting from the induction coil). The droplets are then atomized by a gas stream leaving a ring-gap nozzle to form a relatively coarse powder having an average particle size of about 50 μm with a broad particle size distribution. The metal rod is rotated during its melting around its longitudinal axis and tracked according to the consumption in the induction coil. This requires a complex drive. The gas consumption per kilogram of metal powder is high. Fine powders with a particle size below 30μm can only be produced with low yield. The total productivity of the DE 41 02 101 A known method is low at about 20kg / hour and can not be increased without sacrificing the quality of the powder.

Ein Verfahren zum Herstellen von Metallverbunden ist des Weiteren aus der US-A-3 775 156 bekannt.A method for producing metal composites is further from the US-A-3,775,156 known.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Gattung bereit zu stellen, mit dem ein direktes überführen von Metall, das beispielsweise als kommerziell erhältliches Halbzeug vorliegt, in Metallfolien, Oberflächenbeschichtungen oder andersformatige Erzeugnisse (Halbzeuge) mit hohler Produktivität kostengünstig und ohne die Gefahr des Einbringens von Verunreinigungen möglich ist.The present invention has for its object to provide a method of the type mentioned, with a direct transfer of metal, which is present for example as commercially available semi-finished, in metal foils, surface coatings or other products (semifinished products) with hollow productivity cost and without the risk of introducing contaminants is possible.

Gelöst wird diese Aufgabe mit einem Verfahren, welches die Merkmale vom Anspruch 1 aufweist.This object is achieved by a method which has the features of claim 1.

Vorteilhafte und bevorzugte Ausgestaltungen des erfindungsgemäßen Verfahrens sind Gegenstand der Unteransprüche.Advantageous and preferred embodiments of the method according to the invention are the subject of the subclaims.

Bei dem erfindungsgemäßen Verfahren wird Metall in Form eines handelsüblich erhältlichen Halbzeuges, das beispielswiese die Form eines Quaders hat, berührungslos aufgeschmolzen und zu einem linearen, insbesondere keilförmigen, Sprühstrahl verdüst. Dieser Sprühstrahl wird benützt, um das gewünschte Erzeugnis aus Metall zu erzeugen. Mit dem erfindungsgemäßen Verfahren können verschiedene Erzeugnisse aus Metall hergestellt werden. In jedem Fall ist gewährleistet, dass bei dem erfindungsgemäßen Verfahren Verunreinigungen des Metalls ausgeschlossen oder doch weitestgehend verhindert sind. Mit dem erfindungsgemäßen Verfahren können Erzeugnisse aus Metall hergestellt werden, indem beispielsweise Oberflächen beschichtet oder Halbzeuge, wie Folien, Bleche oder Bolzen, hergestellt werden.In the method according to the invention, metal in the form of a commercially available semi-finished product, which, for example, has the shape of a cuboid, is melted without contact and atomized into a linear, in particular wedge-shaped, spray jet. This spray is used to produce the desired metal product. With the method according to the invention various products can be made of metal. In any case, it is ensured that in the method according to the invention impurities of the metal are excluded or at least largely prevented. With the method according to the invention, metal products can be produced by, for example, coating surfaces or producing semi-finished products, such as films, sheets or bolts.

Beim erfindungsgemäßen Verfahren wird das Metall des Halbzeuges geschmolzen, zerstäubt, auf einen Träger gesprüht und auf dem Träger verfestigte. Das erfindungsgemäße Verfahren kann beispielsweise auch zum Beschichten von Werkstücken angewendet werden.In the method according to the invention, the metal of the semifinished product is melted, atomized, sprayed onto a carrier and solidified on the carrier. The method according to the invention can also be used, for example, for coating workpieces.

In einer Ausführungsform des erfindungegemäßen Verfahrens kann Halbzeug, z.B. ein Bolzen, des Metalls, das eine im wesentlichen rechteckige Querschnittsform aufweist, induktiv an der Oberfläche seiner beiden Längsseiten seiner Stirnseite geschmolzen werden. Die abschmelzende Stirnseite befindet sich innerhalb der laminaren Gasströmung einer linearen Düse. Die beiden Hälften der linearen Venturi-Düse bestehen bevorzugt aus einem nicht an das Magnetfeld der Induktionsheizung ankoppelnden Werkstoff.In one embodiment of the method according to the invention, semifinished product, for example a bolt, of the metal, which has a substantially rectangular cross-sectional shape, can be inductive on the surface of its two longitudinal sides its front side are melted. The melting end face is located within the laminar gas flow of a linear nozzle. The two halves of the linear Venturi nozzle preferably consist of a non-coupling to the magnetic field of the induction heating material.

In einer Ausführungsform der Erfindung sind in die Venturi-Halbdüse Rohre aus Metall, vorzugsweise Kupfer, eingelassen, welche als Leiter für den induktiven Erregerstrom bei gleichzeitiger Kühlung durch ein Kühlfluid, beispielsweise Wasser, dienen. Die Rohre sind beispielsweise jeweils an den Enden der Venturi-Halbdüse über weitere Rohre miteinander verbunden.In one embodiment of the invention, tubes made of metal, preferably copper, are inserted into the Venturi half-nozzle, which serve as conductors for the inductive excitation current with simultaneous cooling by a cooling fluid, for example water. For example, the tubes are connected to each other at the ends of the venturi half-nozzle via further tubes.

Bei dieser Ausführungsform streichen die Gasströme über die schmelzende Oberfläche des beispielsweise in form eines Bolzens zugeführten Halbzeugs und fördern die Schmelze in Form zwei sehr dünner Filme zur Bolzenspitze. Hier vereinigen sich beide Filme und der entstehende Schmelzefilm wird von der laminaren Gasströmung weiter stabilisiert, beschleunigt und schließlich zu feinen Tröpfchen zerstäubt.In this embodiment, the gas streams strike over the melting surface of the semifinished product, for example in the form of a bolt and promote the melt in the form of two very thin films to the bolt tip. Here, both films unite and the resulting melt film is further stabilized by the laminar gas flow, accelerated and finally atomized into fine droplets.

Bei der Erfindung muss der Flüssigkeits-(schmelze-) film nicht mit einer nach unten gerichteten Bewegung aus der Düse austreten. Das erfindungsgemäße Verfahren arbeitet unabhängig von der Lage, also nicht nur vertikal nach oben, sondern auch horizontal oder vertikal nach unten, sowie in jeder anderen Ausrichtung.In the invention, the liquid (melt) film does not need to exit the nozzle with a downward movement. The inventive method works regardless of the position, not only vertically upwards, but also horizontally or vertically downwards, as well as in any other orientation.

Die Führung des Flüssigkeitsfilmes, insbesondere des Films aus Metallschmelze, durch die Gasströmung ist stärker als die auf die Schmelze wirkende Schwerkraft. Die Unabhängigkeit der Lage der Zerstäubungsdüse gibt dem Konstrukteur von Düsungsanlagen gemäß der Erfindung gestalterische Freiheitsgrade, die in einer Verringerung der Bauhöhe der Anlage genutzt werden können.The guidance of the liquid film, in particular the film of molten metal, by the gas flow is stronger than the force acting on the melt gravity. The independence of the position of the atomizing nozzle gives the designer of jet systems according to the invention design degrees of freedom that can be used in a reduction in the height of the plant.

In einer Ausführungsform wird das erfindungsgemäße Verfahren in einem Behälter ausgeführt, wobei in einer Ausführungsform ein praktisch kontinuierliches Erzeugen von Metallprodukten möglich ist, indem an das durch Abschmelzen nahezu aufgebrauchte Halbzeug ein neues Halbzeug angeschlossen, z.B. durch wenigstens eine Schweissnaht, verbunden wird. Durch wiederholtes Einschleusen und Anschweissen weiterer Halbzeuge, insbesondere Halbzeug in Form von Metallstangen, kann der eigentliche Verdüsungsprozess kontinuierlich und kostengünstig ausgeführt werden.In one embodiment, the method according to the invention is carried out in a container, wherein in one embodiment a virtually continuous production of metal products is possible by connecting a new semifinished product, e.g. by at least one weld. By repeatedly introducing and welding further semi-finished products, in particular semi-finished products in the form of metal rods, the actual atomization process can be carried out continuously and cost-effectively.

Weitere Einzelheiten und Merkmale des erfindungsgemäßen Verfahrens ergeben sich aus der nachstehenden Beschreibung unter Bezugnahme auf die Zeichnungen. Es zeigt Fig. 1 schematisch eine Anordnung zum Ausführen des erfindungsgemäßen Verfahrens, Fig. 2 eine andere Anordnung zum Ausführen des erfindungsgemäßen Verfahrens, Fig. 3a eine Beschichtung, wie sie nach dem Stand der Technik ( US 6,043,451 A ) erhältlich ist und Fig. 3b eine Beschichtung, wie sie beim Anwenden des erfindungsgemäßen Verfahrens herstellbar ist.Further details and features of the method according to the invention will become apparent from the following description with reference to the drawings. It shows Fig. 1 schematically an arrangement for carrying out the method according to the invention, Fig. 2 another arrangement for carrying out the method according to the invention, Fig. 3a a coating, as in the prior art ( US 6,043,451 A ) is available and Fig. 3b a coating, as it can be produced when applying the method according to the invention.

Die in Fig. 1 gezeigte Anordnung ist eine beispielsweise Anwendung des erfindungsgemäßen Verfahrens zum Herstellen einer Folie aus Metall. Diese Anordnung besteht aus einer länglichen (linearen) Gasdüse 1, in der wassergekühlte Kupferrohre 2 angeordnet sind. Die Kupferrohre 2 dienen dazu, ein induktives Magnetfeld zu erzeugen. Das zu verarbeitende Halbzeug 3 aus Metall mit im wesentlichen rechteckigem Querschnitt wird in die langgestreckte Eingangsöffnung der Gasdüse 1 eingeführt und unter Wirkung des induktiven Magnetfeldes berührungslos an seinen Längsseiten geschmolzen.In the Fig. 1 The arrangement shown is an example application of the method according to the invention for producing a film of metal. This arrangement consists of an elongated (linear) gas nozzle 1, in which water-cooled copper tubes 2 are arranged. The copper pipes 2 serve to create an inductive magnetic field. The semi-finished product 3 to be processed of metal with a substantially rectangular cross-section is introduced into the elongate inlet opening of the gas nozzle 1 and melted contactlessly on its longitudinal sides under the action of the inductive magnetic field.

Eine durch eine nicht näher gezeigte Einrichtung auf die langgestreckte Mündung der Gasdüse 1 gerichtete Gasströmung 4, die bevorzugt symmetrisch ist, also von beiden Seiten des Halbzeuges 3 in die Gasdüse 1 gerichtet wird, nimmt das geschmolzene Metall mit und fördert es unter Ausbildung eines dünnen Filmes 5 durch die Mündung der Gasdüse 1. Die bei der Erfindung verwendete Gasdüse 1 kann als Laval-Düse oder als Venturi-Düse ausgebildet sein. Nach dem Durchtritt durch die engste Stelle der Gasdüse 1 (langgestreckte Mündung derselben) wird der Film 5 aus Metallschmelze zu einem linearen keilförmigen, im wesentlichen zeltförmigen Sprühstrahl 6 zerstäubt. Der Sprühstrahl 6 ist im gezeigten Ausführungsbeispiel auf ein endloses und gekühltes Metallband 7 als Träger gerichtet.A directed by a device not shown in detail on the elongated mouth of the gas nozzle 1 gas flow 4, which is preferably symmetrical, that is directed from both sides of the semifinished product 3 in the gas nozzle 1, takes with the molten metal and promotes it to form a thin film 5 through the mouth of the gas nozzle 1. The gas nozzle 1 used in the invention may be formed as a Laval nozzle or as a Venturi nozzle. After passing through the narrowest point of the gas nozzle 1 (elongated mouth thereof), the molten metal film 5 is atomized to a linear wedge-shaped, substantially tent-shaped spray 6. The spray jet 6 is directed in the embodiment shown on an endless and cooled metal strip 7 as a carrier.

Die Tröpfchen geschmolzenen Metalls sind zum Zeitpunkt des Auftreffens auf das Metallband 7 flüssig oder noch wenigstens teilweise flüssig und erstarren zu einer Metallfolie 8 mit homogener Oberfläche (ausgenommen die beiden Ränder). Die Metallfolie 8 kann nach ihrem vollständigen Erstarren, das durch erzwungenes Abkühlen unterstützt werden kann, und Ablösen vom Metallband 7 zu einer Folienrolle 9 aufgewickelt werden.The droplets of molten metal are liquid or at least partially liquid at the time of impact with the metal strip 7 and solidify into a homogeneous surface metal foil 8 (excluding the two edges). The metal foil 8, after its complete solidification, which can be assisted by forced cooling, and detachment from the metal strip 7 to a film roll 9, can be wound up.

Durch Anpassen der Länge des Sprühstrahles 6 an die gesamte (ganze) Breite der Oberfläche des Trägers 7, z. B. des endlosen Metallbandes 7 oder des Halbzeuges - mit Ausnahme der beiden Ränder - kann Metall in gleichmäßiger Dicke auf den Träger 7 aufgebracht werden.By adjusting the length of the spray jet 6 to the entire (entire) width of the surface of the carrier 7, z. As the endless metal strip 7 or the semi-finished - with the exception of the two edges - metal can be applied in a uniform thickness on the support 7.

Fig. 3a zeigt das Sprühergebnis mit einer konventionellen Runddüse (vgl. US 6,043,451 A ), bei dem mehrere Metallraupen 1 bis 4 nebeneinander gesprüht werden. Fig. 3b zeigt eine Metallfolie 8, die mit dem erfindungsgemäßen Verfahren hergestellt worden ist, bei dem in einem einzigen Sprühvorgang eine gleichmäßig dicke Metallschicht (Folie 8) entsteht. Fig. 3a shows the spray result with a conventional round die (see. US 6,043,451 A ), in which several metal caterpillars 1 to 4 are sprayed side by side. Fig. 3b shows a metal foil 8, which has been produced by the method according to the invention, in which a uniformly thick metal layer (foil 8) is formed in a single spraying.

Die Produktivität des Verfahrens der Erfindung läßt sich über die Länge des Sprühstrahls sowie über die Abschmelzheizleistung der Induktionsheizung beliebig einstellen.The productivity of the process of the invention can be adjusted as desired over the length of the spray jet as well as over the Abschmelzheizleistung the induction heating.

Das als Rohmaterial bevorzugt in Form von Halbzeug zugefügte Metall wird in einem Arbeitsgang in das gewünschte Endprodukt übergeführt, kommt daher nur mit dem Verdüsungsgas in Berührung und kann, wenn die Reinheit der Gasatmosphäre hoch genug ist, ohne Zunahme an Verunreinigungen in das Erzeugnis aus Metall übergeführt werden.The preferably added in the form of semi-finished raw material as metal is converted in one operation in the desired end product, therefore comes only with the atomizing gas in contact and, if the purity of the gas atmosphere is high enough, converted without an increase in impurities in the metal product become.

Bei dem erfindungsgemäß Verfahren wird in einer Ausführungsform reaktives Metall oder Legierung durch Sprühkompaktieren thermisch verdichtet, wobei das Ausgangsmaterial in Form von Halbzeug berührungslos, insbesondere induktiv geschmolzen und zu einem linearen, keilförmigen Sprühstrahl zerstäubt wird. Die Teilchen des Sprühstrahls werden beispielsweise auf einem Substrat zu einem Erzeugnis sprühkompaktiert oder als Oberflächenbeschichtung auf ein Bauteil aufgebracht.In the method according to the invention, in one embodiment, reactive metal or alloy is thermally compacted by spray compacting, the starting material being melted in the form of semifinished product without contact, in particular inductively, and atomized into a linear, wedge-shaped spray jet. The particles of the spray jet are, for example, spray-compacted onto a substrate to form a product or applied to a component as a surface coating.

Mit dem erfindungsgemäß Verfahren können beliebige Metalle, insbesondere reaktive Metalle, wie Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän, Wolfram, Rhenium oder eine Legierung auf Basis dieser Metalle, verarbeitet werden.With the method according to the invention, it is possible to process any metals, in particular reactive metals, such as titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, rhenium or an alloy based on these metals.

Insbesondere ist das erfindungsgemäße Verfahren für das Verarbeiten einer Nickel-Titan-Legierung oder einer Superlegierung auf Basis von Nickel oder Kobalt geeignet.In particular, the method according to the invention is suitable for processing a nickel-titanium alloy or a superalloy based on nickel or cobalt.

In einer Ausführungsform des erfindungsgemäßen Verfahrens ist das zu verarbeitende Halbzeug ein Verbundwerkstoff aus hochschmelzenden Phasen und niedrigschmelzender Bindematrix. Die hochschmelzende Phase kann ein Carbid sein.In one embodiment of the method according to the invention, the semifinished product to be processed is a composite material of high-melting phases and low-melting binder matrix. The refractory phase may be a carbide.

Mit dem erfindungsgemäßen Verfahren können unter anderem Erzeugnisse in Form von Folien, Blechen, Rohren oder Bolzen hergestellt werden.With the method according to the invention, inter alia, products in the form of films, sheets, tubes or bolts can be produced.

Ein Vorteil des erfindungsgemäßen Verfahrens ist es, dass sich die Reinheit des Erzeugnisses nur geringfügig von der Reinheit des Ausgangsmaterials (Halbzeug) unterscheidet.An advantage of the method according to the invention is that the purity of the product differs only slightly from the purity of the starting material (semifinished product).

Bei dem erfindungsgemäßen Verfahren besteht die Möglichkeit, die Produktivität je Längeneinheit des Sprühstrahls über die zugeführte Heizleistung (induktive Heizung) stufenlos zu regeln.In the method according to the invention, it is possible to steplessly control the productivity per unit length of the spray jet via the supplied heating power (inductive heating).

Bei dem erfindungsgemäßen Verfahren besteht auch die Möglichkeit, nacheinander mehrere langgestreckte Sprühstrahlen auf ein und dasselbe Substrat zu sprühen, um eine höhere Schichtdicke zu erzielen.In the method according to the invention, it is also possible to spray successively a plurality of elongated spray jets on one and the same substrate in order to achieve a higher layer thickness.

In einer Ausführungsform des erfindungsgemäßen Verfahrens werden zusätzlich zu dem Sprühstrahl aus geschmolzenem Metall in Form von Tröpfchen über eine weitere Düse Dispersoide gezielt eingebracht. Solche Dispersoide können beispielsweise sein: Siliziumcarbid, Wolframcarbid, Korund (Al2O3) oder Zirkoniumoxid. Zweck des Zusatzes solcher Dispersoide und anderer Zusatzstoffe, die auch flüchtig sein können, ist es, die Eigenschaften des Verfahrensproduktes in die gewünschte Richtung zu beeinflussen.In one embodiment of the process according to the invention, in addition to the spray of molten metal in the form of droplets, dispersoids are deliberately introduced via a further nozzle. Such dispersoids may be, for example, silicon carbide, tungsten carbide, corundum (Al 2 O 3 ) or zirconium oxide. The purpose of adding such dispersoids and other additives, which may also be volatile, is to influence the properties of the process product in the desired direction.

Um das Ablösen des Erzeugnisses vom Träger 7 (Substrat) zu vereinfachen, kann auf das Substrat vor dem Sprühkompaktieren ein Trennmittel aufgebracht werden.In order to facilitate the detachment of the product from the carrier 7 (substrate), a release agent may be applied to the substrate prior to spray compaction.

Das erfindungsgemäße Verfahren kann wie nachstehend an einem Beispiel beschrieben ausgeführt werden.The process according to the invention can be carried out as described below by way of example.

In einem gasdichten, argongefüllten Behälter, der sich auf gleichem Druck wie die Behälterumgebung befindet, wird eine Stange aus Titan mit rechteckigem Querschnitt (Ausgangsabmessung: Breite 50 mm, Dicke 40 mm, Länge 3000 mm) tiegelfrei mit einer Induktionsfrequenz von 350 kHz abgeschmolzen und mit 5 kg/min verdüst. Wenn die erste Stange auf eine Länge von 500 mm abgeschmolzen ist, wird eine neue Stange, nachdem sie die Vorschleusenkammer mit Inertisierung und Druckausgleich passiert hat, an das der Verdüsung abgewandte Ende der ersten Stange herangeführt, und die beiden Stangen werden an ihren beiden dem Abschmelzaggregat abgewandten Seiten linear mittels Laserstrahl ohne Zusatzwerkstoff miteinander verschweißt. Die Nahtstelle hält beide Stangen zusammen, bis sie schließlich selbst die Abschmelzzone erreicht und mitaufgeschmolzen wird. Durch wiederholtes Einschleusen und Anschweissen einer neuen Metallstange kann der eigentliche Verdüsungsprozess kontinuierlich und kostengünstig durchgeführt werden. Bei einem Gasdruck von 30 bar in der Rohrleitung vor der linearen Gasdüse wird ein Pulver mit einer mittleren Korngröße von 9,0 µm erhalten.In a gas-tight, argon-filled container, which is at the same pressure as the container environment, a rod made of titanium with a rectangular cross-section (initial dimension: width 50 mm, thickness 40 mm, length 3000 mm) is sealed without crucible with an induction frequency of 350 kHz and with 5 kg / min. When the first rod has melted to a length of 500 mm, a new rod, after having passed the pre-sluice chamber with inerting and pressure equalization, is brought to the end of the first rod away from the atomization, and the two rods are at the two of the Abschmelzaggregat opposite sides linearly welded together by laser beam without filler material. The seam holds both rods together until it finally reaches the meltdown zone and is melted along with it. By repeatedly introducing and welding a new metal rod, the actual atomization process can be carried out continuously and inexpensively. At a gas pressure of 30 bar in the pipeline in front of the linear gas nozzle, a powder with an average particle size of 9.0 microns is obtained.

Eine hiezu beispielsweise geeignete Vorrichtung ist in Fig. 2 dargestellt. Diese Vorrichtung besitzt eine lineare Gasdüse 10 mit interner Zuführung des primären Verdüsungsgases 13. In die lineare Gasdüse 10 ist eine Induktionsspule 12 integriert. Aus der linearen Gasdüse 10 tritt, wie in Fig. 2 schematisch angedeutet, primäres Verdüsungsgas 13 aus und zwar im gezeigten Ausführungsbeispiel symmetrisch, sodass zwei Ströme primären Verdüsungsgases 13 vorliegen.An example of this suitable device is in Fig. 2 shown. This device has a linear gas nozzle 10 with internal supply of the primary atomizing gas 13. In the linear gas nozzle 10, an induction coil 12 is integrated. From the linear gas nozzle 10 occurs, as in Fig. 2 schematically indicated, primary atomizing gas 13 and although in the illustrated embodiment symmetrical, so that two streams of primary atomizing gas 13 are present.

Des Weiteren ist in der linearen Gasdüse 10 eine sekundäre Gas-strömung 14 vorgesehen, welche an dem von der Metallstange 15 mit rechteckigem Querschnitt abschmelzenden Metall einen Schmelzefilm 21 bildet. Im gezeigten Ausführungsbeispiel wird die abschmelzende Metallstange 15 durch drehangetriebene Führungsrollen 18 zur Gasdüse 10 hin vorgeschoben.Furthermore, a secondary gas flow 14 is provided in the linear gas nozzle 10, which forms a melt film 21 on the metal melting off from the metal rod 15 of rectangular cross-section. In the illustrated embodiment, the melting metal rod 15 is advanced by rotationally driven guide rollers 18 to the gas nozzle 10 down.

Die primären Gastströme 13 werden durch das primär innerhalb der Gasdüse 10 zugeführte Verdüsungsgas erzeugt. Die primären Gasströme 13 erzeugen einen lokalen Unterdruck, durch den Gas angesaugt wird, das die als Stützgas dienenden sekundären Gasströme 14 bildet.The primary gas streams 13 are generated by the atomizing gas supplied primarily within the gas nozzle 10. The primary gas streams 13 generate a local negative pressure through which gas is drawn in, which forms the secondary gas streams 14 serving as support gas.

Die gesamte Anordnung ist in einem Gehäuse 19 untergebracht, das mit einem Inertgas, insbesondere Argon, gefüllt ist, wobei sich das Gas in dem Gehäuse 19 auf gleichem Druck wie die Behälterumgebung befindet.The entire assembly is housed in a housing 19 which is filled with an inert gas, in particular argon, with the gas in the housing 19 being at the same pressure as the container environment.

Die Metallstange 15 kann beispielsweise eine Stange aus Titan sein. Unter der Einwirkung der primären Verdüsungsgasströme 13 wird aus dem Schmelzefilm 21 ein Sprühstrahl aus Metalltröpfchen 22 gebildet. Diese Tröpfchen geschmolzenen Metalls 22. können, wie anhand von Fig. 1 und 2b beschrieben, sprühkompaktiert werden.The metal rod 15 may be, for example, a rod made of titanium. Under the action of the primary atomizing gas streams 13, a spray of metal droplets 22 is formed from the melt film 21. These droplets of molten metal 22. can, as indicated by Fig. 1 and 2 B described, spray-compacted.

Um ein quasi kontinuierliches Arbeiten zu ermöglichen, kann beim erfindungsgemäßen Verfahren, so wie in Fig. 2 angedeutet, an den abschmelzenden Metallstab 15 ein weiterer Metallstab mit rechteckigem Querschnitt angefügt werden, indem er mit dem Metallstab 15 durch zwei Schweißnähte 17, die insbesondere parallel zur Zeichenebene der Fig. 2 ausgerichtet sind, verbunden wird. Der nachgeführte Metallstab 16 wird ebenfalls durch drehangetriebene Führungsrollen 18 geführt. Im Anschluss an die lineare Gasdüse 10 ist noch ein Behälter 25 vorgesehen, in dem sich das in Tröpfchen zerteilte, geschmolzene Metall (Metalltröpfchen bzw. Pulverpartikel 22) zu einem Metallpulver verfestigen.In order to allow a quasi-continuous work, in the inventive method, as in Fig. 2 indicated to the abschmelzenden metal rod 15, a further metal rod with a rectangular cross-section are added by being connected to the metal rod 15 by two welds 17, in particular parallel to the plane of the Fig. 2 aligned. The tracked metal bar 16 is also guided by rotationally driven guide rollers 18. Subsequent to the linear gas nozzle 10, a container 25 is still provided, in which the molten metal (metal droplets or powder particles 22) divided into droplets solidifies to form a metal powder.

Zusammenfassend kann ein Ausführungsbeispiel der Erfindung wie folgt dargestellt werden:In summary, an embodiment of the invention can be represented as follows:

Zum Herstellen von Erzeugnissen aus Metall, wie Pulvern, Folien, Beschichtungen, und Formteilen, wie Bolzen, Rohren oder Blechen aus Metall in Form von Halbzeug 15, wird das Metall des Halbzeuges 15 durch ein induktives Magnetfeld 12 geschmolzen, zerstäubt und in einer Kammer 25 zu einem Pulver erstarren gelassen oder auf einen Träger gesprüht und auf dem Träger verfestigt. Das geschmolzene Metall wird in einer Gasdüse 10, die entweder als Laval-Düse oder als Venturi-Düse ausgebildet ist, als Film 21, der durch Gasströme 14 stabilisiert wird, zugeführt und dann durch weitere Gasströme 13 zerstäubt.For the manufacture of products made of metal, such as powders, films, coatings, and moldings, such as bolts, tubes or sheets of metal in the form of semi-finished product 15, the metal of the semifinished product 15 is melted by an inductive magnetic field 12, atomized and in a chamber 25th solidified to a powder or sprayed on a carrier and solidified on the carrier. The molten metal is supplied in a gas nozzle 10, which is formed either as a Laval nozzle or Venturi nozzle, as a film 21 which is stabilized by gas streams 14, and then atomized by further gas streams 13.

Claims (25)

  1. Method for producing products made of metal, such as foils, coatings and moulded parts, such as bolts, pipes or metal sheets, from metal in the form of semifinished items, in which the metal of the semifinished item is melted and atomised and finally solidified again, the metal being melted without contact and the molten metal being atomised in a gas nozzle to form a spray jet, in that at least one gas flow is supplied to the gas nozzle, the molten metal in the form of the spray jet being solidified on a carrier.
  2. Method according to claim 1, characterised in that the metal is melted inductively.
  3. Method according to claim 1 or 2, characterised in that the metal is supplied in the form of blocks which are melted off the region of the sides thereof.
  4. Method according to one of the claims 1 to 3, characterised in that two gas flows are supplied to the gas nozzle from opposite sides.
  5. Method according to one of the claims 1 to 4, characterised in that the molten metal is atomised to form an elongated spray jet.
  6. Method according to one of the claims 1 to 5, characterised in that the solidified metal is removed from the carrier as a metal foil.
  7. Method according to one of the claims 1 to 6, characterised in that the solidified metal on the carrier forms a coating which remains on the latter.
  8. Method according one of the claims 1 to 7, characterised in that the spray compaction of metal is repeated in order to achieve higher layer thicknesses of the product.
  9. Method according to one of the claims 1 to 8, characterised in that the molten metal is atomised to form an elongated spray jet which, across one width, is at least as large as the width of the product to be produced.
  10. Method according to claim 9, characterised in that the molten metal is atomised in an oblong gas nozzle to form a spray jet.
  11. Method according to one of the claims 1 to 10, characterised in that a nickel-titanium alloy is processed.
  12. Method according to one of the claims 1 to 11, characterised in that at least one metal from the group comprising iron, copper, aluminium, zinc, tin, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, rhenium or an alloy based on at least two of these metals is processed.
  13. Method according to one of the claims 1 to 9, characterised in that the metal to be processed is a superalloy based on nickel or cobalt.
  14. Method according to one of the claims 1 to 13, characterised in that the processing metal is a composite material made of a high-melting phase and a low-melting binder matrix.
  15. Method according to claim 14, characterised in that the high-melting phase is a carbide, oxide or nitride.
  16. Method according to one of the claims 1 to 15, characterised in that, in addition to the spray jet made of molten metal, in the form of droplets, dispersoids are introduced from a further nozzle.
  17. Method according to claim 16, characterised in that carbides, oxides and/or nitrides are introduced as dispersoids.
  18. Method according to one of the claims 1 to 17, characterised in that, during the production of a semifinished item, prior to the spray compaction, a separating agent is applied on the carrier.
  19. Method according to one of the claims 1 to 18, characterised in that the semifinished item made of metal is supplied in the form of rods, in particular cuboid rods.
  20. Method according to one of the claims 1 to 19, characterised in that, even before said semifinished item is consumed, a further semifinished item is added to it and connected to the nearly consumed semifinished item.
  21. Method according to claim 20, characterised in that the semifinished items are connected to each other by welding.
  22. Method according to one of the claims 1 to 21, characterised in that the metal is supplied to the gas nozzle in a housing which is filled with inert gas.
  23. Method according to one of the claims 1 to 22, characterised in that the molten metal is formed into a film made of metal melt by means of secondary gas flows in the region in front of and in the gas nozzle.
  24. Method according to claim 23, characterised in that the film made of metal melt is formed and stabilised by means of two secondary gas flows which are symmetrical relative to the gas nozzle.
  25. Method according to claim 23 or 24, characterised in that the film made of metal melt is atomised by means of primary gas flows after passage through the gas nozzle.
EP05748361A 2004-06-17 2005-06-16 Method for producing metal products Not-in-force EP1765536B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT05748361T ATE425832T1 (en) 2004-06-17 2005-06-16 METHOD FOR PRODUCING METAL PRODUCTS

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT0102804A AT413702B (en) 2004-06-17 2004-06-17 Process for inductive magnetic heating of metal and gas jet spray application onto a substrate to manufacture e.g. metal foil
AT13222004 2004-08-02
PCT/AT2005/000214 WO2005123305A2 (en) 2004-06-17 2005-06-16 Method for producing metal products

Publications (2)

Publication Number Publication Date
EP1765536A2 EP1765536A2 (en) 2007-03-28
EP1765536B1 true EP1765536B1 (en) 2009-03-18

Family

ID=35276348

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05748361A Not-in-force EP1765536B1 (en) 2004-06-17 2005-06-16 Method for producing metal products

Country Status (6)

Country Link
US (1) US20080093045A1 (en)
EP (1) EP1765536B1 (en)
AT (1) ATE425832T1 (en)
CA (1) CA2570924A1 (en)
DE (1) DE502005006882D1 (en)
WO (1) WO2005123305A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092008A1 (en) 2013-12-20 2015-06-25 Nanoval Gmbh & Co. Kg Device and method for melting a material without a crucible and for atomizing the melted material in order to produce powder

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006051936B4 (en) * 2006-11-01 2014-03-20 Zollern Bhw Gleitlager Gmbh & Co. Kg Process for producing two interconnected layers and functional component which can be produced by the process
DE102013008396B4 (en) 2013-05-17 2015-04-02 G. Rau Gmbh & Co. Kg Method and device for remelting and / or remelting of metallic materials, in particular nitinol
FR3054462B1 (en) * 2016-07-29 2020-06-19 Safran Aircraft Engines METHOD FOR ATOMIZING METAL DROPS FOR OBTAINING A METAL POWDER
CN108247075A (en) * 2018-04-23 2018-07-06 安徽哈特三维科技有限公司 A kind of atomizer arrangement that the metal ball shaped powder of superhigh temperature is prepared for gas atomization
DE102019122000A1 (en) * 2019-08-15 2021-02-18 Ald Vacuum Technologies Gmbh Method and device for dividing an electrically conductive liquid

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2864137A (en) * 1952-10-25 1958-12-16 Helen E Brennan Apparatus and method for producing metal strip
GB1359486A (en) * 1970-06-20 1974-07-10 Vandervell Products Ltd Methods and apparatus for producing composite metal material
GB1517283A (en) * 1974-06-28 1978-07-12 Singer Alec Production of metal articles
JPS6217103A (en) * 1985-07-16 1987-01-26 Tanaka Kikinzoku Kogyo Kk Production of metallic powder
DE3533964C1 (en) * 1985-09-24 1987-01-15 Alfred Prof Dipl-Ing Dr-I Walz Method and device for producing fine powder in spherical form
US5022455A (en) * 1989-07-31 1991-06-11 Sumitomo Electric Industries, Ltd. Method of producing aluminum base alloy containing silicon
DE4102101C2 (en) * 1991-01-25 2003-12-18 Ald Vacuum Techn Ag Device for producing powders from metals
US5609922A (en) * 1994-12-05 1997-03-11 Mcdonald; Robert R. Method of manufacturing molds, dies or forming tools having a cavity formed by thermal spraying
DE19881316B4 (en) * 1997-08-29 2006-08-17 Seiko Epson Corp. Method and device for producing metal powder by atomization
EP1073778B1 (en) * 1998-04-17 2002-01-30 GKN Sinter Metals GmbH Method for producing an openly porous sintered metal film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092008A1 (en) 2013-12-20 2015-06-25 Nanoval Gmbh & Co. Kg Device and method for melting a material without a crucible and for atomizing the melted material in order to produce powder
DE102013022096A1 (en) 2013-12-20 2015-06-25 Nanoval Gmbh & Co. Kg Apparatus and method for crucible-free melting of a material and for atomizing the molten material to produce powder
EP3083107B1 (en) 2013-12-20 2019-12-04 NANOVAL GmbH & Co. KG Device and method for melting a material without a crucible and for atomizing the melted material in order to produce powder
DE102013022096B4 (en) * 2013-12-20 2020-10-29 Nanoval Gmbh & Co. Kg Apparatus and method for crucible-free melting of a material and for atomizing the molten material to produce powder
US10946449B2 (en) 2013-12-20 2021-03-16 Nanoval Gmbh & Co. Kg Device and method for melting a material without a crucible and for atomizing the melted material in order to produce powder

Also Published As

Publication number Publication date
DE502005006882D1 (en) 2009-04-30
US20080093045A1 (en) 2008-04-24
ATE425832T1 (en) 2009-04-15
EP1765536A2 (en) 2007-03-28
CA2570924A1 (en) 2005-12-29
WO2005123305A2 (en) 2005-12-29
WO2005123305A3 (en) 2006-06-01

Similar Documents

Publication Publication Date Title
DE68917132T2 (en) METHOD AND DEVICE FOR SPRAYING A METAL MELT.
DE60210267T2 (en) DEVICE AND METHOD FOR THE SOLIDAGE APPLICATION AND COMPRESSION OF POWDER PARTICLES BY MEANS OF HIGH SPEED AND THERMALLY PLASTIC FORMING
DE69617028T2 (en) METHOD AND DEVICE FOR PRODUCING A FREE-SHAPED ARTICLE BY COATING
EP1514622B1 (en) Device and process for producing a three-dimensional object
EP2773476B1 (en) Metallic riblet film and method of manufacture
DE3505659A1 (en) MELT SPRAYING WITH REDUCED GAS FLOW AND DEVICE FOR SPRAYING
DE3505660A1 (en) DEVICE AND METHOD FOR SPRAYING UNSTABLE MELTING FLOWS
DE3018290C2 (en) Method and device for producing fine-grain castings
DE602004013028T2 (en) IMPROVED METHOD AND IMPROVED DEVICE FOR SINTERING INORGANIC MATERIALS
DE3942050A1 (en) METHOD AND DEVICE FOR LASER PLASMA SPRAYING WITH AXIAL FLOW
DE2252139A1 (en) METHOD AND APPARATUS FOR THE PRODUCTION OF PRECISION MOLDS FROM MOLTEN METALS
EP3725439A2 (en) Production of a metal powder of an aluminium alloy for use as a material in additive production
DE3306142A1 (en) METHOD FOR PRODUCING A TWO-PHASE OR MULTI-PHASE METAL MATERIAL
DD232554A5 (en) PROBE DEVICE AND METHOD FOR PRODUCING AN AEROSOL PULVER
EP1042093B1 (en) Method and device for producing fine powder by atomizing molten materials with gases
EP1765536B1 (en) Method for producing metal products
EP1404484B1 (en) Strip-shaped cutting tools
DE3135374C2 (en)
DE3505662A1 (en) METHOD FOR THE PRODUCTION OF FINE POWDER FROM MOLTEN METAL AND A DEVICE FOR SPRAYING
WO2021058374A1 (en) Device for atomizing a melt stream by means of a gas
DE3883256T2 (en) DEVICE AND METHOD FOR ATOMIZING LIQUIDS, IN PARTICULAR MELTED METALS.
DE2656330A1 (en) Metal or alloy powders or granulates - prepd. by melting and atomising in an ultrasonic field
DE2412079B2 (en) METHOD AND APPARATUS FOR PRODUCING COMPOSITION METAL POWDER
DE3505661C2 (en)
AT413702B (en) Process for inductive magnetic heating of metal and gas jet spray application onto a substrate to manufacture e.g. metal foil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061211

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070518

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005006882

Country of ref document: DE

Date of ref document: 20090430

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MEESE-MARKTSCHEFFEL, JULIANE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: MEESE-MARKTSCHEFFEL, JULIANE

Effective date: 20090603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090618

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090629

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090718

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

BERE Be: lapsed

Owner name: SCHULZ, GUNTHER

Effective date: 20090630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090618

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20091221

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090618

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318