Nothing Special   »   [go: up one dir, main page]

EP1636818B1 - X-ray generator tube comprising an orientable target carrier system - Google Patents

X-ray generator tube comprising an orientable target carrier system Download PDF

Info

Publication number
EP1636818B1
EP1636818B1 EP04741818A EP04741818A EP1636818B1 EP 1636818 B1 EP1636818 B1 EP 1636818B1 EP 04741818 A EP04741818 A EP 04741818A EP 04741818 A EP04741818 A EP 04741818A EP 1636818 B1 EP1636818 B1 EP 1636818B1
Authority
EP
European Patent Office
Prior art keywords
target
assembly
axis
tube
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04741818A
Other languages
German (de)
French (fr)
Other versions
EP1636818A1 (en
Inventor
André Gabioud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1636818A1 publication Critical patent/EP1636818A1/en
Application granted granted Critical
Publication of EP1636818B1 publication Critical patent/EP1636818B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/105Cooling of rotating anodes, e.g. heat emitting layers or structures
    • H01J35/106Active cooling, e.g. fluid flow, heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/086Target geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1204Cooling of the anode

Definitions

  • the field of the invention is that of the X-ray generator tubes.
  • the invention relates more particularly to the arrangement of the emitting surfaces which are at the source of X-radiation.
  • FIG. 1 The operating principle of an X-ray generator tube is exposed in figure 1 . It mainly comprises a vacuum chamber 6 having at one of these ends a cathode block 4 carried by an insulator 3 and at the other end an anode block 2.
  • the anode block 2 comprises a target holder assembly 1 comprising a flat metallic surface said target 9 disposed opposite the cathode block.
  • the electron beam 7 coming from the cathode is accelerated under the action of very high electrical voltages greater than 10 kVolts and strikes the target 9 in a focusing zone O where the electrons lose their kinetic energy. It follows a significant release of heat and an emission of X-rays (symbolized by the arrows of the figure 1 ).
  • X-radiation passes through the wall of the anode block at privileged locations called windows.
  • the release of heat causes a very intense localized heating at the target.
  • the elevation of the temperature of the target is such that it could lead to the destruction of the target by melting.
  • the release of heat is evacuated by a cooling circuit 60 passing through the target holder 1 under the target 9.
  • the target 9 is inclined at an angle ⁇ with respect to the mean direction of the electron beam 7.
  • the realization of a set target holder therefore has two main constraints.
  • the angle of inclination ⁇ must be adapted to the use and on the other hand, the cooling circuit must allow sufficient evacuation of the calories due to the impact of the electron beam.
  • the target holder assembly is generally in the form of a stepped cylinder as shown in FIG. figures 2 , 3 and 4 .
  • the axis of this cylinder is parallel to the direction of the electron beam.
  • a cut cut of the cylinder inclined at an angle ⁇ constitutes the target subjected to the beam.
  • the target assembly is connected to the anode block so that the calories are first transmitted to the periphery of the anode block by conduction through the different metal parts of the target holder assembly and the anode block (internal white arrows of the figure 2 ) then discharged to the outside by convection (external white arrows of the figure 2 ).
  • the figure 3 illustrates a first embodiment of the cooling duct disposed within the target holder assembly. It comprises a single tube 60 passing under the surface of the target and which best marries said surface.
  • the figure 4 illustrates a second embodiment of a coaxial type duct. It comprises a delivery tube 60 located in the axis of the cylinder of the target holder, an internal cavity 61 at best matching the inside of the target holder and an outlet tube 62 connected to the internal cavity. This arrangement makes it possible to optimize the exchange surface between the cooling fluid and the target-holder assembly.
  • the emission intensity indicator depends on the angle ⁇ between the direction of radiation and the normal N on the surface of the target (dashed perimeter of the figure 5 ). This indicator has a maximum for zero ⁇ and tends to 0 when ⁇ tends to 90 degrees. Not all X-radiation emitted can be used and only a portion is recovered through a transmission window that defines a limited solid emission angle. This window is necessarily located outside the path of the electron beam. If it is desired to recover a significant portion of the emitted radiation, the angle of inclination ⁇ must then be sufficiently large.
  • the inclination angle also conditions the geometric resolution of the emission source X as illustrated in FIG. Figures 6 and 7 .
  • the X-ray radiation passing through a diaphragm 11 of very small diameter, then has a divergence ⁇ .
  • This divergence ⁇ is proportional to the angle ⁇ as it is shown on the Figures 6 and 7 .
  • This divergence ⁇ conditions the resolution of the X-ray generator tube and the sharpness of the images observed.
  • the angle of inclination ⁇ is necessarily the result of a compromise between, on the one hand, the energy of the X-ray radiation and, on the other hand, the resolution of the tube.
  • the tube designers are thus led to propose, for the same configuration of tubes, different versions of target sets in which the inclinations of the target vary. The study, realization and management of these different variants generate extra costs and additional delays that can be important, given the complexity of the room and the materials used.
  • the invention proposes to replace these different variants by a single set to ensure the adjustment of the tilt angle of the target.
  • the arrangement of the part also makes it possible to improve the geometry of the cooling circuit in order to substantially increase its efficiency.
  • the various mechanical parts do not involve complex machining.
  • the subject of the invention is an X-ray generating tube comprising an electron gun emitting an electron beam, an anode block comprising a target-holder assembly having a so-called target flat surface on which the electron beam is focused into a spot.
  • the target holder assembly has an axis of revolution substantially perpendicular to the mean direction of the electron beam and passing through the plane of the target.
  • the target-holder assembly is of generally cylindrical shape with a circular section, the target being situated in a plane passing through the axis of revolution of the cylinder, and the anode block includes a housing of generally cylindrical shape in which the said door assembly is housed. target so that the axis of revolution of the target-holder assembly passes through the focusing spot.
  • the target-holder assembly comprises at least one internal main coolant circulation duct passing through the target-holder assembly in a direction substantially parallel to its axis of revolution and passing under the target to cool it.
  • the heart of the invention is to adjust the angle of inclination of the target on the mean direction of the electron beam while maintaining the focus of the beam on the target.
  • the target holder assembly 1 has the general shape shown in the perspective view of the figure 8 .
  • This figure shows a target holder assembly 1 without a coolant circulation duct.
  • the target holder assembly generally has the shape of a cylinder of revolution.
  • the central part of this cylinder comprises a machining.
  • a half of the cylinder has been removed to define a planar surface 9 which constitutes the surface of the target.
  • the target is in a plane passing through the axis 20 of the cylinder so that when the cylinder rotates about its axis, the center of the target always occupies a fixed position.
  • the figure 9 represents a front view and a sectional profile view of the target holder assembly 1 mounted in the anode block 2.
  • the latter comprises a cylindrical recess of diameter substantially equal to that of the target holder assembly so that said assembly 1 can rotate without play in the anode block.
  • the axis of revolution of this cylinder is substantially perpendicular to the mean direction of the electron beam and this axis passes through the focusing spot of the electron beam 7 as indicated on FIG. figure 8 .
  • This arrangement makes it possible to optimize the diameter of the focusing spot O. Under these conditions, when turning the target-holder assembly in the anode block, the surface of the target tilts at a variable angle ⁇ and the focus of the electron beam on the target is retained. To position the target at a particular angle ⁇ , there are various possible methods using, for example, adapted tools which are not the subject of this invention and which are known to those skilled in the art.
  • the target-holder assembly is brazed into the anode block in order firstly to maintain this inclination and secondly to ensure the vacuum seal of the assembly, a seal necessary for the operation of the electron gun.
  • This provision is very advantageous in that the machining operations of the various parts (target assembly and anode block) are simple and can be performed with great precision.
  • the figure 10 represents a sectional view of a target holder assembly of the type of Figures 8 and 9 including a cooling fluid duct 60. It passes right through the target holder assembly along its axis of revolution and passes under the target 9. The exchange of calories is mainly in the area below the so-called exchanger target. This geometry which does not have mechanical elbows makes it possible to ensure good transfer of the coolant through the target-holder assembly, which is greater than that of the devices according to the prior art.
  • Sleeves 63 arranged at the ends of the duct ensures its connection with the circuits for the arrival and discharge of the cooling liquid.
  • the exchanger is mainly composed of two flat walls parallel to each other and separated by a thickness e.
  • the first wall is located under the target and parallel to it. Therefore, the water circulates in the exchanger in the form of a sheet of thickness e (parallel arrows of the figure 11 ).
  • This exchanger has reduced performance given its limited exchange surface. It is possible to improve its efficiency by using it in two-phase mode, the quantities of heat absorbed by the phase changes, for example when the liquid water passes in the form of steam, thus making it possible to improve the efficiency of the cooling circuit. cooling.
  • the perspective view of the figure 12 presents a first embodiment of a heat exchanger with a large exchange surface.
  • the exchange surface consists of a plurality of secondary conduits 64 of cylindrical shape and Generator parallel to the axis of revolution of the target carrier assembly.
  • the ducts 64 are separated from a wall of thickness P and have a diameter d.
  • the diameter d is between 0.8 millimeters and 3 millimeters and the thickness P must be less than d. This optimizes the exchange surface which is, in this case, much greater than that illustrated in FIG. figure 11 .
  • the figure 13 represents two views of the target holder assembly comprising an exchanger according to the preceding arrangement.
  • the duct 60 comprises at its ends two cylindrical bores 65 and in the zone of the exchanger a plurality of secondary ducts 64 according to the arrangement of the invention. figure 12 , each of these conduits opening into the cylindrical bores 65.
  • the entire exchanger follows the inclination of the target. The machining of the conduit can be done simply by drilling through one end of the cylinder.
  • Figures 14 and 15 have two groove shapes 103.
  • the grooves are V-shaped and the final section of the ducts is triangular.
  • the grooves are in the form of arch and the final section of the ducts is inverted D-shaped.
  • the figure 16 represents a sectional front view and a sectional sectional view showing the arrangement of the target holder assembly 1 comprising the mechanical assembly 102 in the anode block 2.
  • the ends of the duct may also comprise sleeves of adaptation 63.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • X-Ray Techniques (AREA)

Abstract

The invention relates to an X-ray generator tube comprising a target carrier system which enables the incline of the radiating surface of the target to be regulated in relation to the electronic beam in order to determine the intensity of the X-ray emission and the resolution of the tube according to the desired application. For high-energy applications requiring a cooling circuit, the arrangement of said cooling circuit also enables the geometry thereof to be essentially improved in order to essentially increase its efficiency. The invention further relates to a plurality of arrangements of the cooling circuit, and to the method for producing the same.

Description

Le domaine de l'invention est celui des tubes générateurs de rayons X. L'invention concerne plus particulièrement la disposition des surfaces émettrices qui sont à la source du rayonnement X.The field of the invention is that of the X-ray generator tubes. The invention relates more particularly to the arrangement of the emitting surfaces which are at the source of X-radiation.

Le principe de fonctionnement d'un tube générateur 10 de rayons X est exposé en figure 1. Il comprend principalement une enceinte à vide 6 comportant à une de ces extrémités un bloc cathode 4 porté par un isolateur 3 et à l'autre extrémité un bloc anode 2. Le bloc anode 2 comprend un ensemble porte-cible 1 comportant une surface plane métallique dite cible 9 disposée en regard du bloc cathode. Le faisceau d'électrons 7 issus de la cathode est accéléré sous l'action de très hautes tensions électriques supérieures à 10 kVolts et vient percuter la cible 9 dans une zone de focalisation O où les électrons perdent leur énergie cinétique. Il s'ensuit un dégagement de chaleur important et une émission 8 de rayons X (symbolisée par les flèches de la figure 1). Le rayonnement X traverse la paroi du bloc anode à des endroits privilégiés 5 appelés fenêtres.The operating principle of an X-ray generator tube is exposed in figure 1 . It mainly comprises a vacuum chamber 6 having at one of these ends a cathode block 4 carried by an insulator 3 and at the other end an anode block 2. The anode block 2 comprises a target holder assembly 1 comprising a flat metallic surface said target 9 disposed opposite the cathode block. The electron beam 7 coming from the cathode is accelerated under the action of very high electrical voltages greater than 10 kVolts and strikes the target 9 in a focusing zone O where the electrons lose their kinetic energy. It follows a significant release of heat and an emission of X-rays (symbolized by the arrows of the figure 1 ). X-radiation passes through the wall of the anode block at privileged locations called windows.

Le dégagement de chaleur provoque un échauffement localisé très intense au niveau de la cible. Dans le cas de tubes fonctionnant à forte puissance, l'élévation de la température de la cible est telle qu'elle pourrait conduire à la destruction de la cible par fusion. Aussi, dans ce cas, le dégagement de chaleur est évacué par un circuit de refroidissement 60 passant dans le porte-cible 1 sous la cible 9.The release of heat causes a very intense localized heating at the target. In the case of tubes operating at high power, the elevation of the temperature of the target is such that it could lead to the destruction of the target by melting. Also, in this case, the release of heat is evacuated by a cooling circuit 60 passing through the target holder 1 under the target 9.

Afin d'opti miser la répartition du rayonnement X dans l'espace en direction et en intensité, la cible 9 est inclinée d'un angle α par rapport à la direction moyenne du faisceau électronique 7.In order to optimize the distribution of the X-radiation in the space in direction and in intensity, the target 9 is inclined at an angle α with respect to the mean direction of the electron beam 7.

La réalisation d'un ensemble porte-cible a donc deux contraintes principales. D'une part, l'angle d'inclinaison α doit être adapté à l'utilisation et d'autre part, le circuit de refroidissement doit permettre une évacuation suffisante des calories dues à l'impact du faisceau électronique.The realization of a set target holder therefore has two main constraints. On the one hand, the angle of inclination α must be adapted to the use and on the other hand, the cooling circuit must allow sufficient evacuation of the calories due to the impact of the electron beam.

Dans les tubes à rayonnement X connus, l'ensemble porte-cible a, en général, la forme d'un cylindre épaulé comme représenté en figures 2, 3 et 4. L'axe de ce cylindre est parallèle à la direction du faisceau électronique. Un pan coupé du cylindre incliné d'un angle α constitue la cible soumise au faisceau.In known X-ray tubes, the target holder assembly is generally in the form of a stepped cylinder as shown in FIG. figures 2 , 3 and 4 . The axis of this cylinder is parallel to the direction of the electron beam. A cut cut of the cylinder inclined at an angle α constitutes the target subjected to the beam.

Lorsque la puissance est faible, un circuit de refroidissement n'est pas nécessaire. Dans ce cas illustré en figure 2, l'ensemble porte-cible est raccordé au bloc anode afin que les calories soient d'abord transmises vers la périphérie du bloc anode par conduction à travers les différentes parties métalliques de l'ensemble porte-cible et du bloc anode (flèches blanches internes de la figure 2) puis évacuées vers l'extérieur par convection (flèches blanches externes de la figure 2).When the power is low, a cooling circuit is not necessary. In this case illustrated in figure 2 , the target assembly is connected to the anode block so that the calories are first transmitted to the periphery of the anode block by conduction through the different metal parts of the target holder assembly and the anode block (internal white arrows of the figure 2 ) then discharged to the outside by convection (external white arrows of the figure 2 ).

Lorsque la puissance émise est plus importante, la disposition précédente ne suffit plus. Dans ces cas, un conduit de circulation de fluide de refroidissement qui peut être, par exemple, de l'eau ou de l'huile est nécessaire pour extraire les calories de la cible. L'entrée et la sortie de ce fluide se font dans la partie opposée à la cible de l'ensemble porte-cible. La figure 3 illustre un premier mode de réalisation du conduit de refroidissement disposé à l'intérieur de l'ensemble porte-cible. Il comprend un tube unique 60 passant sous la surface de la cible et qui épouse au mieux ladite surface. La figure 4 illustre un second mode de réalisation de conduit de type coaxial. Il comprend un tube d'arrivée 60 situé dans l'axe du cylindre du porte-cible, une cavité interne 61 épousant au mieux l'intérieur du porte-cible et un tube de sortie 62 raccordée à la cavité interne. Cette disposition permet d'optimiser la surface d'échange entre le fluide de refroidissement et l'ensemble porte-cible.When the power emitted is greater, the previous arrangement is no longer sufficient. In these cases, a coolant flow conduit that may be, for example, water or oil is necessary to extract the calories from the target. The inlet and the outlet of this fluid are in the opposite part to the target of the target holder assembly. The figure 3 illustrates a first embodiment of the cooling duct disposed within the target holder assembly. It comprises a single tube 60 passing under the surface of the target and which best marries said surface. The figure 4 illustrates a second embodiment of a coaxial type duct. It comprises a delivery tube 60 located in the axis of the cylinder of the target holder, an internal cavity 61 at best matching the inside of the target holder and an outlet tube 62 connected to the internal cavity. This arrangement makes it possible to optimize the exchange surface between the cooling fluid and the target-holder assembly.

Cependant, ces différents types de circuits de refroidissement ont des inconvénients. En particulier, ces conduits présentent des coudes qui entraînent des changements de direction pour le fluide. Ceux-ci génèrent au niveau des surfaces d'échange thermique avec l'ensemble porte-cible des zones où la vitesse du fluide est quasiment nulle et où les échanges thermiques sont, par conséquent, très faibles. De plus, ces changements de direction induisent des pertes de charge qui peuvent se révéler prohibitives lorsqu'on souhaite augmenter le débit de fluide afin d'accroître les possibilité de dissipation thermique.However, these different types of cooling circuits have disadvantages. In particular, these conduits have elbows which cause changes of direction for the fluid. These generate at the level of the heat exchange surfaces with the target holder assembly areas where the fluid velocity is almost zero and where heat exchange is, therefore, very low. In addition, these changes in direction induce pressure drops which can be prohibitive when it is desired to increase the fluid flow to increase the possibility of heat dissipation.

Lorsqu'un faisceau d'électrons frappe la surface de la cible sous une incidence α correspondant à l'angle d'inclinaison de la cible, le rayonnement X est émis dans toutes les directions de l'espace comme indiqué sur la figure 5. L'indicatrice d'intensité d'émission dépend de l'angle θ que fait la direction du rayonnement avec la normale N à la surface de la cible (périmètre en pointillés de la figure 5). Cette indicatrice présente un maximum pour θ nul et tend vers 0 lorsque θ tend vers 90 degrés. On ne peut utiliser tout le rayonnement X émis et seule une partie est récupérée à travers une fenêtre de transmission qui définit un angle solide d'émission limité. Cette fenêtre est nécessairement située hors du trajet du faisceau électronique. Si l'on souhaite récupérer une partie importante du rayonnement émis, l'angle d'inclinaison α doit alors être suffisamment important.When an electron beam strikes the surface of the target at an incidence α corresponding to the angle of inclination of the target, the X-ray radiation is emitted in all directions of the space as indicated on the figure 5 . The emission intensity indicator depends on the angle θ between the direction of radiation and the normal N on the surface of the target (dashed perimeter of the figure 5 ). This indicator has a maximum for zero θ and tends to 0 when θ tends to 90 degrees. Not all X-radiation emitted can be used and only a portion is recovered through a transmission window that defines a limited solid emission angle. This window is necessarily located outside the path of the electron beam. If it is desired to recover a significant portion of the emitted radiation, the angle of inclination α must then be sufficiently large.

Cependant, l'angle d'inclinaison conditionne également la résolution géométrique de la source d'émission X comme illustré en figures 6 et 7. Un faisceau électronique 7 à section circulaire de diamètre φ, section encore appelée finesse, tombe sur une cible inclinée d'un angle α par rapport à la direction d'incidence. Ce faisceau va générer un rayonnement X. Dans une direction d'émission donnée, le rayonnement X, passant par un diaphragme 11 de très petit diamètre, a alors une divergence β. Cette divergence β est proportionnelle à l'angle α comme il est montré sur les figures 6 et 7. Cette divergence β conditionne la résolution du tube générateur de rayons X et la netteté des images observées. En effet, si l'on place un écran 12 dans le rayonnement X, l'image du diaphragme n'est plus quasiment ponctuelle mais a une certaine dimension directement proportionnelle à la divergence β. Par conséquent, pour obtenir des tailles d'image de petite dimension, c'est-à-dire des résolutions élevées, il faut réduire l'angle d'inclinaison α.However, the inclination angle also conditions the geometric resolution of the emission source X as illustrated in FIG. Figures 6 and 7 . An electron beam 7 with a circular section of diameter φ, a section also called fineness, falls on a target inclined at an angle α with respect to the direction of incidence. This beam will generate X-ray radiation. In a given transmission direction, the X-ray radiation, passing through a diaphragm 11 of very small diameter, then has a divergence β. This divergence β is proportional to the angle α as it is shown on the Figures 6 and 7 . This divergence β conditions the resolution of the X-ray generator tube and the sharpness of the images observed. Indeed, if a screen 12 is placed in the X-ray radiation, the image of the diaphragm is no longer almost punctual but has a certain dimension directly proportional to the divergence β. Therefore, to obtain small image sizes, i.e., high resolutions, the angle of inclination α must be reduced.

L'angle d'inclinaison α est nécessairement le résultat d'un compromis entre, d'une part l'énergie du rayonnement X et d'autre part, la résolution du tube. Selon les applications, les concepteurs de tubes sont ainsi amenés à proposer, pour une même configuration de tubes, différentes versions d'ensembles porte-cible dans lesquelles les inclinaisons de la cible varient. L'étude, la réalisation et la gestion de ces différentes variantes génèrent des surcoûts et des délais supplémentaires qui peuvent être importants, compte-tenu de la complexité de la pièce et des matériaux employés.The angle of inclination α is necessarily the result of a compromise between, on the one hand, the energy of the X-ray radiation and, on the other hand, the resolution of the tube. Depending on the application, the tube designers are thus led to propose, for the same configuration of tubes, different versions of target sets in which the inclinations of the target vary. The study, realization and management of these different variants generate extra costs and additional delays that can be important, given the complexity of the room and the materials used.

L'invention propose de remplacer ces différentes variantes par un ensemble unique permettant d'assurer le réglage de l'angle d'inclinaison de la cible. La disposition de la pièce permet également d'améliorer la géométrie du circuit de refroidissement afin d'accroître sensiblement son efficacité. D'autre part, les différentes pièces mécaniques ne comportent pas d'usinage complexe.The invention proposes to replace these different variants by a single set to ensure the adjustment of the tilt angle of the target. The arrangement of the part also makes it possible to improve the geometry of the cooling circuit in order to substantially increase its efficiency. On the other hand, the various mechanical parts do not involve complex machining.

Plus précisément, l'invention a pour objet un tube générateur de rayon X comprenant un canon à électrons émettant un faisceau électronique, un bloc anode comportant un ensemble porte-cible possédant une surface plane dite cible sur laquelle est focalisée le faisceau électronique en une tache de focalisation (O), l'ensemble porte-cible possède un axe de révolution sensiblement perpendiculaire à la direction moyenne du faisceau électronique et passant par le plan de la cible.More precisely, the subject of the invention is an X-ray generating tube comprising an electron gun emitting an electron beam, an anode block comprising a target-holder assembly having a so-called target flat surface on which the electron beam is focused into a spot. of focusing (O), the target holder assembly has an axis of revolution substantially perpendicular to the mean direction of the electron beam and passing through the plane of the target.

L'ensemble porte-cible est de forme globalement cylindrique à section circulaire, la cible étant située dans un plan passant par l'axe de révolution du cylindre et le bloc anode comporte un logement de forme également globalement cylindrique dans lequel se loge ledit ensemble porte-cible de façon que l'axe de révolution de l'ensemble porte-cible passe par la tache de focalisation.The target-holder assembly is of generally cylindrical shape with a circular section, the target being situated in a plane passing through the axis of revolution of the cylinder, and the anode block includes a housing of generally cylindrical shape in which the said door assembly is housed. target so that the axis of revolution of the target-holder assembly passes through the focusing spot.

Pour permettre des applications nécessitant un rayonnement X important, l'ensemble porte-cible comporte au moins un conduit principal interne de circulation de fluide de refroidissement traversant l'ensemble porte-cible dans une direction sensiblement parallèle à son axe de révolution et passant sous la cible pour la refroidir.To enable applications requiring a large amount of X-radiation, the target-holder assembly comprises at least one internal main coolant circulation duct passing through the target-holder assembly in a direction substantially parallel to its axis of revolution and passing under the target to cool it.

L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre donnée à titre non limitatif et grâce aux figures annexées parmi lesquelles :

  • La figure 1 représente une vue en coupe d'un tube générateur de rayons X comportant un ensemble porte-cible selon l'art antérieur.
  • La figure 2 représente une vue en coupe d'un bloc anode comportant un ensemble porte-cible sans circuit de refroidissement selon l'art antérieur.
  • La figure 3 représente une vue en coupe d'un bloc anode comportant un ensemble porte-cible comprenant un premier type de circuit de refroidissement selon l'art antérieur.
  • La figure 4 représente une vue en coupe d'un bloc anode comportant un ensemble porte-cible comprenant un second type de circuit de refroidissement selon l'art antérieur.
  • La figure 5 représente l'indicatrice d'émission de rayonnement X.
  • Les figures 6 et 7 représentent linfluence de l'angle d'inclinaison de la cible sur la résolution du tube.
  • La figure 8 représente une vue en perspective de l'ensemble porte-cible selon l'invention.
  • La figure 9 représente une vue de face et une vue de profil de l'ensemble porte-cible selon l'invention.
  • La figure 10 représente une vue en coupe d'un ensemble porte-cible selon l'invention montrant le conduit de circulation de fluide de refroidissement.
  • La figure 11 représente une vue en perspective de la partie du conduit située sous la cible.
  • La figure 12 représente une vue en perspective d'un ensemble de conduits secondaires cylindriques à section circulaire placés sous la cible.
  • La figure 13 représente une vue de face en coupe et une vue de profil de l'ensemble porte-cible comportant des conduits secondaires cylindriques à section circulaire.
  • La figure 14 représente une vue en perspective d'un ensemble de conduits secondaires cylindriques à section triangulaire placés sous la cible.
  • La figure 15 représente une vue en perspective d'un ensemble de conduits secondaires cylindriques à section en forme d'arche placés sous la cible.
  • La figure 16 représente une vue de face en coupe et une vue de profil en coupe de l'ensemble porte-cible comportant des conduits secondaires cylindriques à section triangulaire.
The invention will be better understood and other advantages will become apparent on reading the following description given by way of non-limiting example and with reference to the appended figures among which:
  • The figure 1 represents a sectional view of an X-ray generator tube comprising a target holder assembly according to the prior art.
  • The figure 2 represents a sectional view of an anode block comprising a target-holder assembly without cooling circuit according to the prior art.
  • The figure 3 represents a sectional view of an anode block comprising a target-holder assembly comprising a first type of cooling circuit according to the prior art.
  • The figure 4 represents a sectional view of an anode block comprising a target-holder assembly comprising a second type of cooling circuit according to the prior art.
  • The figure 5 represents the X-ray emission indicator.
  • The Figures 6 and 7 represent the influence of the angle of inclination of the target on the resolution of the tube.
  • The figure 8 represents a perspective view of the target holder assembly according to the invention.
  • The figure 9 represents a front view and a side view of the target holder assembly according to the invention.
  • The figure 10 represents a sectional view of a target holder assembly according to the invention showing the cooling fluid circulation duct.
  • The figure 11 represents a perspective view of the part of the duct located under the target.
  • The figure 12 is a perspective view of a set of circular cylindrical secondary conduits placed under the target.
  • The figure 13 represents a sectional front view and a profile view of the target holder assembly comprising circular cylindrical secondary ducts.
  • The figure 14 is a perspective view of a set of cylindrical secondary conduits with triangular section placed under the target.
  • The figure 15 represents a perspective view of a set of cylindrical secondary ducts with an arch section placed under the target.
  • The figure 16 represents a sectional front view and a sectional sectional view of the target holder assembly comprising cylindrical secondary ducts with triangular section.

Le coeur de l'invention est de rendre réglable l'angle d'inclinaison de la cible sur la direction moyenne du faisceau électronique tout en conservant la focalisation du faisceau sur la cible. Il existe différentes dispositions mécaniques possibles.The heart of the invention is to adjust the angle of inclination of the target on the mean direction of the electron beam while maintaining the focus of the beam on the target. There are different possible mechanical arrangements.

A titre d'exemple non limitatif, l'ensemble porte-cible 1 a la forme générale représentée sur la vue en perspective de la figure 8. Cette figure représente un ensemble porte-cible 1 sans conduit de circulation de liquide de refroidissement. L'ensemble porte-cible a globalement la forme d'un cylindre de révolution. La partie centrale de ce cylindre comporte un usinage. Dans cette partie usinée, une moitié du cylindre a été enlevée afin de définir une surface plane 9 qui constitue la surface de la cible. Ainsi, la cible se trouve dans un plan passant par l'axe 20 du cylindre de façon que lorsque le cylindre tourne en rotation autour de son axe, le centre de la cible occupe toujours une position fixe. La figure 9 représente une vue de face et une vue de profil en coupe de l'ensemble porte-cible 1 monté dans le bloc anode 2. Celui-ci comporte un évidement cylindrique de diamètre sensiblement égal à celui de l'ensemble porte-cible de façon que ledit ensemble 1 puisse tourner sans jeu dans le bloc anode. L'axe de révolution de ce cylindre est sensiblement perpendiculaire à la direction moyenne du faisceau d'électrons et cet axe passe par la tache de focalisation du faisceau électronique 7 comme indiqué sur la figure 8. Cette disposition permet d'optimiser le diamètre de la tache de focalisation O. Dans ces conditions, lorsque l'on tourne l'ensemble porte-cible dans le bloc anode, la surface de la cible s'incline d'un angle α variable et la focalisation du faisceau électronique sur la cible est conservée. Pour positionner la cible à un angle α particulier, il existe différentes méthodes possibles utilisant, par exemple, un outillage adapté qui ne font pas l'objet de cette invention et qui sont connues de l'homme du métier. Une fois cette inclinaison réglée, l'ensemble porte-cible est brasée dans le bloc anode afin d'une part de conserver cette inclinaison et d'autre part d'assurer l'étanchéité au vide de l'ensemble, étanchéité nécessaire au fonctionnement du canon à électrons. Cette disposition est très avantageuse dans la mesure où les opérations d'usinage des différentes pièces (ensemble porte-cible et bloc anode) sont simples et peuvent être réalisées avec une grande précision.By way of nonlimiting example, the target holder assembly 1 has the general shape shown in the perspective view of the figure 8 . This figure shows a target holder assembly 1 without a coolant circulation duct. The target holder assembly generally has the shape of a cylinder of revolution. The central part of this cylinder comprises a machining. In this machined portion, a half of the cylinder has been removed to define a planar surface 9 which constitutes the surface of the target. Thus, the target is in a plane passing through the axis 20 of the cylinder so that when the cylinder rotates about its axis, the center of the target always occupies a fixed position. The figure 9 represents a front view and a sectional profile view of the target holder assembly 1 mounted in the anode block 2. The latter comprises a cylindrical recess of diameter substantially equal to that of the target holder assembly so that said assembly 1 can rotate without play in the anode block. The axis of revolution of this cylinder is substantially perpendicular to the mean direction of the electron beam and this axis passes through the focusing spot of the electron beam 7 as indicated on FIG. figure 8 . This arrangement makes it possible to optimize the diameter of the focusing spot O. Under these conditions, when turning the target-holder assembly in the anode block, the surface of the target tilts at a variable angle α and the focus of the electron beam on the target is retained. To position the target at a particular angle α, there are various possible methods using, for example, adapted tools which are not the subject of this invention and which are known to those skilled in the art. Once this inclination has been adjusted, the target-holder assembly is brazed into the anode block in order firstly to maintain this inclination and secondly to ensure the vacuum seal of the assembly, a seal necessary for the operation of the electron gun. This provision is very advantageous in that the machining operations of the various parts (target assembly and anode block) are simple and can be performed with great precision.

Les tubes à haute puissance nécessitent un conduit de circulation de liquide de refroidissement. La figure 10 représente une vue en coupe d'un ensemble porte-cible du type de celui des figures 8 et 9 comportant un conduit de drculation de fluide de refroidissement 60. Celui-ci traverse de part en part l'ensemble porte-cible selon son axe de révolution et passe sous la cible 9. L'échange des calories se fait principalement dans la zone située sous la cible que l'on appelle échangeur. Cette géométrie qui ne présente pas de coudes mécaniques permet d'assurer un bon transfert du liquide de refroidissement à travers l'ensemble porte-cible, supérieur à celui des dispositifs selon l'art antérieur. Des manchons 63 disposés aux extrémités du conduit assure sa liaison avec les circuits d'arrivée et d'évacuation du liquide de refroidissement.High power tubes require a coolant flow line. The figure 10 represents a sectional view of a target holder assembly of the type of Figures 8 and 9 including a cooling fluid duct 60. It passes right through the target holder assembly along its axis of revolution and passes under the target 9. The exchange of calories is mainly in the area below the so-called exchanger target. This geometry which does not have mechanical elbows makes it possible to ensure good transfer of the coolant through the target-holder assembly, which is greater than that of the devices according to the prior art. Sleeves 63 arranged at the ends of the duct ensures its connection with the circuits for the arrival and discharge of the cooling liquid.

La conception de l'échangeur conditionne l'efficacité du conduit de circulation du liquide de refroidissement. Elle résulte d'un compromis entre une efficacité optimale et une complexité mécanique acceptable.The design of the exchanger conditions the efficiency of the coolant circulation duct. It results from a compromise between optimal efficiency and acceptable mechanical complexity.

Dans un premier type de réalisation présentée sur la vue en perspective de la figure 11, l'échangeur est principalement constitué de deux parois planes parallèles entre elles et séparées d'une épaisseur e. La première paroi est située sous la cible et parallèle à celle-ci. Par conséquent, l'eau circule dans l'échangeur sous la forme d'une nappe d'épaisseur e (flèches parallèles de la figure 11). Cet échangeur a des performances réduites compte-tenu de sa surface d'échange limitée. Il est possible d'améliorer son rendement en l'utilisant en mode diphasique, les quantités de chaleur absorbées par les changements de phase, par exemple lorsque l'eau liquide passe sous forme de vapeur, permettant ainsi d'améliorer le rendement du circuit de refroidissement.In a first type of embodiment presented in the perspective view of the figure 11 , the exchanger is mainly composed of two flat walls parallel to each other and separated by a thickness e. The first wall is located under the target and parallel to it. Therefore, the water circulates in the exchanger in the form of a sheet of thickness e (parallel arrows of the figure 11 ). This exchanger has reduced performance given its limited exchange surface. It is possible to improve its efficiency by using it in two-phase mode, the quantities of heat absorbed by the phase changes, for example when the liquid water passes in the form of steam, thus making it possible to improve the efficiency of the cooling circuit. cooling.

Pour améliorer le rendement de l'échangeur, on peut également augmenter l'aire de la surface d'échange. La vue en perspective de la figure 12 présente un premier mode de réalisation d'un échangeur à grande surface d'échange. Dans ce mode de réalisation, la surface d'échange est constituée d'une pluralité de conduits secondaires 64 de forme cylindrique et de génératrice parallèle à l'axe de révolution de l'ensemble porte-cible. Les conduits 64 sont séparés d'une paroi d'épaisseur P et ont un diamètre d. Typiquement, le diamètre d est compris entre 0.8 millimètres et 3 millimètres et l'épaisseur P doit être inférieure à d. On optimise ainsi la surface d'échange qui est, dans ce cas, bien supérieure à celle illustrée en figure 11. La figure 13 représente deux vues de l'ensemble porte-cible comprenant un échangeur selon la disposition précédente. Dans ce cas, le conduit 60 comporte à ses extrémités deux perçages cylindriques 65 et dans la zone de l'échangeur une pluralité de conduits secondaires 64 selon la disposition de la figure 12, chacun de ces conduits débouchant dans les perçages cylindriques 65. Lorsque l'on oriente l'ensemble porte-cible comme indiqué sur la vue de profil, l'ensemble de l'échangeur suit l'inclinaison de la cible. L'usinage du conduit peut être fait simplement par perçage par une des extrémités du cylindre.To improve the efficiency of the exchanger, it is also possible to increase the area of the exchange surface. The perspective view of the figure 12 presents a first embodiment of a heat exchanger with a large exchange surface. In this embodiment, the exchange surface consists of a plurality of secondary conduits 64 of cylindrical shape and Generator parallel to the axis of revolution of the target carrier assembly. The ducts 64 are separated from a wall of thickness P and have a diameter d. Typically, the diameter d is between 0.8 millimeters and 3 millimeters and the thickness P must be less than d. This optimizes the exchange surface which is, in this case, much greater than that illustrated in FIG. figure 11 . The figure 13 represents two views of the target holder assembly comprising an exchanger according to the preceding arrangement. In this case, the duct 60 comprises at its ends two cylindrical bores 65 and in the zone of the exchanger a plurality of secondary ducts 64 according to the arrangement of the invention. figure 12 , each of these conduits opening into the cylindrical bores 65. When the target-holder assembly is oriented as indicated in the profile view, the entire exchanger follows the inclination of the target. The machining of the conduit can be done simply by drilling through one end of the cylinder.

Cependant, le perçage de trous de faible diamètre, typiquement inférieur à 1.5 millimètres dans des matériaux tels que le cuivre peut se révéler difficile sur de grandes longueurs, typiquement supérieures à 10 fois le diamètre. Dans ce cas, il est possible de remplacer le procédé de réalisation de l'échangeur par usinage classique par le procédé comportant les étapes de réalisation suivantes :

  • Réalisation d'un premier ensemble 1 mécanique de forme globalement cylindrique comprenant un conduit principal 65 traversant ledit premier ensemble dans une direction sensiblement parallèle à son axe de révolution et dans sa partie centrale un évidement comportant une surface plane 101, le conduit principal 65 débouchant dans cet évidement.
  • Réalisation d'un second ensemble mécanique 102 comportant une surface supérieure plane et une surface inférieure comportant des rainures 103 identiques. Ce second ensemble peut être de forme globalement cylindrique.
  • Assemblage du second ensemble dans l'évidement du premier ensemble de telle sorte que les rainures 103 sont placées en regard de la surface plane 101 de l'évidement, la surface supérieure du second ensemble constituant la cible 9, l'ensemble des rainures du second ensemble et de la surface plane de l'évidement constituant autant de conduits secondaires formant l'échangeur.
However, drilling small diameter holes, typically less than 1.5 millimeters in materials such as copper can be difficult over long lengths, typically greater than 10 times the diameter. In this case, it is possible to replace the method of producing the exchanger by conventional machining by the method comprising the following embodiments:
  • Realization of a first generally cylindrical mechanical assembly 1 comprising a main conduit 65 passing through said first assembly in a direction substantially parallel to its axis of revolution and in its central part a recess comprising a flat surface 101, the main conduit 65 opening into this recess.
  • Realization of a second mechanical assembly 102 having a planar upper surface and a lower surface having identical grooves 103. This second set may be of generally cylindrical shape.
  • Assembling the second assembly in the recess of the first assembly so that the grooves 103 are placed facing the flat surface 101 of the recess, the upper surface of the second assembly forming the target 9, the set of grooves of the second together and surface plane of the recess constituting as many secondary conduits forming the exchanger.

La forme finale des conduits dépend de la forme initiale des rainures, permettant ainsi de paramétrer la surface d'échange souhaitée. A titre d'exemple, les figures 14 et 15 présentent deux formes de rainures 103. Sur la figure 14, les rainures sont en forme de V et la section finale des conduits est triangulaire. Sur la figure 15, les rainures sont en en forme d'arche et la section finale des conduits est en forme de D renversé. La figure 16 représente une vue de face en coupe et une vue de profil en coupe montrant la disposition de l'ensemble porte-cible 1 comportant l'ensemble mécanique 102 dans le bloc anode 2. Dans cette disposition, les extrémités du conduit peuvent également comporter des manchons d'adaptation 63.The final shape of the ducts depends on the initial shape of the grooves, thus making it possible to parameterize the desired exchange surface. For example, Figures 14 and 15 have two groove shapes 103. On the figure 14 , the grooves are V-shaped and the final section of the ducts is triangular. On the figure 15 , the grooves are in the form of arch and the final section of the ducts is inverted D-shaped. The figure 16 represents a sectional front view and a sectional sectional view showing the arrangement of the target holder assembly 1 comprising the mechanical assembly 102 in the anode block 2. In this arrangement, the ends of the duct may also comprise sleeves of adaptation 63.

Claims (7)

  1. An X-ray generator tube (10) comprising an electron gun (4) emitting an electron beam (7), an anode unit (2) comprising a target-carrier assembly (1) having a flat surface (9), known as the target, on which the electron beam (7) is focussed as a focussing spot (O), the target-carrier assembly (1) having an axis of rotation (20) essentially perpendicular to the mean direction of the electron beam (7) and passing through the plane of the target (9), the target-carrier (1) being of a generally cylindrical shape with a circular cross-section, the target (9) being located in a plane passing through the axis of rotation (20) of the cylinder, the anode unit (2) comprising a housing also of a generally cylindrical shape in which said target-carrier assembly (1) is housed so that the axis of rotation (20) of the target-carrier assembly passes through the focussing spot, characterised in that the target-carrier assembly (1) comprises at least one internal duct (60) for circulating the cooling fluid passing through the target-carrier in a direction essentially parallel to its axis of rotation and passing beneath the target so as to cool said target.
  2. The tube (10) according to claim 1, characterised in that the duct (60) comprises a central section, known as an exchanger, placed beneath the target and formed of several secondary ducts (64) of cylindrical shape and a generating line parallel to the axis of rotation of the target-carrier assembly.
  3. The tube (10) according to claim 2, characterised in that the cross-section of the secondary ducts is circular.
  4. The tube (10) according to claim 3, characterised in that the size of the diameter of the secondary ducts is greater than the thickness of the wall which separates them.
  5. The tube (10) according to claim 2, characterised in that the cross-section of the secondary ducts is triangular or arc shaped.
  6. A process for producing an anode unit assembly for an X-ray generator tube (10) according to any one of the preceding claims, comprising the following steps:
    - producing a target-carrier assembly (1) having a flat surface (9), known as the target, having an axis of rotation (20) passing through the plane of the target (9);
    - producing an anode unit (2) comprising a housing;
    - installing the target-carrier assembly (1) in the housing of the anode unit (2) so that the axis of rotation (20) is essentially perpendicular to the mean direction of the emitting electron beam (7) of the tube (10);
    - adjusting the inclination angle α of the target (9) to said mean direction by rotating the axis (20);
    - fixing the target-carrier assembly (1) in the anode unit (2).
  7. The process for producing an anode unit assembly according to claim 6, characterised in that the step of producing the target-carrier assembly comprises the following production sub-steps:
    - producing a first mechanical set of globally cylindrical shape comprising a main duct (66) passing through said first assembly in a direction essentially parallel to its axis of rotation, and a recess comprising a flat surface (101) in its central section, said main duct (66) opening into said recess;
    - producing a second mechanical assembly (102) comprising an upper flat surface and a lower surface comprising identical grooves (103);
    - assembling the second assembly (102) inside the recess of the first assembly so that the grooves (103) are placed opposite the flat surface (101) of the recess, the upper surface of the second assembly constituting the target, the set of grooves of the second assembly and of the flat surface of the recess constituting the secondary ducts forming the exchanger.
EP04741818A 2003-06-20 2004-06-17 X-ray generator tube comprising an orientable target carrier system Expired - Lifetime EP1636818B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0307498A FR2856513A1 (en) 2003-06-20 2003-06-20 X-RAY GENERATOR TUBE WITH ADJUSTABLE TARGET ASSEMBLY
PCT/EP2004/051143 WO2004114353A1 (en) 2003-06-20 2004-06-17 X-ray generator tube comprising an orientable target carrier system

Publications (2)

Publication Number Publication Date
EP1636818A1 EP1636818A1 (en) 2006-03-22
EP1636818B1 true EP1636818B1 (en) 2011-08-03

Family

ID=33484614

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04741818A Expired - Lifetime EP1636818B1 (en) 2003-06-20 2004-06-17 X-ray generator tube comprising an orientable target carrier system

Country Status (4)

Country Link
US (1) US7302044B2 (en)
EP (1) EP1636818B1 (en)
FR (1) FR2856513A1 (en)
WO (1) WO2004114353A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9208988B2 (en) 2005-10-25 2015-12-08 Rapiscan Systems, Inc. Graphite backscattered electron shield for use in an X-ray tube
US8243876B2 (en) 2003-04-25 2012-08-14 Rapiscan Systems, Inc. X-ray scanners
GB0525593D0 (en) 2005-12-16 2006-01-25 Cxr Ltd X-ray tomography inspection systems
GB0812864D0 (en) 2008-07-15 2008-08-20 Cxr Ltd Coolign anode
US8094784B2 (en) 2003-04-25 2012-01-10 Rapiscan Systems, Inc. X-ray sources
US10483077B2 (en) 2003-04-25 2019-11-19 Rapiscan Systems, Inc. X-ray sources having reduced electron scattering
US9046465B2 (en) 2011-02-24 2015-06-02 Rapiscan Systems, Inc. Optimization of the source firing pattern for X-ray scanning systems
GB0816823D0 (en) 2008-09-13 2008-10-22 Cxr Ltd X-ray tubes
GB0901338D0 (en) 2009-01-28 2009-03-11 Cxr Ltd X-Ray tube electron sources
DE102009007218A1 (en) * 2009-02-03 2010-09-16 Siemens Aktiengesellschaft Electron accelerator for generating a photon radiation with an energy of more than 0.5 MeV
US9099279B2 (en) * 2012-04-26 2015-08-04 American Science And Engineering, Inc. X-ray tube with rotating anode aperture
CN103906340B (en) * 2012-12-28 2017-04-12 清华大学 Standing wave electron linear accelerator device and method thereof
CN104749199B (en) * 2013-12-30 2019-02-19 同方威视技术股份有限公司 Dual-energy/dual-view high-energy X-ray fluoroscopic imaging system
CN104749198B (en) * 2013-12-30 2019-08-06 同方威视技术股份有限公司 Dual-channel high-energy X-ray fluoroscopic imaging system
RU2739232C1 (en) * 2020-07-31 2020-12-22 Андрей Владимирович Сартори X-ray tube for radiation treatment of objects
US11721514B2 (en) * 2021-04-23 2023-08-08 Oxford Instruments X-ray Technology Inc. X-ray tube anode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892809A (en) * 1997-09-10 1999-04-06 Wittry; David B. Simplified system for local excitation by monochromatic x-rays

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE619561C (en) * 1935-10-03 Gerhard Borrmann Dipl Ing X-ray tube with rotating anticathode
US1714975A (en) * 1923-12-10 1929-05-28 Gen Electric X-ray anode
FR1129144A (en) * 1955-07-16 1957-01-16 Dutertre & Cie Ets X-ray tube with rotating anode
FR2208298A5 (en) * 1972-11-27 1974-06-21 Subrem Sarl
FR2627899B1 (en) * 1988-02-26 1990-06-22 Thomson Csf ELECTRONIC TUBE COOLED BY CIRCULATION OF A FLUID
FR2698721B1 (en) * 1992-11-27 1995-01-27 Gen Electric Cgr System for cooling an anode for an X-ray tube in an X-ray unit without a heat exchanger.
US7162005B2 (en) * 2002-07-19 2007-01-09 Varian Medical Systems Technologies, Inc. Radiation sources and compact radiation scanning systems
FR2853450B1 (en) * 2003-04-04 2006-09-08 Thales Sa CONTROL GRID OF AN ELECTRONIC TUBE

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892809A (en) * 1997-09-10 1999-04-06 Wittry; David B. Simplified system for local excitation by monochromatic x-rays

Also Published As

Publication number Publication date
US20070064873A1 (en) 2007-03-22
FR2856513A1 (en) 2004-12-24
US7302044B2 (en) 2007-11-27
EP1636818A1 (en) 2006-03-22
WO2004114353A1 (en) 2004-12-29

Similar Documents

Publication Publication Date Title
EP1636818B1 (en) X-ray generator tube comprising an orientable target carrier system
EP3652773B1 (en) Compact, ionising ray-generating source, assembly comprising a plurality of sources and method for producing the source
EP1804271B1 (en) Compact source of a high-brightness X-ray beam
EP2176877B1 (en) Device for providing a high energy x-ray beam
EP0075014A1 (en) Device with liquid-cooled anode.
EP0110734A2 (en) X-ray tube generating a high power beam, particularly a collimated beam
FR3035937A1 (en) BRAKE SYSTEM
WO2004042769A1 (en) X-ray generator with improved thermal dissipation and method for making same
JP4533553B2 (en) X-ray tube
EP3652772B1 (en) Compact source for generating ionizing rays
EP0048690B1 (en) High stability gas discharge tube for high power laser emission
WO2002091420A1 (en) X-ray tube with graphite window
FR2574592A1 (en) X=ray tube with short duration pulses
US20210249213A1 (en) Electron collector with thermal insert
FR2675628A1 (en) Anodic assembly with high thermal dissipation for X-ray tube and tube thus obtained
WO2009083534A1 (en) Cooling of an x-ray generator tube
JP7097480B1 (en) Manufacturing method of X-ray tube, X-ray generator, and window member
FR2536584A1 (en) Graphite disc for rotating anode of X-ray tubes.
FR2765727A1 (en) THERMAL RADIATOR USED TO COOL A PROGRESSIVE WAVE TUBE BY THERMAL RADIATION
FR2803432A1 (en) X ray tube anode drive giving two degrees of rotational freedom around axes which are not axes of symmetry central to the anode surface, allowing connection of anode to flexible forced fed cooling pipes
EP0330542B1 (en) Electronic power tube cooled by means of a circulating fluid
JP2002352756A (en) Rotating anode x-ray tube device
WO2024008692A1 (en) X-ray emission antenna comprising a plurality of x-ray sources
FR2580428A1 (en) X-ray tube with rotating anode and rotating joint.
FR2833749A1 (en) COOLING OF AN ELECTRONIC TUBE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH LI

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH LI

17Q First examination report despatched

Effective date: 20100518

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SERVOPATENT GMBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180614

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230606