EP1636818B1 - X-ray generator tube comprising an orientable target carrier system - Google Patents
X-ray generator tube comprising an orientable target carrier system Download PDFInfo
- Publication number
- EP1636818B1 EP1636818B1 EP04741818A EP04741818A EP1636818B1 EP 1636818 B1 EP1636818 B1 EP 1636818B1 EP 04741818 A EP04741818 A EP 04741818A EP 04741818 A EP04741818 A EP 04741818A EP 1636818 B1 EP1636818 B1 EP 1636818B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- target
- assembly
- axis
- tube
- rotation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
- H01J35/08—Anodes; Anti cathodes
- H01J35/10—Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
- H01J35/105—Cooling of rotating anodes, e.g. heat emitting layers or structures
- H01J35/106—Active cooling, e.g. fluid flow, heat pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2235/00—X-ray tubes
- H01J2235/08—Targets (anodes) and X-ray converters
- H01J2235/086—Target geometry
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2235/00—X-ray tubes
- H01J2235/12—Cooling
- H01J2235/1204—Cooling of the anode
Definitions
- the field of the invention is that of the X-ray generator tubes.
- the invention relates more particularly to the arrangement of the emitting surfaces which are at the source of X-radiation.
- FIG. 1 The operating principle of an X-ray generator tube is exposed in figure 1 . It mainly comprises a vacuum chamber 6 having at one of these ends a cathode block 4 carried by an insulator 3 and at the other end an anode block 2.
- the anode block 2 comprises a target holder assembly 1 comprising a flat metallic surface said target 9 disposed opposite the cathode block.
- the electron beam 7 coming from the cathode is accelerated under the action of very high electrical voltages greater than 10 kVolts and strikes the target 9 in a focusing zone O where the electrons lose their kinetic energy. It follows a significant release of heat and an emission of X-rays (symbolized by the arrows of the figure 1 ).
- X-radiation passes through the wall of the anode block at privileged locations called windows.
- the release of heat causes a very intense localized heating at the target.
- the elevation of the temperature of the target is such that it could lead to the destruction of the target by melting.
- the release of heat is evacuated by a cooling circuit 60 passing through the target holder 1 under the target 9.
- the target 9 is inclined at an angle ⁇ with respect to the mean direction of the electron beam 7.
- the realization of a set target holder therefore has two main constraints.
- the angle of inclination ⁇ must be adapted to the use and on the other hand, the cooling circuit must allow sufficient evacuation of the calories due to the impact of the electron beam.
- the target holder assembly is generally in the form of a stepped cylinder as shown in FIG. figures 2 , 3 and 4 .
- the axis of this cylinder is parallel to the direction of the electron beam.
- a cut cut of the cylinder inclined at an angle ⁇ constitutes the target subjected to the beam.
- the target assembly is connected to the anode block so that the calories are first transmitted to the periphery of the anode block by conduction through the different metal parts of the target holder assembly and the anode block (internal white arrows of the figure 2 ) then discharged to the outside by convection (external white arrows of the figure 2 ).
- the figure 3 illustrates a first embodiment of the cooling duct disposed within the target holder assembly. It comprises a single tube 60 passing under the surface of the target and which best marries said surface.
- the figure 4 illustrates a second embodiment of a coaxial type duct. It comprises a delivery tube 60 located in the axis of the cylinder of the target holder, an internal cavity 61 at best matching the inside of the target holder and an outlet tube 62 connected to the internal cavity. This arrangement makes it possible to optimize the exchange surface between the cooling fluid and the target-holder assembly.
- the emission intensity indicator depends on the angle ⁇ between the direction of radiation and the normal N on the surface of the target (dashed perimeter of the figure 5 ). This indicator has a maximum for zero ⁇ and tends to 0 when ⁇ tends to 90 degrees. Not all X-radiation emitted can be used and only a portion is recovered through a transmission window that defines a limited solid emission angle. This window is necessarily located outside the path of the electron beam. If it is desired to recover a significant portion of the emitted radiation, the angle of inclination ⁇ must then be sufficiently large.
- the inclination angle also conditions the geometric resolution of the emission source X as illustrated in FIG. Figures 6 and 7 .
- the X-ray radiation passing through a diaphragm 11 of very small diameter, then has a divergence ⁇ .
- This divergence ⁇ is proportional to the angle ⁇ as it is shown on the Figures 6 and 7 .
- This divergence ⁇ conditions the resolution of the X-ray generator tube and the sharpness of the images observed.
- the angle of inclination ⁇ is necessarily the result of a compromise between, on the one hand, the energy of the X-ray radiation and, on the other hand, the resolution of the tube.
- the tube designers are thus led to propose, for the same configuration of tubes, different versions of target sets in which the inclinations of the target vary. The study, realization and management of these different variants generate extra costs and additional delays that can be important, given the complexity of the room and the materials used.
- the invention proposes to replace these different variants by a single set to ensure the adjustment of the tilt angle of the target.
- the arrangement of the part also makes it possible to improve the geometry of the cooling circuit in order to substantially increase its efficiency.
- the various mechanical parts do not involve complex machining.
- the subject of the invention is an X-ray generating tube comprising an electron gun emitting an electron beam, an anode block comprising a target-holder assembly having a so-called target flat surface on which the electron beam is focused into a spot.
- the target holder assembly has an axis of revolution substantially perpendicular to the mean direction of the electron beam and passing through the plane of the target.
- the target-holder assembly is of generally cylindrical shape with a circular section, the target being situated in a plane passing through the axis of revolution of the cylinder, and the anode block includes a housing of generally cylindrical shape in which the said door assembly is housed. target so that the axis of revolution of the target-holder assembly passes through the focusing spot.
- the target-holder assembly comprises at least one internal main coolant circulation duct passing through the target-holder assembly in a direction substantially parallel to its axis of revolution and passing under the target to cool it.
- the heart of the invention is to adjust the angle of inclination of the target on the mean direction of the electron beam while maintaining the focus of the beam on the target.
- the target holder assembly 1 has the general shape shown in the perspective view of the figure 8 .
- This figure shows a target holder assembly 1 without a coolant circulation duct.
- the target holder assembly generally has the shape of a cylinder of revolution.
- the central part of this cylinder comprises a machining.
- a half of the cylinder has been removed to define a planar surface 9 which constitutes the surface of the target.
- the target is in a plane passing through the axis 20 of the cylinder so that when the cylinder rotates about its axis, the center of the target always occupies a fixed position.
- the figure 9 represents a front view and a sectional profile view of the target holder assembly 1 mounted in the anode block 2.
- the latter comprises a cylindrical recess of diameter substantially equal to that of the target holder assembly so that said assembly 1 can rotate without play in the anode block.
- the axis of revolution of this cylinder is substantially perpendicular to the mean direction of the electron beam and this axis passes through the focusing spot of the electron beam 7 as indicated on FIG. figure 8 .
- This arrangement makes it possible to optimize the diameter of the focusing spot O. Under these conditions, when turning the target-holder assembly in the anode block, the surface of the target tilts at a variable angle ⁇ and the focus of the electron beam on the target is retained. To position the target at a particular angle ⁇ , there are various possible methods using, for example, adapted tools which are not the subject of this invention and which are known to those skilled in the art.
- the target-holder assembly is brazed into the anode block in order firstly to maintain this inclination and secondly to ensure the vacuum seal of the assembly, a seal necessary for the operation of the electron gun.
- This provision is very advantageous in that the machining operations of the various parts (target assembly and anode block) are simple and can be performed with great precision.
- the figure 10 represents a sectional view of a target holder assembly of the type of Figures 8 and 9 including a cooling fluid duct 60. It passes right through the target holder assembly along its axis of revolution and passes under the target 9. The exchange of calories is mainly in the area below the so-called exchanger target. This geometry which does not have mechanical elbows makes it possible to ensure good transfer of the coolant through the target-holder assembly, which is greater than that of the devices according to the prior art.
- Sleeves 63 arranged at the ends of the duct ensures its connection with the circuits for the arrival and discharge of the cooling liquid.
- the exchanger is mainly composed of two flat walls parallel to each other and separated by a thickness e.
- the first wall is located under the target and parallel to it. Therefore, the water circulates in the exchanger in the form of a sheet of thickness e (parallel arrows of the figure 11 ).
- This exchanger has reduced performance given its limited exchange surface. It is possible to improve its efficiency by using it in two-phase mode, the quantities of heat absorbed by the phase changes, for example when the liquid water passes in the form of steam, thus making it possible to improve the efficiency of the cooling circuit. cooling.
- the perspective view of the figure 12 presents a first embodiment of a heat exchanger with a large exchange surface.
- the exchange surface consists of a plurality of secondary conduits 64 of cylindrical shape and Generator parallel to the axis of revolution of the target carrier assembly.
- the ducts 64 are separated from a wall of thickness P and have a diameter d.
- the diameter d is between 0.8 millimeters and 3 millimeters and the thickness P must be less than d. This optimizes the exchange surface which is, in this case, much greater than that illustrated in FIG. figure 11 .
- the figure 13 represents two views of the target holder assembly comprising an exchanger according to the preceding arrangement.
- the duct 60 comprises at its ends two cylindrical bores 65 and in the zone of the exchanger a plurality of secondary ducts 64 according to the arrangement of the invention. figure 12 , each of these conduits opening into the cylindrical bores 65.
- the entire exchanger follows the inclination of the target. The machining of the conduit can be done simply by drilling through one end of the cylinder.
- Figures 14 and 15 have two groove shapes 103.
- the grooves are V-shaped and the final section of the ducts is triangular.
- the grooves are in the form of arch and the final section of the ducts is inverted D-shaped.
- the figure 16 represents a sectional front view and a sectional sectional view showing the arrangement of the target holder assembly 1 comprising the mechanical assembly 102 in the anode block 2.
- the ends of the duct may also comprise sleeves of adaptation 63.
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- X-Ray Techniques (AREA)
Abstract
Description
Le domaine de l'invention est celui des tubes générateurs de rayons X. L'invention concerne plus particulièrement la disposition des surfaces émettrices qui sont à la source du rayonnement X.The field of the invention is that of the X-ray generator tubes. The invention relates more particularly to the arrangement of the emitting surfaces which are at the source of X-radiation.
Le principe de fonctionnement d'un tube générateur 10 de rayons X est exposé en
Le dégagement de chaleur provoque un échauffement localisé très intense au niveau de la cible. Dans le cas de tubes fonctionnant à forte puissance, l'élévation de la température de la cible est telle qu'elle pourrait conduire à la destruction de la cible par fusion. Aussi, dans ce cas, le dégagement de chaleur est évacué par un circuit de refroidissement 60 passant dans le porte-cible 1 sous la cible 9.The release of heat causes a very intense localized heating at the target. In the case of tubes operating at high power, the elevation of the temperature of the target is such that it could lead to the destruction of the target by melting. Also, in this case, the release of heat is evacuated by a
Afin d'opti miser la répartition du rayonnement X dans l'espace en direction et en intensité, la cible 9 est inclinée d'un angle α par rapport à la direction moyenne du faisceau électronique 7.In order to optimize the distribution of the X-radiation in the space in direction and in intensity, the
La réalisation d'un ensemble porte-cible a donc deux contraintes principales. D'une part, l'angle d'inclinaison α doit être adapté à l'utilisation et d'autre part, le circuit de refroidissement doit permettre une évacuation suffisante des calories dues à l'impact du faisceau électronique.The realization of a set target holder therefore has two main constraints. On the one hand, the angle of inclination α must be adapted to the use and on the other hand, the cooling circuit must allow sufficient evacuation of the calories due to the impact of the electron beam.
Dans les tubes à rayonnement X connus, l'ensemble porte-cible a, en général, la forme d'un cylindre épaulé comme représenté en
Lorsque la puissance est faible, un circuit de refroidissement n'est pas nécessaire. Dans ce cas illustré en
Lorsque la puissance émise est plus importante, la disposition précédente ne suffit plus. Dans ces cas, un conduit de circulation de fluide de refroidissement qui peut être, par exemple, de l'eau ou de l'huile est nécessaire pour extraire les calories de la cible. L'entrée et la sortie de ce fluide se font dans la partie opposée à la cible de l'ensemble porte-cible. La
Cependant, ces différents types de circuits de refroidissement ont des inconvénients. En particulier, ces conduits présentent des coudes qui entraînent des changements de direction pour le fluide. Ceux-ci génèrent au niveau des surfaces d'échange thermique avec l'ensemble porte-cible des zones où la vitesse du fluide est quasiment nulle et où les échanges thermiques sont, par conséquent, très faibles. De plus, ces changements de direction induisent des pertes de charge qui peuvent se révéler prohibitives lorsqu'on souhaite augmenter le débit de fluide afin d'accroître les possibilité de dissipation thermique.However, these different types of cooling circuits have disadvantages. In particular, these conduits have elbows which cause changes of direction for the fluid. These generate at the level of the heat exchange surfaces with the target holder assembly areas where the fluid velocity is almost zero and where heat exchange is, therefore, very low. In addition, these changes in direction induce pressure drops which can be prohibitive when it is desired to increase the fluid flow to increase the possibility of heat dissipation.
Lorsqu'un faisceau d'électrons frappe la surface de la cible sous une incidence α correspondant à l'angle d'inclinaison de la cible, le rayonnement X est émis dans toutes les directions de l'espace comme indiqué sur la
Cependant, l'angle d'inclinaison conditionne également la résolution géométrique de la source d'émission X comme illustré en
L'angle d'inclinaison α est nécessairement le résultat d'un compromis entre, d'une part l'énergie du rayonnement X et d'autre part, la résolution du tube. Selon les applications, les concepteurs de tubes sont ainsi amenés à proposer, pour une même configuration de tubes, différentes versions d'ensembles porte-cible dans lesquelles les inclinaisons de la cible varient. L'étude, la réalisation et la gestion de ces différentes variantes génèrent des surcoûts et des délais supplémentaires qui peuvent être importants, compte-tenu de la complexité de la pièce et des matériaux employés.The angle of inclination α is necessarily the result of a compromise between, on the one hand, the energy of the X-ray radiation and, on the other hand, the resolution of the tube. Depending on the application, the tube designers are thus led to propose, for the same configuration of tubes, different versions of target sets in which the inclinations of the target vary. The study, realization and management of these different variants generate extra costs and additional delays that can be important, given the complexity of the room and the materials used.
L'invention propose de remplacer ces différentes variantes par un ensemble unique permettant d'assurer le réglage de l'angle d'inclinaison de la cible. La disposition de la pièce permet également d'améliorer la géométrie du circuit de refroidissement afin d'accroître sensiblement son efficacité. D'autre part, les différentes pièces mécaniques ne comportent pas d'usinage complexe.The invention proposes to replace these different variants by a single set to ensure the adjustment of the tilt angle of the target. The arrangement of the part also makes it possible to improve the geometry of the cooling circuit in order to substantially increase its efficiency. On the other hand, the various mechanical parts do not involve complex machining.
Plus précisément, l'invention a pour objet un tube générateur de rayon X comprenant un canon à électrons émettant un faisceau électronique, un bloc anode comportant un ensemble porte-cible possédant une surface plane dite cible sur laquelle est focalisée le faisceau électronique en une tache de focalisation (O), l'ensemble porte-cible possède un axe de révolution sensiblement perpendiculaire à la direction moyenne du faisceau électronique et passant par le plan de la cible.More precisely, the subject of the invention is an X-ray generating tube comprising an electron gun emitting an electron beam, an anode block comprising a target-holder assembly having a so-called target flat surface on which the electron beam is focused into a spot. of focusing (O), the target holder assembly has an axis of revolution substantially perpendicular to the mean direction of the electron beam and passing through the plane of the target.
L'ensemble porte-cible est de forme globalement cylindrique à section circulaire, la cible étant située dans un plan passant par l'axe de révolution du cylindre et le bloc anode comporte un logement de forme également globalement cylindrique dans lequel se loge ledit ensemble porte-cible de façon que l'axe de révolution de l'ensemble porte-cible passe par la tache de focalisation.The target-holder assembly is of generally cylindrical shape with a circular section, the target being situated in a plane passing through the axis of revolution of the cylinder, and the anode block includes a housing of generally cylindrical shape in which the said door assembly is housed. target so that the axis of revolution of the target-holder assembly passes through the focusing spot.
Pour permettre des applications nécessitant un rayonnement X important, l'ensemble porte-cible comporte au moins un conduit principal interne de circulation de fluide de refroidissement traversant l'ensemble porte-cible dans une direction sensiblement parallèle à son axe de révolution et passant sous la cible pour la refroidir.To enable applications requiring a large amount of X-radiation, the target-holder assembly comprises at least one internal main coolant circulation duct passing through the target-holder assembly in a direction substantially parallel to its axis of revolution and passing under the target to cool it.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre donnée à titre non limitatif et grâce aux figures annexées parmi lesquelles :
- La
figure 1 représente une vue en coupe d'un tube générateur de rayons X comportant un ensemble porte-cible selon l'art antérieur. - La
figure 2 représente une vue en coupe d'un bloc anode comportant un ensemble porte-cible sans circuit de refroidissement selon l'art antérieur. - La
figure 3 représente une vue en coupe d'un bloc anode comportant un ensemble porte-cible comprenant un premier type de circuit de refroidissement selon l'art antérieur. - La
figure 4 représente une vue en coupe d'un bloc anode comportant un ensemble porte-cible comprenant un second type de circuit de refroidissement selon l'art antérieur. - La
figure 5 représente l'indicatrice d'émission de rayonnement X. - Les
figures 6 et 7 représentent linfluence de l'angle d'inclinaison de la cible sur la résolution du tube. - La
figure 8 représente une vue en perspective de l'ensemble porte-cible selon l'invention. - La
figure 9 représente une vue de face et une vue de profil de l'ensemble porte-cible selon l'invention. - La
figure 10 représente une vue en coupe d'un ensemble porte-cible selon l'invention montrant le conduit de circulation de fluide de refroidissement. - La
figure 11 représente une vue en perspective de la partie du conduit située sous la cible. - La
figure 12 représente une vue en perspective d'un ensemble de conduits secondaires cylindriques à section circulaire placés sous la cible. - La
figure 13 représente une vue de face en coupe et une vue de profil de l'ensemble porte-cible comportant des conduits secondaires cylindriques à section circulaire. - La
figure 14 représente une vue en perspective d'un ensemble de conduits secondaires cylindriques à section triangulaire placés sous la cible. - La
figure 15 représente une vue en perspective d'un ensemble de conduits secondaires cylindriques à section en forme d'arche placés sous la cible. - La
figure 16 représente une vue de face en coupe et une vue de profil en coupe de l'ensemble porte-cible comportant des conduits secondaires cylindriques à section triangulaire.
- The
figure 1 represents a sectional view of an X-ray generator tube comprising a target holder assembly according to the prior art. - The
figure 2 represents a sectional view of an anode block comprising a target-holder assembly without cooling circuit according to the prior art. - The
figure 3 represents a sectional view of an anode block comprising a target-holder assembly comprising a first type of cooling circuit according to the prior art. - The
figure 4 represents a sectional view of an anode block comprising a target-holder assembly comprising a second type of cooling circuit according to the prior art. - The
figure 5 represents the X-ray emission indicator. - The
Figures 6 and 7 represent the influence of the angle of inclination of the target on the resolution of the tube. - The
figure 8 represents a perspective view of the target holder assembly according to the invention. - The
figure 9 represents a front view and a side view of the target holder assembly according to the invention. - The
figure 10 represents a sectional view of a target holder assembly according to the invention showing the cooling fluid circulation duct. - The
figure 11 represents a perspective view of the part of the duct located under the target. - The
figure 12 is a perspective view of a set of circular cylindrical secondary conduits placed under the target. - The
figure 13 represents a sectional front view and a profile view of the target holder assembly comprising circular cylindrical secondary ducts. - The
figure 14 is a perspective view of a set of cylindrical secondary conduits with triangular section placed under the target. - The
figure 15 represents a perspective view of a set of cylindrical secondary ducts with an arch section placed under the target. - The
figure 16 represents a sectional front view and a sectional sectional view of the target holder assembly comprising cylindrical secondary ducts with triangular section.
Le coeur de l'invention est de rendre réglable l'angle d'inclinaison de la cible sur la direction moyenne du faisceau électronique tout en conservant la focalisation du faisceau sur la cible. Il existe différentes dispositions mécaniques possibles.The heart of the invention is to adjust the angle of inclination of the target on the mean direction of the electron beam while maintaining the focus of the beam on the target. There are different possible mechanical arrangements.
A titre d'exemple non limitatif, l'ensemble porte-cible 1 a la forme générale représentée sur la vue en perspective de la
Les tubes à haute puissance nécessitent un conduit de circulation de liquide de refroidissement. La
La conception de l'échangeur conditionne l'efficacité du conduit de circulation du liquide de refroidissement. Elle résulte d'un compromis entre une efficacité optimale et une complexité mécanique acceptable.The design of the exchanger conditions the efficiency of the coolant circulation duct. It results from a compromise between optimal efficiency and acceptable mechanical complexity.
Dans un premier type de réalisation présentée sur la vue en perspective de la
Pour améliorer le rendement de l'échangeur, on peut également augmenter l'aire de la surface d'échange. La vue en perspective de la
Cependant, le perçage de trous de faible diamètre, typiquement inférieur à 1.5 millimètres dans des matériaux tels que le cuivre peut se révéler difficile sur de grandes longueurs, typiquement supérieures à 10 fois le diamètre. Dans ce cas, il est possible de remplacer le procédé de réalisation de l'échangeur par usinage classique par le procédé comportant les étapes de réalisation suivantes :
- Réalisation d'un
premier ensemble 1 mécanique de forme globalement cylindrique comprenant un conduit principal 65 traversant ledit premier ensemble dans une direction sensiblement parallèle à son axe de révolution et dans sa partie centrale un évidement comportant unesurface plane 101, le conduit principal 65 débouchant dans cet évidement. - Réalisation d'un
second ensemble mécanique 102 comportant une surface supérieure plane et une surface inférieure comportant des rainures 103 identiques. Ce second ensemble peut être de forme globalement cylindrique. - Assemblage du second ensemble dans l'évidement du premier ensemble de telle sorte que les rainures 103 sont placées en regard de
la surface plane 101 de l'évidement, la surface supérieure du second ensemble constituant la cible 9, l'ensemble des rainures du second ensemble et de la surface plane de l'évidement constituant autant de conduits secondaires formant l'échangeur.
- Realization of a first generally cylindrical
mechanical assembly 1 comprising amain conduit 65 passing through said first assembly in a direction substantially parallel to its axis of revolution and in its central part a recess comprising aflat surface 101, themain conduit 65 opening into this recess. - Realization of a second
mechanical assembly 102 having a planar upper surface and a lower surface havingidentical grooves 103. This second set may be of generally cylindrical shape. - Assembling the second assembly in the recess of the first assembly so that the
grooves 103 are placed facing theflat surface 101 of the recess, the upper surface of the second assembly forming thetarget 9, the set of grooves of the second together and surface plane of the recess constituting as many secondary conduits forming the exchanger.
La forme finale des conduits dépend de la forme initiale des rainures, permettant ainsi de paramétrer la surface d'échange souhaitée. A titre d'exemple, les
Claims (7)
- An X-ray generator tube (10) comprising an electron gun (4) emitting an electron beam (7), an anode unit (2) comprising a target-carrier assembly (1) having a flat surface (9), known as the target, on which the electron beam (7) is focussed as a focussing spot (O), the target-carrier assembly (1) having an axis of rotation (20) essentially perpendicular to the mean direction of the electron beam (7) and passing through the plane of the target (9), the target-carrier (1) being of a generally cylindrical shape with a circular cross-section, the target (9) being located in a plane passing through the axis of rotation (20) of the cylinder, the anode unit (2) comprising a housing also of a generally cylindrical shape in which said target-carrier assembly (1) is housed so that the axis of rotation (20) of the target-carrier assembly passes through the focussing spot, characterised in that the target-carrier assembly (1) comprises at least one internal duct (60) for circulating the cooling fluid passing through the target-carrier in a direction essentially parallel to its axis of rotation and passing beneath the target so as to cool said target.
- The tube (10) according to claim 1, characterised in that the duct (60) comprises a central section, known as an exchanger, placed beneath the target and formed of several secondary ducts (64) of cylindrical shape and a generating line parallel to the axis of rotation of the target-carrier assembly.
- The tube (10) according to claim 2, characterised in that the cross-section of the secondary ducts is circular.
- The tube (10) according to claim 3, characterised in that the size of the diameter of the secondary ducts is greater than the thickness of the wall which separates them.
- The tube (10) according to claim 2, characterised in that the cross-section of the secondary ducts is triangular or arc shaped.
- A process for producing an anode unit assembly for an X-ray generator tube (10) according to any one of the preceding claims, comprising the following steps:- producing a target-carrier assembly (1) having a flat surface (9), known as the target, having an axis of rotation (20) passing through the plane of the target (9);- producing an anode unit (2) comprising a housing;- installing the target-carrier assembly (1) in the housing of the anode unit (2) so that the axis of rotation (20) is essentially perpendicular to the mean direction of the emitting electron beam (7) of the tube (10);- adjusting the inclination angle α of the target (9) to said mean direction by rotating the axis (20);- fixing the target-carrier assembly (1) in the anode unit (2).
- The process for producing an anode unit assembly according to claim 6, characterised in that the step of producing the target-carrier assembly comprises the following production sub-steps:- producing a first mechanical set of globally cylindrical shape comprising a main duct (66) passing through said first assembly in a direction essentially parallel to its axis of rotation, and a recess comprising a flat surface (101) in its central section, said main duct (66) opening into said recess;- producing a second mechanical assembly (102) comprising an upper flat surface and a lower surface comprising identical grooves (103);- assembling the second assembly (102) inside the recess of the first assembly so that the grooves (103) are placed opposite the flat surface (101) of the recess, the upper surface of the second assembly constituting the target, the set of grooves of the second assembly and of the flat surface of the recess constituting the secondary ducts forming the exchanger.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0307498A FR2856513A1 (en) | 2003-06-20 | 2003-06-20 | X-RAY GENERATOR TUBE WITH ADJUSTABLE TARGET ASSEMBLY |
PCT/EP2004/051143 WO2004114353A1 (en) | 2003-06-20 | 2004-06-17 | X-ray generator tube comprising an orientable target carrier system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1636818A1 EP1636818A1 (en) | 2006-03-22 |
EP1636818B1 true EP1636818B1 (en) | 2011-08-03 |
Family
ID=33484614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04741818A Expired - Lifetime EP1636818B1 (en) | 2003-06-20 | 2004-06-17 | X-ray generator tube comprising an orientable target carrier system |
Country Status (4)
Country | Link |
---|---|
US (1) | US7302044B2 (en) |
EP (1) | EP1636818B1 (en) |
FR (1) | FR2856513A1 (en) |
WO (1) | WO2004114353A1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9208988B2 (en) | 2005-10-25 | 2015-12-08 | Rapiscan Systems, Inc. | Graphite backscattered electron shield for use in an X-ray tube |
US8243876B2 (en) | 2003-04-25 | 2012-08-14 | Rapiscan Systems, Inc. | X-ray scanners |
GB0525593D0 (en) | 2005-12-16 | 2006-01-25 | Cxr Ltd | X-ray tomography inspection systems |
GB0812864D0 (en) | 2008-07-15 | 2008-08-20 | Cxr Ltd | Coolign anode |
US8094784B2 (en) | 2003-04-25 | 2012-01-10 | Rapiscan Systems, Inc. | X-ray sources |
US10483077B2 (en) | 2003-04-25 | 2019-11-19 | Rapiscan Systems, Inc. | X-ray sources having reduced electron scattering |
US9046465B2 (en) | 2011-02-24 | 2015-06-02 | Rapiscan Systems, Inc. | Optimization of the source firing pattern for X-ray scanning systems |
GB0816823D0 (en) | 2008-09-13 | 2008-10-22 | Cxr Ltd | X-ray tubes |
GB0901338D0 (en) | 2009-01-28 | 2009-03-11 | Cxr Ltd | X-Ray tube electron sources |
DE102009007218A1 (en) * | 2009-02-03 | 2010-09-16 | Siemens Aktiengesellschaft | Electron accelerator for generating a photon radiation with an energy of more than 0.5 MeV |
US9099279B2 (en) * | 2012-04-26 | 2015-08-04 | American Science And Engineering, Inc. | X-ray tube with rotating anode aperture |
CN103906340B (en) * | 2012-12-28 | 2017-04-12 | 清华大学 | Standing wave electron linear accelerator device and method thereof |
CN104749199B (en) * | 2013-12-30 | 2019-02-19 | 同方威视技术股份有限公司 | Dual-energy/dual-view high-energy X-ray fluoroscopic imaging system |
CN104749198B (en) * | 2013-12-30 | 2019-08-06 | 同方威视技术股份有限公司 | Dual-channel high-energy X-ray fluoroscopic imaging system |
RU2739232C1 (en) * | 2020-07-31 | 2020-12-22 | Андрей Владимирович Сартори | X-ray tube for radiation treatment of objects |
US11721514B2 (en) * | 2021-04-23 | 2023-08-08 | Oxford Instruments X-ray Technology Inc. | X-ray tube anode |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5892809A (en) * | 1997-09-10 | 1999-04-06 | Wittry; David B. | Simplified system for local excitation by monochromatic x-rays |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE619561C (en) * | 1935-10-03 | Gerhard Borrmann Dipl Ing | X-ray tube with rotating anticathode | |
US1714975A (en) * | 1923-12-10 | 1929-05-28 | Gen Electric | X-ray anode |
FR1129144A (en) * | 1955-07-16 | 1957-01-16 | Dutertre & Cie Ets | X-ray tube with rotating anode |
FR2208298A5 (en) * | 1972-11-27 | 1974-06-21 | Subrem Sarl | |
FR2627899B1 (en) * | 1988-02-26 | 1990-06-22 | Thomson Csf | ELECTRONIC TUBE COOLED BY CIRCULATION OF A FLUID |
FR2698721B1 (en) * | 1992-11-27 | 1995-01-27 | Gen Electric Cgr | System for cooling an anode for an X-ray tube in an X-ray unit without a heat exchanger. |
US7162005B2 (en) * | 2002-07-19 | 2007-01-09 | Varian Medical Systems Technologies, Inc. | Radiation sources and compact radiation scanning systems |
FR2853450B1 (en) * | 2003-04-04 | 2006-09-08 | Thales Sa | CONTROL GRID OF AN ELECTRONIC TUBE |
-
2003
- 2003-06-20 FR FR0307498A patent/FR2856513A1/en not_active Withdrawn
-
2004
- 2004-06-17 US US10/561,262 patent/US7302044B2/en not_active Expired - Fee Related
- 2004-06-17 EP EP04741818A patent/EP1636818B1/en not_active Expired - Lifetime
- 2004-06-17 WO PCT/EP2004/051143 patent/WO2004114353A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5892809A (en) * | 1997-09-10 | 1999-04-06 | Wittry; David B. | Simplified system for local excitation by monochromatic x-rays |
Also Published As
Publication number | Publication date |
---|---|
US20070064873A1 (en) | 2007-03-22 |
FR2856513A1 (en) | 2004-12-24 |
US7302044B2 (en) | 2007-11-27 |
EP1636818A1 (en) | 2006-03-22 |
WO2004114353A1 (en) | 2004-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1636818B1 (en) | X-ray generator tube comprising an orientable target carrier system | |
EP3652773B1 (en) | Compact, ionising ray-generating source, assembly comprising a plurality of sources and method for producing the source | |
EP1804271B1 (en) | Compact source of a high-brightness X-ray beam | |
EP2176877B1 (en) | Device for providing a high energy x-ray beam | |
EP0075014A1 (en) | Device with liquid-cooled anode. | |
EP0110734A2 (en) | X-ray tube generating a high power beam, particularly a collimated beam | |
FR3035937A1 (en) | BRAKE SYSTEM | |
WO2004042769A1 (en) | X-ray generator with improved thermal dissipation and method for making same | |
JP4533553B2 (en) | X-ray tube | |
EP3652772B1 (en) | Compact source for generating ionizing rays | |
EP0048690B1 (en) | High stability gas discharge tube for high power laser emission | |
WO2002091420A1 (en) | X-ray tube with graphite window | |
FR2574592A1 (en) | X=ray tube with short duration pulses | |
US20210249213A1 (en) | Electron collector with thermal insert | |
FR2675628A1 (en) | Anodic assembly with high thermal dissipation for X-ray tube and tube thus obtained | |
WO2009083534A1 (en) | Cooling of an x-ray generator tube | |
JP7097480B1 (en) | Manufacturing method of X-ray tube, X-ray generator, and window member | |
FR2536584A1 (en) | Graphite disc for rotating anode of X-ray tubes. | |
FR2765727A1 (en) | THERMAL RADIATOR USED TO COOL A PROGRESSIVE WAVE TUBE BY THERMAL RADIATION | |
FR2803432A1 (en) | X ray tube anode drive giving two degrees of rotational freedom around axes which are not axes of symmetry central to the anode surface, allowing connection of anode to flexible forced fed cooling pipes | |
EP0330542B1 (en) | Electronic power tube cooled by means of a circulating fluid | |
JP2002352756A (en) | Rotating anode x-ray tube device | |
WO2024008692A1 (en) | X-ray emission antenna comprising a plurality of x-ray sources | |
FR2580428A1 (en) | X-ray tube with rotating anode and rotating joint. | |
FR2833749A1 (en) | COOLING OF AN ELECTRONIC TUBE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20051202 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH LI |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): CH LI |
|
17Q | First examination report despatched |
Effective date: 20100518 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH LI |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SERVOPATENT GMBH |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20120504 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20180614 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190630 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190630 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230606 |