EP1624982B2 - Method for regulating the temperature of a metal strip, especially for rolling a metal hot strip in a finishing train - Google Patents
Method for regulating the temperature of a metal strip, especially for rolling a metal hot strip in a finishing train Download PDFInfo
- Publication number
- EP1624982B2 EP1624982B2 EP04710836A EP04710836A EP1624982B2 EP 1624982 B2 EP1624982 B2 EP 1624982B2 EP 04710836 A EP04710836 A EP 04710836A EP 04710836 A EP04710836 A EP 04710836A EP 1624982 B2 EP1624982 B2 EP 1624982B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- metal strip
- strip
- finishing train
- online
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 56
- 239000002184 metal Substances 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 35
- 230000001105 regulatory effect Effects 0.000 title claims abstract description 11
- 238000005096 rolling process Methods 0.000 title claims description 33
- 239000002826 coolant Substances 0.000 claims abstract description 22
- 238000005457 optimization Methods 0.000 claims abstract description 19
- 230000001276 controlling effect Effects 0.000 claims abstract description 13
- 238000004590 computer program Methods 0.000 claims description 4
- 238000004422 calculation algorithm Methods 0.000 claims description 2
- 238000005098 hot rolling Methods 0.000 abstract 1
- 238000001816 cooling Methods 0.000 description 20
- 230000008859 change Effects 0.000 description 8
- 230000006978 adaptation Effects 0.000 description 7
- 238000012937 correction Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000012913 prioritisation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D11/00—Process control or regulation for heat treatments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/74—Temperature control, e.g. by cooling or heating the rolls or the product
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D11/00—Process control or regulation for heat treatments
- C21D11/005—Process control or regulation for heat treatments for cooling
Definitions
- the present invention relates to a method for controlling and / or regulating the temperature of a metal strip in a finishing train.
- a method for controlling and / or regulating the temperature of a metal strip in a downstream of a finishing mill cooling section is known.
- a desired temperature profile is compared with an actual temperature profile in order to determine control signals for actuators of the cooling section.
- at least one target function is formed for the actuators.
- a temperature profile for individual band points of the metal strip is determined.
- a method for controlling and / or regulating the temperature of a metal strip in a downstream of a finishing mill cooling section is known.
- a desired temperature is compared with an actual temperature to determine actuating signals for actuators of the cooling section.
- at least one target function is formed for the actuators.
- the US 6,220,067 B1 describes a method that regulates the temperature of a metal strip at the exit side of a rolling line, ie the final rolling temperature.
- phase transformations of the steel in the rolling train which are particularly important in the case of two-phase rolling for the material properties of the rolled metal strip, can not be sufficiently influenced in a targeted manner.
- a comparable procedure, which is used to calculate a pass schedule, is described in the EP 1 014 239 A1 described.
- the material properties and the structure of a rolled metal strip are determined by chemical composition and process parameters, in particular during the rolling process, such as e.g. determines the load distribution and the temperature control.
- Actuators for the rolling temperature, in particular the final rolling temperature are, depending on the type of plant and operating mode usually belt speed and interstand cooling.
- the object according to the invention is achieved by a method for controlling and / or regulating the temperature of a metal strip in a finishing train, in which the metal strip is rolled from an input thickness to a final thickness, wherein a nominal temperature profile is compared with an actual temperature profile for the purpose of determining actuating signals is, wherein a temperature profile for individual band points of the metal strip is determined.
- Control signals for the mass flow are determined with which the metal strip passes through the finishing train.
- control signals for the coolant flow are determined, with which the metal strip is acted upon between the roll stands.
- at least one target function for actuators of the system in the finishing train is formed taking into account secondary conditions.
- the objective function is formed by solving an optimization problem, taking into account actuation limitations of the actuators when solving the optimization problem.
- the path and preferably additionally properties such as the temperature of individual band points are advantageously tracked. In this way, the accuracy of the control or regulation is significantly improved.
- a target temperature is specified at the end of the finishing train.
- at least one desired temperature is predetermined in the finishing train. The control or regulation is thus substantially improved with regard to the material properties of the metal strip and with regard to its structural composition.
- the actual temperature profile of the metal strip is determined with the aid of at least one model.
- an improved control or regulation of the temperature of the metal strip is made possible, even if the actual strip temperature can not be measured at locations relevant for the control, in particular in the finishing train.
- the model is adapted online.
- an existing system drift can be taken into account and realistic results, in particular for the metal strips to be rolled next, can be determined.
- an optimization problem with linear constraints online i. especially in real time, solved.
- Adjustment limits are set up in particular in the form of equation or inequality constraints.
- the optimization solution advantageously delivers the values of the manipulated variables for a next controller cycle.
- a quadratic optimization problem is solved.
- the optimization problem can be solved very quickly.
- the optimization problem is solved by means of an active-set strategy.
- the optimization problem can be solved very effectively in real time.
- an online capable stitching algorithm is precalculated by non-linear optimizations with constraints.
- the duration of the stitch plan calculation is thus kept extremely low.
- the stitch plan calculation provides optimal set-up values for the controller working online.
- the controller has sufficient degrees of freedom for belt temperature control.
- the inventive method for controlling or regulating the temperature of a metal strip is particularly suitable for rolling strips with a thickness wedge, as used for example in semi-endless rolling at finished strip thicknesses below 1 mm.
- a thickness wedge as used for example in semi-endless rolling at finished strip thicknesses below 1 mm.
- FIG. 1 shows a plant for the production of metal strip 6, which includes a roughing 2, a finishing train 3 and a cooling section 4. Such systems are typical for the steel and metal industry. Behind the cooling section 4, a reel device 5 is arranged. From her is rolled down in the streets 2 and 3 preferably hot rolled and cooled in the cooling section 4 metal strip 6. The streets 2 and 3, a band source 1 is arranged upstream, which are heated, for example, as a furnace in the metal slabs, or, for example, as a continuous casting, in the metal strip 6 is generated is formed.
- the metal strip 6 is made of aluminum or steel, for example.
- the system and in particular the roads 2, 3 and the cooling section 4 and the at least one reel device 5 are controlled by means of a control method which is carried out by a computing device 13.
- the computing device 13 is coupled with the individual components 1 to 5 of the plant for steel or aluminum production control technology.
- the computing device 13 is programmed with a computer program designed as a control program, based on which it carries out the inventive method for controlling or regulating the temperature of the metal strip 6.
- the metal strip or slab 6 leaves the strip source 1 and is then first rolled in the roughing train 2 to an input thickness for the finishing train 3. Within the finishing train, the belt 6 is then rolled by means of the rolling stands 3 'to its final thickness. The subsequent cooling section 4 cools the belt 6 to a predetermined reel temperature.
- FIG. 2 represents the finishing train 3 with its rolling stands 3 'closer and illustrates the inventive model-predictive control of the finishing train.
- the contact times of the hot metal strip 6 with the relatively cold work rolls of the rolling stands 3 'and the inter-frame cooling devices 7 are the most important influencing factors on the temperature of the metal strip 6.
- the actuators of the control of the strip temperature in the finishing train are accordingly the mass flow 16 and the coolant flow 8.
- FIG. 2 For ease of explanation of the embodiment, two band points P 0 , P 1 of the metal strip 6 are exemplified.
- the finishing train 3 is limited by its beginning x A and its end x E.
- the system dynamics in the finishing train 3 is characterized in terms of Temperatur. trim relatively large dead times 105.
- the influence of a change in the coolant flow 8 to the temperature at the end x A of the finishing train 3 can only be observed when the first belt point P 0 , P 1, which was influenced by this change, leaves the last rolling stand 3 '.
- the strip temperature control 17 is designed as a model-predictive control.
- the computing device 13 for controlling the plant of the steel industry and in particular for controlling the finishing train 3 has a belt temperature model 12 and a belt temperature control 17.
- the belt temperature model 12 and the belt temperature control 17 preferably operate cyclically in control steps.
- the strip temperature control 17 has a control device 14 which controls or regulates the coolant flow 8 of the intermediate-frame cooling devices 7 and the mass flow 16 of the metal strip 6, that is, in particular its speed v.
- the control device 14 is preceded by a linearized model 15, which is processed by means of a quadratic programming.
- the online monitor 9 uses a model for determining the current strip temperature and preferably the phase state of the metal strip 6 within the finishing train 3.
- the module 12 for online determination of the strip temperature therefore has a not shown in detail in the drawing belt temperature model.
- the band temperature model makes it possible, for example, to predict the final temperature of band points P 0 , P 1 , ie in particular the temperature of the band points PO, P1, at location x E. Based on this, a linearized model 15 is created, which determines the strip temperature for an operating point of the finishing train 3 for a given change in the coolant flow 8 and / or given change in the mass flow 16.
- new correction values for coolant 8 and mass flow 16 are determined, taking into account setpoint values for strip intermediate temperatures, preferably within the finishing train, or given setpoint values for the final temperature of the strip 6 in the finishing train 3 become.
- the linearization of the belt temperature model results in a quadratic programming problem that can be solved sufficiently fast for on-line control of the belt temperature.
- the purpose of the online monitor 9 is to change the current state, i. In particular, all the intermediate temperatures required for the control or regulation of the metal strip 6 of the finishing train 3 to determine.
- the data 102 present at the output of the online monitor 9 preferably also include real-time model corrections.
- Tape data 101 actually measured in the finishing line and in particular temperatures may not always be present and as a rule only at a few specific locations, sometimes only at the locations x A and x E.
- the online adaptation 10 uses data 102 calculated by the online monitor 9, in particular temperatures determined by the online monitor 9, and preferably measured temperatures 101.
- correction factors are determined, which are used in particular for the correction of model errors in the online monitor 9.
- actually measured temperatures 101 are compared with calculated temperatures 102.
- the online adaptation 10 is coupled both to the online monitor 9 and to the module 11 for the prediction of the temperature of selected band points.
- data originating from the output side of the online adaptation 10 is present at the input side of the module 11 for prediction of the strip temperature.
- the module 11 can further process data determined by the online monitor 9.
- the belt temperature calculated by the module 11 is forwarded to the belt temperature control 17.
- the belt temperature prediction module 11 also uses the belt temperature model of the belt temperature online module 12.
- Input variables of the strip temperature control 17 or of the linearized model 15 are the actual temperature profile determined by the strip temperature model and a predetermined target temperature profile.
- the desired temperature profile is specified depending on the type of installation, the operating mode, the respective job and the desired properties of the metal strip 6.
- the belt temperature control 17 uses input data 103 calculated by the belt temperature model 12. In this case, control specifications can be used particularly flexibly, since the online monitor 9 can determine any intermediate temperature of the belt 6 within the finishing train 3, even if there are no corresponding measured values.
- FIG. 3 schematically illustrates problems relevant to model-predictive control, such as arise when metal is to be rolled in ferrite phase state.
- T d 2 at the end X E of the finishing train 3 is preferably used further temperature setpoints T d 0 , T d 1 within the finishing mill 3. If, for example, the rolling operations of the two first rolling stands 3 'of the finishing train 3 in Austenite area, the other rolling operations, ie the rolling operations of the downstream rolling stands 3 ', but carried out in the ferrite range, you need at least three as in FIG. 3 shown target temperatures T d 0 , T d 1 , T d 2nd
- the first setpoint temperature T d 0 after the second rolling stand is to ensure that the temperature of the rolling operations in the first two rolling stands is above the transition temperature between the phase state areas.
- the second temperature setpoint T d 1 is to ensure the phase transition before the third rolling stand of the finishing train 3. If possible, a final temperature T d 2 at the end X E of the finishing train 3 should be maintained.
- the belt temperature control 17 can also respond to short-term temperature fluctuations, which are caused for example by the oven automation. However, this is preferably done by changing the coolant flow 8, and not by changing the belt speed v or the mass flow 16. Short-term temperature fluctuations, for example, local unevenness or folds of the metal strip 6 condition.
- a coolant flow Q 0 , Q 1 or Q 2 collectively referred to as 8 causes, as far as possible from the technical limits of the inter-frame cooling devices 7, which are preferably designed as coolant or water valves 7 , lies away.
- the greatest possible freedom is achieved at the inter-frame cooling devices 7 to later, ie in subsequent control steps, to be able to respond to short-term temperature fluctuations.
- the coolant flow Q 0 , Q 1 , Q 2 of a valve 7 can only be changed at a speed which corresponds to the dynamics of the respective valve 7 and must not outside technically conditioned minimum Q. max i or maximum values Q max i are.
- the mass flow 16 must also be within technical limits, which are determined in particular by a maximum or minimum speed of the metal strip when leaving the finishing train 3. With regard to the mass flow, a lower and an upper limit of the acceleration a of the metal strip 6 must also be taken into account.
- a prediction temperature T j k for given coolant flow 8 and mass flow 16 and for an adaptation coefficient given for the corresponding control step are calculated with the aid of the belt temperature model.
- the adaptation coefficient is preferably frozen.
- the current coolant flow 8 and the current mass flow 16 are set as the operating point.
- the new forecast temperature T ⁇ k j can then be expressed as T k j + ⁇ ⁇ T k j .
- ⁇ ⁇ T k j ⁇ ⁇ T k j ⁇ ⁇ ⁇ u i j . ⁇ ⁇ u i j + 1 j . ... ⁇ ⁇ u j kj j . ⁇ ⁇ a . ⁇ ⁇ s ,
- the band temperature is predicted so far into the future until a band point P 0 reaches the last temperature setpoint T d 2 .
- this is at the end x E of the finishing train 3, where preferably a not shown in detail in the drawing pyrometer measures the actual temperature of the metal strip 6.
- the model-predictive prediction always takes place for individual control steps .DELTA.t.
- FIGS. 4 and 5 illustrate the different setting horizon for the coolant flow (see FIG. 4 ) and the mass flow (see FIG. 5 ).
- the abscissa represents a time axis.
- the mass flow 16 is preferably influenced by the belt speed v, wherein the control horizon is preferably limited to a single control step. Subsequently, offset ⁇ s and acceleration change ⁇ a are preferably assumed to be constant (see FIG. 5 ). On the other hand, short-term temperature fluctuations are preferably influenced by the coolant flow Q j . For this purpose, temperature prediction values are preferably used for band points P j , which lie in front of the corresponding intermediate-frame cooling device 7 in the mass flow direction, so that the band points P j reach the corresponding intermediate-frame cooling device only after the dead time 105 of the corresponding valve 7 plus the computing time has expired ,
- Minimizing the equation (II) taking into account the corresponding control limits, especially those mentioned above, means solving a problem of non-linear programming, which is usually extremely computationally intensive and needs to be accelerated in order to be on-line.
- Control steps .DELTA.t can take place according to the invention, for example, every 200 milliseconds.
- Q i j act ⁇ S ⁇ k j T k 0 ⁇
- a act ⁇ S ⁇ k j T k 0 ⁇
- f is a scalar
- H a symmetric, positive semidefinite NxN matrix, which is positive definite, if the positive parameters ⁇ , ⁇ , and ⁇ are chosen to be sufficiently large.
- the remaining variables are n-dimensional column vectors.
- the inequality (IX) is to be understood component by component.
- an active set strategy is preferably used.
- travel diagrams for the rolling speed v and / or for the water ramps or coolant ramps of the interstand cooling (7) are particularly advantageously calculated and maintained with particularly high accuracy.
- a flexible control method which is also applicable to other parts of the plant, such as e.g. in particular the roughing 2 or the cooling section 4, can be used.
- a more than one part of the system 1 to 5 cross-application of the invention is possible.
- Particularly advantageous is the use of the invention in two-phase rolling and driving a thickness wedge during the rolling of a semi-endless slab.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Control Of Metal Rolling (AREA)
- Metal Rolling (AREA)
- Control Of Heat Treatment Processes (AREA)
Abstract
Description
Verfahren zur Steuerung und/oder Regelung eines Metallbandes in einer FertigstraßeMethod for controlling and / or regulating a metal strip in a finishing train
Die vorliegende Erfindung betrifft ein Verfahren zur Steuerung und/oder Regelung der Temperatur eines Metallbandes in einer Fertigstraße.The present invention relates to a method for controlling and / or regulating the temperature of a metal strip in a finishing train.
Aus der
Aus der
Aus der
Die
Die Materialeigenschaften und das Gefüge eines gewalzten Metallbandes werden durch chemische Zusammensetzung und Prozessparameter insbesondere während des Walzvorgangs wie z.B. die Lastverteilung und die Temperaturführung bestimmt. Stellglieder für die Walztemperatur, insbesondere die Endwalztemperatur, sind je nach Anlagentyp und Betriebsmodus in der Regel Bandgeschwindigkeit und Zwischengerüstkühlungen.The material properties and the structure of a rolled metal strip are determined by chemical composition and process parameters, in particular during the rolling process, such as e.g. determines the load distribution and the temperature control. Actuators for the rolling temperature, in particular the final rolling temperature are, depending on the type of plant and operating mode usually belt speed and interstand cooling.
Es ist Aufgabe der Erfindung, die Steuerung bzw. Regelung der Temperatur eines Metallbandes, insbesondere in einer Fertigstraße, derart zu verbessern, dass aus dem Stand der Technik bekannte Nachteile vermieden werden und insbesondere die Steuerung bzw. Regelung der vorbenannten Stellglieder verbessert wird.It is an object of the invention to improve the control or regulation of the temperature of a metal strip, in particular in a finishing train, in such a way that disadvantages known from the prior art are avoided and in particular the control or regulation of the aforementioned actuators is improved.
Die erfindungsgemäße Aufgabe wird gelöst durch ein Verfahren zur Steuerung und/oder Regelung der Temperatur eines Metallbandes in einer Fertigstraße, in der das Metallband von einer Eingangsdicke auf eine Enddicke gewalzt wird, wobei zur Ermittlung von Stellsignalen ein Soll-Temperaturverlauf mit einem Ist-Temperaturverlauf verglichen wird, wobei ein Temperaturverlauf für einzelne Bandpunkte des Metallbandes ermittelt wird. Es werden Stellsignale für den Massenfluss ermittelt, mit dem das Metallband die Fertigstraße durchläuft. Alternativ oder zusätzlich werden Stellsignale für den Kühlmittelfluss ermittelt, mit dem das Metallband zwischen den Walzgerüsten beaufschlagt wird. Weiterhin wird unter Berücksichtigung von Nebenbedingungen mindestens eine Zielfunktion für Stellglieder der Anlage in der Fertigstraße gebildet. Die Zielfunktion wird durch Lösen eines Optimierungsproblems gebildet, wobei beim Lösen des Optimierungsproblems Stellbegrenzungen der Stellglieder berücksichtigt werden.The object according to the invention is achieved by a method for controlling and / or regulating the temperature of a metal strip in a finishing train, in which the metal strip is rolled from an input thickness to a final thickness, wherein a nominal temperature profile is compared with an actual temperature profile for the purpose of determining actuating signals is, wherein a temperature profile for individual band points of the metal strip is determined. Control signals for the mass flow are determined with which the metal strip passes through the finishing train. Alternatively or additionally, control signals for the coolant flow are determined, with which the metal strip is acted upon between the roll stands. Furthermore, at least one target function for actuators of the system in the finishing train is formed taking into account secondary conditions. The objective function is formed by solving an optimization problem, taking into account actuation limitations of the actuators when solving the optimization problem.
Bei der Ermittlung des Temperaturverlaufs für einzelne Bandpunkte wird mit Vorteil der Weg und vorzugsweise zusätzlich Eigenschaften wie die Temperatur einzelner Bandpunkte verfolgt. Derart wird die Genauigkeit der Steuerung bzw. Regelung deutlich verbessert.In determining the temperature profile for individual band points, the path and preferably additionally properties such as the temperature of individual band points are advantageously tracked. In this way, the accuracy of the control or regulation is significantly improved.
Mit Vorteil werden beim Lösen des Optimierungsproblems technische Randbedingungen wie insbesondere Stellbegrenzungen der Stellglieder in äu-ßerst günstiger Weise berücksichtigt, wobei insbesondere ein möglichst großer Freiraum zur Veränderung der Stellglieder gewährleistet wird und die für die Steuerung bzw. Regelung benötigte Rechenzeit sehr gering gehalten wird.Advantageously, when the optimization problem is solved, technical boundary conditions, such as, in particular, control limits of the actuators, are taken into account in an extremely favorable manner, whereby, in particular, the greatest possible freedom for changing the actuators is ensured and the computing time required for the control or regulation is kept very low.
Mit Vorteil wird eine Soll-Temperatur am Ende der Fertigstraße vorgegeben. Alternativ oder zusätzlich wird mindestens eine Soll-Temperatur in der Fertigstraße vorgegeben. Die Steuerung bzw. Regelung wird so hinsichtlich der Materialeigenschaften des Metallbandes und hinsichtlich seiner Gefügezusammensetzung wesentlich verbessert.Advantageously, a target temperature is specified at the end of the finishing train. Alternatively or additionally, at least one desired temperature is predetermined in the finishing train. The control or regulation is thus substantially improved with regard to the material properties of the metal strip and with regard to its structural composition.
Mit Vorteil wird der Ist-Temperaturverlauf des Metallbandes unter Zuhilfenahme mindestens eines Modells ermittelt. Derart wird eine verbesserte Steuerung bzw. Regelung der Temperatur des Metallbands ermöglicht, auch wenn die tatsächliche Bandtemperatur an für die Steuerung bzw. Regelung relevanten Orten, insbesondere in der Fertigstraße, nicht gemessen werden kann.Advantageously, the actual temperature profile of the metal strip is determined with the aid of at least one model. Thus, an improved control or regulation of the temperature of the metal strip is made possible, even if the actual strip temperature can not be measured at locations relevant for the control, in particular in the finishing train.
Mit Vorteil wird das Modell online adaptiert. Auf diese Weise kann eine vorhandene Anlagendrift berücksichtigt werden und es können realistische Ergebnisse, insbesondere für die als nächste zu walzenden Metallbänder, ermittelt werden.Advantageously, the model is adapted online. In this way, an existing system drift can be taken into account and realistic results, in particular for the metal strips to be rolled next, can be determined.
Mit Vorteil wird zum Lösen der Zielfunktion ein Optimierungsproblem mit linearen Nebenbedingungen online, d.h. insbesondere in Echtzeit, gelöst. Stellbegrenzungen werden dabei insbesondere in Form von Gleichungs- oder Ungleichungs-Nebenbedingungen aufgestellt. Die Lösung der Optimierung liefert dabei mit Vorteil die Werte der Stellgrößen für einen nächsten Reglerzyklus. So wird eine klar, einheitlich und anlagenkonfigurations-unabhängig aufgebaute Regelung bereitgestellt, die zuverlässig und schnell arbeitet.Advantageously, to solve the objective function, an optimization problem with linear constraints online, i. especially in real time, solved. Adjustment limits are set up in particular in the form of equation or inequality constraints. The optimization solution advantageously delivers the values of the manipulated variables for a next controller cycle. Thus, a clear, uniform and plant configuration-independent built control is provided, which works reliably and quickly.
Vorteilhafterweise wird ein quadratisches Optimierungsproblem gelöst. Das Optimierungsproblem kann so besonders schnell gelöst werden.Advantageously, a quadratic optimization problem is solved. The optimization problem can be solved very quickly.
Mit Vorteil wird das Optimierungsproblem mit Hilfe einer Active-Set Strategie gelöst. Das Optimierungsproblem kann so besonders effektiv in Echtzeit gelöst werden.Advantageously, the optimization problem is solved by means of an active-set strategy. The optimization problem can be solved very effectively in real time.
Mit Vorteil wird ein online fähiger Stichplanalgorithmus durch nicht-lineare Optimierungen mit Nebenbedingungen vorausberechnet. Die Dauer der Stichplanberechnung wird so äußerst gering gehalten. Die Stichplanberechnung liefert insbesondere optimal auf den online arbeitenden Regler abgestimmte Set-Up-Werte. So verfügt der Regler über hinreichende Freiheitsgrade zur Bandtemperaturbeeinflussung.Advantageously, an online capable stitching algorithm is precalculated by non-linear optimizations with constraints. The duration of the stitch plan calculation is thus kept extremely low. In particular, the stitch plan calculation provides optimal set-up values for the controller working online. Thus, the controller has sufficient degrees of freedom for belt temperature control.
Das erfindungsgemäße Verfahren zur Steuerung bzw. zur Regelung der Temperatur eines Metallbandes ist insbesondere auch geeignet zum Walzen von Bändern mit einem Dickenkeil, wie er beispielsweise beim Semi-Endloswalzen bei Fertigbanddicken unter 1 mm zum Einsatz kommt. Beim Walzen von Bändern mit Dickenkeil werden zusätzliche Nebenbedingungen hinsichtlich der Stellglieder aktiv.The inventive method for controlling or regulating the temperature of a metal strip is particularly suitable for rolling strips with a thickness wedge, as used for example in semi-endless rolling at finished strip thicknesses below 1 mm. When rolling strips with thickness wedge, additional constraints on the actuators become active.
Weitere Lösungen der zuvor beschriebenen Aufgabe sind in den Ansprüchen 10 bis 12 angegeben. Die für das erfindungsgemäße Verfahren beschriebenen Vorteile gelten entsprechend.Further solutions of the above-described object are specified in
Weitere Vorteile und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung mehrerer Ausführungsbeispiele der Erfindung in Verbindung mit den Zeichnungen. Dabei zeigen beispielhaft:
- FIG 1
- den prinzipiellen Aufbau eines Walzwerks,
- FIG 2
- den schematischen Aufbau einer modell-prädiktiven Regelung für die Fertigstraße,
- FIG 3
- eine schematische Darstellung zur modellprädiktiven Regelung,
- FIG 4
- den Stell- bzw. Prädiktionshorizont für den Kühlmittelfluss, und
- FIG 5
- den Stell- bzw. Prädiktionshorizont für den Massenfluss.
- FIG. 1
- the basic structure of a rolling mill,
- FIG. 2
- the schematic structure of a model-predictive control for the finishing train,
- FIG. 3
- a schematic representation of the model predictive control,
- FIG. 4
- the setting or prediction horizon for the coolant flow, and
- FIG. 5
- the setting or prediction horizon for the mass flow.
Die Anlage und insbesondere die Straßen 2, 3 sowie die Kühlstrecke 4 und die mindestens eine Haspelvorrichtung 5 werden mittels eines Steuerverfahrens gesteuert, das von einer Recheneinrichtung 13 ausgeführt wird. Hierzu ist die Recheneinrichtung 13 mit den einzelnen Komponenten 1 bis 5 der Anlage zur Stahl- bzw. Aluminiumerzeugung steuerungstechnisch gekoppelt. Die Recheneinrichtung 13 ist mit einem als Computerprogramm ausgebildeten Steuerprogramm programmiert, aufgrund dessen sie das erfindungsgemäße Verfahren zur Steuerung bzw. zur Regelung der Temperatur des Metallbandes 6 ausführt.The system and in particular the
Gemäß
Um gewünschte mechanische Eigenschaften des Bandes 6 zu gewährleisten, muss ein geeigneter Temperaturverlauf für die Fertigstraße 3 und die Kühlstrecke 4 eingehalten werden. Da während des Walzvorgangs nahezu keine Breitung des gewalzten Bandes 6 erfolgt, erhöhen sich Bandlänge und - vorausgesetzt der Massenfluss bleibt konstant - auch die Bandgeschwindigkeit durch den Walzvorgang.To ensure desired mechanical properties of the belt 6, a suitable temperature profile for the finishing
Innerhalb der Fertigstraße 3 sind die Berührzeiten des heißen Metallbandes 6 mit den verhältnismäßig kalten Arbeitswalzen der Walzgerüste 3' sowie die Zwischengerüst-Kühlvorrichtungen 7 die wichtigsten Einflussfaktoren auf die Temperatur des Metallbandes 6. Die Stellglieder der Steuerung bzw. Regelung der Bandtemperatur in der Fertigstraße sind dementsprechend der Massenfluss 16 sowie der Kühlmittelfluss 8. In
Die Fertigstraße 3 ist begrenzt durch ihren Anfang xA und ihr Ende xE. Die Anlagendynamik in der Fertigstraße 3 ist hinsichtlich der Temperatur.durch verhältnismäßig große Totzeiten 105 gekennzeichnet. So kann beispielsweise der Einfluss einer Veränderung des Kühlmittelflusses 8 auf die Temperatur am Ende xA der Fertigstraße 3 erst dann beobachtet werden, wenn der erste Bandpunkt P0, P1 der von dieser Veränderung beeinflusst wurde, das letzte Walzgerüst 3' verlässt. Das ist ein Grund dafür, dass erfindungsgemäß die Bandtemperatur-Regelung 17 als modell-prädiktive Regelung ausgebildet ist.The finishing
Die Recheneinrichtung 13 zur Steuerung der Anlage der Stahlindustrie und insbesondere zur Steuerung der Fertigstraße 3 weist ein Bandtemperatur-Modell 12 und eine Bandtemperatur-Regelung 17 auf. Das Bandtemperatur-Modell 12 und die Bandtemperatur-Regelung 17 arbeiten dabei vorzugsweise zyklisch in Regelschritten.The
Die Bandtemperatur-Regelung 17 weist eine Regeleinrichtung 14 auf, die den Kühlmittelfluss 8 der Zwischengerüst-Kühlvorrichtungen 7 sowie den Massenfluss 16 des Metallbandes 6, also insbesondere dessen Geschwindigkeit v, steuert bzw. regelt. Der Regeleinrichtung 14 ist ein linearisiertes Modell 15 vorgeordnet, das mit Hilfe einer quadratischen Programmierung bearbeitet wird.The
Das Modul 12 zur online-Ermittlung der Bandtemperatur weist einen Online-Monitor 9 zur Bestimmung der aktuellen Bandtemperatur, ein Modul zur Online-Adaption 10 und vorzugsweise ein Modul zur Vorhersage 11 der Temperatur Tj k=0,1 ausgewählter Bandpunkte P0, P1 auf.The
Der Online-Monitor 9 bedient sich eines Modells zur Ermittlung der aktuellen Bandtemperatur und vorzugsweise des Phasenzustands des Metallbands 6 innerhalb der Fertigstraße 3. Das Modul 12 zur Online-Ermittlung der Bandtemperatur weist daher ein in der Zeichnung nicht näher dargestelltes Bandtemperatur-Modell auf. Das Bandtemperatur-Modell ermöglicht beispielsweise die Vorhersage der Endtemperatur von Bandpunkten P0, P1, d.h. insbesondere der Temperatur der Bandpunkte P.O, P1, am Ort xE. Ausgehend davon wird ein linearisiertes Modell 15 erstellt, das die Bandtemperatur für einen Arbeitspunkt der Fertigstraße 3 bei gegebener Veränderung des Kühlmittelflusses 8 und/oder gegebener Veränderung des Massenflusses 16 ermittelt.The
Durch Minimierung der quadratischen Abweichung des Ausgangs des linearisierten Modells 15 werden neue Korrekturwerte für Kühlmittel- 8 bzw. Massenfluss 16 ermittelt, wobei bei der Ermittlung gegebene Sollwerte für Bandzwischentemperaturen vorzugsweise innerhalb der Fertigstraße oder gegebene Sollwerte für die Endtemperatur des Bandes 6 in der Fertigstraße 3 berücksichtigt werden. Durch die Linearisierung des Bandtemperatur-Modells ergibt sich ein quadratisches Programmierungsproblem, das hinreichend schnell für eine Online-Steuerung der Bandtemperatur gelöst werden kann.By minimizing the quadratic deviation of the output of the linearized
Aufgabe des Online-Monitors 9 ist es, den aktuellen Zustand, d.h. insbesondere alle für die Steuerung bzw. Regelung benötigten Zwischentemperaturen, des Metallbands 6 der Fertigstraße 3 zu ermitteln. Die am Ausgang des Online-Monitors 9 anliegenden Daten 102 beinhalten vorzugsweise auch Echtzeit-Modellkorrekturen.The purpose of the
Tatsächlich in der Fertigstraße gemessene Banddaten 101 und insbesondere Temperaturen liegen unter Umständen nicht immer und in der Regel nur an wenigen bestimmten Orten, teilweise nur an den Orten xA und xE vor. Die Online-Adaption 10 verwendet vom Online-Monitor 9 berechnete Daten 102, insbesondere vom Online-Monitors 9 ermittelte Temperaturen, sowie vorzugsweise gemessener Temperaturen 101.
Mit Hilfe der Online-Adaption 10 werden Korrekturfaktoren ermittelt, die insbesondere zur Korrektur von Modellfehlern im Online-Monitor 9 verwendet werden. Dabei werden vorzugsweise tatsächlich gemessene Temperaturen 101 mit berechneten Temperaturen 102 verglichen. Die Online-Adaption 10 ist sowohl mit dem Online-Monitor 9 als auch mit dem Modul 11 zur Vorhersage der Temperatur ausgewählter Bandpunkte gekoppelt.With the help of the
An der Eingangsseite des Moduls 11 zur Vorhersage der Bandtemperatur liegen vorzugsweise von der Ausgangsseite der Online-Adaption 10 stammende Daten an. Das Modul 11 kann vom Online-Monitor 9 ermittelte Daten weiterverarbeiten. Die vom Modul 11 berechnete Bandtemperatur wird an die Bandtemperatur-Regelung 17 weitergegeben. Das Modul 11 zur Vorhersage der Bandtemperatur verwendet auch das Bandtemperatur-Modell des Moduls 12 zur Online-Ermittlung der Bandtemperatur.Preferably, data originating from the output side of the
Eingangsgrößen der Bandtemperatur-Regelung 17 bzw. des linearisierten Modells 15 sind der vom Bandtemperatur-Modell ermittelte Ist-Temperaturverlauf sowie ein vorgegebener Soll-Temperaturverlauf. Der Soll-Temperaturverlauf wird abhängig von Anlagentyp, dem Betriebsmodus, dem jeweiligen Auftrag und den gewünschten Eigenschaften des Metallbandes 6 vorgegeben.Input variables of the
Die Bandtemperatur-Regelung 17 verwendet vom Bandtemperatur-Modell 12 berechnete Eingangsdaten 103. Hierbei können Steuerungsvorgaben besonders flexibel eingesetzt werden, da der Online-Monitor 9 jede beliebige Zwischentemperatur des Bandes 6 innerhalb der Fertigstraße 3 ermitteln kann, selbst wenn keine entsprechenden Messwerte vorliegen.The
Die erste Solltemperatur Td 0 nach dem zweiten Walzgerüst soll sicherstellen, dass die Temperatur der Walzvorgänge in den ersten beiden Walzgerüsten oberhalb der Übergangstemperatur zwischen den Phasenzustandsbereichen liegt. Der zweite Temperatur-Sollwert Td 1 soll den Phasenübergang vor dem dritten Walzgerüst der Fertigstraße 3 sicherstellen. Möglichst soll auch eine Endtemperatur T d 2 am Ende XE der Fertigstraße 3 eingehalten werden.The first setpoint temperature T d 0 after the second rolling stand is to ensure that the temperature of the rolling operations in the first two rolling stands is above the transition temperature between the phase state areas. The second temperature setpoint T d 1 is to ensure the phase transition before the third rolling stand of the finishing
Die benötigten vorhergesagten Temperaturen Tj k=0,1,2 werden vom Modul 11 zur Vorhersage der Bandtemperatur mit Hilfe eines Modells vorzugsweise für mehrere Bandpunkte P0, P1, P2 bereitgestellt. Die Bandtemperatur-Regelung 17 kann dabei auch auf kurzfristige Temperaturschwankungen reagieren, die beispielsweise von der Ofenautomatisierung verursacht werden. Dies geschieht jedoch vorzugsweise durch Änderung des Kühlmittelflusses 8, und nicht durch Änderung der Bandgeschwindigkeit v bzw. des Massenflusses 16. Kurzfristige Temperaturschwankungen können beispielsweise lokale Unplanheiten bzw. Faltungen des Metallbandes 6 bedingen.The required predicted temperatures T j k = 0,1,2 are provided by the
Langfristige Temperaturschwankungen, die beispielsweise durch einen der Fertigstraße 3 vorangehenden in der Zeichnung nicht näher dargestellten Rollengang verursacht werden können, werden vorzugsweise durch Beschleunigung a des Metallbands 6, also durch eine Änderung des Massenflusses 16, ausgeglichen. Der Vorhersage-Horizont 106 wird dementsprechend angepasst.Long-term temperature fluctuations, which may be caused for example by a rolling train not shown in the drawing preceding the finishing
Um das in
Es müssen nachfolgende Stellbegrenzungen der Zwischengerüst-Kühlvorrichtungen 7 berücksichtigt werden: Der Kühlmittelfluss Q0, Q1, Q2 eines Ventils 7 kann nur mit einer Geschwindigkeit verändert werden, die der Dynamik des jeweiligen Ventils 7 entspricht und darf nicht außerhalb technisch bedingter Minimal- Qmax i bzw. Maximalwerte Qmax i liegen. Auch der Massenfluss 16 muss innerhalb technischer Grenzwerte liegen, die insbesondere durch eine maximale bzw. minimale Geschwindigkeit des Metallbandes beim Verlassen der Fertigstraße 3 bestimmt werden. Hinsichtlich des Massenflusses muss auch eine untere und eine obere Schranke der Beschleunigung a des Metallbands 6 beachtet werden.The following flow limits of the inter-frame cooling devices 7 must be taken into account: The coolant flow Q 0 , Q 1 , Q 2 of a valve 7 can only be changed at a speed which corresponds to the dynamics of the respective valve 7 and must not outside technically conditioned minimum Q. max i or maximum values Q max i are. The
Durch das Modul 12 werden unter Zuhilfenahme des Bandtemperatur-Modells eine Vorhersage-Temperatur Tj k für gegebenen Kühlmittelfluss 8 und Massenfluss 16 und für einen für den entsprechenden Regelschritt gegebenen Adaptions-Koeffizienten berechnet. Für weitere Vorhersagen wird der Adaptions-Koeffizient vorzugsweise eingefroren. Um die Stellgrößen für die Steuerung für den nächsten Steuerschritte zu berechnen, werden der gegenwärtige Kühlmittelfluss 8 und der gegenwärtige Massenfluss 16 als Arbeitspunkt gesetzt. Die neue Vorhersage-Temperatur
Schließlich wird vorzugsweise die nachfolgend wiedergegebene Zielfunktion in den Variablen Δuj i, Δa und Δs, auf die im Zusammenhang mit den
Wie
Die
Der Massenfluss 16 wird vorzugsweise durch die Bandgeschwindigkeit v beeinflusst, wobei sich der Stellhorizont vorzugsweise auf einen einzigen Regelungsschritt beschränkt. Anschließend werden Offset Δs und Beschleunigungsänderung Δa vorzugsweise als konstant angenommen (siehe
Obwohl die Minimierung (II) unter Berücksichtigung aller zukünftigen Kühlmittelfluss-Korrekturen
Minimieren der Gleichung (II) unter Berücksichtigung der entsprechenden Stellbegrenzungen, insbesondere der zuvor erwähnten, bedeutet das Lösen eines Problems der nicht-linearen Programmierung, das in der Regel äußerst berechnungsintensiv ist und um online fähig zu sein, beschleunigt werden muss. Regelschritte Δt können erfindungsgemäß beispielsweise alle 200 Millisekunden erfolgen.Minimizing the equation (II) taking into account the corresponding control limits, especially those mentioned above, means solving a problem of non-linear programming, which is usually extremely computationally intensive and needs to be accelerated in order to be on-line. Control steps .DELTA.t can take place according to the invention, for example, every 200 milliseconds.
Um eine Beschleunigung zu erreichen, verfährt man vorzugsweise analog der Gauß-Newton-Methode und linearisiert die vorhergesagte Temperaturveränderung um den Arbeitspunkt:
Die Empfindlichkeiten
Um die Empfindlichkeiten
Setzt man nun die rechte Seite von (VII) in (II) ein, so stellt sich das quadratische Programmierproblem in der folgenden Form dar:
Dabei ist f ein Skalar, H eine symmetrische, positiv semidefinite NxN-Matrix, die positiv definit ist, wenn die positiven Parameter α, β, und γ genügend groß gewählt werden. Die übrigen Variablen sind n-dimensionale Spaltenvektoren. Die Ungleichung (IX) ist komponentenweise zu verstehen.Here, f is a scalar, H a symmetric, positive semidefinite NxN matrix, which is positive definite, if the positive parameters α, β, and γ are chosen to be sufficiently large. The remaining variables are n-dimensional column vectors. The inequality (IX) is to be understood component by component.
Um das quadratische Optimierungsproblem zu lösen, wird vorzugsweise eine Active-Set-Strategie verwendet.In order to solve the quadratic optimization problem, an active set strategy is preferably used.
Erfindungsgemäß werden insbesondere Fahrdiagramme für die Walzgeschwindigkeit v und/oder für die Wasserrampen bzw. Kühlmittelrampen der Zwischengerüstkühlung (7) besonders vorteilhaft berechnet und mit besonders hoher Genauigkeit eingehalten.According to the invention, in particular travel diagrams for the rolling speed v and / or for the water ramps or coolant ramps of the interstand cooling (7) are particularly advantageously calculated and maintained with particularly high accuracy.
Zusätzlich zu den voranstehend und insbesondere eingangs erörterten Vorteilen der Erfindung, wird erfindungsgemäß bei der Steuerung und/oder Regelung der Temperatur eines Metallbandes 6 erstmals auf einfache Weise auch eine unterschiedliche Gewichtung der für die Steuerung relevanten Vorgaben im Sinne einer Priorisierung ermöglicht.In addition to the above and in particular initially discussed advantages of the invention, according to the invention in the control and / or regulation of the temperature of a metal strip 6 for the first time in a simple manner also allows a different weighting of the relevant control parameters in terms of prioritization.
Erfindungsgemäß wird ein flexibles Steuerungs- bzw. Regelungsverfahren bereitgestellt, das auch für andere Anlagenteile, wie z.B. insbesondere die Vorstraße 2 oder auch die Kühlstrecke 4, einsetzbar ist. Ein mehr als ein Anlagenteil 1 bis 5 übergreifender Einsatz der Erfindung ist möglich. Besonders vorteilhaft ist der Einsatz der Erfindung beim Zwei-phasen-Walzen und beim Fahren eines Dickenkeils während des Walzens einer Semi-endlos-Bramme.According to the invention there is provided a flexible control method which is also applicable to other parts of the plant, such as e.g. in particular the roughing 2 or the cooling section 4, can be used. A more than one part of the
Claims (12)
- Method for controlling and/or regulating the temperature of a metal strip (6) in a finishing train (3), in which the metal strip (6) is rolled from an input thickness to an end thickness,- a setpoint temperature profile being compared with an actual temperature profile in order to determine control signals,- and at least one target function for the system control elements in the finishing train (3) being formed by taking constraints into account,- a temperature profile being determined for individual strip points (P0, P1, P2 or Pj) of the metal strip (6) ,- control signals being determined for the mass flow (16) with which the metal strip (6) passes through the finishing train (3), and/or control signals being determined for the coolant flow (8) which acts upon the metal strip (6) between the rolling stands (3'),- the target function being formed by solving an optimization problem, control limits of the system control elements being taken into account during the solving of the optimization problem.
- Method according to Claim 1, characterized in that a setpoint temperature (Td 2) at the end of the finishing train (3) is specified.
- Method according to one of the preceding claims, characterized in that at least one setpoint temperature (Td 0, Td 1) in the finishing train (3) is specified.
- Method according to one of the preceding claims, characterized in that the actual temperature profile of the metal strip (6) is determined by utilizing at least one model (9 or 12).
- Method according to Claim 4, characterized in that the model (9) is adapted online.
- Method according to one of the preceding claims, characterized in that an optimization problem with linear constraints is solved online in order to solve the target function.
- Method according to Claim 6, characterized in that a quadratic optimization problem is solved.
- Method according to Claim 6 or according to Claim 7, characterized in that the optimization problem is solved with the aid of an active set strategy.
- Method according to one of the preceding claims, characterized in that an online-capable pass schedule algorithm is precalculated by nonlinear optimization with constraints.
- Computer program product comprising program code means suitable for carrying out the steps of a method according to one of the preceding claims, when the computer program product is run on a computing device.
- Computing device (13) for carrying out the method according to one of Claims 1 to 9, the computing device (13) directly and/or indirectly influencing the temperature of the metal strip (6), characterized in that the computing device is programmed with a computer program product according to Claim 10.
- Computing device according to Claim 11, characterized in that it comprises a module (12) for online determination of the strip temperature with the aid of a model and a module (17) for the strip temperature regulation.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10308222 | 2003-02-25 | ||
DE2003121791 DE10321791A1 (en) | 2003-05-14 | 2003-05-14 | Process for controlling and/or regulating the temperature of a metal strip, especially in a finishing train, comprises comparing a theoretical temperature gradient with an actual temperature gradient to acquire adjusting signals |
PCT/EP2004/001366 WO2004076086A2 (en) | 2003-02-25 | 2004-02-13 | Method for regulating the temperature of a metal strip, especially for rolling a metal hot strip in a finishing train |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1624982A2 EP1624982A2 (en) | 2006-02-15 |
EP1624982B1 EP1624982B1 (en) | 2007-04-25 |
EP1624982B2 true EP1624982B2 (en) | 2011-06-15 |
Family
ID=32928838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04710836A Expired - Lifetime EP1624982B2 (en) | 2003-02-25 | 2004-02-13 | Method for regulating the temperature of a metal strip, especially for rolling a metal hot strip in a finishing train |
Country Status (7)
Country | Link |
---|---|
US (1) | US7310981B2 (en) |
EP (1) | EP1624982B2 (en) |
JP (1) | JP2006518670A (en) |
AT (1) | ATE360483T1 (en) |
DE (1) | DE502004003617D1 (en) |
NO (1) | NO20054156L (en) |
WO (1) | WO2004076086A2 (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006047463A1 (en) * | 2006-10-07 | 2008-04-17 | ACHENBACH BUSCHHüTTEN GMBH | Rolling mill and method for flexible cold or hot one-way or reverse rolling of metal strip |
DE102007025447A1 (en) * | 2006-10-09 | 2008-04-17 | Siemens Ag | Method for controlling and / or regulating an industrial process |
JP5028310B2 (en) * | 2008-03-21 | 2012-09-19 | 株式会社日立製作所 | Apparatus for controlling cooling between stands of hot rolling mill and control method |
EP2340133B2 (en) * | 2008-10-30 | 2023-07-19 | Primetals Technologies Germany GmbH | Method for setting a drive load for multiple drives on a mill train to mill milled items, control and/or regulating device, storage medium, program code and mill train |
KR101285990B1 (en) * | 2008-11-19 | 2013-07-15 | 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 | Controller |
EP2280323A1 (en) | 2009-07-08 | 2011-02-02 | Siemens Aktiengesellschaft | Control method for a device that affects a milling product |
EP2287345A1 (en) * | 2009-07-23 | 2011-02-23 | Siemens Aktiengesellschaft | Method for controlling and/or regulating an induction oven for a roller assembly, control and/or regulating device for a roller assembly and roller assembly for producing rolled goods |
EP2301685A1 (en) | 2009-09-23 | 2011-03-30 | Siemens Aktiengesellschaft | Control method for a treatment assembly for an elongated milling product |
US8359894B2 (en) * | 2009-12-16 | 2013-01-29 | Nippon Steel Corporation | Method for cooling hot-rolled steel strip |
AT509707B1 (en) | 2010-05-04 | 2011-11-15 | Siemens Vai Metals Tech Gmbh | METHOD FOR HOT ROLLING OF STEEL STRIPS AND HOT ROLLING STRIP |
EP2386365A1 (en) * | 2010-05-06 | 2011-11-16 | Siemens Aktiengesellschaft | Operational method for a finishing train with prediction of transport speed |
EP2527054A1 (en) * | 2011-05-24 | 2012-11-28 | Siemens Aktiengesellschaft | Operating method for a mill train |
EP2527053A1 (en) * | 2011-05-24 | 2012-11-28 | Siemens Aktiengesellschaft | Operating method for a mill train |
EP2557183A1 (en) * | 2011-08-12 | 2013-02-13 | Siemens Aktiengesellschaft | Method for operating a continuous annealing line for processing a milled item |
DE102013225579A1 (en) * | 2013-05-22 | 2014-11-27 | Sms Siemag Ag | Device and method for controlling and / or regulating an annealing or heat treatment furnace of a metal material processing line |
DE102013221710A1 (en) | 2013-10-25 | 2015-04-30 | Sms Siemag Aktiengesellschaft | Aluminum hot strip rolling mill and method for hot rolling an aluminum hot strip |
EP3089833B2 (en) | 2013-12-20 | 2022-08-10 | Novelis Do Brasil LTDA. | Dynamic shifting of reduction (dsr) to control temperature in tandem rolling mills |
DE102015213705A1 (en) | 2015-07-21 | 2017-01-26 | Siemens Aktiengesellschaft | Method and assistance system for controlling a technical system |
CN105032958B (en) * | 2015-08-24 | 2018-04-20 | 东北大学 | Using the instant cooling system and cooling means of cooling technique controlled rolling between passage |
AT519995B1 (en) | 2017-05-29 | 2021-04-15 | Andritz Ag Maschf | Process for regulating the winding temperature of a metal strip |
EP3599037A1 (en) * | 2018-07-25 | 2020-01-29 | Primetals Technologies Germany GmbH | Cooling section with adjustment of the cooling agent flow by means of pumping |
DE102019217966A1 (en) | 2019-11-21 | 2021-05-27 | Sms Group Gmbh | Setting a run-out temperature of a metal strip running out of a rolling train |
JP7368729B2 (en) * | 2020-02-14 | 2023-10-25 | 日本製鉄株式会社 | Rolling equipment control device, rolling equipment control method, and rolling equipment control program |
EP4124398B1 (en) * | 2021-07-27 | 2024-04-10 | Primetals Technologies Austria GmbH | Method for determining mechanical properties of a product to be rolled using a hybrid model |
CN115591947B (en) * | 2022-12-15 | 2023-03-17 | 太原科技大学 | Distributed regulation and control method for strip quality in continuous rolling process |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4274273A (en) † | 1979-10-03 | 1981-06-23 | General Electric Company | Temperature control in hot strip mill |
DE10064267A1 (en) † | 2000-12-22 | 2002-07-04 | Alstom Switzerland Ltd | Process for quickly manufacturing hollow turbine blades for manufacturing development and component testing |
EP1231010A1 (en) † | 2001-02-08 | 2002-08-14 | Siemens Westinghouse Power Corporation | Transient liquid phase bonding repair for turbine blades and vanes |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58221606A (en) * | 1982-06-18 | 1983-12-23 | Sumitomo Metal Ind Ltd | Method for controlling cooling of band steel |
JPH02169119A (en) | 1988-12-22 | 1990-06-29 | Toshiba Corp | Method for controlling plate flatness |
US5691921A (en) * | 1996-01-05 | 1997-11-25 | Xerox Corporation | Thermal sensors arrays useful for motion tracking by thermal gradient detection |
JPH09285810A (en) * | 1996-04-25 | 1997-11-04 | Kawasaki Steel Corp | Method for manufacturing h-steel with satisfactory shape |
AT408623B (en) * | 1996-10-30 | 2002-01-25 | Voest Alpine Ind Anlagen | METHOD FOR MONITORING AND CONTROLLING THE QUALITY OF ROLLING PRODUCTS FROM HOT ROLLING PROCESSES |
DE19717615A1 (en) * | 1997-04-25 | 1998-10-29 | Siemens Ag | Method and device for cooling metals in a steel mill |
DE19850253A1 (en) | 1998-10-31 | 2000-05-04 | Schloemann Siemag Ag | Method and system for controlling cooling sections |
JP2000167615A (en) * | 1998-12-03 | 2000-06-20 | Toshiba Corp | Method for controlling coiling temperature and controller |
EP1014239B1 (en) | 1998-12-16 | 2003-06-04 | VOEST-ALPINE INDUSTRIEANLAGENBAU GESELLSCHAFT m.b.H. | Method for calculating a reduction plan |
JP2000210708A (en) | 1999-01-21 | 2000-08-02 | Toshiba Corp | Rolling material temperature control method and rolling material temperature controller in roll mill outlet side |
DE19963186B4 (en) * | 1999-12-27 | 2005-04-14 | Siemens Ag | Method for controlling and / or regulating the cooling section of a hot strip mill for rolling metal strip and associated device |
DE10203787A1 (en) * | 2002-01-31 | 2003-08-14 | Siemens Ag | Process for regulating an industrial process |
-
2004
- 2004-02-13 AT AT04710836T patent/ATE360483T1/en active
- 2004-02-13 JP JP2006501837A patent/JP2006518670A/en active Pending
- 2004-02-13 US US10/545,781 patent/US7310981B2/en not_active Expired - Fee Related
- 2004-02-13 EP EP04710836A patent/EP1624982B2/en not_active Expired - Lifetime
- 2004-02-13 DE DE502004003617T patent/DE502004003617D1/en not_active Expired - Lifetime
- 2004-02-13 WO PCT/EP2004/001366 patent/WO2004076086A2/en active IP Right Grant
-
2005
- 2005-09-07 NO NO20054156A patent/NO20054156L/en not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4274273A (en) † | 1979-10-03 | 1981-06-23 | General Electric Company | Temperature control in hot strip mill |
DE10064267A1 (en) † | 2000-12-22 | 2002-07-04 | Alstom Switzerland Ltd | Process for quickly manufacturing hollow turbine blades for manufacturing development and component testing |
EP1231010A1 (en) † | 2001-02-08 | 2002-08-14 | Siemens Westinghouse Power Corporation | Transient liquid phase bonding repair for turbine blades and vanes |
Also Published As
Publication number | Publication date |
---|---|
DE502004003617D1 (en) | 2007-06-06 |
US20060156773A1 (en) | 2006-07-20 |
EP1624982B1 (en) | 2007-04-25 |
WO2004076086A2 (en) | 2004-09-10 |
JP2006518670A (en) | 2006-08-17 |
US7310981B2 (en) | 2007-12-25 |
NO20054156L (en) | 2005-09-07 |
WO2004076086A3 (en) | 2004-11-18 |
ATE360483T1 (en) | 2007-05-15 |
EP1624982A2 (en) | 2006-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1624982B2 (en) | Method for regulating the temperature of a metal strip, especially for rolling a metal hot strip in a finishing train | |
EP1444059B1 (en) | Control method for a production line for rolling hot-rolled metal strips disposed upstream of a cooling stretch | |
EP2456897B1 (en) | Method for controlling and/or regulating an induction oven for a roller assembly, control and/or regulating device for a roller assembly and roller assembly for producing rolled goods | |
EP3430175B1 (en) | Method for rolling and/or heat treating a metal strip | |
EP1596999B2 (en) | Method for regulating the temperature of a metal strip, especially in a cooling path | |
EP2697001A1 (en) | Control method for a rolling train | |
DE112004002759T5 (en) | Method and apparatus for controlling material quality in a rolling, forging or leveling process | |
EP2386365A1 (en) | Operational method for a finishing train with prediction of transport speed | |
WO2004050923A1 (en) | Method for process control or process regulation of a unit for moulding, cooling and/or thermal treatment of metal | |
DE19618995C2 (en) | Method and device for influencing relevant quality parameters, in particular the profile or the flatness of a rolled strip | |
WO2013167366A1 (en) | Method for processing rolling stock and rolling mill | |
EP2620233A1 (en) | Method for processing milled goods in a hot rolling mill | |
DE10324679A1 (en) | Control computer and computer-aided determination procedure for a profile and flatness control for a rolling mill | |
DE10321791A1 (en) | Process for controlling and/or regulating the temperature of a metal strip, especially in a finishing train, comprises comparing a theoretical temperature gradient with an actual temperature gradient to acquire adjusting signals | |
EP4061552B1 (en) | Method, control device and rolling mill for the adjustment of an outlet temperature of a metal strip exiting a rolling train | |
EP3642372A1 (en) | Method for operating an annealing surface | |
EP4103339B1 (en) | Determining a sensitivity of a target size of a rolling stock for an operating variable of a hot rolling mill | |
EP1014239B1 (en) | Method for calculating a reduction plan | |
EP1481742B1 (en) | Control computer and computer-aided determination method for a profile and flatness control for a rolling mill | |
EP3494239B1 (en) | Method for operating an annealing furnace for annealing a metal strip | |
DE10321792A1 (en) | Process for controlling and/or regulating the temperature of a metal strip in a metallurgical installation comprises comparing a temperature gradient to an actual temperature gradient to determine adjusting signals for a cooling path | |
EP3934822B1 (en) | Method for producing a metallic strip or plate | |
WO2020224983A1 (en) | Method for the heat treatment of a metal product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050801 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 502004003617 Country of ref document: DE Date of ref document: 20070606 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070805 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070925 |
|
ET | Fr: translation filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20070425 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070425 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070725 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070425 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070425 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070425 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070425 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070425 |
|
26 | Opposition filed |
Opponent name: SMS DEMAG AG Effective date: 20080125 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070425 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070425 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080229 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080229 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080228 |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070425 |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071026 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070425 |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100213 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20110615 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 502004003617 Country of ref document: DE Effective date: 20110615 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: RPEO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20130213 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20130108 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20130312 Year of fee payment: 10 |
|
BERE | Be: lapsed |
Owner name: SIEMENS A.G. Effective date: 20140228 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 360483 Country of ref document: AT Kind code of ref document: T Effective date: 20140213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004003617 Country of ref document: DE Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE Effective date: 20151105 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160218 Year of fee payment: 13 Ref country code: SE Payment date: 20160217 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170214 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20171031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200219 Year of fee payment: 17 Ref country code: IT Payment date: 20200225 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004003617 Country of ref document: DE Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE Free format text: FORMER OWNER: PRIMETALS TECHNOLOGIES GERMANY GMBH, 91052 ERLANGEN, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004003617 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 |