EP1615021A1 - Hydrogen sensor and use thereof - Google Patents
Hydrogen sensor and use thereof Download PDFInfo
- Publication number
- EP1615021A1 EP1615021A1 EP05090208A EP05090208A EP1615021A1 EP 1615021 A1 EP1615021 A1 EP 1615021A1 EP 05090208 A EP05090208 A EP 05090208A EP 05090208 A EP05090208 A EP 05090208A EP 1615021 A1 EP1615021 A1 EP 1615021A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sensor
- hydrogen
- electrode
- layer
- palladium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000001257 hydrogen Substances 0.000 title claims abstract description 82
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 82
- 125000004435 hydrogen atom Chemical class [H]* 0.000 title 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 58
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 55
- 150000002431 hydrogen Chemical class 0.000 claims abstract description 45
- 239000004065 semiconductor Substances 0.000 claims abstract description 33
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 25
- 239000010416 ion conductor Substances 0.000 claims abstract description 20
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims abstract description 16
- 239000012212 insulator Substances 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 14
- 238000001514 detection method Methods 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 230000005669 field effect Effects 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- 239000010409 thin film Substances 0.000 claims abstract description 3
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 16
- 238000005259 measurement Methods 0.000 claims description 13
- 229910017768 LaF 3 Inorganic materials 0.000 claims description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 230000007420 reactivation Effects 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 2
- 229910016036 BaF 2 Inorganic materials 0.000 claims description 2
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052703 rhodium Inorganic materials 0.000 claims description 2
- 231100000289 photo-effect Toxicity 0.000 abstract description 4
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 18
- 238000000151 deposition Methods 0.000 description 12
- 230000008021 deposition Effects 0.000 description 11
- 230000035945 sensitivity Effects 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 239000000779 smoke Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
- G08B17/117—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means by using a detection device for specific gases, e.g. combustion products, produced by the fire
Definitions
- the invention relates to a highly sensitive hydrogen sensor 1, which is inexpensive to produce and has an extremely low energy consumption, since it operates at room temperature.
- the hydrogen sensor 1 according to the invention is suitable as part of a hydrogen gas detector, inter alia, for fire detection, since it reliably measures the low hydrogen concentrations occurring and triggers alarm much earlier than the previously used and known optical smoke detection systems. It is of course also applicable for process control in industrial plants or in environmental protection.
- the invention also provides a method for determining the hydrogen concentration, in which the hydrogen sensor 1 is used as the gate region of a field effect transistor, as a capacitive semiconductor sensor or as a sensor based on the photoeffect in the semiconductor.
- Hydrogen is used in many ways and at the same time is dangerous because of its tendency to explode. Hydrogen is also known as a gas suitable for fire detection (US 4,088,986 and 5,856,780).
- Hydrogen sensors are known in a variety of designs and with different principles of action. Lundström first described in Appl. Phys. Lett., 26 (1975) 55-57 discloses a metal / insulator / semiconductor (MIS) structure for hydrogen detection. The sensor operates at temperatures around 140 ° C, while its behavior is unstable at room temperature. In addition to Si, other semiconductors were also used, such as SiC or GaN / AlGaN heterostructures Temperatures of 400-600 ° C. The microstructure technique was used to combine the sensors with heaters (US 6,265,222 and 6,596,236).
- MIS metal / insulator / semiconductor
- a disadvantage of all these sensors, however, is that they require an increased operating temperature of 140 ° C to over 600 ° C.
- the associated energy consumption is a major impediment (battery-powered sensor systems, power fail-safe monitoring systems). Even with central monitoring systems, the power consumption of known fire gas sensors is too high to allow operation with a power failure fuse, so that they could only be used in special cases.
- Fire detectors are already used in the majority of households in the USA. For Germany, a similar development is predicted and also a legal obligation to install in private households discussed.
- a hydrogen sensor operating at room temperature is described by W. Moritz et al. in the abstract of the "54 Annual Meeting of the Infernational Society of Electrochemistry 31.08.-05.09.2003, Sao Pedro Brazil". It is a semiconductor device based on the field effect in the semiconductor, which consists of a layer system Si / SiO 2 / Si 3 N 4 / LaF 3 / Pt. If the response time slows down after a few days, the sensor is reactivated by using the platinum as a resistance heater. However, it has been found that this sensor is unsuitable for practical use because it is not stable enough, ie has a lifetime of less than 3 months, and its hydrogen sensitivity with a change in the relative Humidity changes. Also, a lower detection limit of 10ppm for certain concerns in Schwellbrand- and fire detection may not be sufficient.
- a hydrogen sensor 1 which is a semiconductor component based on the field effect in the semiconductor and consists of a layer system semiconductor 2 / insulator 3 / fluoride ion conductor 4 / palladium electrode 5 and second electrode 6 and has a heating element.
- the hydrogen sensor 1 is a thin film structure in which the insulator layer 3 is deposited on the semiconductor substrate 2, the fluoride ion conductor layer 4 on the insulator layer 3 and the palladium layer 5 on the fluoride ion conductor layer 4, and the second electrode 6 is disposed on the back surface of the semiconductor substrate 2 Palladiumelektrode 5 and / or the second electrode 6 are formed as a resistance heating element.
- the palladium electrode 5 and / or the second electrode 6 each have two temperature-stable, electrically conductive contacts 8 and 7, via which the sensor 1 can be heated by applying a voltage.
- the sensor is heated via the palladium electrode 5 as a resistance heater.
- this heating is only operated via a pulse control, which is not used for the measurement, but only for reactivation necessary at longer intervals.
- the sensor works at room temperature. It has surprisingly been found that for reactivating the sensor structure according to the invention already temperatures below 300 ° C are sufficient, preferably temperatures of 110-280 ° C. Reactivation is necessary at intervals of up to 7 days and for a period of 10 ⁇ s up to a maximum of 2 min.
- the invention also relates to a method for determining the hydrogen concentration according to claims 15 and 16. From this mode of operation results in enormous energy savings compared to constantly heated sensors and those that need to be heated periodically for measurement.
- the hydrogen sensor 1 includes, as the semiconductor substrate 2, a silicon single crystal, GaAs or amorphous silicon, preferably a silicon single crystal.
- the insulator layer 3 can consist of SiO 2 , of the layer combination SiO 2 / Si 3 N 4 , of Al 2 O 3 or of Ta 2 O 5 , preferably of SiO 2 / Si 3 N 4 .
- the layer thickness of the insulator layer should be from 30 nm to 90 nm.
- the ratio of about 40 nm / 40 nm is preferred.
- the fluoride ion conductor layer 4 may consist of polycrystalline LaF 3 , CaF 2 or BaF 2 , preferably LaF 3 .
- the thickness of the fluoride ion conductor layer should be from 15 nm to 50 nm. In this area, a favorable impedance behavior was found.
- a second electrode 6 on the back of the semiconductor substrate 2 is preferably aluminum, platinum or gold in question. Particularly preferred is aluminum.
- the layer thickness is from 300 to 2,000 nm, preferably about 500 nm.
- the palladium electrode 5 is made of palladium or an alloy of Pd with Au, Ru, Ni, Fe, Co, Rh, Ir and / or Ag.
- the electrode 5 is preferably applied in such a way that the layer thickness is up to 60 nm and a specific area and shape are predetermined by means of a metal mask.
- the palladium electrode 5 has two wider areas in the outer area, which are connected by a narrow strip are. On the two wider surfaces in the outer region, the two contacts 8 are applied.
- the hydrogen sensor 1 has the layer structure Si / SiO 2 / Si 3 N 4 / LaF 3 / Pd.
- the production of the layer structure according to the invention is carried out by the methods well known to those skilled in the art.
- the fluoride ion conductor layer 4 is applied to the insulator 3 z. B. applied by thermal vapor deposition in a high vacuum or RF sputtering.
- Palladium electrode 5 and second electrode 6 may be deposited by DC sputtering, thermal evaporation or electron beam evaporation.
- the insulator layer 3 can on the semiconductor substrate 2 in a known manner, for.
- Example by means of chemical vapor deposition (chemical vapor deposition) are deposited, in the case of the preferred combination of layers SiO 2 / Si 3 N 4 , both layers can be applied.
- the described sensor 1 according to the invention with palladium electrode 5 is highly sensitive and the sensitivity is not dependent on the change in the air humidity, in contrast to a structurally identical sensor with Pt electrode (compare Example 5).
- the lower detection limit of the sensor is about 2 ppm, making it ideal for measuring extremely low hydrogen concentrations.
- the invention therefore also relates to a hydrogen gas detector comprising the described hydrogen sensor 1, at least one voltage supply, means for measuring the capacitance, the photocurrent or the transistor drain / source current of the hydrogen sensor 1, hardware and software for calculating the hydrogen concentration and means for Alarm triggering at hydrogen gas concentrations higher than the predetermined reference concentration.
- the invention further relates to a Hydrogen gas detector, which is also intended for hydrogen measurement, but does not trigger an alarm, that does not include the means described for triggering the alarm, but z. B. is monitored online by computer. That is, this hydrogen gas detector comprises the described hydrogen sensor 1, at least one power supply, means for measuring the capacitance, the photocurrent or the transistor drain / source current of the hydrogen sensor (1), and hardware and software for calculating the hydrogen concentration.
- the hydrogen sensor 1 according to the invention can be used in various embodiments, namely as a capacitive semiconductor sensor, as a gate region of a field effect transistor or as a sensor based on the photoeffect in the semiconductor.
- the hydrogen gas detector and detector include, for example, a frequency generator and an AC transducer, a photodiode for photocurrent measurement, and a constant voltage source for the transistor.
- the voltage supply present in the hydrogen gas detector and detector also includes a power supply control.
- a comparator circuit As a means for alarm triggering a comparator circuit is used with a fixed setpoint, for example. Alternatively, intelligent systems can be used, which use the deviation from the long-term signal development for alarm definition.
- the hydrogen sensor 1 is used as a capacitive semiconductor sensor, signal detection takes place by means of the high-frequency capacitance / voltage measurement (HF-CF measurement technique), the voltage being applied between the second electrode 6 and the palladium electrode 5.
- HF-CF measurement technique high-frequency capacitance / voltage measurement
- an AC voltage of 10 kHz, for example is injected.
- the capacitance is read out with a frequency-selective detector and a change in potential with a change in concentration is recalculated from the slope of the capacitance / voltage curve.
- the hydrogen sensor 1 serves as a sensor based on the photoeffect in the semiconductor, then modulated laser light is irradiated into the semiconductor and the resulting photocurrent is evaluated analogously to the capacitance measurement.
- the hydrogen sensor 1 serves as the gate region of a field-effect transistor, the change in the drain / source current is evaluated when a constant voltage is applied to the drain / source electrodes (second electrode 6 and palladium electrode 5).
- Fig. 2 shows after reactivation, the response of the sensor according to the invention from Example 2 to different Hydrogen concentrations, baseline concentration 10 ppm, right-hand scale: hydrogen concentration in ppm.
- FIG. 3 shows a comparison of the sensor signal of the sensor according to the invention from example 4a and the comparison sensor from example 4b without fluoride ion conductor layer; 20 ppmH 2 .
- Fig. 4a shows the scheme of the hydrogen gas detector of the invention for measuring the drain / source current of the transistor (see Example 8 of the invention).
- Figure 4b shows the scheme of the hydrogen gas detector of the invention for measuring capacitance (see Example 9 of the invention).
- Figure 4c shows the scheme of the hydrogen gas detector of the invention for measuring the photocurrent (see Example 10 of the invention).
- a sensor of a silicon single crystal with a 40 nm SiO 2 layer and another 40 nm thick Si 3 N 4 layer was coated by thermal vapor deposition in a high vacuum at a deposition rate of 0.1 nm / s with LaF 3 .
- the layer thickness of the ion conductor layer was 40 nm.
- a further layer consisting of Pd was deposited at a deposition rate of 1 nm / s up to a layer thickness of 50 nm. In this case, a Pd surface of 2 mm diameter was defined with a metal mask.
- a backside contact was realized by the deposition of Al (500 nm).
- the sensor was characterized by high frequency capacitance / voltage measurement. Upon contact of the sensor with synthetic air of different hydrogen content, a sensitivity of 62 mV / Ig P (H 2 ) was found at room temperature.
- Example 1 The sensor according to Example 1 was again measured after 60 days as above. There was only an extremely slow response. Subsequently, the sensor was heated for 10 seconds to 135 ° C and then measured again at room temperature in terms of hydrogen sensitivity. The result was the same behavior as shown in Example 1 for a new sensor. A typical response is shown in Fig. 2.
- Example 2 The hydrogen sensor described in Example 2 was used to detect a test fire according to European Standard EN 54 (Testfire 2) [published by the DIN Deutsches Institut für Normung e. V., ref. No. DIN EN 54-7: 2001-03; DIN EN 54-5: 2001-03; DIN EN 54-1: 1996-10; DIN EN 54-7 / A1: 2002-09 and DIN EN 54-5 / A1: 2002-09] compared with a standard optical smoke detection system. The fire was successfully detected, whereas in comparison to the smoke alarm system an alarm signal was reached 90 sec earlier.
- a sensor a) according to Example 1 was prepared.
- Another sensor b) was prepared without Fluoridionenleiter für by on a silicon single crystal with a 40 nm SiO 2 layer and another 40 nm thick Si 3 N 4 layer by DC sputtering with a deposition rate of 1 nm / s another layer consisting was deposited from Pd to a layer thickness of 50 nm. In this case, a Pd surface of 2 mm diameter was defined with a metal mask.
- a backside contact was realized by the deposition of Al (500 nm). The samples were characterized by high frequency capacitance / voltage measurement. Upon contact of the sensor with synthetic air of different hydrogen content, the behavior shown in FIG. 3 was found at room temperature, which demonstrates the advantage of using an additional ion conductor layer.
- a sensor a) according to Example 1 was prepared.
- a sensor b) with a Pt electrode was prepared by depositing a silicon single crystal with a 40 nm SiO 2 layer and another 40 nm thick Si 3 N 4 layer by thermal vapor deposition under high vacuum at a deposition rate of 0.1 nm / s coated with LaF 3 .
- the layer thickness of the ion conductor layer was 40 nm.
- a further layer consisting of Pt was deposited at a deposition rate of 1 nm / s up to a layer thickness of 50 nm. In this case, a Pt surface of 2 mm diameter was defined with a metal mask.
- a backside contact was realized by the deposition of Ai (500 nm).
- Example 2 A sensor according to Example 1 was produced. The sensor was aged for 2 months. From this 5 x 15 mm chip, 3 mm of the backside contact was etched away. The remaining Al surfaces were contacted with a temperature-stable conductive adhesive and connected to a voltage source. A voltage of 17V was applied for 1.5 minutes. The subsequent measurement of the hydrogen sensitivity gave a result as shown in Example 2.
- a sensor of a silicon single crystal with a 40 nm SiO 2 layer and another 40 nm thick Si 3 N 4 layer was coated by thermal vapor deposition in a high vacuum at a deposition rate of 0.1 nm / s with LaF 3 .
- the layer thickness of the ion conductor layer was 40 nm.
- a further layer consisting of Pd was deposited at a deposition rate of 1 nm / s up to a layer thickness of 50 nm.
- a Pd surface of 8 * 1 mm was defined with a metal mask.
- In back contact was realized by the deposition of Al (500 nm). The sample was aged for 2 months.
- the Pd was contacted with a temperature-stable conductive adhesive in two places at a distance of 4 mm and connected to a voltage source. A voltage of 70 V was applied for 10 ms. The subsequent measurement of the hydrogen sensitivity gave a result as shown in Example 2.
- the hydrogen sensor described above is brought into contact with a gas 1 of known hydrogen concentration. A constant drain / source voltage is applied and the resulting drain / source current 1 is measured.
- the gas is replaced by a gas 2 having a different known hydrogen concentration, and the resulting drain / source current 2 is measured using the same voltage conditions.
- the gas of unknown hydrogen concentration is brought into contact with the sensor and under the constant voltage conditions, the drain / source current 3 is measured.
- the hydrogen sensor described above is brought into contact with a gas 1 of known hydrogen concentration. A constant gate voltage and a small signal AC voltage are applied and the capacitance 1 of the structure is measured.
- the gas is replaced by a gas 2 having a different known hydrogen concentration, and the capacitance 2 is measured using the same voltage conditions.
- the gas of unknown hydrogen concentration is contacted with the sensor and the capacitance 3 is measured under the constant voltage conditions.
- the hydrogen sensor described above is brought into contact with a gas 1 of known hydrogen concentration.
- a constant gate voltage is applied, modulated laser light is irradiated.
- the resulting photocurrent 1 of the structure is measured.
- the gas is replaced by a gas 2 having a different known hydrogen concentration and the photocurrent 2 is measured using the same voltage conditions.
- the gas of unknown hydrogen concentration is brought into contact with the sensor and under the constant voltage conditions the photocurrent 3 is measured.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Die Erfindung betrifft einen hochsensitiven Wasserstoffsensor (1) umfassend eine Dünnschichtstruktur aus Halbleitersubstrat (2), Isolator (3), Fluoridionenleiter (4), Palladiumelektrode (5) und zweiter Elektrode (6), wobei die Isolatorschicht (3) auf dem Halbleitersubstrat (2), die Fluoridionenleiterschicht (4) auf der Isolatorschicht (3) und die Palladiumschicht (5) auf der Fluoridionenleiterschicht (4) aufgebracht sind und die zweite Elektrode (6) auf der Rückseite des Halbleitersubstrats (2) angeordnet ist, wobei die Palladiumelektrode (5) und/oder die zweite Elektrode (6) als Widerstandsheizelement ausgebildet sind. Dieser ist kostengünstig herstellbar und weist einen äußerst geringen Energieverbrauch auf, da er bei Raumtemperatur arbeitet. Der erfindungsgemäße Wasserstoffsensor ist als Bestandteil eines Wasserstoffgasmelders unter anderem zur Branddetektion geeignet.The invention relates to a high-sensitivity hydrogen sensor (1) comprising a thin-film structure of semiconductor substrate (2), insulator (3), fluoride ion conductor (4), palladium electrode (5) and second electrode (6), wherein the insulator layer (3) on the semiconductor substrate (2 ), the fluoride ion conductor layer (4) on the insulator layer (3), and the palladium layer (5) on the fluoride ion conductor layer (4), and the second electrode (6) is disposed on the back surface of the semiconductor substrate (2), the palladium electrode (5 ) and / or the second electrode (6) are designed as resistance heating element. This is inexpensive to produce and has an extremely low energy consumption, since it works at room temperature. The hydrogen sensor according to the invention is suitable as part of a hydrogen gas detector, inter alia, for fire detection.
Gegenstand der Erfindung ist auch ein Verfahren zur Bestimmung der Wasserstoffkonzentration, bei dem der Wasserstoffsensor als Gategebiet eines Feldeffekttransistors zum Einsatz kommt, als kapazitiver Halbleitersensor oder als Sensor auf Basis des Photoeffekts im Halbleiter.
The invention also provides a method for determining the hydrogen concentration, in which the hydrogen sensor is used as the gate region of a field effect transistor, as a capacitive semiconductor sensor or as a sensor based on the photoeffect in the semiconductor.Description
Die Erfindung betrifft einen hochsensitiven Wasserstoffsensor 1, der kostengünstig herstellbar ist und einen äußerst geringen Energieverbrauch aufweist, da er bei Raumtemperatur arbeitet. Der erfindungsgemäße Wasserstoffsensor 1 ist als Bestandteil eines Wasserstoffgasmelders unter anderem zur Branddetektion geeignet, da er die dabei auftretenden geringen Wasserstoffkonzentrationen zuverlässig misst und wesentlich früher Alarm auslöst als die bisher eingesetzten und bekannten optischen Rauchmeldesysteme. Er ist daneben selbstverständlich auch zur Prozesskontrolle in Industrieanlagen oder im Umweltschutz einsetzbar.The invention relates to a highly
Gegenstand der Erfindung ist auch ein Verfahren zur Bestimmung der Wasserstoffkonzentration, bei dem der Wasserstoffsensor 1 als Gategebiet eines Feldeffekttransistors zum Einsatz kommt, als kapazitiver Halbleitersensor oder als Sensor auf Basis des Photoeffekts im Halbleiter.The invention also provides a method for determining the hydrogen concentration, in which the
Wasserstoff wird vielfältig angewendet und ist gleichzeitig durch seine Tendenz zur Explosionsfähigkeit gefährlich. Wasserstoff ist auch als ein zur Branddetektion geeignetes Gas bekannt (US 4,088,986 und 5,856,780).Hydrogen is used in many ways and at the same time is dangerous because of its tendency to explode. Hydrogen is also known as a gas suitable for fire detection (US 4,088,986 and 5,856,780).
Wasserstoffsensoren sind in vielfältigen Bauformen und mit verschiedensten Wirkprinzipien bekannt. Lundström beschrieb erstmals in Appl. Phys. Lett., 26(1975) 55-57 eine Metall/Isolator/Semiconductor (MIS) Struktur zum Wasserstoffnachweis. Der Sensor wird bei Temperaturen um 140 °C betrieben, während sein Verhalten bei Raumtemperatur instabil ist. Neben Si wurden auch andere Halbleiter genutzt, wie SiC oder GaN/AlGaN-Heterostrukturen bei Temperaturen von 400-600 °C. Die Mikrostrukturtechnik wurde genutzt, um die Sensoren mit Heizern zu kombinieren (US 6,265,222 und 6,596,236).Hydrogen sensors are known in a variety of designs and with different principles of action. Lundström first described in Appl. Phys. Lett., 26 (1975) 55-57 discloses a metal / insulator / semiconductor (MIS) structure for hydrogen detection. The sensor operates at temperatures around 140 ° C, while its behavior is unstable at room temperature. In addition to Si, other semiconductors were also used, such as SiC or GaN / AlGaN heterostructures Temperatures of 400-600 ° C. The microstructure technique was used to combine the sensors with heaters (US 6,265,222 and 6,596,236).
Nachteilig an all diesen Sensoren ist jedoch, dass sie eine erhöhte Betriebstemperatur von 140 °C bis über 600 °C erfordern.A disadvantage of all these sensors, however, is that they require an increased operating temperature of 140 ° C to over 600 ° C.
Für viele potentielle Anwendungen ist der damit verbundene Energieverbrauch ein entscheidender Hinderungsgrund (batteriebetriebene Sensorsysteme, Überwachungsanlagen mit Stromausfallsicherung). Selbst bei zentralen Überwachungsanlagen ist der Stromverbrauch bekannter Brandgassensoren zu hoch, um den Betrieb mit einer Stromausfallsicherung zu ermöglichen, so dass sie nur in Spezialfällen eingesetzt werden konnten.For many potential applications, the associated energy consumption is a major impediment (battery-powered sensor systems, power fail-safe monitoring systems). Even with central monitoring systems, the power consumption of known fire gas sensors is too high to allow operation with a power failure fuse, so that they could only be used in special cases.
Brandmelder werden in den USA bereits in der Mehrzahl der Haushalte eingesetzt. Für Deutschland wird eine ähnliche Entwicklung vorhergesagt und auch eine gesetzliche Pflicht zur Installation in Privathaushalten diskutiert.Fire detectors are already used in the majority of households in the USA. For Germany, a similar development is predicted and also a legal obligation to install in private households discussed.
Die Schäden durch Brände sind sehr groß (jährlich 100 Tote, 10.000 Verletzte, 2 Mrd. € materieller Schaden). Durch eine frühzeitige und zuverlässige Warnung könnte diese Situation erheblich verbessert werden. Der hohe Strombedarf, der Preis, Querempfindlichkeiten und mangelnde Langzeitstabilität sind die Hauptprobleme, die die Einführung von Brandgassensoren verhindern.The damage caused by fires is very high (100 dead every year, 10,000 injured, € 2 billion material damage). An early and reliable warning could greatly improve this situation. The high power requirements, the price, cross sensitivity and lack of long-term stability are the main problems that prevent the introduction of fire gas sensors.
Ein Wasserstoffsensor, der bei Raumtemperatur arbeitet, wird von W. Moritz et al. in dem Abstract zum "54 Annual Meeting of the Infernational Society of Electrochemistry 31.08.-05.09.2003, Sao Pedro Brazil" beschrieben. Es handelt sich dabei um ein Halbleiterbauelement auf der Basis des Feldeffekts im Halbleiter, das aus einem Schichtsystem Si/SiO2 / Si3N4 / LaF3 / Pt besteht. Wenn sich nach einigen Tagen die Antwortzeit verlangsamt, wird der Sensor reaktiviert, indem das Platin als Widerstandsheizer genutzt wird. Es hat sich jedoch gezeigt, dass dieser Sensor für einen praktischen Einsatz ungeeignet ist, da er nicht stabil genug ist, d. h. eine Lebensdauer kleiner als 3 Monate hat, und sich seine Wasserstoffsensitivität mit einer Veränderung der relativen Luftfeuchtigkeit ändert. Auch kann eine untere Nachweisgrenze von 10ppm für bestimmte Belange bei der Schwellbrand- und Branddetektion noch nicht ausreichend sein.A hydrogen sensor operating at room temperature is described by W. Moritz et al. in the abstract of the "54 Annual Meeting of the Infernational Society of Electrochemistry 31.08.-05.09.2003, Sao Pedro Brazil". It is a semiconductor device based on the field effect in the semiconductor, which consists of a layer system Si / SiO 2 / Si 3 N 4 / LaF 3 / Pt. If the response time slows down after a few days, the sensor is reactivated by using the platinum as a resistance heater. However, it has been found that this sensor is unsuitable for practical use because it is not stable enough, ie has a lifetime of less than 3 months, and its hydrogen sensitivity with a change in the relative Humidity changes. Also, a lower detection limit of 10ppm for certain concerns in Schwellbrand- and fire detection may not be sufficient.
Es war deshalb die Aufgabe der vorliegenden Erfindung, einen hochsensitiven und in der Sensitivität vom Grad der Luftfeuchtigkeit unabhängigen, stabil bei Raumtemperatur arbeitenden und langlebigen Wasserstoffgassensor zur Verfügung zu stellen, der auch zur Schwellbrand- und Branddetektion geeignet ist.It was therefore the object of the present invention to provide a highly sensitive and stable in the sensitivity of the degree of humidity, stable at room temperature and long-lived hydrogen gas sensor available, which is also suitable for Schwellbrand- and fire detection.
Die Aufgabe der Erfindung wird durch einen Wasserstoffsensor 1 gelöst, der ein Halbleiterbauelement auf der Basis des Feldeffekts im Halbleiter ist und aus einem Schichtsystem Halbleiter 2 / Isolator 3 / Fluoridionenleiter 4 / Palladiumelektrode 5 und zweiter Elektrode 6 besteht und ein Heizelement aufweist. Der Wasserstoffsensor 1 stellt eine Dünnschichtstruktur dar, wobei die Isolatorschicht 3 auf dem Halbleitersubstrat 2, die Fluoridionenleiterschicht 4 auf der Isolatorschicht 3 und die Palladiumschicht 5 auf der Fluoridionenleiterschicht 4 aufgebracht sind und die zweite Elektrode 6 auf der Rückseite des Halbleitersubstrats 2 angeordnet ist, wobei die Palladiumelektrode 5 und/oder die zweite Elektrode 6 als Widerstandsheizelement ausgebildet sind.The object of the invention is achieved by a
Die Palladiumelektrode 5 und/oder die zweite Elektrode 6 weisen jeweils zwei temperaturstabile, elektrisch leitende Kontakte 8 und 7 auf, über welche durch Anlegen einer Spannung der Sensor 1 beheizt werden kann. In einer bevorzugten Ausführungsform wird der Sensor über die Palladiumelektrode 5 als Widerstandsheizer beheizt. Diese Heizung wird jedoch nur über eine Impulssteuerung betrieben, die nicht zur Messung, sondern nur zur in größeren Abständen notwendigen Reaktivierung genutzt wird. Somit arbeitet der Sensor bei Raumtemperatur. Es hat sich überraschenderweise gezeigt, dass zur Reaktivierung der erfindungsgemäßen Sensorstruktur bereits Temperaturen unterhalb von 300 °C ausreichend sind, vorzugsweise Temperaturen von 110-280 °C. Die Reaktivierung ist im Abstand von bis zu 7 Tagen und für einen Zeitraum von 10 µs bis zu maximal 2 min notwendig.The
Die Erfindung betrifft deshalb auch ein Verfahren zur Bestimmung der Wasserstoffkonzentration gemäß den Ansprüchen 15 und 16. Aus dieser Betriebsweise resultiert eine enorme Energieeinsparung gegenüber ständig beheizten Sensoren und solchen, die zur Messung periodisch beheizt werden müssen.Therefore, the invention also relates to a method for determining the hydrogen concentration according to claims 15 and 16. From this mode of operation results in enormous energy savings compared to constantly heated sensors and those that need to be heated periodically for measurement.
Der erfindungsgemäße Wasserstoffsensor 1 beinhaltet als Halbleitersubstrat 2 einen Siliciumeinkristall, GaAs oder amorphes Silicium, vorzugsweise einen Siliciumeinkristall.The
Die Isolatorschicht 3 kann aus SiO2, aus der Schichtkombination SiO2/Si3N4, aus Al2O3 oder aus Ta2O5 bestehen, vorzugsweise aus SiO2/Si3N4. Die Schichtdicke der Isolatorschicht sollte von 30 nm bis 90 nm betragen. Für die Schichtkombination SiO2 / Si3N4 ist das Verhältnis von ca. 40 nm/40 nm bevorzugt.The
Die Fluoridionenleiterschicht 4 kann aus polykristallinem LaF3, CaF2 oder BaF2 bestehen, vorzugsweise LaF3. Die Dicke der Fluoridionenleiterschicht sollte von 15 nm bis 50 nm betragen. In diesem Bereich wurde ein günstiges Impedanzverhalten festgestellt.The fluoride
Als zweite Elektrode 6 auf der Rückseite des Halbleitersubstrats 2 kommt vorzugsweise Aluminium, Platin oder Gold in Frage. Besonders bevorzugt ist Aluminium. Die Schichtdicke beträgt von 300 bis 2.000 nm, vorzugsweise ca. 500 nm.As a
Die Palladiumelektrode 5 besteht aus Palladium oder einer Legierung aus Pd mit Au, Ru, Ni, Fe, Co, Rh, Ir und/oder Ag. Die Elektrode 5 wird bevorzugt so aufgebracht, dass die Schichtdicke bis zu 60 nm beträgt und mittels einer Metallmaske eine bestimmte Fläche und Form vorgegeben werden. In einer bevorzugten Ausführungsform weist die Palladiumelektrode 5 zwei breitere Flächen im äußeren Bereich auf, die durch einen schmalen Streifen verbunden sind. Auf die zwei breiteren Flächen im äußeren Bereich sind die zwei Kontakte 8 aufgebracht.The
In einer ganz bevorzugten Ausführungsform weist der Wasserstoffsensor 1 die Schichtstruktur Si/SiO2/Si3N4/LaF3/Pd auf.In a very preferred embodiment, the
Der Herstellung der erfindungsgemäßen Schichtstruktur erfolgt mit den dem Fachmann gut bekannten Methoden. So wird die Fluoridionenleiterschicht 4 auf den Isolator 3 z. B. durch thermisches Bedampfen im Hochvakuum oder HF-Sputtern aufgebracht.The production of the layer structure according to the invention is carried out by the methods well known to those skilled in the art. Thus, the fluoride
Palladiumelektrode 5 und zweite Elektrode 6 können durch DC-Sputtern, thermisches Verdampfen oder Elektronenstrahlverdampfen aufgebracht werden.
Die Isolatorschicht 3 kann auf dem Halbleitersubstrat 2 in bekannter Weise, z. B. mittels chemischer Gasphasenabscheidung (chemical vapor deposition) abgeschieden werden, im Falle der bevorzugten Schichtkombination SiO2/Si3N4 können beide Schichten so aufgebracht werden.The
Überraschenderweise ist der beschriebene erfindungsgemäße Sensor 1 mit Palladiumelektrode 5 hochsensitiv und die Sensitivität ist im Gegensatz zu einem baugleichen Sensor mit Pt-Elektrode nicht von der Änderung der Luftfeuchtigkeit abhängig (vgl. Ausführungsbeispiel 5.). Die untere Nachweisgrenze des Sensors liegt bei ca. 2 ppm, so dass er hervorragend zur Messung äußerst geringer Wasserstoffkonzentrationen geeignet ist.Surprisingly, the described
Gegenstand der Erfindung ist deshalb auch ein Wasserstoffgasmelder umfassend den beschriebenen Wasserstoffsensor 1, mindestens eine Spannungsversorgung, Mittel zur Messung der Kapazität, des Photostroms oder des Transistor-Drain/Source-Stromes des Wasserstoffsensors 1, Hard- und Software zur Kalkulation der Wasserstoffkonzentration und Mittel zur Alarmauslösung bei Wasserstoffgaskonzentrationen, die höher als die vorbestimmte Referenzkonzentration sind. Die Erfindung betrifft weiterhin einen Wasserstoffgasdetektor, der auch zur Wasserstoffmessung vorgesehen ist, aber keinen Alarm auslöst, d. h. die beschriebenen Mittel zur Alarmauslösung nicht umfasst, sondern z. B. per Computer online überwacht wird. D.h., dieser Wasserstoffgasdetektor umfasst den beschriebenen Wasserstoffsensor 1, mindestens eine Spannungsversorgung, Mittel zur Messung der Kapazität, des Photostroms oder des Transistor-Drain/Source-Stromes des Wasserstoffsensors (1) und Hard- und Software zur Kalkulation der Wasserstoffkonzentration.The invention therefore also relates to a hydrogen gas detector comprising the described
Der erfindungsgemäße Wasserstoffsensor 1 kann in verschiedenen Ausführungsformen zum Einsatz kommen, nämlich als kapazitiver Halbleitersensor, als Gategebiet eines Feldeffekttransistors oder als Sensor auf Basis des Photoeffekts im Halbleiter.The
Zur Erfassung der Kapazität enthalten Wasserstoffgasmelder und -detektor deshalb zum Beispiel einen Frequenzgenerator und einen AC-Messumwandler, zur Photostrommessung zusätzlich eine Photodiode und für den Transistor muss eine Konstantspannungsquelle vorhanden sein.For detecting the capacitance, therefore, the hydrogen gas detector and detector include, for example, a frequency generator and an AC transducer, a photodiode for photocurrent measurement, and a constant voltage source for the transistor.
Als Mittel zur Signalkontrolle sind z. B. Differentialverstärker im Wasserstoffgasmelder und -detektor vorgesehen.As a means of signal control z. B. Differential amplifier in the hydrogen gas detector and detector provided.
Die im Wasserstoffgasmelder und -detektor vorhandene Spannungsversorgung beinhaltet auch eine Spannungsversorgungskontrolle.The voltage supply present in the hydrogen gas detector and detector also includes a power supply control.
Als Mittel zur Alarmauslösung wird beispielsweise eine Komperatorschaltung mit einem festen Sollwert eingesetzt. Alternativ können auch intelligente Systeme genutzt werden, die die Abweichung von der langfristigen Signalentwicklung zur Alarmdefinition heranziehen.As a means for alarm triggering a comparator circuit is used with a fixed setpoint, for example. Alternatively, intelligent systems can be used, which use the deviation from the long-term signal development for alarm definition.
Entsprechend den verschiedenen Anwendungsmöglichkeiten des Wasserstoffsensors 1 zur Signaldetektion sind Verfahren zur Bestimmung der Wasserstoffkonzentration gemäß den Ansprüchen 12 bis 14 Gegenstand der Erfindung.In accordance with the various possible applications of the
Wird der Wasserstoffsensor 1 als kapazitiver Halbleitersensor eingesetzt, so erfolgt die Signaldetektion mittels der Hochfrequenz-Kapazitäts/Spannungsmessung (HF-CF-Messtechnik), wobei die Spannung zwischen der zweiten Elektrode 6 und der Palladiumelektrode 5 angelegt wird. Zusätzlich zur Gleichspannung wird eine Wechselspannung von beispielsweise 10 kHz eingekoppelt. Mit einem frequenzselektiven Detektor wird die Kapazität ausgelesen und aus der Steilheit der Kapazitäts/Spannungskurve eine Potentialänderung bei einer Konzentrationsänderung rückgerechnet.If the
Dient der Wasserstoffsensor 1 als Sensor auf Basis des Photoeffekts im Halbleiter, so wird moduliertes Laserlicht in den Halbleiter eingestrahlt und der resultierende Photostrom analog zur Kapazitätsmessung ausgewertet.If the
Dient der Wasserstoffsensor 1 als Gategebiet eines Feldeffekttransistors, so wird bei Anlegen einer konstanten Spannung an die Drain-/Sourceelektroden (zweite Elektrode 6 und Palladiumelektrode 5) die Änderung des Drain-/Source-Stromes ausgewertet.If the
Der erfindungsgemäße Wasserstoffsensor ist schematisch in Abb. 1 dargestellt, wobei in Abb. 1 bedeuten:
- 1 Wasserstoffsensor
- 2 Halbleitersubstrat
- 3 Isolator
- 4 Fluoridionenleiter
- 5 Palladiumelektrode
- 6 Zweite Elektrode
- 7 elektrisch leitende Kontakte
- 8 elektrisch leitende Kontakte
- 1 hydrogen sensor
- 2 semiconductor substrate
- 3 insulator
- 4 fluoride ion conductors
- 5 palladium electrode
- 6 Second electrode
- 7 electrically conductive contacts
- 8 electrically conductive contacts
Abb. 2 zeigt nach Reaktivierung das Ansprechverhalten des erfindungsgemäßen Sensors aus Beispiel 2 auf verschiedene Wasserstoffkonzentrationen, Baseline-Konzentration 10 ppm, rechte Skala: Wasserstoffkonzentration in ppm.Fig. 2 shows after reactivation, the response of the sensor according to the invention from Example 2 to different Hydrogen concentrations,
Abb. 3 zeigt einen Vergleich des Sensorsignals des erfindungsgemäßen Sensors aus Beispiel 4a und dem Vergleichssensor aus Beispiel 4b ohne Fluoridionenleiterschicht; 20 ppmH2.FIG. 3 shows a comparison of the sensor signal of the sensor according to the invention from example 4a and the comparison sensor from example 4b without fluoride ion conductor layer; 20 ppmH 2 .
Abb. 4a zeigt das Schema des Wasserstoffgasdetektors der Erfindung zur Messung des Drain-/Source-Stromes des Transistors (vgl. Beispiel 8 der Erfindung).Fig. 4a shows the scheme of the hydrogen gas detector of the invention for measuring the drain / source current of the transistor (see Example 8 of the invention).
In Abb. 4a bedeutet:
- UG
- Gate-Spannungsquelle
- UDS
- Drain-/Source-Spannungsquelle
- A
- Amperemeter
- U G
- Gate-voltage source
- U DS
- Drain / source voltage source
- A
- ammeter
Abb. 4b zeigt das Schema des Wasserstoffgasdetektors der Erfindung zur Messung der Kapazität (vgl. Beispiel 9 der Erfindung).Figure 4b shows the scheme of the hydrogen gas detector of the invention for measuring capacitance (see Example 9 of the invention).
In Abb. 4b bedeuten:
- UG
- Gate-Spannungsquelle
- UAC
- Wechselspannungsquelle
- C
- Kapazitätsmesser
- U G
- Gate-voltage source
- U AC
- AC voltage source
- C
- capacitance meter
Abb. 4c zeigt das Schema des Wasserstoffgasdetektors der Erfindung zur Messung des Photostromes (vgl. Beispiel 10 der Erfindung).Figure 4c shows the scheme of the hydrogen gas detector of the invention for measuring the photocurrent (see Example 10 of the invention).
In Fig. 4c bedeuten:
- UG
- Gate-Spannungsquelle
- A
- Amperemeter
- U G
- Gate-voltage source
- A
- ammeter
Ein Sensor aus einem Siliciumeinkristall mit einer 40 nm SiO2-Schicht und einer weiteren 40 nm dicken Si3N4-Schicht wurde durch thermisches Bedampfen im Hochvakuum bei einer Abscheidungsgeschwindigkeit von 0,1 nm/s mit LaF3 beschichtet. Die Schichtdicke der lonenleiterschicht betrug 40 nm. Durch DC-Sputtern wurde mit einer Depositionsrate von 1 nm/s eine weitere Schicht bestehend aus Pd bis zu einer Schichtdicke von 50 nm abgeschieden. Dabei wurde mit einer Metallmaske eine Pd-Fläche von 2 mm Durchmesser definiert. Ein Rückseitenkontakt wurde durch die Abscheidung von AI (500 nm) realisiert.A sensor of a silicon single crystal with a 40 nm SiO 2 layer and another 40 nm thick Si 3 N 4 layer was coated by thermal vapor deposition in a high vacuum at a deposition rate of 0.1 nm / s with LaF 3 . The layer thickness of the ion conductor layer was 40 nm. By DC sputtering, a further layer consisting of Pd was deposited at a deposition rate of 1 nm / s up to a layer thickness of 50 nm. In this case, a Pd surface of 2 mm diameter was defined with a metal mask. A backside contact was realized by the deposition of Al (500 nm).
Der Sensor wurde mittels der Hochfrequenz-Kapazitäts-/Spannungsmessung charakterisiert. Beim Kontakt des Sensors mit synthetischer Luft unterschiedlichen Wasserstoffgehalts wurde bei Raumtemperatur eine Sensitivität von 62 mV/Ig P(H2) gefunden.The sensor was characterized by high frequency capacitance / voltage measurement. Upon contact of the sensor with synthetic air of different hydrogen content, a sensitivity of 62 mV / Ig P (H 2 ) was found at room temperature.
Der Sensor gemäß Beispiel 1 wurde nach 60 Tagen erneut wie oben vermessen. Es ergab sich nur noch ein extrem langsames Ansprechverhalten. Anschließend wurde der Sensor für 10 Sekunden auf 135 °C aufgeheizt und danach bei Raumtemperatur erneut hinsichtlich der Wasserstoffsensitivität vermessen. Es ergab sich das gleiche Verhalten wie im Beispiel 1 für einen neuen Sensor dargestellt. Ein typisches Ansprechverhalten ist in Abb. 2 dargestellt.The sensor according to Example 1 was again measured after 60 days as above. There was only an extremely slow response. Subsequently, the sensor was heated for 10 seconds to 135 ° C and then measured again at room temperature in terms of hydrogen sensitivity. The result was the same behavior as shown in Example 1 for a new sensor. A typical response is shown in Fig. 2.
Der im Beispiel 2 beschriebene Wasserstoffsensor wurde zur Detektion eines Testfeuers nach der Europanorm EN 54 (Testfeuer 2) [veröffentlicht vom DIN Deutsches institut für Normung e. V., Ref. Nr. DIN EN 54-7: 2001-03; DIN EN 54-5: 2001-03; DIN EN 54-1: 1996-10; DIN EN 54-7/A1: 2002-09 und DIN EN 54-5/A1: 2002-09] im Vergleich mit einem üblichen optischen Rauchmeldesystem getestet. Das Feuer konnte erfolgreich nachgewiesen werden, wobei im Vergleich zum Rauchmeldesystem bereits 90 sec früher ein Alarmsignal erreicht wurde.The hydrogen sensor described in Example 2 was used to detect a test fire according to European Standard EN 54 (Testfire 2) [published by the DIN Deutsches Institut für Normung e. V., ref. No. DIN EN 54-7: 2001-03; DIN EN 54-5: 2001-03; DIN EN 54-1: 1996-10; DIN EN 54-7 / A1: 2002-09 and DIN EN 54-5 / A1: 2002-09] compared with a standard optical smoke detection system. The fire was successfully detected, whereas in comparison to the smoke alarm system an alarm signal was reached 90 sec earlier.
Ein Sensor a) gemäß Beispiel 1 wurde hergestellt. Ein weiterer Sensor b) wurde ohne Fluoridionenleiterschicht hergestellt, indem auf einem Siliciumeinkristall mit einer 40 nm SiO2 -Schicht und einer weiteren 40 nm dicken Si3N4-Schicht durch DC-Sputtern mit einer Depositionsrate von 1 nm/s eine weitere Schicht bestehend aus Pd bis zu einer Schichtdicke von 50 nm abgeschieden wurde. Dabei wurde mit einer Metallmaske eine Pd-Fäche von 2 mm Durchmesser definiert. Ein Rückseitenkontakt wurde durch die Abscheidung von Al (500 nm) realisiert. Die Proben wurden mittels der Hochfrequenz-Kapazitäts/Spannungsmessung charakterisiert. Beim Kontakt des Sensors mit synthetischer Luft unterschiedlichen Wasserstoffgehalts wurde bei Raumtemperatur das in Abb. 3 gezeigte Verhalten gefunden, das den Vorteil der Verwendung einer zusätzlichen Ionenleiterschicht belegt.A sensor a) according to Example 1 was prepared. Another sensor b) was prepared without Fluoridionenleiterschicht by on a silicon single crystal with a 40 nm SiO 2 layer and another 40 nm thick Si 3 N 4 layer by DC sputtering with a deposition rate of 1 nm / s another layer consisting was deposited from Pd to a layer thickness of 50 nm. In this case, a Pd surface of 2 mm diameter was defined with a metal mask. A backside contact was realized by the deposition of Al (500 nm). The samples were characterized by high frequency capacitance / voltage measurement. Upon contact of the sensor with synthetic air of different hydrogen content, the behavior shown in FIG. 3 was found at room temperature, which demonstrates the advantage of using an additional ion conductor layer.
Ein Sensor a) gemäß Beispiel 1 wurde hergestellt.A sensor a) according to Example 1 was prepared.
Ein Sensor b) mit einer Pt-Elektrode wurde hergestellt, indem ein Siliciumeinkristall mit einer 40 nm SiO2-Schicht und einer weiteren 40 nm dicken Si3N4-Schicht durch thermisches Bedampfen im Hochvakuum bei einer Abscheidungsgeschwindigkeit von 0,1 nm/s mit LaF3 beschichtet wurde. Die Schichtdicke der lonenleiterschicht betrug 40 nm. Durch DC-Sputtern wurde mit einer Depositionsrate von 1 nm/s eine weitere Schicht bestehend aus Pt bis zu einer Schichtdicke von 50 nm abgeschieden. Dabei wurde mit einer Metallmaske eine Pt-Fläche von 2 mm Durchmesser definiert. Ein Rückseitenkontakt wurde durch die Abscheidung von Ai (500 nm) realisiert.A sensor b) with a Pt electrode was prepared by depositing a silicon single crystal with a 40 nm SiO 2 layer and another 40 nm thick Si 3 N 4 layer by thermal vapor deposition under high vacuum at a deposition rate of 0.1 nm / s coated with LaF 3 . The layer thickness of the ion conductor layer was 40 nm. By DC sputtering, a further layer consisting of Pt was deposited at a deposition rate of 1 nm / s up to a layer thickness of 50 nm. In this case, a Pt surface of 2 mm diameter was defined with a metal mask. A backside contact was realized by the deposition of Ai (500 nm).
Für beide Sensoren wurde der Einfluss der Luftfeuchte auf die Wasserstoffsensitivität untersucht. Während beim Sensor b) eine Veränderung der Sensitivität von 27 m/V/Ig p(H2) auf 20 mV/lg p(H2) mit einer Veränderung der relativen Feuchte von 33% auf 80% beobachtet wurde, blieb die Sensitivität für Sensor a) konstant.For both sensors, the influence of humidity on hydrogen sensitivity was investigated. While sensor b) showed a change in sensitivity from 27 m / V / Ig p (H 2 ) to 20 mV / lg p (H 2 ) with a relative humidity change from 33% to 80%, the sensitivity for Sensor a) constant.
Ein Sensor gemäß Beispiel 1 wurde hergestellt.
Der Sensor wurde 2 Monate gealtert. Von diesem Chip 5 x 15 mm wurden 3 mm des Rückseitenkontakts weggeätzt. Die verbliebenen Al-Flächen wurden mit einem temperaturstabilen Leitkleber kontaktiert und mit einer Spannungsquelle verbunden. Es wurde für 1,5 Minuten eine Spannung von 17 V angelegt. Die anschließende Messung der Wasserstoffsensitivität ergab ein Ergebnis wie im Beispiel 2 dargestellt.A sensor according to Example 1 was produced.
The sensor was aged for 2 months. From this 5 x 15 mm chip, 3 mm of the backside contact was etched away. The remaining Al surfaces were contacted with a temperature-stable conductive adhesive and connected to a voltage source. A voltage of 17V was applied for 1.5 minutes. The subsequent measurement of the hydrogen sensitivity gave a result as shown in Example 2.
Ein Sensor aus einem Siliciumeinkristall mit einer 40 nm SiO2-Schicht und einer weiteren 40 nm dicken Si3N4-Schicht wurde durch thermisches Bedampfen im Hochvakuum bei einer Abscheidungsgeschwindigkeit von 0,1 nm/s mit LaF3 beschichtet. Die Schichtdicke der lonenleiterschicht betrug 40 nm. Durch DC-Sputtern wurde mit einer Depositionsrate von 1 nm/s eine weitere Schicht bestehend aus Pd bis zu einer Schichtdicke von 50 nm abgeschieden. Dabei wurde mit einer Metallmaske eine Pd-Fläche von 8 * 1 mm definiert. In Rückseitenkontakt wurde durch die Abscheidung von Al (500 nm) realisiert. Die Probe wurde 2 Monate gealtert. Das Pd wurde mit einem temperaturstabilen Leitkleber an zwei Stellen im Abstand von 4 mm kontaktiert und mit einer Spannungsquelle verbunden. Es wurde für 10 ms eine Spannung von 70 V angelegt. Die anschließende Messung der Wasserstoffsensitivität ergab ein Ergebnis wie im Beispiel 2 dargestellt.A sensor of a silicon single crystal with a 40 nm SiO 2 layer and another 40 nm thick Si 3 N 4 layer was coated by thermal vapor deposition in a high vacuum at a deposition rate of 0.1 nm / s with LaF 3 . The layer thickness of the ion conductor layer was 40 nm. By DC sputtering, a further layer consisting of Pd was deposited at a deposition rate of 1 nm / s up to a layer thickness of 50 nm. In this case, a Pd surface of 8 * 1 mm was defined with a metal mask. In back contact was realized by the deposition of Al (500 nm). The sample was aged for 2 months. The Pd was contacted with a temperature-stable conductive adhesive in two places at a distance of 4 mm and connected to a voltage source. A voltage of 70 V was applied for 10 ms. The subsequent measurement of the hydrogen sensitivity gave a result as shown in Example 2.
Der oben beschriebene Wasserstoffsensor wird mit einem Gas 1 bekannter Wasserstoffkonzentration in Kontakt gebracht. Eine konstante Drain-/Source-Spannung wird angelegt und der resultierende Drain-/Source-Strom 1 wird gemessen.The hydrogen sensor described above is brought into contact with a
In einem zweiten Schritt wird das Gas durch ein Gas 2 mit einer anderen bekannten Wasserstoffkonzentration ersetzt und unter Anwendung der gleichen Spannungsbedingungen der resultierende Drain-/Source-Strom 2 gemessen.In a second step, the gas is replaced by a
Im folgenden wird das Gas mit unbekannter Wasserstoffkonzentration mit dem Sensor in Kontakt gebracht und unter den konstanten Spannungsbedingungen der Drain-/Source-Strom 3 gemessen.In the following, the gas of unknown hydrogen concentration is brought into contact with the sensor and under the constant voltage conditions, the drain / source current 3 is measured.
Für kleine Konzentrationsbereiche beschreibt eine lineare Beziehung zwischen den Gaskonzentrationen und dem Drain-/Source-Strom das Sensorverhalten. Deshalb kann unter Verwendung der Gaskonzentrationen 1 und 2 und der Drain-/Source-Ströme 1 und 2 eine lineare Gleichung aufgestellt werden. Unter Verwendung dieser Gleichung und des Drain-/Source-Stromes 3 kann dann die unbekannte Wasserstoffkonzentration bestimmt werden.For small concentration ranges, a linear relationship between the gas concentrations and the drain / source current describes the sensor behavior. Therefore, using the
Der oben beschriebene Wasserstoffsensor wird mit einem Gas 1 bekannter Wasserstoffkonzentration in Kontakt gebracht. Eine konstante Gate-Spannung und eine kleine Signal-Wechselspannung werden angelegt und die Kapazität 1 der Struktur gemessen.The hydrogen sensor described above is brought into contact with a
In einem zweiten Schritt wird das Gas durch ein Gas 2 mit einer anderen bekannten Wasserstoffkonzentration ersetzt und unter Anwendung der gleichen Spannungsbedingungen die Kapazität 2 gemessen.In a second step, the gas is replaced by a
Im folgenden wird das Gas mit unbekannter Wasserstoffkonzentration mit dem Sensor kontaktiert und unter den konstanten Spannungsbedingungen die Kapazität 3 gemessen.In the following, the gas of unknown hydrogen concentration is contacted with the sensor and the
Für kleine Konzentrationsbereiche beschreibt eine lineare Beziehung zwischen den Gaskonzentrationen und der Kapazität das Sensorverhalten. Deshalb kann unter Verwendung der Gaskonzentrationen 1 und 2 und der Kapazitäten 1 und 2 eine lineare Gleichung aufgestellt werden. Unter Verwendung dieser Gleichung und der Kapazität 3 kann dann die unbekannte Wasserstoffkonzentration bestimmt werden.For small concentration ranges, a linear relationship between gas concentrations and capacitance describes the sensor behavior. Therefore, using the
Der oben beschriebene Wasserstoffsensor wird mit einem Gas 1 bekannter Wasserstoffkonzentration in Kontakt gebracht. Eine konstante Gate-Spannung wird angelegt, moduliertes Laserlicht wird eingestrahlt. Der resultierende Photostrom 1 der Struktur wird gemessen.The hydrogen sensor described above is brought into contact with a
In einem zweiten Schritt wird das Gas durch ein Gas 2 mit einer anderen bekannten Wasserstoffkonzentration ersetzt und unter Anwendung der gleichen Spannungsbedingungen der Photostrom 2 gemessen.In a second step, the gas is replaced by a
Im folgenden wird das Gas mit unbekannter Wasserstoffkonzentration mit dem Sensor in Kontakt gebracht und unter den konstanten Spannungsbedingungen der Photostrom 3 gemessen.In the following, the gas of unknown hydrogen concentration is brought into contact with the sensor and under the constant voltage conditions the
Für kleine Konzentrationsbereiche beschreibt eine lineare Beziehung zwischen den Gaskonzentrationen und dem Photostrom das Sensorverhalten. Deshalb kann unter Verwendung der Gaskonzentrationen 1 und 2 und der Photoströme 1 und 2 eine lineare Gleichung aufgestellt werden. Unter Verwendung dieser Gleichung und des Photostromes 3 kann dann die unbekannte Wasserstoffkonzentration bestimmt werden.For small concentration ranges, a linear relationship between the gas concentrations and the photocurrent describes the sensor behavior. Therefore, using the
Claims (16)
dadurch gekennzeichnet, dass
Palladiumelektrode (5) und zweite Elektrode (6) jeweils zwei temperaturstabile, elektrisch leitende Kontakte (8) und (7) aufweisen.Sensor according to claim 1,
characterized in that
Palladium electrode (5) and second electrode (6) each have two temperature-stable, electrically conductive contacts (8) and (7).
dadurch gekennzeichnet, dass
die Palladiumelektrode (5) aus Palladium oder dessen Legierungen mit Au, Ru, Ni, Fe, Co, Rh, Ir und/oder Ag besteht.Sensor according to claim 1,
characterized in that
the palladium electrode (5) consists of palladium or its alloys with Au, Ru, Ni, Fe, Co, Rh, Ir and / or Ag.
dadurch gekennzeichnet, dass
das Halbleitersubstrat (2) ein Siliciumeinkristall, GaAs oder amorphes Silicium ist.Sensor according to claim 1,
characterized in that
the semiconductor substrate (2) is a silicon single crystal, GaAs or amorphous silicon.
dadurch gekennzeichnet, dass
die Isolatorschicht (3) aus SiO2, aus der Schichtkombination SiO2 / Si3N4, aus Al2O3 oder aus Ta2O5 besteht.Sensor according to claim 1,
characterized in that
the insulator layer (3) consists of SiO 2 , of the layer combination SiO 2 / Si 3 N 4 , of Al 2 O 3 or of Ta 2 O 5 .
dadurch gekennzeichnet, dass
die Fluoridionenleiterschicht (4) aus polykristallinem LaF3, CaF2 oder BaF2 besteht.Sensor according to claim 1,
characterized in that
the fluoride ion conductor layer (4) consists of polycrystalline LaF 3 , CaF 2 or BaF 2 .
dadurch gekennzeichnet, dass
die Schichtdicke der Fluoridionenleiterschicht (4) von 15 bis 50 nm beträgt.Sensor according to claim 1,
characterized in that
the layer thickness of the fluoride ion conductor layer (4) is from 15 to 50 nm.
dadurch gekennzeichnet, dass
die zweite Elektrode (6) aus Aluminium, Platin oder Gold besteht.Sensor according to claim 1,
characterized in that
the second electrode (6) consists of aluminum, platinum or gold.
dadurch gekennzeichnet, dass
ein Wasserstoffsensor (1) gemäß den Ansprüchen 1 bis 8 eingesetzt wird, moduliertes Laserlicht in den Halbleiter (2) des Sensors (1) eingestrahlt wird, der resultierende Photostrom gemessen und die Wasserstoffkonzentration bestimmt wird.Method for determining the hydrogen gas concentration,
characterized in that
a hydrogen sensor (1) according to claims 1 to 8 is used, modulated laser light is radiated into the semiconductor (2) of the sensor (1), the resulting photocurrent is measured and the hydrogen concentration is determined.
dadurch gekennzeichnet, dass
der Wasserstoffsensor (1) während der Messung bei Raumtemperatur betrieben wird und der Sensor (1) außerhalb der Messungen reaktiviert wird, indem er in einem vorbestimmten zeitlichen Regime durch Anlegen einer Spannung an das Widerstandsheizelement (5) und/oder (6) kurzzeitig auf Temperaturen kleiner als 300 °C erhitzt wird.Method according to claims 12, 13 or 14,
characterized in that
the hydrogen sensor (1) is operated at room temperature during the measurement and the sensor (1) is reactivated outside of the measurements by briefly applying a voltage to the resistance heating element (5) and / or (6) in a predetermined time regime less than 300 ° C is heated.
dadurch gekennzeichnet, dass
die Reaktivierung im Abstand von bis zu 7 Tagen und für einen Zeitraum von 10 µs bis zu maximal 2 min durchgeführt wird.Method according to claim 15,
characterized in that
the reactivation is carried out at intervals of up to 7 days and for a period of 10 μs up to a maximum of 2 min.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200410033597 DE102004033597B4 (en) | 2004-07-07 | 2004-07-07 | Highly sensitive hydrogen sensor for detecting fires/combustion has a thin-layer structure made from a semiconductor substrate, an insulator, fluoride ion conductors and electrodes |
US65146604P | 2004-08-26 | 2004-08-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1615021A1 true EP1615021A1 (en) | 2006-01-11 |
EP1615021B1 EP1615021B1 (en) | 2012-09-12 |
Family
ID=34981925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05090208A Not-in-force EP1615021B1 (en) | 2004-07-07 | 2005-07-07 | Hydrogen sensor and use thereof |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP1615021B1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4088986A (en) | 1976-10-01 | 1978-05-09 | Boucher Charles E | Smoke, fire and gas alarm with remote sensing, back-up emergency power, and system self monitoring |
JPS62250352A (en) * | 1986-04-23 | 1987-10-31 | Seitai Kinou Riyou Kagakuhin Shinseizou Gijutsu Kenkyu Kumiai | Field effect transistor type oxygen gas sensor |
US4795968A (en) * | 1986-06-30 | 1989-01-03 | Sri International | Gas detection method and apparatus using chemisorption and/or physisorption |
US4836012A (en) * | 1988-05-26 | 1989-06-06 | Ametek, Inc. | Gas sensor |
DD294797A5 (en) * | 1990-05-28 | 1991-10-10 | Humboldt-Universitaet Zu Berlin,De | CHEMICAL SEMICONDUCTOR SENSOR |
US5856780A (en) | 1991-10-24 | 1999-01-05 | Capteur Sensors & Analysers, Ltd. | Semiconductor sensors and method for detecting fires using such sensors |
US6265222B1 (en) | 1999-01-15 | 2001-07-24 | Dimeo, Jr. Frank | Micro-machined thin film hydrogen gas sensor, and method of making and using the same |
US6596236B2 (en) | 1999-01-15 | 2003-07-22 | Advanced Technology Materials, Inc. | Micro-machined thin film sensor arrays for the detection of H2 containing gases, and method of making and using the same |
-
2005
- 2005-07-07 EP EP05090208A patent/EP1615021B1/en not_active Not-in-force
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4088986A (en) | 1976-10-01 | 1978-05-09 | Boucher Charles E | Smoke, fire and gas alarm with remote sensing, back-up emergency power, and system self monitoring |
JPS62250352A (en) * | 1986-04-23 | 1987-10-31 | Seitai Kinou Riyou Kagakuhin Shinseizou Gijutsu Kenkyu Kumiai | Field effect transistor type oxygen gas sensor |
US4795968A (en) * | 1986-06-30 | 1989-01-03 | Sri International | Gas detection method and apparatus using chemisorption and/or physisorption |
US4836012A (en) * | 1988-05-26 | 1989-06-06 | Ametek, Inc. | Gas sensor |
DD294797A5 (en) * | 1990-05-28 | 1991-10-10 | Humboldt-Universitaet Zu Berlin,De | CHEMICAL SEMICONDUCTOR SENSOR |
US5856780A (en) | 1991-10-24 | 1999-01-05 | Capteur Sensors & Analysers, Ltd. | Semiconductor sensors and method for detecting fires using such sensors |
US6265222B1 (en) | 1999-01-15 | 2001-07-24 | Dimeo, Jr. Frank | Micro-machined thin film hydrogen gas sensor, and method of making and using the same |
US6596236B2 (en) | 1999-01-15 | 2003-07-22 | Advanced Technology Materials, Inc. | Micro-machined thin film sensor arrays for the detection of H2 containing gases, and method of making and using the same |
Non-Patent Citations (5)
Title |
---|
APPL. PHYS. LETT., vol. 26, 1975, pages 55 - 57 |
BARTHOLOMAUS L ET AL: "Semiconductor sensors for fluorine detection - optimization for low and high concentrations", SENSORS AND ACTUATORS B, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. 65, no. 1-3, 30 June 2000 (2000-06-30), pages 270 - 272, XP004208656, ISSN: 0925-4005 * |
MORITZ W ET AL: "All solid state room temperature hydrogen sensor", MEET. ABSTR.; MEETING ABSTRACTS; 2004 JOINT INTERNATIONAL MEETING - 206TH MEETING OF THE ELECTROCHEMICAL SOCIETY/2004 FALL MEETING OF THE ELECTROCHEMICAL SOCIETY OF JAPAN, MA 2004-02 2004, 2004, pages 2564, XP009055091 * |
PATENT ABSTRACTS OF JAPAN vol. 012, no. 125 (P - 691) 19 April 1988 (1988-04-19) * |
W. MORITZ, 54 ANNUAL MEETING OF THE INFERNATIONAL SOCIETY OF ELECTROCHEMISTRY, 31 August 2003 (2003-08-31) |
Also Published As
Publication number | Publication date |
---|---|
EP1615021B1 (en) | 2012-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2220482B1 (en) | Gas sensor with improved selectivity | |
EP2105734B1 (en) | Gas sensor | |
EP1620717B1 (en) | Device for detecting a gas or gas mixture | |
EP2399124B1 (en) | Method for detecting the hydrocarbon fraction in gases | |
DE112014003968T5 (en) | Gas concentration measuring device | |
EP0046989B1 (en) | Selective thin-coat gas sensor with high sensitivity and stability to detect and measure gaseous organic pollutants in the air on the basis of tungsten semi-conductor oxide, and method of producing the same | |
DE102004033597B4 (en) | Highly sensitive hydrogen sensor for detecting fires/combustion has a thin-layer structure made from a semiconductor substrate, an insulator, fluoride ion conductors and electrodes | |
DE4301457A1 (en) | Detector for flammable gases, especially methane | |
EP1615021B1 (en) | Hydrogen sensor and use thereof | |
DE69906317T2 (en) | Method for determining the ozone concentration in a gas mixture by means of a semiconductor gas sensor | |
EP0665428B1 (en) | Device for measuring parameters of gases using at least one semi conductor gas-sensor | |
DE19924083C2 (en) | Conductivity sensor for the detection of ozone | |
EP0608483B1 (en) | Method and semiconductor gas sensor device for detecting fire or explosion hazards | |
EP3788356B1 (en) | Method for operating a sensor for detecting at least a portion of a measurement gas component having bound oxygen in a measurement gas | |
DE102006012088B4 (en) | Use of an epitaxial resistance structure as a substance-sensitive sensor, method for operating the substance-sensitive sensor and substance-sensitive sensor | |
EP2264445B1 (en) | Coulometric humidity sensor and corresponding method | |
EP3818366B1 (en) | Method for operating a sensor for detecting at least a portion of a measurement gas component having bound oxygen in a measurement gas | |
DE19808663C2 (en) | Fire detection system and operating procedures for this system | |
DE19808175C1 (en) | Sensor for selectively and separately detecting carbon monoxide and/or methane in room air of the house | |
EP2581890B1 (en) | Method for decreasing the possibility of a fire alarm producing a false alarm | |
EP1621882B1 (en) | Method for detecting combustible gases, in particular hydrogen | |
DE102004060103A1 (en) | Sensor unit for combustible gases, especially suitable for future hydrogen economy, employs heated semiconductor sensor and temperature-sensitive heater | |
DE19701493C1 (en) | Carbon mon:oxide sensor with gallium oxide sensor layer | |
EP0488102A2 (en) | Method and apparatus for measuring gas | |
EP3232188A1 (en) | Coulometric humidity sensor comprising a gel-form electrolyte and method of manufacturing the same for a coulometric humidity sensor comprising a gel-form electrolyte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
AKX | Designation fees paid | ||
17P | Request for examination filed |
Effective date: 20060914 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20061018 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MORITZ, WERNER |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 575310 Country of ref document: AT Kind code of ref document: T Effective date: 20120915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502005013085 Country of ref document: DE Effective date: 20121108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120912 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120912 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120912 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120912 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Effective date: 20120912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120912 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121213 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120912 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120912 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120912 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130112 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121223 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120912 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130114 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120912 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120912 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121212 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120912 |
|
26N | No opposition filed |
Effective date: 20130613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120912 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502005013085 Country of ref document: DE Effective date: 20130613 |
|
BERE | Be: lapsed |
Owner name: MORITZ, WERNER Effective date: 20130731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120912 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130707 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130707 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140201 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502005013085 Country of ref document: DE Effective date: 20140201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130707 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 575310 Country of ref document: AT Kind code of ref document: T Effective date: 20130707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20050707 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130707 |