Nothing Special   »   [go: up one dir, main page]

EP1684543A1 - Method to suppress electro-acoustic feedback - Google Patents

Method to suppress electro-acoustic feedback Download PDF

Info

Publication number
EP1684543A1
EP1684543A1 EP05001063A EP05001063A EP1684543A1 EP 1684543 A1 EP1684543 A1 EP 1684543A1 EP 05001063 A EP05001063 A EP 05001063A EP 05001063 A EP05001063 A EP 05001063A EP 1684543 A1 EP1684543 A1 EP 1684543A1
Authority
EP
European Patent Office
Prior art keywords
frequency
level
feedback
microphone signal
microphone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05001063A
Other languages
German (de)
French (fr)
Inventor
Martin Börsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Success Chip Ltd
Original Assignee
Success Chip Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Success Chip Ltd filed Critical Success Chip Ltd
Priority to EP05001063A priority Critical patent/EP1684543A1/en
Priority to US11/052,398 priority patent/US20060159282A1/en
Priority to CN200510008816.XA priority patent/CN1809220A/en
Publication of EP1684543A1 publication Critical patent/EP1684543A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/02Circuits for transducers, loudspeakers or microphones for preventing acoustic reaction, i.e. acoustic oscillatory feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R27/00Public address systems

Definitions

  • the invention relates to a method for suppressing electro-acoustic feedback in an audio system comprising a microphone which drives a loudspeaker system via an amplifier, in particular in the context of a public address system in accordance with the preamble of claim 1.
  • the invention is in the field of electroacoustic performances, such as live music events.
  • PA systems with microphones are used, with which voices and instruments are detected electroacoustically, amplified and played back via loudspeakers.
  • This can lead to feedback of the amplified microphone signal over the range microphone amplifier that produce unpleasant loud sound events on the speakers.
  • these feedbacks also referred to as feedback, when the detected by the microphone speaker sound signal passes in phase to the microphone payload the distance microphone amplifier.
  • these signals can increasingly rock and generate loud and high sound amplitudes through the loudspeakers at a typical feedback frequency that changes over time.
  • a previous countermeasure in terms of feedback effects provides to turn off the PA system or at least drastically reduce their gain.
  • the generic method mentioned at the outset which proceeds in the time domain in the prior art, runs in the frequency range in which the microphone signal is converted by a fast Fourier transformation.
  • that frequency is rated as a feedback frequency at which the maximum level of the microphone signal exceeds the threshold value in the form of a predetermined ratio of the maximum level of the microphone signal to the overall level of the microphone signal.
  • the microphone signal is provided before the steps of the generic method by all-pass filtering in combination with the fast Fourier transform (FFT) of the time domain in a "bark" scaled frequency range transform.
  • FFT fast Fourier transform
  • the filtering out of the feedback frequency is narrow band, especially by means of a notch filter, which can be realized with a bandwidth of 1/60 octave and does not affect the Audionutzsignal by its use according to the invention.
  • correction procedures for frequency and level are proposed according to the invention, which can be implemented in real time without loss of time.
  • FIG. 1 shows a PA system typically used in live events, comprising a microphone 1 whose microphone signal is fed via a mixer 2 into a power amplifier 3 which drives a loudspeaker 4 with the amplified microphone signal.
  • a microphone 1 whose microphone signal is fed via a mixer 2 into a power amplifier 3 which drives a loudspeaker 4 with the amplified microphone signal.
  • the z. B. is used by an instrumentalist or singer, in-phase fed into the amplifier and then emitted by the speaker. This loop is indicated in Fig. 1 with a circular arrow.
  • the formation of a feedback in the feedback loop is inhibited by detecting the level of the microphone signal on the microphone amplifier path, the readiness for the occurrence of a feedback being detected by the fact that the level of the microphone signal exceeds a threshold value.
  • the frequency of the microphone signal at this critical level is evaluated as a feedback frequency and filtered out of the microphone signal to suppress feedback by means of a narrow band filter such as the notch filter whose frequency characteristic is shown in FIG.
  • the microphone signal is transformed from the time domain to the frequency domain by a combination of a network of all-pass filters and a fast Fourier transform (FFT).
  • FFT fast Fourier transform
  • the level maximum is determined and subjected to error correction by means of two adjacent frequency values (FIG. 3). Once this level reaches a predetermined ratio of the overall level of the microphone signal (a threshold set thereby), the frequency at which that level occurs is rated as the feedback frequency and filtered out of the frequency spectrum by a narrow band filter. If necessary, a filter already existing in the vicinity of this frequency can be shifted to the position of this frequency and brought into effect.
  • Fig. 3 shows the measured energy of some frequency pots.
  • the correction of the maximum level is carried out in accordance with Fig. 4 via a tabular correction value k, which is anti-proportional to the value of the difference "peakdiff" of the maximum level at the frequency f (x) to the adjacent level at the frequency f (x + 1) ,
  • the smaller the difference ("peakdiff", the larger the factor k and thus also the level correction value ⁇ p k (peakdiff).
  • the filter frequency of the notch filter (FIG. 2) is preferably continuously updated accordingly.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

The level of microphone signal is monitored and the readiness for the occurrence of feedback when the level of the microphone signal exceeds a threshold value, and a critical frequency at which this occurs, is determined. The feedback frequency is filtered out of the microphone signal to suppress the feedback. Prior to monitoring the microphone signal level, the signal is converted from the time range to a frequency range by an FFT processor. The frequency at which the maximum level of the microphone signal exceeds the threshold value in the form of a predetermined ratio of the maximum level to the total level of the microphone signal is interpreted as the feedback frequency.

Description

Die Erfindung betrifft ein Verfahren zum Unterdrücken von elektroakustischer Rückkopplung (Feedback) in einem Audiosystem, das ein Mikrophon umfasst, das über einen Verstärker ein Lautsprechersystem treibt, insbesondere im Rahmen einer Beschallungsanlage in Übereinstimmung mit dem Oberbegriff des Anspruch 1.The invention relates to a method for suppressing electro-acoustic feedback in an audio system comprising a microphone which drives a loudspeaker system via an amplifier, in particular in the context of a public address system in accordance with the preamble of claim 1.

Die Erfindung liegt auf dem Gebiet elektroakustischer Darbietungen, wie Live-Musik-Veranstaltungen. Bei derartigen Veranstaltungen kommen sogenannte PA-Anlagen mit Mikrophonen zum Einsatz, mit denen Stimmen und Instrumente elektroakustisch erfasst, verstärkt und über Lautsprecher wiedergegeben werden. Dabei kann es zu Rückkopplungen des verstärkten Mikrophonsignals über die Strecke Mikrophon-Verstärker kommen, die über die Lautsprecher unangenehm laute Schallereignisse produzieren. Insbesondere entstehen diese Rückkopplungen, auch als Feedback bezeichnet, wenn das vom Mikrophon erfasste Lautsprechertonsignal gleichphasig zum Mikrophon-Nutzsignal die Strecke Mikrophon-Verstärker durchläuft. Über die Rückkopplungsschleife können sich diese Signale zunehmend hochschaukeln und über die Lautsprecher hohe und höchste Schallamplituden mit einer typischen Rückkopplungsfrequenz erzeugen, die sich im Verlauf der Zeit ändert. Eine bisherige Gegenmaßnahme in Bezug auf Rückkopplungseffekte sieht vor, die PA-Anlage auszuschalten oder ihre Verstärkung zumindest drastisch zu vermindern. Alternativ ist es bekannt, den Bereich der Rückkopplungsfrequenz, soweit dieser durch Erfahrung ermittelt worden ist, mehr oder weniger breitbandig aus dem Audiofrequenzband herauszufiltern, wobei dieser Frequenzbereich jedoch bei der Wiedergabe fehlt. Eine noch wirksamere Maßnahme bietet das eingangs genannte gattungsgemäße Verfahren, welches die Rückkopplungsfrequenz selbsttätig ermittelt und ausfiltert. Dieses Verfahren läuft jedoch nicht unter allen praxisgerechten Umständen schnell und präzise genug sowie frei von einer Beeinträchtigung der Wiedergabequalität ab, weshalb ein Bedarf an einem Verfahren zum Unterdrücken von elektroakustischer Rückkopplung (Feedback) in einem Audiosystem der eingangs genannten Art besteht, das das Auftreten von Rückkopplungseffekten schnell und zuverlässig verhindert, ohne die Wiedergabequalität zu beeinträchtigen.The invention is in the field of electroacoustic performances, such as live music events. In such events, so-called PA systems with microphones are used, with which voices and instruments are detected electroacoustically, amplified and played back via loudspeakers. This can lead to feedback of the amplified microphone signal over the range microphone amplifier that produce unpleasant loud sound events on the speakers. In particular, these feedbacks, also referred to as feedback, when the detected by the microphone speaker sound signal passes in phase to the microphone payload the distance microphone amplifier. Through the feedback loop, these signals can increasingly rock and generate loud and high sound amplitudes through the loudspeakers at a typical feedback frequency that changes over time. A previous countermeasure in terms of feedback effects provides to turn off the PA system or at least drastically reduce their gain. Alternatively, it is known to filter out the range of the feedback frequency, as far as it has been determined by experience, more or less broadband from the audio frequency band, but this frequency range is missing in the playback. An even more effective measure is provided by the aforementioned generic method, which automatically determines and filters out the feedback frequency. This However, the method does not proceed quickly and accurately enough in all practical circumstances and is free from deterioration of the reproduction quality, and therefore, there is a need for a method for suppressing electro-acoustic feedback in an audio system of the type mentioned in the introduction, which rapidly speeds up the occurrence of feedback effects and reliably prevented without affecting the quality of reproduction.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Unterdrücken von elektroakustischer Rückkopplung (Feedback) in einem Audiosystem zu schaffen, das Rückkopplungseffekte wirksam unterdrückt, ohne die Wiedergabequalität des Audiosystems zu beeinträchtigen.It is an object of the present invention to provide a method for suppressing electro-acoustic feedback in an audio system which effectively suppresses feedback effects without affecting the reproduction quality of the audio system.

Gelöst wird die Aufgabe durch die Merkmale des Anspruchs 1. Weitere Vorteile des erfindungsgemäßen Verfahrens sind in den Unteransprüchen angegeben.The object is achieved by the features of claim 1. Further advantages of the method according to the invention are specified in the dependent claims.

Nach dem Grundgedanken der Erfindung läuft das eingangs genannte gattungsgemäße Verfahren, das im Stand der Technik im Zeitbereich abläuft, im Frequenzbereich ab, in welchen das Mikrophonsignal durch schnelle Fourier-Transformation überführt wird. Dabei wird erfindungsgemäß diejenige Frequenz als Rückkopplungsfrequenz gewertet, bei welcher der maximale Pegel des Mikrophonsignals den Schwellenwert in Gestalt eines vorbestimmten Verhältnisses des maximalen Pegels des Mikrophonsignals zum Gesamtpegel des Mikrophonsignals überschreitet.According to the basic concept of the invention, the generic method mentioned at the outset, which proceeds in the time domain in the prior art, runs in the frequency range in which the microphone signal is converted by a fast Fourier transformation. According to the invention, that frequency is rated as a feedback frequency at which the maximum level of the microphone signal exceeds the threshold value in the form of a predetermined ratio of the maximum level of the microphone signal to the overall level of the microphone signal.

Um beim erfindungsgemäßen Verfahren die Genauigkeit bei der Erkennung der Rückkopplungsfrequenz zu optimieren, ist vorgesehen, das Mikrophonsignal vor Ausführung der Schritte des gattungsgemäßen Verfahrens durch Allpassfilterung in Kombination mit der schnellen Fourier-Transformation (FFT) vom Zeitbereich in einen "bark"-skalierten Frequenzbereich zu transformieren.In order to optimize the accuracy in the detection of the feedback frequency in the method according to the invention, the microphone signal is provided before the steps of the generic method by all-pass filtering in combination with the fast Fourier transform (FFT) of the time domain in a "bark" scaled frequency range transform.

Bevorzugt erfolgt das Herausfiltern der Rückkopplungsfrequenz schmalbandig, vor allem mittels einem Notchfilter, das mit einer Bandbreite von 1/60 Oktave realisierbar ist und durch seinen erfindungsgemäßen Einsatz das Audionutzsignal nicht beeinträchtigt.Preferably, the filtering out of the feedback frequency is narrow band, especially by means of a notch filter, which can be realized with a bandwidth of 1/60 octave and does not affect the Audionutzsignal by its use according to the invention.

Um bei der hohen Erfassungsgeschwindigkeit von Anzeichen einer Rückkopplung die Rückkopplungsfrequenz und den dort auftretenden Pegel hinreichend genau ermitteln zu können, werden erfindungsgemäß Korrekturprozeduren an Frequenz und Pegel vorgeschlagen, die ohne Zeitverlust in Echtzeit realisierbar sind.In order to be able to determine the feedback frequency and the level occurring there with sufficient accuracy at the high detection speed of signs of feedback, correction procedures for frequency and level are proposed according to the invention, which can be implemented in real time without loss of time.

Folgende Korrekturprozeduren sind erfindungsgemäß vorgesehen:

  • Der maximale Mikrophonpegel wird unter Bezug auf zwei benachbarte kleinere Pegel niedrigerer bzw. höherer Frequenz einer Fehlerkorrektur unterzogen. Bevorzugt wird die Rückkopplungsfrequenz unter Bezug auf zwei benachbarte Frequenzen mit kleinerem Mikrophonpegel als dem maximalen einer Fehlerkorrektur unterzogen. Dabei wird der Wert der Rückkopplungsfrequenz bevorzugt einer Korrektur unterworfen, indem er durch einen Wert ersetzt wird, der sich durch lineare Interpolation aus zwei benachbarten Frequenzwerten ergibt.
  • Der Signalpegel bei der Rückkopplungsfrequenz wird relativ zu einem benachbarten Signalpegel einer Korrektur unterworfen. Bevorzugt erfolgt die Korrektur relativ zu demjenigen benachbarten Signalpegel von zwei benachbarten Signalpegeln, dessen Wert am nächsten zum Signalpegel bei der Rückkopplungsfrequenz liegt.
The following correction procedures are provided according to the invention:
  • The maximum microphone level is error corrected with respect to two adjacent smaller, lower and higher frequency levels, respectively. Preferably, the feedback frequency is error corrected with respect to two adjacent frequencies having a lower microphone level than the maximum. In this case, the value of the feedback frequency is preferably subjected to a correction by being replaced by a value resulting from linear interpolation from two adjacent frequency values.
  • The signal level at the feedback frequency is subjected to correction relative to an adjacent signal level. Preferably, the correction is relative to the adjacent signal level of two adjacent signal levels whose value is closest to the signal level at the feedback frequency.

Zusammengefasst lassen sich mit dem erfindungsgemäßen Verfahren folgende Vorteile erzielen:

  • Rückkopplungen lassen sich sehr schnell erkennen und gegensteuern, vor allen durch den Einsatz einer schnellen Fourier-Transformation (FFT).
  • Rückkopplungen lassen sich genau erkennen und gegensteuern, vor allem durch Verwendung eines Netzwerks von Allpassfiltern zur Konvertierung der FFT in einen "bark"-skalierten Frequenzbereich.
  • Das Audiosignal bzw. Mikrophonsignal wird durch den Einsatz sehr schmalbandiger Filter zur Unterdrückung von Rückkopplung so gut wie nicht beeinträchtigt.
  • Durch Nachführen der Filterfrequenz des schmalbandigen Filters kann ein Auswandern der Rückkopplungsfrequenz zeitnah verfolgt werden.
In summary, the following advantages can be achieved with the method according to the invention:
  • Feedback can be detected and counteracted very quickly, especially by using a fast Fourier transform (FFT).
  • Feedback can be accurately detected and counteracted, especially by using a network of allpass filters to convert the FFT to a "bark" scaled frequency range.
  • The audio signal or microphone signal is virtually unaffected by the use of very narrow band filters to suppress feedback.
  • By tracking the filter frequency of the narrow-band filter, emigration of the feedback frequency can be tracked in a timely manner.

Schließlich ist erfindungsgemäß vorgesehen, das schmalbandige Filter zum Herausfiltern der Rückkopplungsfrequenz nachzuführen, wenn diese sich im Verlauf der Zeit ändert. Hierdurch kann der schmalbandige Ansatz der Ausfilterung auch bei Änderung der Rückkopplungsfrequenz beibehalten werden, ohne die Nachteile einer breitbandigeren Filterung für diesen Fall anwenden zu müssen.Finally, it is provided according to the invention to track the narrow-band filter for filtering out the feedback frequency, if this changes over time. In this way, the narrow-band approach of the filtering can be maintained even if the feedback frequency changes, without having to use the disadvantages of a broadband filtering for this case.

Nachfolgend wird die Erfindung anhand der Zeichnung beispielhaft näher erläutert; in dieser zeigen:

Fig. 1
schematisch eine PA-Audiosystem zur Verdeutlichung der Ausbildung einer Rückkopplungsschleife,
Fig. 2
die Filterkurve eines Notchfilters einer Bandbreite von 1/60 Oktave,
Fig. 3
schematisch anhand eines Frequenz/Pegel-Diagramms die Arbeitsweise einer Frequenzkorrekturprozedur,
Fig. 4
schematisch anhand eines Frequenz/Pegel-Diagramms die Arbeitsweise einer Pegelkorrekturprozedur.
The invention will be explained in more detail by way of example with reference to the drawing; in this show:
Fig. 1
schematically a PA audio system to illustrate the formation of a feedback loop,
Fig. 2
the filter curve of a notch filter of a bandwidth of 1/60 octave,
Fig. 3
schematically the operation of a frequency correction procedure based on a frequency / level diagram,
Fig. 4
schematically using a frequency / level diagram, the operation of a level correction procedure.

In Fig. 1 ist eine typischerweise bei Live-Ereignissen zu Einsatz kommende PA-Anlage gezeigt, die ein Mikrophon 1 umfasst, dessen Mikrophonsignal über ein Mischpult 2 in einen Leistungsverstärker 3 eingespeist wird, der einen Lautsprecher 4 mit dem verstärkten Mikrophonsignal treibt. In dieser Anlage entsteht eine Feedback-Schleife bzw. Rückkopplungsschleife, wenn der vom Lautsprecher abgestrahlte Schall vom Mikrophon 1 eingefangen und zusammen mit dem Nutzsignal des Mikrophons, das z. B. von einem Instrumentalisten oder Sänger genutzt wird, gleichphasig in den Verstärker eingespeist und daraufhin vom Lautsprecher abgestrahlt wird. Diese Schleife ist in Fig. 1 mit einem kreisförmigen Pfeil bezeichnet.FIG. 1 shows a PA system typically used in live events, comprising a microphone 1 whose microphone signal is fed via a mixer 2 into a power amplifier 3 which drives a loudspeaker 4 with the amplified microphone signal. In this system creates a feedback loop or feedback loop when the sound emitted by the speaker captured by the microphone 1 and together with the useful signal of the microphone, the z. B. is used by an instrumentalist or singer, in-phase fed into the amplifier and then emitted by the speaker. This loop is indicated in Fig. 1 with a circular arrow.

Erfindungsgemäß wird die Ausbildung einer Rückkopplung in der Rückkopplungsschleife unterbunden, indem der Pegel des Mikrophonsignals auf der Mikrophon-Verstärkerstrecke erfasst wird, wobei die Bereitschaft für das Auftreten einer Rückkopplung dadurch erkannt wird, dass der Pegel des Mikrophonsignals einen Schwellenwert übersteigt. Die Frequenz des Mikrophonsignals bei diesem kritischen Pegel wird als Rückkopplungsfrequenz gewertet und aus dem Mikrophonsignal zur Unterdrückung der Rückkopplung mittels eines schmalbandigen Filters, wie etwa dem Notchfilter ausgefiltert, dessen Frequenzkennlinie in Fig. 2 gezeigt ist.According to the invention, the formation of a feedback in the feedback loop is inhibited by detecting the level of the microphone signal on the microphone amplifier path, the readiness for the occurrence of a feedback being detected by the fact that the level of the microphone signal exceeds a threshold value. The frequency of the microphone signal at this critical level is evaluated as a feedback frequency and filtered out of the microphone signal to suppress feedback by means of a narrow band filter such as the notch filter whose frequency characteristic is shown in FIG.

Um die Rückkopplungsfrequenz schnell und genau zu ermitteln, wird das Mikrophonsignal durch eine Kombination von einem Netzwerk aus Allpassfiltern und einer schnellen Fourier-Transformation (FFT) vom Zeitbereich in den Frequenzbereich transformiert. Durch diese Kombination, die einem "warped" FFT entspricht, entsteht ein "bark"-skaliertes Frequenzspektrum, das einer logarithmischen Skalierung sehr nahe kommt. In diesem Frequenzspektrum wird das Pegel-Maximum ermittelt und mit Hilfe von zwei benachbarten Frequenzwerten einer Fehlerkorrektur unterworfen (Fig. 3). Sobald dieser Pegel ein vorbestimmtes Verhältnis des Gesamtpegels des Mikrophonsignals (einen hierdurch festgelegten Schwellenwert) erreicht, wird die Frequenz, bei welcher dieser Pegel auftritt als Rückkopplungsfrequenz gewertet bzw. definiert und mittels eines schmalbandigen Filters aus dem Frequenzspektrum herausgefiltert. Gegebenenfalls kann ein in der Nähe dieser Frequenz bereits existierendes Filter an die Position dieser Frequenz verschoben und zur Wirkung gebracht werden.To quickly and accurately determine the feedback frequency, the microphone signal is transformed from the time domain to the frequency domain by a combination of a network of all-pass filters and a fast Fourier transform (FFT). By this combination, which corresponds to a "warped" FFT, This results in a "bark" scaled frequency spectrum, which comes very close to logarithmic scaling. In this frequency spectrum, the level maximum is determined and subjected to error correction by means of two adjacent frequency values (FIG. 3). Once this level reaches a predetermined ratio of the overall level of the microphone signal (a threshold set thereby), the frequency at which that level occurs is rated as the feedback frequency and filtered out of the frequency spectrum by a narrow band filter. If necessary, a filter already existing in the vicinity of this frequency can be shifted to the position of this frequency and brought into effect.

Fig. 3 zeigt die gemessene Energie einiger Frequenztöpfe. Die genaue Bestimmung der Rückkopplungsfrequenz erfolgt mit Hilfe einer linearen Interpolation, die in Fig. 3 durch zwei Geraden gezeigt ist. Zwei zur Rückkopplungsfrequenz benachbarte Frequenzwerte werden jeweils mit einer Steigung (+/-) versehen. Dadurch entsteht im Schnittpunkt der beiden Geraden die interpolierte Position der Frequenz mit maximaler Energie: Δ f = k + [ 3 f ( x + 1 ) + f ( x 1 ) ] / [ f ( x 1 ) + f ( x + 1 ) ]

Figure imgb0001
Fig. 3 shows the measured energy of some frequency pots. The exact determination of the feedback frequency is made by means of a linear interpolation, which is shown in FIG. 3 by two straight lines. Two frequency values adjacent to the feedback frequency are each provided with a slope (+/-). This results in the interpolated position of the frequency with maximum energy at the intersection of the two straight lines: Δ f = k + [ 3 * f ( x + 1 ) + f ( x - 1 ) ] / [ f ( x - 1 ) + f ( x + 1 ) ]
Figure imgb0001

Die Korrektur des maximalen Pegels erfolgt in Übereinstimmung mit Fig. 4 über einen tabellarischen Korrekturwert k, der antiproportional zum Wert der Differenz "peakdiff" des maximalen Pegels bei der Frequenz f(x) zum benachbarten Pegel bei der Frequenz f(x+1) verläuft. Je geringer die Differenz ("peakdiff" ist, desto größer wird der Faktor k und damit auch der pegelkorrekturwert Δp = k(peakdiff).The correction of the maximum level is carried out in accordance with Fig. 4 via a tabular correction value k, which is anti-proportional to the value of the difference "peakdiff" of the maximum level at the frequency f (x) to the adjacent level at the frequency f (x + 1) , The smaller the difference ("peakdiff", the larger the factor k and thus also the level correction value Δp = k (peakdiff).

Wenn die zu einem Zeitpunkt ermittelte Rückkopplungsfrequenz sich als Funktion der Zeit relativ geringfügig ändert, wird die Filterfrequenz des Notchfilters (Fig. 2) bevorzugt entsprechend ständig nachgeführt.If the feedback frequency determined at a time changes relatively slightly as a function of time, the filter frequency of the notch filter (FIG. 2) is preferably continuously updated accordingly.

Claims (13)

Verfahren zum Unterdrücken von elektroakustischer Rückkopplung (Feedback) in einem Audiosystem, das ein Mikrophon umfasst, das über einen Verstärker ein Lautsprechersystem treibt, insbesondere im Rahmen einer Beschallungsanlage, mit den Schritten: a) Überwachen des Pegels des Mikrophonsignals auf der Mikrophon-Verstärkerstrecke, b) Ermitteln der Bereitschaft für das Auftreten einer Rückkopplung, wenn der Pegel des Mikrophonsignals einen Schwellenwert übersteigt, c) Erfassen einer kritischen Frequenz, bei welcher der Pegel des Mikrophonsignals den Schwellenwert übersteigt, und Werten dieser Frequenz als Rückkopplungsfrequenz, und d) Ausfiltern der Rückkopplungsfrequenz aus dem Mikrophonsignal zur Unterdrückung der Rückkopplung, dadurch gekennzeichnet, dass
das Mikrophonsignal vor dem Schritt a) durch eine schnelle Fourier-Transformation (FFT) vom Zeitbereich in einen Frequenzbereich transformiert wird und dass diejenige Frequenz als Rückkopplungsfrequenz gewertet wird, bei welcher der maximale Pegel des Mikrophonsignals den Schwellenwert in Gestalt eines vorbestimmten Verhältnisses des maximalen Pegels des Mikrophonsignals zum Gesamtpegel des Mikrophonsignals überschreitet.
Method for suppressing electro-acoustic feedback in an audio system comprising a microphone which drives a loudspeaker system via an amplifier, in particular in the context of a public address system, with the steps: a) monitoring the level of the microphone signal on the microphone amplifier section, b) determining the readiness for feedback to occur when the level of the microphone signal exceeds a threshold, c) detecting a critical frequency at which the level of the microphone signal exceeds the threshold, and values of that frequency as the feedback frequency, and d) filtering out the feedback frequency from the microphone signal to suppress the feedback, characterized in that
the microphone signal is transformed from the time domain into a frequency domain by a fast Fourier transform (FFT) prior to step a) and the frequency is considered to be the feedback frequency at which the maximum level of the microphone signal is the threshold in the form of a predetermined maximum level ratio of the Microphone signal to the overall level of the microphone signal exceeds.
Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Mikrophonsignal vor dem Schritt a) durch Allpassfilterung in Kombination mit der schnellen Fourier-Transformation (FFT) vom Zeitbereich in einen "bark"-skalierten Frequenzbereich transformiert wird.A method according to claim 2, characterized in that the microphone signal is transformed prior to step a) by all-pass filtering in combination with the fast Fourier transform (FFT) of the time domain in a "bark" scaled frequency range. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der maximale Mikrophonpegel unter Bezug auf zwei benachbarte kleinere Pegel niedrigerer bzw. höherer Frequenz einer Fehlerkorrektur unterzogen wird.A method according to claim 1 or 2, characterized in that the maximum microphone level is error corrected with respect to two adjacent lower and higher frequency lower levels, respectively. Verfahren nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass die Rückkopplungsfrequenz unter Bezug auf zwei benachbarte Frequenzen mit kleinerem Mikrophonsignalpegel als dem maximalen Pegel einer Fehlerkorrektur unterzogen wird.A method according to claim 1 or 3, characterized in that the feedback frequency is subjected to error correction with reference to two adjacent frequencies having a smaller microphone signal level than the maximum level. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Wert der Rückkopplungsfrequenz einer Korrektur relativ zu benachbarten Frequenzwerten unterworfen wird.Method according to one of claims 1 to 4, characterized in that the value of the feedback frequency is subjected to a correction relative to adjacent frequency values. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der Wert der Rückkopplungsfrequenz einer Korrektur unterworfen wird, indem er durch einen Wert ersetzt wird, der sich durch lineare Interpolation aus zwei benachbarten Frequenzwerten ergibt.A method according to claim 5, characterized in that the value of the feedback frequency is subjected to correction by replacing it with a value obtained by linear interpolation from two adjacent frequency values. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die beiden benachbarten Frequenzwerte jeweils eine Gerade derselben Steigung gelegt wird, deren Schnittpunkt den Wert der kritischen Frequenz bestimmt.A method according to claim 6, characterized in that the two adjacent frequency values in each case a straight line of the same slope is placed, whose intersection determines the value of the critical frequency. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Signalpegel bei der Rückkopplungsfrequenz relativ zu einem benachbarten Signalpegel einer Korrektur unterworfen wird.Method according to one of claims 1 to 7, characterized in that the signal level at the feedback frequency is subjected to a correction relative to an adjacent signal level. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Korrektur relativ zu demjenigen benachbarten Signalpegel von zwei benachbarten Signalpegeln erfolgt, dessen Wert am nächsten zum Signalpegel bei der Rückkopplungsfrequenz liegt.A method according to claim 8, characterized in that the correction is made relative to the adjacent signal level of two adjacent signal levels whose value is closest to the signal level at the feedback frequency. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der Signalpegel bei der Rückkopplungsfrequenz einer Korrektur durch Addieren der Pegeldifferenz zum benachbarten Pegel multipliziert mit einem Korrekturwert unterworfen wird, der antiproportional zur Pegeldifferenz und bevorzugt tabellarisch gespeichert ist.A method according to claim 8 or 9, characterized in that the signal level at the feedback frequency is subjected to correction by adding the level difference to the adjacent level multiplied by a correction value which is anti-proportional to the level difference and preferably stored in tabular form. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Rückkopplungsfrequenz zur Unterdrückung der Rückkopplung aus dem Mikrophonsignal durch ein Filter schmalbandig ausgefiltert.Method according to one of claims 1 to 10, characterized in that the feedback frequency for suppressing the feedback from the microphone signal filtered by a narrow band filter. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das schmalbandige Filter ein Notchfilter ist.A method according to claim 11, characterized in that the narrow-band filter is a notch filter. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass das schmalbandige Filter der kritischen Frequenz nachgeführt wird, wenn diese sich im Verlauf der Zeit ändert.A method according to claim 11 or 12, characterized in that the narrow-band filter is tracked to the critical frequency as it changes over time.
EP05001063A 2005-01-19 2005-01-19 Method to suppress electro-acoustic feedback Withdrawn EP1684543A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05001063A EP1684543A1 (en) 2005-01-19 2005-01-19 Method to suppress electro-acoustic feedback
US11/052,398 US20060159282A1 (en) 2005-01-19 2005-02-07 Method for suppressing electroacoustic feedback
CN200510008816.XA CN1809220A (en) 2005-01-19 2005-02-23 Method for constraining electroacoustic feedback

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05001063A EP1684543A1 (en) 2005-01-19 2005-01-19 Method to suppress electro-acoustic feedback

Publications (1)

Publication Number Publication Date
EP1684543A1 true EP1684543A1 (en) 2006-07-26

Family

ID=34933375

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05001063A Withdrawn EP1684543A1 (en) 2005-01-19 2005-01-19 Method to suppress electro-acoustic feedback

Country Status (3)

Country Link
US (1) US20060159282A1 (en)
EP (1) EP1684543A1 (en)
CN (1) CN1809220A (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7664275B2 (en) * 2005-07-22 2010-02-16 Gables Engineering, Inc. Acoustic feedback cancellation system
US20070104335A1 (en) * 2005-11-09 2007-05-10 Gpe International Limited Acoustic feedback suppression for audio amplification systems
JP4697267B2 (en) * 2008-07-01 2011-06-08 ソニー株式会社 Howling detection apparatus and howling detection method
KR101671389B1 (en) * 2010-03-05 2016-11-01 삼성전자 주식회사 Adaptive notch filter with variable bandwidth, and method and apparatus for cancelling howling using the adaptive notch filter with variable bandwidth
US8908877B2 (en) 2010-12-03 2014-12-09 Cirrus Logic, Inc. Ear-coupling detection and adjustment of adaptive response in noise-canceling in personal audio devices
JP5937611B2 (en) 2010-12-03 2016-06-22 シラス ロジック、インコーポレイテッド Monitoring and control of an adaptive noise canceller in personal audio devices
US8948407B2 (en) 2011-06-03 2015-02-03 Cirrus Logic, Inc. Bandlimiting anti-noise in personal audio devices having adaptive noise cancellation (ANC)
US8958571B2 (en) 2011-06-03 2015-02-17 Cirrus Logic, Inc. MIC covering detection in personal audio devices
US9318094B2 (en) 2011-06-03 2016-04-19 Cirrus Logic, Inc. Adaptive noise canceling architecture for a personal audio device
US9824677B2 (en) 2011-06-03 2017-11-21 Cirrus Logic, Inc. Bandlimiting anti-noise in personal audio devices having adaptive noise cancellation (ANC)
US9325821B1 (en) 2011-09-30 2016-04-26 Cirrus Logic, Inc. Sidetone management in an adaptive noise canceling (ANC) system including secondary path modeling
US9319781B2 (en) 2012-05-10 2016-04-19 Cirrus Logic, Inc. Frequency and direction-dependent ambient sound handling in personal audio devices having adaptive noise cancellation (ANC)
US9123321B2 (en) 2012-05-10 2015-09-01 Cirrus Logic, Inc. Sequenced adaptation of anti-noise generator response and secondary path response in an adaptive noise canceling system
US9318090B2 (en) 2012-05-10 2016-04-19 Cirrus Logic, Inc. Downlink tone detection and adaptation of a secondary path response model in an adaptive noise canceling system
US9532139B1 (en) 2012-09-14 2016-12-27 Cirrus Logic, Inc. Dual-microphone frequency amplitude response self-calibration
US9369798B1 (en) 2013-03-12 2016-06-14 Cirrus Logic, Inc. Internal dynamic range control in an adaptive noise cancellation (ANC) system
US9414150B2 (en) 2013-03-14 2016-08-09 Cirrus Logic, Inc. Low-latency multi-driver adaptive noise canceling (ANC) system for a personal audio device
US9502020B1 (en) * 2013-03-15 2016-11-22 Cirrus Logic, Inc. Robust adaptive noise canceling (ANC) in a personal audio device
US9578432B1 (en) 2013-04-24 2017-02-21 Cirrus Logic, Inc. Metric and tool to evaluate secondary path design in adaptive noise cancellation systems
US9369557B2 (en) 2014-03-05 2016-06-14 Cirrus Logic, Inc. Frequency-dependent sidetone calibration
US9319784B2 (en) 2014-04-14 2016-04-19 Cirrus Logic, Inc. Frequency-shaped noise-based adaptation of secondary path adaptive response in noise-canceling personal audio devices
CN105007552A (en) * 2015-06-10 2015-10-28 深圳市信太通讯有限公司 High-fidelity audio system
JP6964581B2 (en) 2015-08-20 2021-11-10 シーラス ロジック インターナショナル セミコンダクター リミテッド Feedback Adaptive Noise Cancellation (ANC) Controllers and Methods with Feedback Responses Partially Provided by Fixed Response Filters
US10540983B2 (en) 2017-06-01 2020-01-21 Sorenson Ip Holdings, Llc Detecting and reducing feedback
CN109905811B (en) * 2019-01-24 2021-02-26 珠海慧联科技有限公司 Economical acoustic feedback control method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3183304A (en) * 1962-03-07 1965-05-11 Bell Telephone Labor Inc Sound amplification system
US4232192A (en) * 1978-05-01 1980-11-04 Starkey Labs, Inc. Moving-average notch filter
EP0599450A2 (en) * 1992-11-25 1994-06-01 Matsushita Electric Industrial Co., Ltd. Sound amplifying apparatus with automatic howl-suppressing function
US5677987A (en) * 1993-11-19 1997-10-14 Matsushita Electric Industrial Co., Ltd. Feedback detector and suppressor
WO2003036621A1 (en) * 2001-10-22 2003-05-01 Motorola, Inc., A Corporation Of The State Of Delaware Method and apparatus for enhancing loudness of an audio signal

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3257510A (en) * 1962-10-15 1966-06-21 Industrial Res Prod Inc Feedback control apparatus
US4088835A (en) * 1977-02-07 1978-05-09 Rauland-Borg Corporation Comprehensive feedback elimination system employing notch filter
JP3152160B2 (en) * 1996-11-13 2001-04-03 ヤマハ株式会社 Howling detection prevention circuit and loudspeaker using the same
JP3984842B2 (en) * 2002-03-12 2007-10-03 松下電器産業株式会社 Howling control device
US7536022B2 (en) * 2002-10-02 2009-05-19 Phonak Ag Method to determine a feedback threshold in a hearing device
US7664275B2 (en) * 2005-07-22 2010-02-16 Gables Engineering, Inc. Acoustic feedback cancellation system
US20070104335A1 (en) * 2005-11-09 2007-05-10 Gpe International Limited Acoustic feedback suppression for audio amplification systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3183304A (en) * 1962-03-07 1965-05-11 Bell Telephone Labor Inc Sound amplification system
US4232192A (en) * 1978-05-01 1980-11-04 Starkey Labs, Inc. Moving-average notch filter
EP0599450A2 (en) * 1992-11-25 1994-06-01 Matsushita Electric Industrial Co., Ltd. Sound amplifying apparatus with automatic howl-suppressing function
US5677987A (en) * 1993-11-19 1997-10-14 Matsushita Electric Industrial Co., Ltd. Feedback detector and suppressor
WO2003036621A1 (en) * 2001-10-22 2003-05-01 Motorola, Inc., A Corporation Of The State Of Delaware Method and apparatus for enhancing loudness of an audio signal

Also Published As

Publication number Publication date
US20060159282A1 (en) 2006-07-20
CN1809220A (en) 2006-07-26

Similar Documents

Publication Publication Date Title
EP1684543A1 (en) Method to suppress electro-acoustic feedback
DE112009005469B4 (en) Loudspeaker protection device and method therefor
EP1366564B1 (en) Device for the noise-dependent adjustment of sound volumes
DE112012006458B4 (en) signal processing device
DE10118653C2 (en) Method for noise reduction
EP2244491B2 (en) Method for operating a hearing aid with feedback suppression and hearing aid with a diplexer
DE102006047965A1 (en) Method for the reduction of occlusion effects with acoustic device locking an auditory passage, involves using signal from transmission path of audio signal, and transmission function is observed by output of output converter
DE112012000052T5 (en) Method and device for hiding wind noise
DE112012006457B4 (en) Frequency characteristic modification device
EP1192837B1 (en) Method for processing an audio signal
DE102005019677A1 (en) Improvements for or in relation to signal processing
DE2446982A1 (en) PROCEDURE FOR SPEAKER SYSTEM OPERATION
EP4324222A1 (en) Device and method for generating a first control signal and a second control signal using linearisation and/or bandwidth expansion
EP1107640A2 (en) Device for creating harmonics in an audio signal
EP0592787B1 (en) Procedure for improvement of acoustic feedback suppression of electro-acoustic devices
DE2456468B2 (en) Electroacoustic «sound reproduction device with an amplifier controlled by a noise detector
EP1886536A1 (en) Method for compensating for changes in reproduced audio signals and a corresponding device
EP1401243B1 (en) Method for optimizing an audio signal
DE2426377C3 (en)
DE102014100985B4 (en) Apparatus and method of multi-sensor sound recording
DE102012008557A1 (en) Method for suppressing feedback in electro-acoustic system e.g. hearing aid, involves converting processed discrete frequency signal into processed time-based signal that is converted to output processed acoustic signal
DE102018207604A1 (en) Linear phase FIR audio filter, generation process and signal processor
DE19948172B4 (en) Modulation control in a signal processing unit
DE3501316A1 (en) SOUND PLAY DEVICE
WO2024194299A1 (en) Psychoacoustic calibration of an audio playback system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20070105

17Q First examination report despatched

Effective date: 20070206

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20070627