EP1682840B1 - Heat exchanger in particular for motor vehicles - Google Patents
Heat exchanger in particular for motor vehicles Download PDFInfo
- Publication number
- EP1682840B1 EP1682840B1 EP04765083A EP04765083A EP1682840B1 EP 1682840 B1 EP1682840 B1 EP 1682840B1 EP 04765083 A EP04765083 A EP 04765083A EP 04765083 A EP04765083 A EP 04765083A EP 1682840 B1 EP1682840 B1 EP 1682840B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- exchanger according
- inlet
- outlet
- pipes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003507 refrigerant Substances 0.000 claims description 73
- 239000002826 coolant Substances 0.000 claims description 64
- 239000002184 metal Substances 0.000 claims description 7
- 238000005476 soldering Methods 0.000 claims description 2
- 230000009977 dual effect Effects 0.000 claims 4
- 239000000853 adhesive Substances 0.000 claims 1
- 230000001070 adhesive effect Effects 0.000 claims 1
- 239000012530 fluid Substances 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 238000000034 method Methods 0.000 description 7
- 238000005192 partition Methods 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 239000003570 air Substances 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/026—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
- F28F9/0278—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
- F28D7/1684—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
- F28D7/1692—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section with particular pattern of flow of the heat exchange media, e.g. change of flow direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F27/00—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
- F28F27/02—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/025—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/06—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
- F25B2309/061—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
Definitions
- the invention relates to a heat exchanger, in particular for motor vehicles, having a heat exchanger block which can be flowed through by a first medium on the primary side and can be flowed around on the secondary side by a second medium.
- the local heat exchanger consists inter alia of flat tubes with flow channels, z. B. extruded multi-chamber pipes, which are flowed through by a first medium, preferably a refrigerant, in particular CO2.
- the flat tubes are arranged parallel to each other and have flat tube ends, which are held in so-called end pieces, consisting of a bottom plate, a baffle plate and a cover plate. The end pieces each form a distribution or deflection unit for the refrigerant.
- a particularly pressure-resistant heat exchanger is provided, which is particularly suitable for use in a powered with CO2 refrigerant circuit for a motor vehicle air conditioning, on the one hand as an evaporator and on the other hand as a gas cooler, wherein the secondary side loading takes place in each case by ambient air.
- a heat exchanger in particular for a motor vehicle, is provided with a heat exchanger block, which on the primary side of a first medium and throughflowable on the secondary side of a second medium umströmbare pipes with flow channels and pipe ends, at least one Has tube ends receiving end piece with at least one base plate, distribution or baffle plate and cover plate and at least one connected to one or one end piece inlet and / or outlet chamber, wherein the first medium from the inlet chamber through the flow channels to the outlet chamber is conductive, and with a housing jacket enclosing the tubes with an inlet and an outlet for the second medium, wherein between the tubes corrugated sheets are arranged with longitudinal channels and the corrugated sheets are parallelogram-shaped and approximately triangular or trapezoidal inflow and outflow leave areas between the pipes.
- a heat exchanger block consisting of tubes and at least one end piece, surrounded by a housing shell, through which a second medium is conductive.
- the heat exchanger according to the invention can be used in this heat pump cycle both as a CO2 evaporator, which absorbs heat from the coolant, as well as a CO2 gas cooler, the heat to the coolant.
- the housing shell which can be produced as a sheet metal part, allows many variations with regard to the flow guidance of the Coolant, so that a DC, countercurrent, crossflow and DC / counter crossflow is possible.
- the most diverse requirements for the heat exchanger according to the invention can be taken into account.
- the inlet and the outlet for the second medium may be arranged on the same side, on opposite sides and at opposite ends of the housing shell, wherein the housing jacket is flowed through in particular in the longitudinal direction. This results in the possibility of the direct current and the countercurrent of the first and the second medium.
- distribution and collection chambers are formed in the housing shell in the region of inlet and outlet, so that the second medium is distributed uniformly over the individual gaps between the tubes or collected at the outlet.
- turbulence inserts or corrugated ribs are arranged between the tubes, which form longitudinal channels and thus a guide in the longitudinal direction of the tubes for the second medium.
- these turbulence inserts stretch only between the inlet and the outlet of the second medium, so that in the region of inlet and outlet in each case an inflow and an outflow are left, in which a cross-flow of the second medium, d. H. can be transverse to the longitudinal direction of the tubes.
- the tubes from the second medium can also be overflowed in the transverse direction, namely one or more flooded.
- This can be done by arranging lateral headers and partitions in conjunction with deflection boxes in the housing shell.
- the turbulence inserts or the ribbing between the tubes is then designed so that transverse channels for guiding the second medium result. This ensures that both media, such as a refrigerant and a coolant can be performed in cross-DC or cross-countercurrent. This results in a more intense heat exchange.
- the first medium can be performed both single-flow and double-flow through the tubes, wherein the inlet and outlet chambers are arranged for the first medium either at an end piece or at different end pieces.
- the heat exchanger according to the invention the most diverse forms and combinations of DC, counter and cross-flow between the first and second medium can be realized, depending on the requirements of the heat exchanger, for example in a refrigerant circuit and in a coolant circuit of an internal combustion engine of a motor vehicle.
- Fig. 1 shows a refrigerant / coolant heat exchanger 1, ie a heat exchanger, the primary side of a refrigerant, for. B. CO2 (R744) and the secondary side is flowed through by a coolant, which also serves the cooling of an internal combustion engine, not shown, of a motor vehicle.
- a coolant which also serves the cooling of an internal combustion engine, not shown, of a motor vehicle.
- the refrigerant circuit when operated in the heat pumping process, can be used as a heat source for heating the passenger compartment. This is the Coolant in the evaporator Heat extracted, pumped to a higher temperature level and returned to the gas cooler as a heat input to the coolant.
- this heat exchanger 1 can be used both as an evaporator and as a gas cooler in the CO2 heat pump process.
- the CO2 process is known to take place at elevated pressure compared to the conventional refrigerant process with R134a: for example, a compression takes place up to about 120 bar, which thus occur in the gas cooler. Therefore, the heat exchanger with respect to the refrigerant guide must be dimensioned and formed particularly pressure resistant.
- the heat exchanger 1 has a housing jacket 2, which is approximately box-shaped and has four longitudinal sides 2a-2d, of which the longitudinal side 2a and 2b are visible in the drawing.
- the housing shell 2 is closed at the end by end pieces, of which only the end piece 3 is visible in the drawing.
- a refrigerant inlet pipe 4 and a refrigerant outlet pipe 5 are fixed.
- a coolant inlet nozzle 6 (only partially visible) and a coolant outlet nozzle 7 are arranged.
- the heat exchanger 1 is connected, on the one hand, to a refrigerant, in particular a CO2 cycle (not shown) and, on the other hand, to a cooling circuit (not shown) of an internal combustion engine of a motor vehicle.
- Fig. 1a shows the heat exchanger 1 according to Fig. 1 without housing shell 2, wherein the same reference numerals are used for the same parts.
- the end piece 3, to which the refrigerant collecting pipes 4, 5 are fastened, is opposite an end piece 8, which is connected by a plurality of flat tubes 9 with the end piece 3.
- On the uppermost flat tube 9.1 a corrugated sheet 10 is arranged with extending in the longitudinal direction of the flat tubes 9 longitudinal channels 10a.
- the profile of the corrugated sheet can - as shown in the drawing - be trapezoidal, but other shapes, such. B. sinusoidal or triangular profile.
- the corrugated sheet 10 extends not over the entire length of the flat tubes 9 from the left end piece 3 to the right end piece 8, but has an oblique leading edge 10b, 10c on the front side.
- Corrugated sheets 10 are - which is not visible in this illustration - each arranged between adjacent flat tubes 9, so that there is a longitudinal guidance of the coolant in these areas.
- the corrugated sheets can also be provided with slots and / or offsets, so that an exchange between the longitudinal guide channels for the coolant and thus a more homogeneous distribution and / or turbulence of the coolant and ultimately an increased heat transfer is possible.
- sheets with transverse coolant channels can be used to increase the surface area and thus to increase the efficiency of the heat exchanger.
- Fig. 1b shows the heat exchanger block 11 in an exploded view. Again, the same reference numbers are used for the same parts again. It should be noted that some possibilities of refrigerant flow guidance in the DE 102 60 030 A1 are described, both in the illustrated here and in further embodiments and modifications.
- the block 11 consists of a plurality of mutually parallel flat tubes 9 with flat tube ends 9a, 9b, which are each secured in a bottom plate 12, 13 and sealed.
- each distribution or deflection plates 14, 15 are arranged, which are covered by a respective end plate 16, 17.
- In the front cover plate 16 are refrigerant inlet openings 16a and refrigerant outlet openings 16b, in a row with the refrigerant inlet pipe 4 and the refrigerant outlet pipe 5, respectively.
- the bottom plate 12, baffle 14 and cover 16 thus form the end piece 3, while the end piece 8 of the bottom plate 13, the baffle plate 15 and the cover 17 composed.
- the structure of the end pieces 3, 8 may also be modified, for. B. floor and baffle plate or deflecting and cover plate can each be integrated into a plate. The same applies to the refrigerant guide, ie by a modified form of the distributor or deflecting plates 14, 15.
- Fig. 1c shows a schematic representation of the refrigerant connection, ie the flow of the refrigerant according to Fig. 1b ,
- the refrigerant returns to the end piece 8, where it is deflected in the direction of arrow 23 by means of the baffle plate 15 upwards to flow back into the strand 24 again.
- the baffle plate 15 Via the baffle 14, the refrigerant outlet opening 16b and the refrigerant outlet pipe 5, the refrigerant leaves the block 11.
- the refrigerant outlet opening 16b are larger than the refrigerant inlet openings 16a, because this block 11 is designed as an evaporator (with increasing specific volume); a gas cooler would result in a different configuration, for example with equal inlet and outlet openings.
- the refrigerant connection described above thus applies in each case to two flat tubes lying next to each other.
- Fig. 2 shows a refrigerant / coolant heat exchanger 25 in longitudinal section
- the heat exchanger 1 in Fig. 1 corresponds; therefore, like reference numerals are used for like parts.
- the housing shell 2 encloses the entire block 11, consisting of flat tubes 9 and end pieces 3, 8, wherein the housing shell 2 in the region of the end pieces 3, 8 has a shoulder, to each of which a widened region 26, 27 connects, the end pieces. 3 , 8 peripherally includes and sealed against this, z. B. by soldering.
- the coolant inlet connection 6 and the coolant outlet connection 7 are arranged, which in each case pass over a distribution chamber 28 or a collection chamber 29 into the housing jacket 2.
- the sectional view shows the flat tubes 9 of their longitudinal or broad side and thus also the corrugated sheet 10 with longitudinal channels 10a.
- the corrugated sheet 10 has - as already mentioned - oblique gate edges 10b, 10c, so that inlet and Ausström Suitee 30, 31 result, in which a cross-flow of the coolant from the inlet nozzle 6 and in the direction of the outlet nozzle 7 is possible.
- the coolant is deflected approximately at right angles and flows through the heat exchanger 25 in the longitudinal direction, which is marked by the arrow P. Die Einström Societye 30 und Auström Schemee 31 , The refrigerant flows through the heat exchanger 25, as previously for Fig.1b and 1c described. Refrigerant and coolant are thus essentially (apart from the deflections) guided in cocurrent and countercurrent.
- Fig. 2a shows a variant 32 of the heat exchanger 25 from Fig. 2
- the refrigerant guide is changed in that the refrigerant inlet pipe 4 'is located at the end piece 3' and the refrigerant outlet pipe 5 'is located at the end piece 8'.
- the refrigerant is essentially single-flow, ie guided in one direction through the heat exchanger 32, while the coolant is guided in the opposite direction according to the arrow P.
- the refrigerant can also be three, five or (odd) multiple flooded by the heat transfer. This essentially results in a counterflow between the refrigerant and the coolant.
- Fig. 3 shows a further embodiment of a heat exchanger 33, in which a rectangular cut corrugated sheet 34 is provided with longitudinal channels 34a.
- the coolant inlet nozzle 6 and the coolant outlet nozzle 7 are arranged on the same side 2a of the housing shell.
- an approximately right-angled inflow region 35 results in the region of the inlet stub 6 and a corresponding outflow region 36 in the region of the outlet stub 7.
- the areas 35 and 36 may also be provided with corrugated sheets or other turbulence generators.
- the refrigerant flow guide is the same as in Fig. 2 ie refrigerant inlet pipe 4 and refrigerant outlet pipe 5 are arranged on the same end piece 3.
- Fig. 3a shows a variant 37 of the heat exchanger 33 after Fig. 3 , Unlike the heat exchanger 33 is only the refrigerant guide, the in Fig. 2a corresponds, ie, the refrigerant inlet pipe 4 'is on the end piece 3' and the refrigerant outlet pipe 5 'is attached to the end piece 8'. This essentially results in a counterflow between the refrigerant and the coolant, which flows in the longitudinal direction according to the arrow P.
- Fig. 4 shows a further embodiment of a heat exchanger 38, wherein the refrigerant guide analogous to the embodiments in Fig. 2 and 3 takes place, ie it is a block 11 according to Fig. 1b used.
- the coolant inlet connection 6 and the coolant outlet connection 7 are located directly opposite one another at the same height, ie they are both arranged in the region of the end piece 3.
- a partition wall 39 is centrally arranged, which delimits an inflow region 40 on the side of the inlet nozzle 6 and an outflow region 41 on the side of the outlet nozzle 7.
- the partition wall 39 is arranged in each case between adjacent flat tubes.
- a corrugated sheet 42 with longitudinal channels 42a connects to the partition 39 and extends to a deflection 43.
- the corrugated sheet 42 has - as stated above - an approximately trapezoidal profile, which in each case with the adjacent flat tubes is soldered. As a result, discrete longitudinal channels 42a are formed, ie a transverse flow between the longitudinal channels 42a is not possible.
- the coolant thus flows from the inflow region 40 initially in the upper half of the heat exchanger 38, following the arrow P1, into the deflection region 43, where it is deflected by 180 degrees, ie in the opposite direction, according to the arrow P2. It then flows in the lower half of the heat exchanger 38, following the arrow P3, back into the outflow region 41, where it leaves the heat exchanger 38 via the outlet connection 7.
- the coolant thus deposits the double path in the heat exchanger 38, in comparison to the previous exemplary embodiments, so that an intensive heat exchange with the refrigerant takes place. Likewise, a four- or (even) multi-flow through the heat exchanger for the refrigerant is possible.
- the corrugated sheets may be provided with slots and / or offsets, so that an exchange between the longitudinal guide channels for the coolant and thus a more homogeneous distribution and / or turbulence of the coolant and ultimately an increased heat transfer is possible.
- plates with transverse Külstoffkanälen to increase the surface and thus to increase the efficiency of the heat exchanger can be used.
- Fig. 5 shows a cross section through a heat exchanger 44, the heat exchanger in Fig. 2 corresponds, with the end piece 3 is omitted. It can therefore be seen directly on the end faces of the flat tubes 9, which are formed as extruded multi-chamber tubes with circular flow channels 45. Between adjacent flat tubes 9, a corrugated metal sheet 10 with a trapezoidal profile is in each case arranged and soldered to the flat tubes 9. As a result, discrete longitudinal channels 10a for the coolant are formed. These plates may also be provided with slots and / or offsets to allow an exchange between the longitudinal channels for the coolant and thus a more homogeneous distribution and / or turbulence of the coolant.
- the housing shell 2 is formed here as a U-shaped frame with a shoulder and a widening 26, in which the end piece, not shown, is used.
- the heat exchanger block 11 (see. Fig. 1a, 1b ) can thus be easily inserted into the housing 2 and closed by a lid, not shown.
- the adjoining the Einsbergsstutzen 6 distribution chamber 28 extends over the entire height of the housing wall 2c, analogously, the collection chamber 29 on the side of the outlet nozzle 7 about the height of the side wall 2a.
- a distribution of the coolant between all flat tubes 9 is possible and also a collection of the coolant in the collection chamber 29 on the outlet side.
- Fig. 6 shows a longitudinal section through a flat tube 9, which is taken with its flat tube end 9a in the end piece 3 and its flat tube end 9b in the end piece 8.
- the two end pieces 3, 8 are as in Fig. 1b illustrated, formed.
- This design for the flat tubes 9 with the end pieces 3, 8 of individual plates is particularly suitable for high pressures, such as occur in the CO2 refrigerant process.
- FIG. 7 shows a further embodiment of a heat exchanger 46 with a changed coolant guide.
- a refrigerant block 47 is in principle similar in construction to the block 11 according to FIG Fig. 1b that is, it has a first end 48 with refrigerant inlet pipe 49 and refrigerant outlet pipe 50 and a second end 51, in which the deflection of the refrigerant takes place.
- the end piece 48 has a laterally extended bottom plate 52, to which a coolant inlet channel 53 is attached.
- the tail 51st has an extended bottom plate 54, to which a coolant outlet channel 55 is attached.
- a housing jacket 56 surrounds the block 47 and each forms a wedge-shaped coolant inlet chamber 57 and a coolant outlet chamber 58.
- the coolant enters through the inlet channel 53 into the inlet chamber 57 and from there between the column of the flat tubes of the block 47, flows through it in the transverse direction accordingly Arrows P4, enters the outlet chamber 58 and from there into the coolant outlet channel 55.
- a simple cross-flow of the block 47 is possible.
- corrugated sheets or turbulence inserts can be arranged between the individual flat tubes, which cause a guide of the coolant in the direction of arrow P4 and turbulence generation.
- Fig. 8 shows a further embodiment of a heat exchanger 59 with a likewise transversely guided coolant flow, which, however, is shown only schematically. This is based on a longitudinal section through a flat tube 9, as in Fig. 6 is illustrated.
- a refrigerant block 60 is divided by two dividing walls 61, 62 into three flow areas I, II, III. The areas I, II are interconnected by a deflection chamber 63 and the areas II, III by a further deflection chamber 64 on the opposite side.
- the coolant enters the region I of the block 60 via an inlet connection 65, which is also shown only schematically, is deflected in the deflection chamber 63, then flows through the region II into the deflection chamber 64 where it is again deflected and finally reaches the region III, which it leaves via an outlet 66.
- Inlet and outlet ports 55, 66 and deflection chambers 63, 64 are part of a housing shell, not shown, which surrounds the block 60.
- the exemplary embodiments described above for refrigerant / coolant heat exchangers are preferably soldered, which applies in particular to the block through which CO2 flows.
- the housing shell could - because of the significant lower pressure of the coolant - by alternative bonding techniques, eg. B. by gluing or rubber seals with the block or its end pieces are connected. In this case, other materials, such as plastic, come into question for the housing shell.
- the invention has been explained using the example of a refrigerant / coolant heat exchanger, but also includes other heat exchangers.
- an inventive heat exchanger of oil and / or air can flow through, which exchange heat with each other or with other media.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
Description
Die Erfindung betrifft einen Wärmeübertrager, insbesondere für Kraftfahrzeuge, mit einem primärseitig von einem ersten Medium durchströmbaren und sekundärseitig von einem zweiten Medium umströmbaren Wärmeübertragerblock.The invention relates to a heat exchanger, in particular for motor vehicles, having a heat exchanger block which can be flowed through by a first medium on the primary side and can be flowed around on the secondary side by a second medium.
Ein derartiger Wärmeübertrager ist in der
Dem gegenüber ist es Aufgabe der vorliegenden Erfindung, die Anwendungsmöglichkeiten eines solchen Wärmeübertragers zu erweitern.In contrast, it is an object of the present invention to expand the application possibilities of such a heat exchanger.
Die Lösung dieser Aufgabe erfolgt durch die Merkmale des Patentanspruches 1, wonach ein Wärmeübertrager, insbesondere für ein Kraftfahrzeug, mit einem Wärmeübertragerblock versehen ist, welcher primärseitig von einem ersten Medium durchströmbare und sekundärseitig von einem zweiten Medium umströmbare Rohre mit Strömungskanälen und Rohrenden, zumindest ein die Rohrenden aufnehmendes Endstück mit je zumindest einer Bodenplatte, Verteil- oder Umlenkplatte und Abdeckplatte sowie zumindest eine mit einem oder je einem Endstück verbundene Einlass- und/oder Auslasskammer aufweist, wobei das erste Medium von der Einlasskammer durch die Strömungskanäle zur Auslasskammer leitbar ist, und mit einem die Rohre umschließenden Gehäusemantel mit einem Einlass und einem Auslass für das zweite Medium, wobei zwischen den Rohren Wellbleche mit Längskanälen angeordnet sind und die Wellbleche parallelogrammförmig ausgebildet sind und etwa dreieck- oder trapezförmige Ein- und Ausströmbereiche zwischen den Rohren belassen.The solution of this object is achieved by the features of claim 1, according to which a heat exchanger, in particular for a motor vehicle, is provided with a heat exchanger block, which on the primary side of a first medium and throughflowable on the secondary side of a second medium umströmbare pipes with flow channels and pipe ends, at least one Has tube ends receiving end piece with at least one base plate, distribution or baffle plate and cover plate and at least one connected to one or one end piece inlet and / or outlet chamber, wherein the first medium from the inlet chamber through the flow channels to the outlet chamber is conductive, and with a housing jacket enclosing the tubes with an inlet and an outlet for the second medium, wherein between the tubes corrugated sheets are arranged with longitudinal channels and the corrugated sheets are parallelogram-shaped and approximately triangular or trapezoidal inflow and outflow leave areas between the pipes.
Vorteilhaft ist ein Wärmeübertragerblock, bestehend aus Rohren und zumindest einem Endstück, von einem Gehäusemantel umgeben, durch welchen ein zweites Medium leitbar ist. Damit ergeben sich beispielsweise unter Verwendung des in der
Weitere Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.Further embodiments of the invention are specified in the subclaims.
Nach vorteilhaften Ausgestaltungen der Erfindung können der Einlass und der Auslass für das zweite Medium auf derselben Seite, auf gegenüberliegenden Seiten und an entgegengesetzten Enden des Gehäusemantels angeordnet sein, wobei der Gehäusemantel insbesondere in Längsrichtung durchströmt wird. Daraus ergibt sich die Möglichkeit des Gleichstroms und des Gegenstroms des ersten und des zweiten Mediums.According to advantageous embodiments of the invention, the inlet and the outlet for the second medium may be arranged on the same side, on opposite sides and at opposite ends of the housing shell, wherein the housing jacket is flowed through in particular in the longitudinal direction. This results in the possibility of the direct current and the countercurrent of the first and the second medium.
Nach einer vorteilhaften Weiterbildung der Erfindung sind im Bereich von Einlass und Auslass Verteil- und Sammelkammern in den Gehäusemantel eingeformt, sodass das zweite Medium gleichmäßig über die einzelnen Spalte zwischen den Rohren verteilt bzw. beim Austritt gesammelt wird.According to an advantageous development of the invention, distribution and collection chambers are formed in the housing shell in the region of inlet and outlet, so that the second medium is distributed uniformly over the individual gaps between the tubes or collected at the outlet.
Nach der Erfindung sind zwischen den Rohren so genannte Turbulenzeinlagen oder Wellrippen angeordnet, die Längskanäle und somit eine Führung in Längsrichtung der Rohre für das zweite Medium bilden. Vorteilhafterweise verstrecken sich diese Turbulenzeinlagen nur zwischen dem Einlass und dem Auslass des zweiten Mediums, sodass im Bereich von Einlass und Auslass jeweils ein Einström- und ein Ausströmbereich belassen sind, in welchen eine Querströmung des zweiten Mediums, d. h. quer zur Längsrichtung der Rohre erfolgen kann.According to the invention, so-called turbulence inserts or corrugated ribs are arranged between the tubes, which form longitudinal channels and thus a guide in the longitudinal direction of the tubes for the second medium. Advantageously, these turbulence inserts stretch only between the inlet and the outlet of the second medium, so that in the region of inlet and outlet in each case an inflow and an outflow are left, in which a cross-flow of the second medium, d. H. can be transverse to the longitudinal direction of the tubes.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung sind die Rohre vom zweiten Medium auch in Querrichtung überströmbar, und zwar ein- oder mehrflutig. Dies kann durch Anordnung von seitlichen Sammelkästen und von Trennwänden in Verbindung mit Umlenkkästen im Gehäusemantel erfolgen. Die Turbulenzeinlagen bzw. die Berippung zwischen den Rohren ist dann so ausgebildet, dass sich Querkanäle zur Führung des zweiten Mediums ergeben. Damit wird erreicht, dass beide Medien, beispielsweise ein Kältemittel und ein Kühlmittel, im Kreuz-Gleich- oder Kreuz-Gegenstrom geführt werden können. Dies ergibt einen intensiveren Wärmeaustausch.According to a further advantageous embodiment of the invention, the tubes from the second medium can also be overflowed in the transverse direction, namely one or more flooded. This can be done by arranging lateral headers and partitions in conjunction with deflection boxes in the housing shell. The turbulence inserts or the ribbing between the tubes is then designed so that transverse channels for guiding the second medium result. This ensures that both media, such as a refrigerant and a coolant can be performed in cross-DC or cross-countercurrent. This results in a more intense heat exchange.
In weiterer vorteilhafter Ausgestaltung der Erfindung kann auch das erste Medium sowohl einflutig als auch zweiflutig durch die Rohre geführt werden, wobei die Einlass- und Auslasskammern für das erste Medium entweder an einem Endstück oder an verschiedenen Endstücken angeordnet sind. Somit können mit dem erfindungsgemäßen Wärmeübertrager die verschiedensten Formen und Kombinationen von Gleich-, Gegen- und Kreuzstrom zwischen erstem und zweitem Medium realisiert werden, je nach Anforderung an den Wärmeübertrager beispielsweise in einem Kältemittelkreislauf und in einem Kühlmittelkreislauf einer Brennkraftmaschine eines Kraftfahrzeuges.In a further advantageous embodiment of the invention, the first medium can be performed both single-flow and double-flow through the tubes, wherein the inlet and outlet chambers are arranged for the first medium either at an end piece or at different end pieces. Thus, with the heat exchanger according to the invention, the most diverse forms and combinations of DC, counter and cross-flow between the first and second medium can be realized, depending on the requirements of the heat exchanger, for example in a refrigerant circuit and in a coolant circuit of an internal combustion engine of a motor vehicle.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im Folgenden näher beschrieben. Es zeigen
- Fig.1 1
- einen Kältemittel/Kühlmittel-Wärmeübertrager mit Gehäusemantel,
- Fig. 1a
- den Wärmeübertrager gemäß
Fig. 1 ohne Gehäusemantel, - Fig. 1b
- den Wärmeübertrager gemäß
Fig. 1a in Explosivdarstellung, - Fig. 1c
- eine schematische Darstellung der Kältemittelverschaltung,
- Fig. 2
- einen Wärmeübertrager mit schräg angeschnittener Verrippung und Umlenkung des Kältemittels (zweiflutig),
- Fig. 2a
- den Wärmeübertrager gemäß
Fig. 2 , jedoch ohne Umlenkung des Kältemittels (einflutig), - Fig. 3
- einen Wärmeübertrager mit rechtwinklig angeschnittener Verrippung und zweiflutiger Kältemitteldurchströmung,
- Fig. 3a
- den Wärmeübertrager gemäß
Fig. 3 , jedoch mit einflutiger Kältemitteldurchströmung, - Fig. 4
- einen Wärmeübertrager mit zweiflutiger Kühlmitteldurchströmung in Längsrichtung,
- Fig. 5
- einen Querschnitt durch einen Wärmeübertrager mit Blick auf die Stirnseiten der Flachrohre,
- Fig. 6
- einen Längsschnitt durch ein Flachrohr mit Endstücken,
- Fig. 7
- ein weiteres Ausführungsbeispiel eines Wärmeübertragers mit quer geführter Kühlmittelführung,
- Fig. 8
- ein weiteres Ausführungsbeispiel eines Wärmeübertragers mit quer geführter und zweifach umgelenkter Kühlmittelströmung.
- Fig.1 1
- a refrigerant / coolant heat exchanger with housing shell,
- Fig. 1a
- the heat exchanger according to
Fig. 1 without casing, - Fig. 1b
- the heat exchanger according to
Fig. 1a in an exploded view, - Fig. 1c
- a schematic representation of the refrigerant connection,
- Fig. 2
- a heat exchanger with obliquely cut ribbing and deflection of the refrigerant (double-flow),
- Fig. 2a
- the heat exchanger according to
Fig. 2 , but without diverting the refrigerant (single-flow), - Fig. 3
- a heat exchanger with a right-angled ribbing and a double-flow refrigerant flow,
- Fig. 3a
- the heat exchanger according to
Fig. 3 , but with one-flow refrigerant flow, - Fig. 4
- a heat exchanger with double-flow coolant flow in the longitudinal direction,
- Fig. 5
- a cross section through a heat exchanger with a view of the end faces of the flat tubes,
- Fig. 6
- a longitudinal section through a flat tube with end pieces,
- Fig. 7
- a further embodiment of a heat exchanger with transversely guided coolant guide,
- Fig. 8
- a further embodiment of a heat exchanger with transversely guided and doubly diverted coolant flow.
Der Wärmeübertrager 1 weist einen Gehäusemantel 2 auf, der etwa kastenförmig ausgebildet ist und vier Längsseiten 2a - 2d aufweist, von denen die Längsseite 2a und 2b in der Zeichnung sichtbar sind. Der Gehäusemantel 2 wird stirnseitig durch Endstücke verschlossen, von welchen in der Zeichnung nur das Endstück 3 sichtbar ist. An diesem Endstück 3 sind ein Kältemitteleintrittsrohr 4 und ein Kältemittelaustrittsrohr 5 befestigt. An sich gegenüberliegenden Seiten des Gehäusemantels 2 sind ein Kühlmitteleintrittsstutzen 6 (nur teilweise sichtbar) und ein Kühlmittelaustrittsstutzen 7 angeordnet. Wie bereits erwähnt, ist der Wärmeübertrager 1 einerseits an einen nicht dargestellten Kältemittel-, insbesondere CO2-Kreislauf und andererseits an einen nicht dargestellten Kühlkreislauf eines Verbrennungsmotors eines Kraftfahrzeuges angeschlossen.The heat exchanger 1 has a housing jacket 2, which is approximately box-shaped and has four
In den aufgrund des schrägen Anschnittes 10b, 10c freibleibenden Bereichen ist eine Querströmung des Kühlmittels möglich. Die Kältemittelströmung - die unten noch genauer erläutert wird - erfolgt vom Eintrittsrohr 4 über das Endstück 3, welches als Verteileinheit wirkt, auf die Flachrohre 9 bis zum zweiten Endstück 8, welches als Umlenkeinheit wirkt, wieder zurück durch die Flachrohre 9 bis zum Austrittsrohr 5. Diese Kältemitteleinheit ist als Wärmeübertragerblock 11 oder kurz als Block 11 bezeichnet.In the due to the
Der Block 11 besteht aus mehreren parallel zueinander angeordneten Flachrohren 9 mit Flachrohrenden 9a, 9b, welche jeweils in einer Bodenplatte 12, 13 befestigt und abgedichtet sind. Über den Bodenplatten 12, 13 sind jeweils Verteil- bzw. Umlenkplatten 14, 15 angeordnet, die durch jeweils eine Abschlussplatte 16, 17 abgedeckt werden. In der vorderen Abdeckplatte 16 sind Kältemitteleintrittsöffnungen 16a und Kältemittelaustrittsöffnungen 16b, in einer Reihe mit dem Kältemitteleintrittsrohr 4 und dem Kältemittelaustrittsrohr 5, angeordnet. Die Bodenplatte 12, Umlenkplatte 14 und Abdeckplatte 16 bilden somit das Endstück 3, während sich das Endstück 8 aus der Bodenplatte 13, der Umlenkplatte 15 und der Abdeckplatte 17 zusammensetzt. Wie in der älteren Anmeldung ausgeführt, kann der Aufbau der Endstücke 3, 8 auch abgewandelt sein, z. B. können Boden und Umlenkplatte oder Umlenk- und Abdeckplatte jeweils zu einer Platte integriert werden. Gleiches gilt für die Kältemittelführung, d. h. durch eine abgewandelte Form der Verteiler- bzw. Umlenkplatten 14, 15.The
Wie bereits erwähnt und in der älteren Anmeldung ausgeführt, sind andere Kältemittelverschaltungsvarianten möglich.As already mentioned and executed in the earlier application, other refrigerant connection variants are possible.
Das Kühlmittel legt somit - im Vergleich zu den vorherigen Ausführungsbeispielen - den doppelten Weg im Wärmeübertrager 38 zurück, sodass ein intensiver Wärmeaustausch mit dem Kältemittel stattfindet. Ebenso ist eine vier- oder (geradzahlig) mehrflutige Durchströmung des Wärmeübertragers für das Kältemittel möglich.The coolant thus deposits the double path in the
Auch hier können die Wellbleche mit Schlitzen und/oder Versätzen versehen sein, so dass ein Austausch zwischen den Längsführungkanälen für das Kühlmittel und damit eine homogenere Verteilung und/oder Turbulenzen des Kühlmittel und letztendlich ein erhöhter Wärmeübertrag möglich ist. Auch sind hier Bleche mit quer verlaufenden Külmittelkanälen zur Vergrößerung der Oberfläche und damit zu einer Erhöhung der Effizienz des Wärmeübertragers einsetzbar.Again, the corrugated sheets may be provided with slots and / or offsets, so that an exchange between the longitudinal guide channels for the coolant and thus a more homogeneous distribution and / or turbulence of the coolant and ultimately an increased heat transfer is possible. Also here are plates with transverse Külmittelkanälen to increase the surface and thus to increase the efficiency of the heat exchanger can be used.
Für den Fall, dass keine Umlenkung des Kühlmittels - wie in
Die oben beschriebenen Ausführungsbeispiele für Kältemittel/Kühlmittel-Wärmeübertrager werden vorzugsweise gelötet, was insbesondere für den von CO2 durchströmten Block gilt. Der Gehäusemantel dagegen könnte - wegen des erheblichen geringeren Druckes des Kühlmittels - auch durch alternative Verbindungstechniken, z. B. durch Kleben oder mittels Gummidichtungen mit dem Block bzw. dessen Endstücken verbunden werden. Hierbei kommen für den Gehäusemantel auch andere Materialien, wie beispielsweise Kunststoff, in Frage.The exemplary embodiments described above for refrigerant / coolant heat exchangers are preferably soldered, which applies in particular to the block through which CO2 flows. The housing shell, however, could - because of the significant lower pressure of the coolant - by alternative bonding techniques, eg. B. by gluing or rubber seals with the block or its end pieces are connected. In this case, other materials, such as plastic, come into question for the housing shell.
Die Erfindung wurde am Beispiel eines Kältemittel/Kühlmittel-Wärmeübertragers erläutert, umfaßt jedoch auch andere Wärmeübertrager. Beispielsweise ist ein erfindungsgemäßer Wärmeübertrager von Öl und/oder Luft durchströmbar, die untereinander oder mit anderen Medien Wärme austauschen.The invention has been explained using the example of a refrigerant / coolant heat exchanger, but also includes other heat exchangers. For example, an inventive heat exchanger of oil and / or air can flow through, which exchange heat with each other or with other media.
Claims (26)
- Heat exchanger, in particular for a motor vehicle, with a heat exchanger block (11) comprising pipes (9) through which a first medium can flow on the primary side and pipes (9) around which a second medium can flow on the secondary side, said pipes (9) having flow ducts (45) and pipe ends (9a, 9b), at least one end piece (3, 8) holding the pipe ends (9a, 9b) and each provided with at least one base plate (12, 13), distributor or diverter plate (14, 15) and cover plate (16, 17) and at least one inlet and/or outlet chamber (4, 5) connected to one end piece (3, 8) or to one end piece (3,8) each, wherein the first medium can be conducted from the inlet chamber (4) through the flow ducts (45) to the outlet chamber (5), and with a housing casing (2) which surrounds the pipes (9) and has an inlet (6) and an outlet (7) for the second medium, wherein corrugated pieces of sheet metal (10) with longitudinal passages (10a) are provided between the pipes (9), and wherein the corrugated pieces of sheet metal (10) are parallelogram-shaped and leave approximately triangular or trapezoidal inflow and outflow regions (30, 31) between the pipes.
- Heat exchanger according to claim 1, characterised in that the pipes are in particular designed as extruded flat pipes.
- Heat exchanger according to any of the preceding claims, characterised in that each pipe is provided with a plurality of flow ducts.
- Heat exchanger according to any of the preceding claims, characterised in that the heat exchanger block has at least two end pieces.
- Heat exchanger according to any of the preceding claims, characterised in that the housing casing is located between two end pieces.
- Heat exchanger according to any of the preceding claims, characterised in that at least two plates of an end piece are designed in an integral fashion.
- Heat exchanger according to any of the preceding claims, characterised in that the housing casing (2) is designed as a single- or multi-part sheet metal casing.
- Heat exchanger according to any of the preceding claims, characterised in that the housing casing (2) is joined to the at least one end piece (3, 8) by adhesive force, in particular by soldering.
- Heat exchanger according to any of the preceding claims, characterised in that the housing casing (2) has an essentially rectangular cross-section with four sides (2a, 2b, 2c, 2d).
- Heat exchanger according to any of the preceding claims, characterised in that the inlet (6) and the outlet (7) are located on opposite sides (2a, 2c) of the housing casing (2).
- Heat exchanger according to any of the preceding claims, characterised in that the inlet (6) and the outlet (7) are located on the same side (2a) of the housing casing (2).
- Heat exchanger according to any of the preceding claims, characterised in that the inlet (6) and the outlet (7) are located at opposite ends of the housing casing (2).
- Heat exchanger according to any of the preceding claims, characterised in that distributor and collector chambers (28, 29) are formed in the housing casing (2) in the region of the inlet and the outlet (6, 7).
- Heat exchanger according to any of the preceding claims, characterised in that the corrugated pieces of sheet metal (10) have a longitudinal dimension corresponding to the distance between the inlet (6) and the outlet (7).
- Heat exchanger according to any of the preceding claims, characterised in that the corrugated pieces of sheet metal (10) have a rectangular shape and leave an approximately rectangular inflow and outflow region (35, 36) between the pipes (9).
- Heat exchanger according to any of the preceding claims, characterised in that the inlet (6) and the outlet (7) are arranged opposite one another, and in that a dividing wall (39) is left between the inlet (6) and the outlet (7) in order to form an inflow region (40) and an outflow region (41), and in that the housing casing can be configured for at least a dual flow in the longitudinal direction (P1, P3) on the secondary side.
- Heat exchanger according to any of the preceding claims, characterised in that the second medium is essentially guided through the block (47) at right angles to the longitudinal direction of the pipes.
- Heat exchanger according to claim 17, characterised in that the second medium can be diverted at least once in the longitudinal direction and the heat exchanger block (60) can be configured for at least dual flow.
- Heat exchanger according to any of the preceding claims, characterised in that the housing casing (56) together with the pipes and/or the block (47) forms an inlet chamber (57) and an outlet chamber (58) extending in the longitudinal direction of the pipes for the second medium.
- Heat exchanger according to claim 19, characterised in that inlet and outlet ducts (53, 54) for the second medium are provided at the end pieces (48, 51), said inlet and outlet ducts (53, 54) communicating with the inlet and outlet chambers (57, 58).
- Heat exchanger according to any of the preceding claims, characterised in that at least one diversion box (83, 84) is provided in the housing casing, and in that at least one transversely extending dividing wall (61, 62) is provided between the pipes.
- Heat exchanger according to any of the preceding claims, characterised in that corrugated fins or turbulence inserts forming transverse ducts for the second medium are provided between the pipes.
- Heat exchanger according to any of the preceding claims, characterised in that the heat exchanger block (11) is configured for single flow on the primary side.
- Heat exchanger according to any of the preceding claims, characterised in that the heat exchanger block (11, 47) is configured for dual or multiple flow on the primary side.
- Heat exchanger according to any of the preceding claims, characterised in that the first medium is a refrigerant which can be operated in particular in dual phase or supercritically.
- Heat exchanger according to any of the preceding claims, characterised in that the first medium is a fluid and in particular a liquid coolant.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10349150A DE10349150A1 (en) | 2003-10-17 | 2003-10-17 | Heat exchanger, in particular for motor vehicles |
PCT/EP2004/010158 WO2005038375A1 (en) | 2003-10-17 | 2004-09-10 | Heat exchanger in particular for motor vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1682840A1 EP1682840A1 (en) | 2006-07-26 |
EP1682840B1 true EP1682840B1 (en) | 2009-04-01 |
Family
ID=34442203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04765083A Expired - Lifetime EP1682840B1 (en) | 2003-10-17 | 2004-09-10 | Heat exchanger in particular for motor vehicles |
Country Status (7)
Country | Link |
---|---|
US (1) | US20070056720A1 (en) |
EP (1) | EP1682840B1 (en) |
JP (1) | JP2007508519A (en) |
KR (1) | KR20060113897A (en) |
AT (1) | ATE427468T1 (en) |
DE (2) | DE10349150A1 (en) |
WO (1) | WO2005038375A1 (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005012761A1 (en) * | 2005-03-19 | 2006-09-21 | Modine Manufacturing Co., Racine | Intercooler for motor vehicle supercharger has flat tubes with manifolds, and cover and side sections brazed into place |
DE102005013922A1 (en) * | 2005-03-26 | 2006-09-28 | Modine Manufacturing Co., Racine | Heat exchanger e.g. intercooler, for motor vehicle, has frames provided at ends of stack of heat exchanging plates, where region of plates between holes is formed on side of flow path as heat exchanging region or as open channel section |
DE102005021464A1 (en) | 2005-05-10 | 2006-11-16 | Modine Manufacturing Co., Racine | Intermediate heat exchanger for air-conditioning loop, has heat exchange ribs filling compartment between tube and two opposing walls, where refrigerant flowing through compartment does not flow through large space |
EP1996892A2 (en) * | 2005-10-26 | 2008-12-03 | Behr GmbH & Co. KG | Heat exchanger, method for the production of a heat exchanger |
DE102006005362A1 (en) | 2006-02-07 | 2007-08-09 | Modine Manufacturing Co., Racine | Exhaust gas heat exchanger in an exhaust gas recirculation arrangement |
US8915292B2 (en) | 2006-02-07 | 2014-12-23 | Modine Manufacturing Company | Exhaust gas heat exchanger and method of operating the same |
FR2906357B1 (en) * | 2006-09-21 | 2013-01-18 | Valeo Systemes Thermiques | LIQUID / GAS TYPE HEAT EXCHANGER, IN PARTICULAR FOR A MOTOR VEHICLE AIR CONDITIONING EQUIPMENT USING A SUPERCRITICAL OPERATING REFRIGERANT FLUID SUCH AS CO2 |
DE102006046671A1 (en) * | 2006-09-29 | 2008-04-03 | Behr Gmbh & Co. Kg | Plate construction heat exchanger, especially evaporator for motor vehicle air conditioning, has at least one equal medium distribution arrangement close to deflection openings that causes uniform medium flow distribution on flat pipes |
WO2009013179A2 (en) * | 2007-07-23 | 2009-01-29 | M.T.A. S.P.A. | Heat exchanger with mini- and/or micro-channels and method for its construction |
EP2090851A1 (en) * | 2008-02-15 | 2009-08-19 | Delphi Technologies, Inc. | Heat exchanger with a mixing chamber |
SE532837C2 (en) * | 2008-03-28 | 2010-04-20 | Titanx Engine Cooling Holding | Heat exchanger, such as a charge air cooler |
JP5061065B2 (en) * | 2008-08-26 | 2012-10-31 | 株式会社豊田自動織機 | Liquid cooling system |
FR2943776B1 (en) * | 2009-03-26 | 2012-08-17 | Valeo Systemes Thermiques | HEAT EXCHANGER, ESPECIALLY AIR CONDITIONING CAPACITOR |
JP2011091301A (en) * | 2009-10-26 | 2011-05-06 | Toyota Industries Corp | Liquid cooling type cooling device |
CN101956600A (en) * | 2010-09-29 | 2011-01-26 | 芜湖中宇散热器有限公司 | Intercooler on refit vehicle |
DE102012208771A1 (en) * | 2012-05-24 | 2013-11-28 | Behr Gmbh & Co. Kg | Heat exchanger for tempering a first fluid using a second fluid |
FR3006432B1 (en) * | 2013-05-28 | 2017-12-08 | Delphi Automotive Systems Lux | HEAT EXCHANGER |
US20160215735A1 (en) * | 2013-09-11 | 2016-07-28 | International Engine Intellectual Property Company, Llc | Thermal screen for an egr cooler |
DE102014203038A1 (en) * | 2014-02-19 | 2015-08-20 | MAHLE Behr GmbH & Co. KG | Heat exchanger |
JP2019074267A (en) * | 2017-10-17 | 2019-05-16 | イビデン株式会社 | Heat exchanger |
DE202018101360U1 (en) * | 2018-03-12 | 2019-06-13 | Autokühler GmbH & Co. KG | heat exchangers |
US11624565B2 (en) * | 2018-05-25 | 2023-04-11 | Hangzhou Sanhua Research Institute Co., Ltd. | Header box and heat exchanger |
DE102018215398A1 (en) * | 2018-09-11 | 2020-03-12 | Mahle International Gmbh | Electric heater |
CN113251831A (en) * | 2021-04-30 | 2021-08-13 | 三花控股集团有限公司 | Heat exchanger and heat exchange module |
US12130097B2 (en) * | 2022-09-15 | 2024-10-29 | Hamilton Sundstrand Corporation | Crossflow heat exchanger with stacked distribution tubes |
EP4417925A1 (en) * | 2023-02-15 | 2024-08-21 | Valeo Systemes Thermiques | A heat exchanger |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1884080A (en) * | 1931-12-28 | 1932-10-25 | Westinghouse Electric & Mfg Co | Heat transfer apparatus |
US2394402A (en) * | 1943-03-20 | 1946-02-05 | Pennella Samuel | Surface condenser |
JPS4814837Y1 (en) * | 1970-07-20 | 1973-04-24 | ||
JPS5674592A (en) * | 1979-11-21 | 1981-06-20 | Toshimi Kuma | Opposing current type heat exchanger |
JPH07104115B2 (en) * | 1986-01-31 | 1995-11-13 | 三菱電機株式会社 | Heat exchanger |
JPH0633970B2 (en) * | 1989-09-12 | 1994-05-02 | 東京瓦斯株式会社 | Heat exchanger for cold heat recovery of liquefied natural gas |
JPH05346297A (en) * | 1992-06-15 | 1993-12-27 | Nippon Light Metal Co Ltd | Heat exchanger |
JP3298189B2 (en) * | 1992-12-11 | 2002-07-02 | 株式会社デンソー | Multi-tube heat exchanger |
JP3445727B2 (en) * | 1997-08-04 | 2003-09-08 | オリオン機械株式会社 | Compressed air dehumidifier |
DE19734690C2 (en) * | 1997-08-11 | 2000-02-17 | Modine Mfg Co | Heat exchangers, for example air-cooled intercoolers |
FR2779812B1 (en) * | 1998-06-12 | 2000-10-06 | Soc Et Et De Const Aero Navale | HEAT EXCHANGER OF THE HOLLOW CASING TYPE INCLUDING IN PARTICULAR A LARGE NUMBER OF FIRST FLOW WAYS OF A FIRST FLUID AND TRAVELED BY A SECOND FLUID IN THERMAL EXCHANGE CONTACT WITH THESE WAYS |
JP2000081289A (en) * | 1998-09-04 | 2000-03-21 | Toshiba Corp | Plate fin type heat exchanger |
US6237357B1 (en) * | 1999-06-07 | 2001-05-29 | Mitsubishi Heavy Industries, Ltd. | Vehicular air conditioner using heat pump |
DE19927607A1 (en) * | 1999-06-17 | 2000-12-21 | Behr Gmbh & Co | Charging air cooler for vehicle engine has air entry end exit pipes coupled via stack of flat rectangular pipe sections enclosed by housing mantle through which cooling medium is passed |
JP4554144B2 (en) * | 2001-06-18 | 2010-09-29 | 昭和電工株式会社 | Evaporator |
DE10233407B4 (en) * | 2001-07-26 | 2016-02-18 | Denso Corporation | Exhaust gas heat exchanger |
JP3903869B2 (en) * | 2001-07-26 | 2007-04-11 | 株式会社デンソー | Exhaust heat exchanger |
AU2002360056A1 (en) * | 2001-12-21 | 2003-07-09 | Behr Gmbh And Co. | Heat exchanger, particularly for a motor vehicle |
US6779596B2 (en) * | 2002-03-22 | 2004-08-24 | Exxonmobil Research And Engineering Company | Heat exchanger with reduced fouling |
FR2837917B1 (en) * | 2002-03-27 | 2004-07-09 | Valeo Thermique Moteur Sa | HEAT EXCHANGER, PARTICULARLY FOR A MOTOR VEHICLE, CONSISTING OF STACKED TUBULAR ELEMENTS |
GB2400648A (en) * | 2003-03-19 | 2004-10-20 | Calsonic Kansei Uk Ltd | An automotive heat exchanger |
-
2003
- 2003-10-17 DE DE10349150A patent/DE10349150A1/en not_active Withdrawn
-
2004
- 2004-09-10 US US10/575,890 patent/US20070056720A1/en not_active Abandoned
- 2004-09-10 WO PCT/EP2004/010158 patent/WO2005038375A1/en active Application Filing
- 2004-09-10 AT AT04765083T patent/ATE427468T1/en not_active IP Right Cessation
- 2004-09-10 JP JP2006534610A patent/JP2007508519A/en active Pending
- 2004-09-10 DE DE502004009282T patent/DE502004009282D1/en not_active Expired - Lifetime
- 2004-09-10 EP EP04765083A patent/EP1682840B1/en not_active Expired - Lifetime
- 2004-09-10 KR KR1020067007400A patent/KR20060113897A/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
DE10349150A1 (en) | 2005-05-19 |
WO2005038375A1 (en) | 2005-04-28 |
EP1682840A1 (en) | 2006-07-26 |
KR20060113897A (en) | 2006-11-03 |
JP2007508519A (en) | 2007-04-05 |
US20070056720A1 (en) | 2007-03-15 |
DE502004009282D1 (en) | 2009-05-14 |
ATE427468T1 (en) | 2009-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1682840B1 (en) | Heat exchanger in particular for motor vehicles | |
EP1454106B1 (en) | Heat exchanger | |
EP1459026B1 (en) | Heat exchanger, particularly for a motor vehicle | |
EP0974804B1 (en) | Heat exchanger, more particularly heat exchanger for exhaust gases | |
EP2452149B1 (en) | Plate heat exchanger | |
DE112016004446T5 (en) | Cooling system with integrated core structure | |
EP1604163A1 (en) | Heat exchanger, particularly exhaust gas cooler for motor vehicles | |
DE60310992T2 (en) | HIGH PRESSURE HEAT EXCHANGE | |
WO1998050740A1 (en) | Distributing/collecting tank for the at least dual flow evaporator of a motor vehicle air conditioning system | |
EP2962056B1 (en) | Heat exchanger | |
EP0789213A2 (en) | Heat exchanger for automotive vehicle | |
DE102012100724A1 (en) | Integrated cross-countercurrent capacitor | |
DE102007031824A1 (en) | Heat exchanger tube comprises first thin sheet of material partially forming broad and narrow sides of tube body and partially enclosing an interior space, and second sheet of material partially forming fin brazed to tube body | |
EP1411310B1 (en) | Heat exhanger with serpentine structure | |
EP0912869A1 (en) | Flat tube heat exchanger with more than two flows and a deflecting bottom for motor vehicles, and process for manufacturing the same | |
WO2005085737A1 (en) | Device for exchanging heat and method for the production of said device | |
DE202004011489U1 (en) | Heat exchanger especially for turbocharged IC engine has pairs of parallel plates linked by edge profile strips with improved aerodynamic shapes | |
DE10160380A1 (en) | Heat transmission device has coolant as high pressure fluid and liquid heat-carrier as low pressure fluid | |
DE102006061440A1 (en) | Heat exchanger e.g. cooling liquid heat exchanger for use in motor vehicle, has tubes interacting with openings of collecting tank and header tank such that end of each tube has contour | |
DE3209760C2 (en) | Heat exchanger | |
DE102004044861A1 (en) | Heat exchangers for motor vehicles | |
DE10319226B4 (en) | Device for cooling or heating a fluid | |
EP2049859B1 (en) | Motor vehicle air conditioning system | |
WO2008003291A1 (en) | Heating unit, particularly tube radiator | |
EP3009780B2 (en) | Heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060517 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KOHL, MICHAEL Inventor name: KOTSCH, MARTIN Inventor name: DEMUTH, WALTER Inventor name: STAFFA, KARL-HEINZ Inventor name: KRANICH, MICHAEL Inventor name: WALTER, CHRISTOPH |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20071127 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502004009282 Country of ref document: DE Date of ref document: 20090514 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090902 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090701 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 |
|
26N | No opposition filed |
Effective date: 20100105 |
|
BERE | Be: lapsed |
Owner name: BEHR G.M.B.H. & CO. KG Effective date: 20090930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090930 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090702 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090910 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20100929 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090910 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110927 Year of fee payment: 8 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110910 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110910 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121001 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502004009282 Country of ref document: DE Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004009282 Country of ref document: DE Owner name: MAHLE INTERNATIONAL GMBH, DE Free format text: FORMER OWNER: BEHR GMBH & CO. KG, 70469 STUTTGART, DE Effective date: 20150224 Ref country code: DE Ref legal event code: R082 Ref document number: 502004009282 Country of ref document: DE Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE Effective date: 20150224 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20181001 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004009282 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200401 |