EP1682771B1 - Valve for a fuel injection pump - Google Patents
Valve for a fuel injection pump Download PDFInfo
- Publication number
- EP1682771B1 EP1682771B1 EP04786716A EP04786716A EP1682771B1 EP 1682771 B1 EP1682771 B1 EP 1682771B1 EP 04786716 A EP04786716 A EP 04786716A EP 04786716 A EP04786716 A EP 04786716A EP 1682771 B1 EP1682771 B1 EP 1682771B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- valve
- cross
- hollow groove
- fuel
- valve member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000446 fuel Substances 0.000 title claims description 42
- 238000002347 injection Methods 0.000 title claims description 8
- 239000007924 injection Substances 0.000 title claims description 8
- 230000008719 thickening Effects 0.000 claims description 21
- 238000007789 sealing Methods 0.000 claims description 13
- 230000011514 reflex Effects 0.000 claims 1
- 230000002093 peripheral effect Effects 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 230000003628 erosive effect Effects 0.000 description 2
- 238000010009 beating Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M59/00—Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
- F02M59/20—Varying fuel delivery in quantity or timing
- F02M59/36—Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M59/00—Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
- F02M59/20—Varying fuel delivery in quantity or timing
- F02M59/36—Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
- F02M59/366—Valves being actuated electrically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M59/00—Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
- F02M59/44—Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
- F02M59/46—Valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M59/00—Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
- F02M59/44—Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
- F02M59/46—Valves
- F02M59/466—Electrically operated valves, e.g. using electromagnetic or piezoelectric operating means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/0012—Valves
- F02M63/007—Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
- F02M63/0077—Valve seat details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/0012—Valves
- F02M63/007—Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
- F02M63/0078—Valve member details, e.g. special shape, hollow or fuel passages in the valve member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/04—Fuel-injection apparatus having means for avoiding effect of cavitation, e.g. erosion
Definitions
- the invention relates to a valve for a fuel injection system of an internal combustion engine having the features specified in the preamble of claim 1, in particular for an injector of a common rail injection system.
- Common rail injection systems have a plurality of injectors, which are supplied with fuel under the control of an electronic engine control by a high-pressure pump from a designated as common rail central high-pressure accumulator and inject the fuel via a valve in the combustion chambers of the cylinders of the internal combustion engine.
- a valve is among others from the DE 199 40 296 A1 Known by the applicant and is used depending on the valve position to connect a high-pressure region of an injector of the injection system with a low pressure region or to separate from this, when fuel is injected through the valve into the combustion chamber of a cylinder or the supply of fuel to be interrupted.
- a valve of the aforementioned type in which a circumferential groove arranged in the flow direction directly behind a sealing surface of the valve member is delimited together with a circumferential cross-sectional thickening of the valve member and with the valve housing an annular space. Between the groove and the cross-sectional thickening, the valve member has a circumferential edge against which contiguous outer peripheral surface portions of the groove and cross-sectional thickening meet at an angle of 270 °, with a peripheral surface portion adjacent the edge on the side of the groove at an angle of 90 degrees is aligned with the central axis of the valve member.
- cavitation damage could be prevented with good success, because the fuel flow behind the valve seat is not simply deflected in the axial direction. Instead, as it flows through the groove, it receives a velocity component in a direction pointing away from the central axis of the valve member so that, after exiting the groove, it impinges on an opposite region of an inner wall of an outlet bore of the valve housing. On impact, part of the fuel flow is directed along the inner wall back toward the valve gap, leaving immediately behind the opposite wall portion of the inner wall forms a vortex.
- a hollow groove is understood to mean a concave annular groove in the circumference of the valve member, while cross-sectional thickening means an adjacent part of the valve member in the direction of flow whose diameter is greater than the diameter in the region of the annular groove.
- a particularly good vortex formation in the enlarged annular space behind the valve gap is achieved in a preferred embodiment of the invention in that between the groove and the cross-sectional thickening an undercut circumferential trailing edge is arranged on the both sides of this edge adjacent outer peripheral surface portions of the groove and the cross-sectional enlargement under a blunt Angle meet.
- While the outer peripheral surface portion adjacent to the edge on the side of the cross-sectional thickening is preferably aligned substantially parallel to a central axis of the valve member is opposite to the flow direction at an angle between 20 and 80 degrees, preferably between 30 and 60 degrees, inclined to the central axis of the valve member, so that the two peripheral surface portions at an angle between 200 and 260 degrees, preferably between 190 and 240 degrees.
- a particularly simple and cost-effective production of the spoiler lip is in accordance with a further preferred embodiment of the invention possible in that one abrades the outer peripheral surface at least in the region of the valve seat opposite sealing surface and the groove to the final diameter during the finishing of the valve member, but not in the Area of cross-sectional thickening, so that the material remaining there automatically leads to the formation of the spoiler edge.
- the cross-section of the valve member tapers in the flow direction behind the cross-sectional thickening, but this need not necessarily be the case.
- the concave groove expediently has a radius of curvature which is preferably at least 0.2 mm and is expedient over the entire width of the groove uniformly large.
- sondem one of the groove substantially opposite inner wall portion of the outflow to install in this section a step or slope which helps to redirect part of the fuel flow in the direction of the valve gap.
- valve 2 shown only partially in the drawing is part of an injector of a common rail injection system of an internal combustion engine, which serves to fuel from a common rail inject central high-pressure accumulator into the combustion chambers of the cylinders of the internal combustion engine.
- the valve 2 consists essentially of a valve housing 4, in which a rotationally symmetrical valve pin 6 (see. FIG. 1 ) is used axially movable.
- the valve pin 6 has a conical, tapered in the flow direction sealing surface 8, which bears sealingly against a complementary conical valve seat 10 of the housing 4 when the valve 2 is closed. How best in the FIGS. 2 to 4 shown limited at the valve 2 open the sealing surface 8 together with the valve seat 10 surrounding the valve pin 6 valve gap 12 in the form of an annular flow channel through which the fuel to be injected flows from the high pressure side 14 of the valve 2 to the low pressure side 16.
- the valve pin 6 further comprises a circumferentially disposed in the direction of flow immediately behind the sealing surface 8 in its outer circumference circumferential groove 18, that is a concave recess in longitudinal section or groove over the axial width of the diameter of the valve pin 6 is smaller than before or behind, where the valve pin 6 is provided with an adjacent to the groove 18 cross-sectional thickening 20.
- the groove 18 serves to deflect at least a portion of the fuel flow discharged substantially behind the valve seat 10 in the axial direction such that it has a velocity component directed away from a central axis 22 of the valve pin 6 and, after its exit from the groove 18, against an opposite region the inner wall 24 of an outflow bore 26 of the valve housing 4 rebounds. How best in FIG. 2 . 3 and 4 represented by arrows, while dividing the fuel flow into two partial streams, of which the larger is directed after the impact along the inner wall 24 of the discharge hole 26 in the downstream part of the bore 26, while the smaller against the flow direction to the valve gap 12 directed back out becomes.
- valve housing 4 in the area immediately behind the valve seat 10th protects against erosion caused by cavitation, so that the valve seat 10 remains undamaged even over a long period of operation.
- the angle of inclination of the fuel flow emerging from the groove 18 with respect to the central axis 22 of the valve pin 6 must not be too small, since otherwise the entire fuel is directed directly into the outflow bore 26. Therefore, on the one hand, the groove 18 should not be formed too flat, but with respect to the subsequent cross-sectional thickening a certain minimum depth T (FIG. FIG. 1 ), which at a diameter of the valve pin 6 in the middle of Sealing surface of 1.35 mm should preferably be greater than 0.04 mm. On the other hand, the groove 18 should not be rounded at the transition to the cross-sectional thickening, because thereby the inclination angle of the emerging from the groove 18 fuel flow with respect to the central axis 22 is also smaller.
- a circumferential edge 34 is provided between the groove 18 and the cross-sectional thickening 20, at the adjoining outer peripheral surface portions 36, 38 of the groove 18 and the cross-sectional thickening 20 has a superficial angle ⁇ (FIG. FIG. 1 ), which should be at least 200 degrees and preferably between 220 degrees and 240 degrees. Unlike a rounded transition at such an edge 34, the flow of fuel from the peripheral surface of the valve pin 6 breaks off, but this has no cavitation due to the hardened surface of the valve pin 6 result.
- the stall at the edge 34 causes the fuel to exit the fillet 18 at an angle of inclination to the central axis 22 that substantially corresponds to the angle of inclination ⁇ of the peripheral surface portion 36 adjacent the edge 34 within the fillet 18.
- this angle of inclination is selected, more or less fuel is directed back in the direction of the valve gap 12 upon impact of the fuel flow on the opposite region of the inner wall 24 of the discharge bore 26.
- this angle of inclination which is preferably between 20 and 60 degrees, therefore, the proportion of the returning fuel can be adjusted to such a value that on the one hand vortex formation avoids cavitation damage immediately behind the valve seat 10, on the other hand, the vortex formation the flow of fuel after its exit from the valve gap 12 is not affected.
- the fuel flowing back along the inner wall 24 protects the latter from cavitation-related damage, which might otherwise be caused by a pressure drop in the fuel as it exits the valve gap 12 into the annulus 30, just past the valve gap 12.
- FIG. 2 a valve pin 6, wherein the within the groove 18 adjacent to the edge 34 peripheral surface portion 36 is aligned at an inclination angle ⁇ of about 60 degrees to the central axis 22 of the valve pin 6, the fuel therefore bounces quite steeply on the inner wall 24 of the discharge bore 26 and thus relatively much fuel is directed back in the direction of the valve gap 28, show the Figures 3 and 4 two valve bolts 6, in which this inclination angle ⁇ is about 35 degrees or about 20 degrees, and therefore correspondingly less fuel is directed back toward the valve gap 28 to form a vortex 34.
- the concave boundary of the groove 18 is circular in all embodiments, wherein the radius of curvature should not fall below 0.2 mm in order to allow cost-effective mass production of the valve pin 6.
- the groove 18 preferably transitions seamlessly into the sealing surface 8, as shown in all exemplary embodiments.
- the sharp tear-off edge 34 on the other side of the groove 18 can be inexpensively produced in a series production of the valve pin 6, that the valve pin 6 is ground at its final diameter on both sides of the cross-sectional thickening 20, but not in the region of the cross-sectional thickening 20, so that there existing in front of the abrasive finishing of the valve pin 6 existing diameter is maintained, which automatically leads to the formation of the tear-off edge 34 at the transition to the groove 18.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fuel-Injection Apparatus (AREA)
Description
Die Erfindung betrifft ein Ventil für ein Kraftstoffeinspritzsystem einer Verbrennungsmaschine mit den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen, und zwar insbesondere für einen Injektor eines Common-Rail-Einspritzsystems.The invention relates to a valve for a fuel injection system of an internal combustion engine having the features specified in the preamble of
Common-Rail-Einspritzsysteme weisen eine Mehrzahl von Injektoren auf, die unter der Kontrolle einer elektronischen Motorsteuerung von einer Hochdruckpumpe aus einem als Common-Rail bezeichneten zentralen Hochdruckspeicher mit Kraftstoff gespeist werden und den Kraftstoff über ein Ventil in die Brennräume der Zylinder der Verbrennungsmaschine einspritzen. Ein solches Ventil ist unter anderem aus der
Wenn der Kraftstoff bei geöffnetem Ventil mit hoher Geschwindigkeit durch den zwischen Ventilsitz und Dichtfläche gebildeten Ringkanals strömt, dessen Querschnitt sich hinter dem Ventilsitz stark erweitert, kann es dort zu Kavitationen im Kraftstoff kommen. Dabei bilden sich im Kraftstoff Dampfblasen, wenn der Druck lokal unter den Dampfdruck des Kraftstoffs absinkt. Bei einem erneuten Druckanstieg kondensiert der Kraftstoff in den Dampfblasen, wobei er mit hoher Geschwindigkeit gegen benachbarte Begrenzungsflächen des Ringkanals schlägt. Dadurch kann es direkt hinter dem Ventilsitz zum Auftreten von Kavitationsschäden kommen, durch die mit fortschreitender Erosion auch der Ventilsitz selbst angegriffen wird.When the fuel flows with the valve open at high speed through the annular channel formed between the valve seat and the sealing surface, whose cross section widens considerably behind the valve seat, it can lead to cavitations in the fuel. In this case, vapor bubbles form in the fuel when the pressure drops locally below the vapor pressure of the fuel. When the pressure rises again, the fuel condenses in the vapor bubbles, beating at high speed against adjacent boundary surfaces of the annular channel. As a result, cavitation damage can occur directly behind the valve seat, as a result of which, as erosion progresses, the valve seat itself is also attacked.
Um dieses Problem zu lösen, wurde in der
Aus der
Bei Verwendung des erfindungsgemäßen Ventils mit den im Anspruch 1 genannten Merkmalen konnten demgegenüber Kavitationsschäden mit gutem Erfolg verhindert werden, weil der Kraftstoffstrom hinter dem Ventilsitz nicht einfach nur in axiale Richtung umgelenkt wird. Statt dessen erhält er beim Durchströmen der Hohlkehle eine Geschwindigkeitskomponente in einer von der Mittelachse des Ventilgliedes weg weisenden Richtung, so dass er nach dem Austritt aus der Hohlkehle auf einen gegenüberliegenden Bereich einer Innenwand einer Abströmbohrung des Ventilgehäuses prallt. Beim Aufprall wird ein Teil des Kraftstoffstroms entlang der Innenwand zurück in Richtung des Ventilspalts geleitet, wodurch sich unmittelbar hinter dem gegenüberliegenden Wandbereich der Innenwand ein Wirbel bildet. Durch diesen Wirbel wird zum einen zusätzlicher Kraftstoff in den Ringraum hinter dem Ventilspalt eingetragen, so dass dort vermehrt Kraftstoff vorhanden ist, was Kavitationserscheinungen in der Nähe des Ventilspalts und dadurch langfristig verursachten Kavitationsschäden am Ventilsitz entgegenwirkt. Zum anderen strömt der in Richtung des Ventilspalts zurück geleitete Kraftstoff an der Innenwand des Ventilgehäuses entlang, womit gerade in diesen besonders kavitationsgefährdeten Bereich zusätzlicher Kraftstoff eingebracht und eine lokale Dampfblasenbildung infolge eines Kraftstoffdruckabfalls vermieden werden kann.When using the valve according to the invention with the features mentioned in
Unter Hohlkehle soll im Kontext der vorliegenden Erfindung eine konkave Ringnut im Umfang des Ventilglieds verstanden werden, während unter Querschnittsverdickung ein in Strömungsrichtung angrenzender Teil des Ventilglieds verstanden wird, dessen Durchmesser größer als der Durchmesser im Bereich der Ringnut ist.In the context of the present invention, a hollow groove is understood to mean a concave annular groove in the circumference of the valve member, while cross-sectional thickening means an adjacent part of the valve member in the direction of flow whose diameter is greater than the diameter in the region of the annular groove.
Eine besonders gute Wirbelbildung im erweiterten Ringraum hinter dem Ventilspalt wird in bevorzugter Ausgestaltung der Erfindung dadurch erreicht, dass zwischen der Hohlkehle und der Querschnittsverdickung eine hinterschnittene umlaufende Abrisskante angeordnet ist, an der beiderseits an diese Kante angrenzende äußere Umfangsflächenabschnitte der Hohlkehle und der Querschnittserweiterung unter einem überstumpfen Winkel aufeinandertreffen.A particularly good vortex formation in the enlarged annular space behind the valve gap is achieved in a preferred embodiment of the invention in that between the groove and the cross-sectional thickening an undercut circumferential trailing edge is arranged on the both sides of this edge adjacent outer peripheral surface portions of the groove and the cross-sectional enlargement under a blunt Angle meet.
Während der auf der Seite der Querschnittsverdickung an die Kante angrenzende äußere Umfangsflächenabschnitt bevorzugt im Wesentlichen parallel zu einer Mittelachse des Ventilglieds ausgerichtet ist, ist der auf der Seite der Hohlkehle an die Kante angrenzende Umfangsflächenabschnitt erfindungsgemäβ entgegen der Strömungsrichtung unter einem Winkel zwischen 20 und 80 Grad, vorzugsweise zwischen 30 und 60 Grad, zur Mittelachse des Ventilglieds hin geneigt, so dass die beiden Umfangsflächenabschnitte unter einem Winkel zwischen 200 und 260 Grad, vorzugsweise zwischen 190 und 240 Grad aufeinandertreffen.While the outer peripheral surface portion adjacent to the edge on the side of the cross-sectional thickening is preferably aligned substantially parallel to a central axis of the valve member is opposite to the flow direction at an angle between 20 and 80 degrees, preferably between 30 and 60 degrees, inclined to the central axis of the valve member, so that the two peripheral surface portions at an angle between 200 and 260 degrees, preferably between 190 and 240 degrees.
Eine besonders einfache und kostengünstige Herstellung der Abrisskante ist gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung dadurch möglich, dass man bei der Endbearbeitung des Ventilgliedes dessen äußere Umfangsfläche mindestens im Bereich der dem Ventilsitz gegenüberliegenden Dichtfläche und der Hohlkehle bis auf den endgültigen Durchmesser abschleift, nicht jedoch im Bereich der Querschnittsverdickung, so dass das dort stehen bleibende Material automatisch zur Bildung der Abrisskante führt. In diesem Fall verjüngt sich der Querschnitt des Ventilglieds in Strömungsrichtung hinter der Querschnittsverdickung, was jedoch nicht notwendigerweise der Fall sein muss.A particularly simple and cost-effective production of the spoiler lip is in accordance with a further preferred embodiment of the invention possible in that one abrades the outer peripheral surface at least in the region of the valve seat opposite sealing surface and the groove to the final diameter during the finishing of the valve member, but not in the Area of cross-sectional thickening, so that the material remaining there automatically leads to the formation of the spoiler edge. In this case, the cross-section of the valve member tapers in the flow direction behind the cross-sectional thickening, but this need not necessarily be the case.
Um eine für die Serienfertigung kostengünstig zu fertigende Geometrie des Ventilglieds bereitzustellen, weist die konkave Hohlkehle zweckmäßig einen Krümmungsradius auf, der bevorzugt mindestens 0,2 mm beträgt und zweckmäßig über die gesamte Breite der Hohlkehle gleichbleibend groß ist.In order to provide a cost-effective for serial production geometry of the valve member, the concave groove expediently has a radius of curvature which is preferably at least 0.2 mm and is expedient over the entire width of the groove uniformly large.
Um die Wirbelbildung zu fördern, kann gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung auch vorgesehen werden, einen der Hohlkehle im Wesentlichen gegenüberliegenden Innenwandabschnitt der Abströmbohrung nicht parallel zur Mittelachse des Ventilglieds bzw. zur Mittelachse der Abströmbohrung auszurichten, sondem in diesem Abschnitt eine Stufe oder Schräge anzubringen, die eine Umlenkung eines Teils des Kraftstoffstroms in Richtung des Ventilspalts unterstützt.In order to promote the vortex formation, according to a further advantageous embodiment of the invention can also be provided, not parallel to the central axis of the valve member or to align with the center axis of the discharge hole, sondem one of the groove substantially opposite inner wall portion of the outflow to install in this section a step or slope which helps to redirect part of the fuel flow in the direction of the valve gap.
Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:
Figur 1- eine Seitenansicht eines Ventilglieds oder Ventilbolzens eines erfindungsgemäßen Ventils; 0
- Figur 2
- eine vergrößerte Querschnittsansicht des Ventils im Bereich des Ventilspalts gemäß Ausschnitt Z aus
;Figur 1 - Figur 3
- eine Ausschnittsvergrößerung entsprechend
Figur 2 , jedoch mit einer anderen Geometrie des Ventilglieds in Strömungsrichtung hinter dem Ventilspalt; - Figur 4
- eine Ausschnittsvergrößerung entsprechend
Figur 2 , jedoch mit einer noch anderen Geometrie des Ventilglieds und des Ventilgehäuses in Strömungsrichtung hinter dem Ventilspalt.
- FIG. 1
- a side view of a valve member or valve pin of a valve according to the invention; 0
- FIG. 2
- an enlarged cross-sectional view of the valve in the region of the valve gap according to section Z out
FIG. 1 ; - FIG. 3
- an enlarged detail accordingly
FIG. 2 but with a different geometry of the valve member in the flow direction behind the valve gap; - FIG. 4
- an enlarged detail accordingly
FIG. 2 but with still another geometry of the valve member and the valve housing in the flow direction behind the valve gap.
Das in der Zeichnung nur teilweise dargestellte Ventil 2 ist Teil eines Injektors eines Common-Rail-Einspritzsystems einer Verbrennungsmaschine, der dazu dient, Kraftstoff aus einem als Common-Rail bezeichneten zentralen Hochdruckspeicher in die Brennräume der Zylinder der Verbrennungsmaschine einspritzen.The valve 2 shown only partially in the drawing is part of an injector of a common rail injection system of an internal combustion engine, which serves to fuel from a common rail inject central high-pressure accumulator into the combustion chambers of the cylinders of the internal combustion engine.
Der vollständige Aufbau eines derartigen Injektors ist zum Beispiel in der
Das Ventil 2 besteht im Wesentlichen aus einem Ventilgehäuse 4, in das ein rotationssymmetrischer Ventilbolzen 6 (vgl.
Der Ventilbolzen 6 weist weiter eine in Strömungsrichtung unmittelbar hinter der Dichtfläche 8 in seinem äußeren Umfang angeordnete umlaufende Hohlkehle 18 auf, das heißt eine im Längsschnitt konkave Vertiefung oder Nut, über deren axiale Breite der Durchmesser des Ventilbolzens 6 kleiner als davor bzw. dahinter ist, wo der Ventilbolzen 6 mit einer an die Hohlkehle 18 angrenzenden Querschnittsverdickung 20 versehen ist.The
Die Hohlkehle 18 dient dazu, mindestens einen Teil des hinter dem Ventilsitz 10 im Wesentlichen in axialer Richtung abgeführten Kraftstoffstroms so umzulenken, dass er eine von einer Mittelachse 22 des Ventilbolzens 6 weg gerichtete Geschwindigkeitskomponente aufweist und nach seinem Austritt aus der Hohlkehle 18 gegen einen gegenüberliegenden Bereich der Innenwand 24 einer Abströmbohrung 26 des Ventilgehäuses 4 prallt. Wie am besten in
Um diesen schützenden Wirbel 32 zu bilden, darf der Neigungswinkel des aus der Hohlkehle 18 austretenden Kraftstoffstroms in Bezug zur Mittelachse 22 des Ventilbolzens 6 nicht zu klein sein, da ansonsten der gesamte Kraftstoff direkt in die Abströmbohrung 26 gelenkt wird. Daher sollte zum einen die Hohlkehle 18 nicht zu flach ausgebildet sein, sondern in Bezug zur anschließenden Querschnittsverdickung eine gewisse Mindesttiefe T (
Bei allen dargestellten Ausführungsbeispielen schützt der entlang der Innenwand 24 zurückströmende Kraftstoff die letztere bis unmittelbar hinter dem Ventilspalt 12 vor kavitationsbedingten Schäden, die ansonsten infolge eines Druckabfalls im Kraftstoff bei dessen Austritt aus dem Ventilspalt 12 in den Ringraum 30 verursacht werden könnten.In all the illustrated embodiments, the fuel flowing back along the
Während
Da der Neigungswinkel α in
Die konkave Begrenzung der Hohlkehle 18 ist bei allen Ausführungsbeispielen kreisförmig, wobei der Krümmungsradius 0,2 mm nicht unterschreiten sollte, um eine kostengünstige Serienfertigung des Ventilbolzens 6 zu ermöglichen. An ihrer dem Ventilspalt 12 zugewandten Seite geht die Hohlkehle 18 vorzugsweise übergangslos in die Dichtfläche 8 über, wie bei allen Ausführungsbeispielen dargestellt.The concave boundary of the
Die scharfe Abrisskante 34 auf der anderen Seite der Hohlkehle 18 kann bei einer Serienfertigung der Ventilbolzen 6 kostengünstig dadurch hergestellt werden, dass der Ventilbolzen 6 bei seiner Endbearbeitung beiderseits der Querschnittsverdickung 20 auf seinen endgültigen Durchmesser abgeschliffen wird, nicht jedoch im Bereich der Querschnittsverdickung 20, so dass dort der vor der schleifenden Endbearbeitung des Ventilbolzens 6 vorhandene Durchmesser erhalten bleibt, was am Übergang zur Hohlkehle 18 automatisch zur Ausbildung der Abrisskante 34 führt.The sharp tear-
Claims (8)
- Valve (2) for a fuel injection system, having a valve seat (10) which is formed in a valve housing (4), and having a valve member (6) which is movable in the valve housing (4) and which has a sealing surface (8) which bears against the valve seat (10) when the valve (2) is closed, which sealing surface, when the valve (2) is open, serves together with the valve seat (10) to delimit a valve gap (12) through which fuel flows, wherein the valve member (6) has an encircling hollow groove (18) which is arranged directly downstream of the sealing surface (8) in the flow direction and which is adjoined by an encircling cross-sectional thickening (20) of the valve member (6), and wherein between the hollow groove (18) and the cross-sectional thickening (20) there is arranged an encircling edge (34) at which outer circumferential surface portions (36, 38), which adjoin one another, of the hollow groove (18) and of the cross-sectional thickening (20) converge at a reflex angle (β), characterized in that the circumferential surface portion (36) which adjoins the edge (34) at the side of the hollow groove (18) is inclined with respect to a central axis (22) of the valve member (6) by an angle (α) of between 20 and 80 degrees.
- Valve according to Claim 1, characterized in that the circumferential surface portion (36) which adjoins the edge (34) at the side of the hollow groove (18) is inclined with respect to a central axis (22) of the valve member (6) by an angle (α) of between 20 and 60 degrees.
- Valve according to Claim 1 or 2, characterized in that the outer circumferential surface portion (38) which adjoins the edge (34) at the side of the cross-sectional thickening (20) is aligned substantially parallel to a central axis (22) of the valve member (6).
- Valve according to one of the preceding claims, characterized in that a radius of curvature of the hollow groove (18) is greater than 0.2 mm.
- Valve according to one of the preceding claims, characterized in that the hollow groove (18) and the sealing surface (8) merge seamlessly into one another.
- Valve according to one of the preceding claims, characterized in that the cross section of the valve member (6) narrows in the flow direction downstream of the cross-sectional thickening (20).
- Valve according to one of the preceding claims, characterized in that an outer circumferential surface of the valve member (6) is ground at least in the region of the sealing surface (8) and of the hollow groove (18) but not in the region of the cross-sectional thickening (20).
- Fuel injection pump characterized by a valve according to one of the preceding claims.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10351680A DE10351680A1 (en) | 2003-11-05 | 2003-11-05 | Valve for a fuel injection pump |
PCT/DE2004/001994 WO2005045228A1 (en) | 2003-11-05 | 2004-09-06 | Valve for a fuel injection pump |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1682771A1 EP1682771A1 (en) | 2006-07-26 |
EP1682771B1 true EP1682771B1 (en) | 2012-11-14 |
Family
ID=34559352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04786716A Expired - Lifetime EP1682771B1 (en) | 2003-11-05 | 2004-09-06 | Valve for a fuel injection pump |
Country Status (7)
Country | Link |
---|---|
US (1) | US20070119991A1 (en) |
EP (1) | EP1682771B1 (en) |
JP (1) | JP2006526729A (en) |
KR (1) | KR101100973B1 (en) |
CN (1) | CN1875184B (en) |
DE (1) | DE10351680A1 (en) |
WO (1) | WO2005045228A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4720724B2 (en) * | 2006-11-13 | 2011-07-13 | トヨタ自動車株式会社 | Fuel injection valve |
DE102010043360A1 (en) * | 2010-11-04 | 2012-05-10 | Robert Bosch Gmbh | fuel injector |
DE102011004993A1 (en) * | 2011-03-02 | 2012-09-06 | Robert Bosch Gmbh | Valve device for switching or metering a fluid |
DE102012218667B4 (en) * | 2012-10-12 | 2014-06-05 | Continental Automotive Gmbh | magnetic valve |
JP6224415B2 (en) * | 2013-10-29 | 2017-11-01 | 日立オートモティブシステムズ株式会社 | High pressure fuel supply pump |
JP6781661B2 (en) * | 2017-04-20 | 2020-11-04 | ボッシュ株式会社 | Fuel injection device |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1952816A (en) * | 1931-04-04 | 1934-03-27 | Bendix Res Corp | Fuel injector |
US4503884A (en) * | 1982-06-22 | 1985-03-12 | Spils Richard W | Angle globe valve |
DE3581160D1 (en) * | 1984-09-14 | 1991-02-07 | Bosch Gmbh Robert | ELECTRICALLY CONTROLLED FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES. |
US4941508A (en) * | 1989-12-28 | 1990-07-17 | Dana Corporation | Force balanced hydraulic spool valve |
DE19619523A1 (en) | 1996-05-15 | 1997-11-20 | Bosch Gmbh Robert | Fuel injector for high pressure injection |
DE19940296A1 (en) | 1999-08-25 | 2001-03-01 | Bosch Gmbh Robert | Valve, especially for fuel injection pump, has flow channel that expands with constant gradient in flow direction starting from minimum cross-section near valve seat |
DE10000501A1 (en) * | 2000-01-08 | 2001-07-19 | Bosch Gmbh Robert | Fuel injection valve for internal combustion engines |
EP1118765A3 (en) * | 2000-01-19 | 2003-11-19 | CRT Common Rail Technologies AG | Fuel injector for internal combustion engines |
DE10008554A1 (en) | 2000-02-24 | 2001-08-30 | Bosch Gmbh Robert | Fuel injection valve for internal combustion engines |
DE10031264A1 (en) * | 2000-06-27 | 2002-01-17 | Bosch Gmbh Robert | Fuel injection valve for IC engines with even fuel supply to all injection openings even if valve member is misaligned |
JP2002039031A (en) * | 2000-07-10 | 2002-02-06 | Robert Bosch Gmbh | Fuel injector having rear setting pressure control element |
DE10134526B4 (en) * | 2001-07-16 | 2007-10-11 | Robert Bosch Gmbh | Switching valve for fuel injection system |
-
2003
- 2003-11-05 DE DE10351680A patent/DE10351680A1/en not_active Withdrawn
-
2004
- 2004-09-06 WO PCT/DE2004/001994 patent/WO2005045228A1/en active Application Filing
- 2004-09-06 EP EP04786716A patent/EP1682771B1/en not_active Expired - Lifetime
- 2004-09-06 JP JP2006508128A patent/JP2006526729A/en active Pending
- 2004-09-06 US US10/578,506 patent/US20070119991A1/en not_active Abandoned
- 2004-09-06 KR KR1020067008671A patent/KR101100973B1/en not_active IP Right Cessation
- 2004-09-06 CN CN2004800325099A patent/CN1875184B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
WO2005045228A1 (en) | 2005-05-19 |
KR20060108655A (en) | 2006-10-18 |
US20070119991A1 (en) | 2007-05-31 |
JP2006526729A (en) | 2006-11-24 |
CN1875184A (en) | 2006-12-06 |
EP1682771A1 (en) | 2006-07-26 |
CN1875184B (en) | 2011-04-06 |
DE10351680A1 (en) | 2005-06-09 |
KR101100973B1 (en) | 2011-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2129903B1 (en) | Fuel injector having an additional outlet restrictor or having an improved arrangement of the same in the control valve | |
DE10123775A1 (en) | Fuel injection device for internal combustion engines, in particular common rail injector, and fuel system and internal combustion engine | |
EP1891324B1 (en) | Fuel injection valve for internal combustion engines | |
DE102006009070A1 (en) | Fuel-injection valve for air-compressing, auto-igniting internal combustion engines comprises a valve with a corrugated washer partly surrounding the periphery of a bolt section of a valve bolt | |
EP0347581B1 (en) | Injection pump for internal-combustion engines | |
EP1682771B1 (en) | Valve for a fuel injection pump | |
DE10328331A1 (en) | Fuel injection nozzle for injecting fuel into the cylinder of internal combustion engine comprisesn injection passage having micropassages tapering from the inner side of seat passage or blind hole toward the outer side of the nozzle body | |
DE69805999T2 (en) | FUEL INJECTION PUMP FOR COMBUSTION ENGINES, ESPECIALLY SLOW-RUNNING LARGE DIESEL ENGINES FOR MARITIME | |
DE10116714A1 (en) | Fuel injection valve for internal combustion engine, preferably for high jet speeds, has spray channels with cross-sections that expand after jet hole | |
DE10261737A1 (en) | Component subject to internal pressure, in particular for fuel injection for internal combustion engines with a high-pressure fuel pump | |
EP1572420B1 (en) | Method for working the edge of a high pressure-resistant part, especially for the hydro-erosive rounding of an edge and corresponding device | |
DE3136749A1 (en) | FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES | |
DE3902764C2 (en) | Fuel injection pump | |
EP2807367B1 (en) | Device for injecting fuel into the combustion chamber of an internal combustion engine | |
EP1527272B1 (en) | Fuel-injector comprising a connecting area that can withstand high pressure | |
WO2000042316A1 (en) | Fuel injection valve | |
DE19843912B4 (en) | fuel Injector | |
DE10160490B4 (en) | Fuel injection device, fuel system and internal combustion engine | |
AT511731B1 (en) | CAVITATION-OPTIMIZED THROTTLE DRILLING | |
DE19732880C1 (en) | Pistons for an internal combustion engine | |
EP1003964A1 (en) | Fuel injection valve | |
DE10031537B4 (en) | Formation of an injection valve to reduce the seat load | |
EP4077908B1 (en) | Injection nozzle for injecting fuel under high pressure | |
DE10148350A1 (en) | Fuel injector, for a common rail direct fuel injection at an IC motor, has a fuel flow channel through the valve unit, opening into a flow zone directly upstream of the valve seat | |
EP3921535B1 (en) | Nozzle for a fuel injector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060606 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20081017 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHUERG, STEFAN Inventor name: STOECKLEIN, WOLFGANG Inventor name: RAPP, HOLGER Inventor name: CHASSAGNOUX, VIOLAINE |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004013871 Country of ref document: DE Effective date: 20130110 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004013871 Country of ref document: DE Effective date: 20130815 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20170925 Year of fee payment: 14 Ref country code: IT Payment date: 20170926 Year of fee payment: 14 Ref country code: GB Payment date: 20170925 Year of fee payment: 14 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180906 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20191125 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004013871 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210401 |