Nothing Special   »   [go: up one dir, main page]

EP1682771B1 - Valve for a fuel injection pump - Google Patents

Valve for a fuel injection pump Download PDF

Info

Publication number
EP1682771B1
EP1682771B1 EP04786716A EP04786716A EP1682771B1 EP 1682771 B1 EP1682771 B1 EP 1682771B1 EP 04786716 A EP04786716 A EP 04786716A EP 04786716 A EP04786716 A EP 04786716A EP 1682771 B1 EP1682771 B1 EP 1682771B1
Authority
EP
European Patent Office
Prior art keywords
valve
cross
hollow groove
fuel
valve member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04786716A
Other languages
German (de)
French (fr)
Other versions
EP1682771A1 (en
Inventor
Stefan Schuerg
Wolfgang Stoecklein
Holger Rapp
Violaine Chassagnoux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1682771A1 publication Critical patent/EP1682771A1/en
Application granted granted Critical
Publication of EP1682771B1 publication Critical patent/EP1682771B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/466Electrically operated valves, e.g. using electromagnetic or piezoelectric operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0077Valve seat details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0078Valve member details, e.g. special shape, hollow or fuel passages in the valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/04Fuel-injection apparatus having means for avoiding effect of cavitation, e.g. erosion

Definitions

  • the invention relates to a valve for a fuel injection system of an internal combustion engine having the features specified in the preamble of claim 1, in particular for an injector of a common rail injection system.
  • Common rail injection systems have a plurality of injectors, which are supplied with fuel under the control of an electronic engine control by a high-pressure pump from a designated as common rail central high-pressure accumulator and inject the fuel via a valve in the combustion chambers of the cylinders of the internal combustion engine.
  • a valve is among others from the DE 199 40 296 A1 Known by the applicant and is used depending on the valve position to connect a high-pressure region of an injector of the injection system with a low pressure region or to separate from this, when fuel is injected through the valve into the combustion chamber of a cylinder or the supply of fuel to be interrupted.
  • a valve of the aforementioned type in which a circumferential groove arranged in the flow direction directly behind a sealing surface of the valve member is delimited together with a circumferential cross-sectional thickening of the valve member and with the valve housing an annular space. Between the groove and the cross-sectional thickening, the valve member has a circumferential edge against which contiguous outer peripheral surface portions of the groove and cross-sectional thickening meet at an angle of 270 °, with a peripheral surface portion adjacent the edge on the side of the groove at an angle of 90 degrees is aligned with the central axis of the valve member.
  • cavitation damage could be prevented with good success, because the fuel flow behind the valve seat is not simply deflected in the axial direction. Instead, as it flows through the groove, it receives a velocity component in a direction pointing away from the central axis of the valve member so that, after exiting the groove, it impinges on an opposite region of an inner wall of an outlet bore of the valve housing. On impact, part of the fuel flow is directed along the inner wall back toward the valve gap, leaving immediately behind the opposite wall portion of the inner wall forms a vortex.
  • a hollow groove is understood to mean a concave annular groove in the circumference of the valve member, while cross-sectional thickening means an adjacent part of the valve member in the direction of flow whose diameter is greater than the diameter in the region of the annular groove.
  • a particularly good vortex formation in the enlarged annular space behind the valve gap is achieved in a preferred embodiment of the invention in that between the groove and the cross-sectional thickening an undercut circumferential trailing edge is arranged on the both sides of this edge adjacent outer peripheral surface portions of the groove and the cross-sectional enlargement under a blunt Angle meet.
  • While the outer peripheral surface portion adjacent to the edge on the side of the cross-sectional thickening is preferably aligned substantially parallel to a central axis of the valve member is opposite to the flow direction at an angle between 20 and 80 degrees, preferably between 30 and 60 degrees, inclined to the central axis of the valve member, so that the two peripheral surface portions at an angle between 200 and 260 degrees, preferably between 190 and 240 degrees.
  • a particularly simple and cost-effective production of the spoiler lip is in accordance with a further preferred embodiment of the invention possible in that one abrades the outer peripheral surface at least in the region of the valve seat opposite sealing surface and the groove to the final diameter during the finishing of the valve member, but not in the Area of cross-sectional thickening, so that the material remaining there automatically leads to the formation of the spoiler edge.
  • the cross-section of the valve member tapers in the flow direction behind the cross-sectional thickening, but this need not necessarily be the case.
  • the concave groove expediently has a radius of curvature which is preferably at least 0.2 mm and is expedient over the entire width of the groove uniformly large.
  • sondem one of the groove substantially opposite inner wall portion of the outflow to install in this section a step or slope which helps to redirect part of the fuel flow in the direction of the valve gap.
  • valve 2 shown only partially in the drawing is part of an injector of a common rail injection system of an internal combustion engine, which serves to fuel from a common rail inject central high-pressure accumulator into the combustion chambers of the cylinders of the internal combustion engine.
  • the valve 2 consists essentially of a valve housing 4, in which a rotationally symmetrical valve pin 6 (see. FIG. 1 ) is used axially movable.
  • the valve pin 6 has a conical, tapered in the flow direction sealing surface 8, which bears sealingly against a complementary conical valve seat 10 of the housing 4 when the valve 2 is closed. How best in the FIGS. 2 to 4 shown limited at the valve 2 open the sealing surface 8 together with the valve seat 10 surrounding the valve pin 6 valve gap 12 in the form of an annular flow channel through which the fuel to be injected flows from the high pressure side 14 of the valve 2 to the low pressure side 16.
  • the valve pin 6 further comprises a circumferentially disposed in the direction of flow immediately behind the sealing surface 8 in its outer circumference circumferential groove 18, that is a concave recess in longitudinal section or groove over the axial width of the diameter of the valve pin 6 is smaller than before or behind, where the valve pin 6 is provided with an adjacent to the groove 18 cross-sectional thickening 20.
  • the groove 18 serves to deflect at least a portion of the fuel flow discharged substantially behind the valve seat 10 in the axial direction such that it has a velocity component directed away from a central axis 22 of the valve pin 6 and, after its exit from the groove 18, against an opposite region the inner wall 24 of an outflow bore 26 of the valve housing 4 rebounds. How best in FIG. 2 . 3 and 4 represented by arrows, while dividing the fuel flow into two partial streams, of which the larger is directed after the impact along the inner wall 24 of the discharge hole 26 in the downstream part of the bore 26, while the smaller against the flow direction to the valve gap 12 directed back out becomes.
  • valve housing 4 in the area immediately behind the valve seat 10th protects against erosion caused by cavitation, so that the valve seat 10 remains undamaged even over a long period of operation.
  • the angle of inclination of the fuel flow emerging from the groove 18 with respect to the central axis 22 of the valve pin 6 must not be too small, since otherwise the entire fuel is directed directly into the outflow bore 26. Therefore, on the one hand, the groove 18 should not be formed too flat, but with respect to the subsequent cross-sectional thickening a certain minimum depth T (FIG. FIG. 1 ), which at a diameter of the valve pin 6 in the middle of Sealing surface of 1.35 mm should preferably be greater than 0.04 mm. On the other hand, the groove 18 should not be rounded at the transition to the cross-sectional thickening, because thereby the inclination angle of the emerging from the groove 18 fuel flow with respect to the central axis 22 is also smaller.
  • a circumferential edge 34 is provided between the groove 18 and the cross-sectional thickening 20, at the adjoining outer peripheral surface portions 36, 38 of the groove 18 and the cross-sectional thickening 20 has a superficial angle ⁇ (FIG. FIG. 1 ), which should be at least 200 degrees and preferably between 220 degrees and 240 degrees. Unlike a rounded transition at such an edge 34, the flow of fuel from the peripheral surface of the valve pin 6 breaks off, but this has no cavitation due to the hardened surface of the valve pin 6 result.
  • the stall at the edge 34 causes the fuel to exit the fillet 18 at an angle of inclination to the central axis 22 that substantially corresponds to the angle of inclination ⁇ of the peripheral surface portion 36 adjacent the edge 34 within the fillet 18.
  • this angle of inclination is selected, more or less fuel is directed back in the direction of the valve gap 12 upon impact of the fuel flow on the opposite region of the inner wall 24 of the discharge bore 26.
  • this angle of inclination which is preferably between 20 and 60 degrees, therefore, the proportion of the returning fuel can be adjusted to such a value that on the one hand vortex formation avoids cavitation damage immediately behind the valve seat 10, on the other hand, the vortex formation the flow of fuel after its exit from the valve gap 12 is not affected.
  • the fuel flowing back along the inner wall 24 protects the latter from cavitation-related damage, which might otherwise be caused by a pressure drop in the fuel as it exits the valve gap 12 into the annulus 30, just past the valve gap 12.
  • FIG. 2 a valve pin 6, wherein the within the groove 18 adjacent to the edge 34 peripheral surface portion 36 is aligned at an inclination angle ⁇ of about 60 degrees to the central axis 22 of the valve pin 6, the fuel therefore bounces quite steeply on the inner wall 24 of the discharge bore 26 and thus relatively much fuel is directed back in the direction of the valve gap 28, show the Figures 3 and 4 two valve bolts 6, in which this inclination angle ⁇ is about 35 degrees or about 20 degrees, and therefore correspondingly less fuel is directed back toward the valve gap 28 to form a vortex 34.
  • the concave boundary of the groove 18 is circular in all embodiments, wherein the radius of curvature should not fall below 0.2 mm in order to allow cost-effective mass production of the valve pin 6.
  • the groove 18 preferably transitions seamlessly into the sealing surface 8, as shown in all exemplary embodiments.
  • the sharp tear-off edge 34 on the other side of the groove 18 can be inexpensively produced in a series production of the valve pin 6, that the valve pin 6 is ground at its final diameter on both sides of the cross-sectional thickening 20, but not in the region of the cross-sectional thickening 20, so that there existing in front of the abrasive finishing of the valve pin 6 existing diameter is maintained, which automatically leads to the formation of the tear-off edge 34 at the transition to the groove 18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Die Erfindung betrifft ein Ventil für ein Kraftstoffeinspritzsystem einer Verbrennungsmaschine mit den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen, und zwar insbesondere für einen Injektor eines Common-Rail-Einspritzsystems.The invention relates to a valve for a fuel injection system of an internal combustion engine having the features specified in the preamble of claim 1, in particular for an injector of a common rail injection system.

Stand der TechnikState of the art

Common-Rail-Einspritzsysteme weisen eine Mehrzahl von Injektoren auf, die unter der Kontrolle einer elektronischen Motorsteuerung von einer Hochdruckpumpe aus einem als Common-Rail bezeichneten zentralen Hochdruckspeicher mit Kraftstoff gespeist werden und den Kraftstoff über ein Ventil in die Brennräume der Zylinder der Verbrennungsmaschine einspritzen. Ein solches Ventil ist unter anderem aus der DE 199 40 296 A1 der Anmelderin bekannt und dient je nach Ventilstellung dazu, einen Hochdruckbereich eines Injektors des Einspritzsystems mit einem Niederdruckbereich zu verbinden bzw. von diesem zu trennen, wenn Kraftstoff durch das Ventil in den Brennraum eines Zylinders eingespritzt bzw. die Zufuhr von Kraftstoff unterbrochen werden soll.Common rail injection systems have a plurality of injectors, which are supplied with fuel under the control of an electronic engine control by a high-pressure pump from a designated as common rail central high-pressure accumulator and inject the fuel via a valve in the combustion chambers of the cylinders of the internal combustion engine. Such a valve is among others from the DE 199 40 296 A1 Known by the applicant and is used depending on the valve position to connect a high-pressure region of an injector of the injection system with a low pressure region or to separate from this, when fuel is injected through the valve into the combustion chamber of a cylinder or the supply of fuel to be interrupted.

Wenn der Kraftstoff bei geöffnetem Ventil mit hoher Geschwindigkeit durch den zwischen Ventilsitz und Dichtfläche gebildeten Ringkanals strömt, dessen Querschnitt sich hinter dem Ventilsitz stark erweitert, kann es dort zu Kavitationen im Kraftstoff kommen. Dabei bilden sich im Kraftstoff Dampfblasen, wenn der Druck lokal unter den Dampfdruck des Kraftstoffs absinkt. Bei einem erneuten Druckanstieg kondensiert der Kraftstoff in den Dampfblasen, wobei er mit hoher Geschwindigkeit gegen benachbarte Begrenzungsflächen des Ringkanals schlägt. Dadurch kann es direkt hinter dem Ventilsitz zum Auftreten von Kavitationsschäden kommen, durch die mit fortschreitender Erosion auch der Ventilsitz selbst angegriffen wird.When the fuel flows with the valve open at high speed through the annular channel formed between the valve seat and the sealing surface, whose cross section widens considerably behind the valve seat, it can lead to cavitations in the fuel. In this case, vapor bubbles form in the fuel when the pressure drops locally below the vapor pressure of the fuel. When the pressure rises again, the fuel condenses in the vapor bubbles, beating at high speed against adjacent boundary surfaces of the annular channel. As a result, cavitation damage can occur directly behind the valve seat, as a result of which, as erosion progresses, the valve seat itself is also attacked.

Um dieses Problem zu lösen, wurde in der DE 199 40 296 A1 vorgeschlagen, den Querschnitt des Ringkanals ausgehend von einem minimalen Querschnitt im Bereich des Ventilspalts mit einem konstanten Gradienten zu erweitern. Jedoch hat sich gezeigt, dass dies Maßnahme nicht immer ausreicht, um Kavitationsschäden sicher zu verhindern.To solve this problem was in the DE 199 40 296 A1 proposed to extend the cross-section of the annular channel, starting from a minimum cross-section in the region of the valve gap with a constant gradient. However, it has been shown that this measure is not always sufficient to safely prevent cavitation damage.

Aus der DE 101 34 526 A1 ist weiter bereits ein Ventil der eingangs genannten Art bekannt, bei dem eine in Strömungsrichtung unmittelbar hinter einer Dichtfläche des Ventilglieds angeordnete umlaufende Hohlkehle zusammen mit einer umlaufende Querschnittsverdickung des Ventilglieds und mit dem Ventilgehäuse einen Ringraum begrenzt. Zwischen der Hohlkehle und der Querschnittsverdickung weist das Ventilglied eine umlaufende Kante auf, an der aneinandergrenzende äußere Umfangsflächenabschnitte der Hohlkehle und der Querschnittsverdickung unter einem Winkel von 270° aufeinandertreffen, wobei ein auf der Seite der Hohlkehle an die Kante angrenzender Umfangsflächenabschnitt unter einem Winkel von 90 Grad zur Mittelachse des Ventilglieds ausgerichtet ist.From the DE 101 34 526 A1 Furthermore, a valve of the aforementioned type is known in which a circumferential groove arranged in the flow direction directly behind a sealing surface of the valve member is delimited together with a circumferential cross-sectional thickening of the valve member and with the valve housing an annular space. Between the groove and the cross-sectional thickening, the valve member has a circumferential edge against which contiguous outer peripheral surface portions of the groove and cross-sectional thickening meet at an angle of 270 °, with a peripheral surface portion adjacent the edge on the side of the groove at an angle of 90 degrees is aligned with the central axis of the valve member.

Bei Verwendung des erfindungsgemäßen Ventils mit den im Anspruch 1 genannten Merkmalen konnten demgegenüber Kavitationsschäden mit gutem Erfolg verhindert werden, weil der Kraftstoffstrom hinter dem Ventilsitz nicht einfach nur in axiale Richtung umgelenkt wird. Statt dessen erhält er beim Durchströmen der Hohlkehle eine Geschwindigkeitskomponente in einer von der Mittelachse des Ventilgliedes weg weisenden Richtung, so dass er nach dem Austritt aus der Hohlkehle auf einen gegenüberliegenden Bereich einer Innenwand einer Abströmbohrung des Ventilgehäuses prallt. Beim Aufprall wird ein Teil des Kraftstoffstroms entlang der Innenwand zurück in Richtung des Ventilspalts geleitet, wodurch sich unmittelbar hinter dem gegenüberliegenden Wandbereich der Innenwand ein Wirbel bildet. Durch diesen Wirbel wird zum einen zusätzlicher Kraftstoff in den Ringraum hinter dem Ventilspalt eingetragen, so dass dort vermehrt Kraftstoff vorhanden ist, was Kavitationserscheinungen in der Nähe des Ventilspalts und dadurch langfristig verursachten Kavitationsschäden am Ventilsitz entgegenwirkt. Zum anderen strömt der in Richtung des Ventilspalts zurück geleitete Kraftstoff an der Innenwand des Ventilgehäuses entlang, womit gerade in diesen besonders kavitationsgefährdeten Bereich zusätzlicher Kraftstoff eingebracht und eine lokale Dampfblasenbildung infolge eines Kraftstoffdruckabfalls vermieden werden kann.When using the valve according to the invention with the features mentioned in claim 1 cavitation damage could be prevented with good success, because the fuel flow behind the valve seat is not simply deflected in the axial direction. Instead, as it flows through the groove, it receives a velocity component in a direction pointing away from the central axis of the valve member so that, after exiting the groove, it impinges on an opposite region of an inner wall of an outlet bore of the valve housing. On impact, part of the fuel flow is directed along the inner wall back toward the valve gap, leaving immediately behind the opposite wall portion of the inner wall forms a vortex. By this vortex, on the one hand, additional fuel is introduced into the annular space behind the valve gap, so that there is more fuel there, which counteracts cavitation phenomena in the vicinity of the valve gap and thereby caused long-term cavitation damage to the valve seat. On the other hand, the fuel conducted back in the direction of the valve gap flows along the inner wall of the valve housing, whereby additional fuel can be introduced into this particularly cavitation-prone area and local steam bubble formation due to fuel pressure drop can be avoided.

Unter Hohlkehle soll im Kontext der vorliegenden Erfindung eine konkave Ringnut im Umfang des Ventilglieds verstanden werden, während unter Querschnittsverdickung ein in Strömungsrichtung angrenzender Teil des Ventilglieds verstanden wird, dessen Durchmesser größer als der Durchmesser im Bereich der Ringnut ist.In the context of the present invention, a hollow groove is understood to mean a concave annular groove in the circumference of the valve member, while cross-sectional thickening means an adjacent part of the valve member in the direction of flow whose diameter is greater than the diameter in the region of the annular groove.

Eine besonders gute Wirbelbildung im erweiterten Ringraum hinter dem Ventilspalt wird in bevorzugter Ausgestaltung der Erfindung dadurch erreicht, dass zwischen der Hohlkehle und der Querschnittsverdickung eine hinterschnittene umlaufende Abrisskante angeordnet ist, an der beiderseits an diese Kante angrenzende äußere Umfangsflächenabschnitte der Hohlkehle und der Querschnittserweiterung unter einem überstumpfen Winkel aufeinandertreffen.A particularly good vortex formation in the enlarged annular space behind the valve gap is achieved in a preferred embodiment of the invention in that between the groove and the cross-sectional thickening an undercut circumferential trailing edge is arranged on the both sides of this edge adjacent outer peripheral surface portions of the groove and the cross-sectional enlargement under a blunt Angle meet.

Während der auf der Seite der Querschnittsverdickung an die Kante angrenzende äußere Umfangsflächenabschnitt bevorzugt im Wesentlichen parallel zu einer Mittelachse des Ventilglieds ausgerichtet ist, ist der auf der Seite der Hohlkehle an die Kante angrenzende Umfangsflächenabschnitt erfindungsgemäβ entgegen der Strömungsrichtung unter einem Winkel zwischen 20 und 80 Grad, vorzugsweise zwischen 30 und 60 Grad, zur Mittelachse des Ventilglieds hin geneigt, so dass die beiden Umfangsflächenabschnitte unter einem Winkel zwischen 200 und 260 Grad, vorzugsweise zwischen 190 und 240 Grad aufeinandertreffen.While the outer peripheral surface portion adjacent to the edge on the side of the cross-sectional thickening is preferably aligned substantially parallel to a central axis of the valve member is opposite to the flow direction at an angle between 20 and 80 degrees, preferably between 30 and 60 degrees, inclined to the central axis of the valve member, so that the two peripheral surface portions at an angle between 200 and 260 degrees, preferably between 190 and 240 degrees.

Eine besonders einfache und kostengünstige Herstellung der Abrisskante ist gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung dadurch möglich, dass man bei der Endbearbeitung des Ventilgliedes dessen äußere Umfangsfläche mindestens im Bereich der dem Ventilsitz gegenüberliegenden Dichtfläche und der Hohlkehle bis auf den endgültigen Durchmesser abschleift, nicht jedoch im Bereich der Querschnittsverdickung, so dass das dort stehen bleibende Material automatisch zur Bildung der Abrisskante führt. In diesem Fall verjüngt sich der Querschnitt des Ventilglieds in Strömungsrichtung hinter der Querschnittsverdickung, was jedoch nicht notwendigerweise der Fall sein muss.A particularly simple and cost-effective production of the spoiler lip is in accordance with a further preferred embodiment of the invention possible in that one abrades the outer peripheral surface at least in the region of the valve seat opposite sealing surface and the groove to the final diameter during the finishing of the valve member, but not in the Area of cross-sectional thickening, so that the material remaining there automatically leads to the formation of the spoiler edge. In this case, the cross-section of the valve member tapers in the flow direction behind the cross-sectional thickening, but this need not necessarily be the case.

Um eine für die Serienfertigung kostengünstig zu fertigende Geometrie des Ventilglieds bereitzustellen, weist die konkave Hohlkehle zweckmäßig einen Krümmungsradius auf, der bevorzugt mindestens 0,2 mm beträgt und zweckmäßig über die gesamte Breite der Hohlkehle gleichbleibend groß ist.In order to provide a cost-effective for serial production geometry of the valve member, the concave groove expediently has a radius of curvature which is preferably at least 0.2 mm and is expedient over the entire width of the groove uniformly large.

Um die Wirbelbildung zu fördern, kann gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung auch vorgesehen werden, einen der Hohlkehle im Wesentlichen gegenüberliegenden Innenwandabschnitt der Abströmbohrung nicht parallel zur Mittelachse des Ventilglieds bzw. zur Mittelachse der Abströmbohrung auszurichten, sondem in diesem Abschnitt eine Stufe oder Schräge anzubringen, die eine Umlenkung eines Teils des Kraftstoffstroms in Richtung des Ventilspalts unterstützt.In order to promote the vortex formation, according to a further advantageous embodiment of the invention can also be provided, not parallel to the central axis of the valve member or to align with the center axis of the discharge hole, sondem one of the groove substantially opposite inner wall portion of the outflow to install in this section a step or slope which helps to redirect part of the fuel flow in the direction of the valve gap.

Zeichnungendrawings

Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:

Figur 1
eine Seitenansicht eines Ventilglieds oder Ventilbolzens eines erfindungsgemäßen Ventils; 0
Figur 2
eine vergrößerte Querschnittsansicht des Ventils im Bereich des Ventilspalts gemäß Ausschnitt Z aus Figur 1;
Figur 3
eine Ausschnittsvergrößerung entsprechend Figur 2, jedoch mit einer anderen Geometrie des Ventilglieds in Strömungsrichtung hinter dem Ventilspalt;
Figur 4
eine Ausschnittsvergrößerung entsprechend Figur 2, jedoch mit einer noch anderen Geometrie des Ventilglieds und des Ventilgehäuses in Strömungsrichtung hinter dem Ventilspalt.
The invention will be explained in more detail in an embodiment with reference to the accompanying drawings. Show it:
FIG. 1
a side view of a valve member or valve pin of a valve according to the invention; 0
FIG. 2
an enlarged cross-sectional view of the valve in the region of the valve gap according to section Z out FIG. 1 ;
FIG. 3
an enlarged detail accordingly FIG. 2 but with a different geometry of the valve member in the flow direction behind the valve gap;
FIG. 4
an enlarged detail accordingly FIG. 2 but with still another geometry of the valve member and the valve housing in the flow direction behind the valve gap.

Beschreibung des AusführungsbeispielsDescription of the embodiment

Das in der Zeichnung nur teilweise dargestellte Ventil 2 ist Teil eines Injektors eines Common-Rail-Einspritzsystems einer Verbrennungsmaschine, der dazu dient, Kraftstoff aus einem als Common-Rail bezeichneten zentralen Hochdruckspeicher in die Brennräume der Zylinder der Verbrennungsmaschine einspritzen.The valve 2 shown only partially in the drawing is part of an injector of a common rail injection system of an internal combustion engine, which serves to fuel from a common rail inject central high-pressure accumulator into the combustion chambers of the cylinders of the internal combustion engine.

Der vollständige Aufbau eines derartigen Injektors ist zum Beispiel in der DE 196 19 523 A1 der Anmelderin ausführlich beschrieben, während sich weitere Einzelheiten über den Aufbau seines Ventils aus der bereits genannten DE 199 40 296 A1 der Anmelderin entnehmen lasse, so dass an dieser Stelle auf eine nähere Erläuterung verzichtet und zu diesem Zweck auf die genannten Druckschriften verwiesen wird.The complete structure of such an injector is for example in the DE 196 19 523 A1 The applicant described in detail while more details on the structure of its valve from the already mentioned DE 199 40 296 A1 let the applicant, so that at this point waives a more detailed explanation and reference is made to the cited documents for this purpose.

Das Ventil 2 besteht im Wesentlichen aus einem Ventilgehäuse 4, in das ein rotationssymmetrischer Ventilbolzen 6 (vgl. Figur 1) axial beweglich eingesetzt ist. Der Ventilbolzen 6 weist eine konische, in Strömungsrichtung verjüngte Dichtfläche 8 auf, die bei geschlossenem Ventil 2 dichtend gegen einen komplementären konischen Ventilsitz 10 des Gehäuses 4 anliegt. Wie am besten in den Figuren 2 bis 4 dargestellt, begrenzt bei geöffnetem Ventil 2 die Dichtfläche 8 zusammen mit dem Ventilsitz 10 einen den Ventilbolzen 6 umgebenden Ventilspalt 12 in Form eines ringförmigen Strömungskanals, durch den der einzuspritzende Kraftstoff von der Hochdruckseite 14 des Ventils 2 zu dessen Niederdruckseite 16 strömt.The valve 2 consists essentially of a valve housing 4, in which a rotationally symmetrical valve pin 6 (see. FIG. 1 ) is used axially movable. The valve pin 6 has a conical, tapered in the flow direction sealing surface 8, which bears sealingly against a complementary conical valve seat 10 of the housing 4 when the valve 2 is closed. How best in the FIGS. 2 to 4 shown limited at the valve 2 open the sealing surface 8 together with the valve seat 10 surrounding the valve pin 6 valve gap 12 in the form of an annular flow channel through which the fuel to be injected flows from the high pressure side 14 of the valve 2 to the low pressure side 16.

Der Ventilbolzen 6 weist weiter eine in Strömungsrichtung unmittelbar hinter der Dichtfläche 8 in seinem äußeren Umfang angeordnete umlaufende Hohlkehle 18 auf, das heißt eine im Längsschnitt konkave Vertiefung oder Nut, über deren axiale Breite der Durchmesser des Ventilbolzens 6 kleiner als davor bzw. dahinter ist, wo der Ventilbolzen 6 mit einer an die Hohlkehle 18 angrenzenden Querschnittsverdickung 20 versehen ist.The valve pin 6 further comprises a circumferentially disposed in the direction of flow immediately behind the sealing surface 8 in its outer circumference circumferential groove 18, that is a concave recess in longitudinal section or groove over the axial width of the diameter of the valve pin 6 is smaller than before or behind, where the valve pin 6 is provided with an adjacent to the groove 18 cross-sectional thickening 20.

Die Hohlkehle 18 dient dazu, mindestens einen Teil des hinter dem Ventilsitz 10 im Wesentlichen in axialer Richtung abgeführten Kraftstoffstroms so umzulenken, dass er eine von einer Mittelachse 22 des Ventilbolzens 6 weg gerichtete Geschwindigkeitskomponente aufweist und nach seinem Austritt aus der Hohlkehle 18 gegen einen gegenüberliegenden Bereich der Innenwand 24 einer Abströmbohrung 26 des Ventilgehäuses 4 prallt. Wie am besten in Figur 2, 3 und 4 durch Pfeile dargestellt, teilt sich dabei der Kraftstoffstrom in zwei Teilströme auf, von denen der größere nach dem Aufprall entlang der Innenwand 24 der Abströmbohrung 26 in den stromabwärtigen Teil der Bohrung 26 gelenkt wird, während der kleinere entgegen der Strömungsrichtung zum Ventilspalt 12 hin zurück gelenkt wird. In dem in Strömungsrichtung an den Ventilspalt 12 anschließenden erweiterten Ringraum 30 zwischen der Hohlkehle 18 und dem gegenüberliegenden Wandbereich der Innenwand 24 bildet dieser Teilstrom zusammen mit dem aus dem Ventilspalt 12 abströmenden Kraftstoffstrom einen Wirbel 32, der das Ventilgehäuse 4 im Bereich unmittelbar hinter dem Ventilsitz 10 vor einer durch Kavitation hervorgerufenen Erosion schützt, so dass der Ventilsitz 10 auch über eine lange Betriebszeit unbeschädigt bleibt.The groove 18 serves to deflect at least a portion of the fuel flow discharged substantially behind the valve seat 10 in the axial direction such that it has a velocity component directed away from a central axis 22 of the valve pin 6 and, after its exit from the groove 18, against an opposite region the inner wall 24 of an outflow bore 26 of the valve housing 4 rebounds. How best in FIG. 2 . 3 and 4 represented by arrows, while dividing the fuel flow into two partial streams, of which the larger is directed after the impact along the inner wall 24 of the discharge hole 26 in the downstream part of the bore 26, while the smaller against the flow direction to the valve gap 12 directed back out becomes. In the subsequent in the flow direction of the valve gap 12 widened annular space 30 between the groove 18 and the opposite wall portion of the inner wall 24 of this partial flow forms together with the effluent from the valve gap 12 fuel flow a vortex 32, the valve housing 4 in the area immediately behind the valve seat 10th protects against erosion caused by cavitation, so that the valve seat 10 remains undamaged even over a long period of operation.

Um diesen schützenden Wirbel 32 zu bilden, darf der Neigungswinkel des aus der Hohlkehle 18 austretenden Kraftstoffstroms in Bezug zur Mittelachse 22 des Ventilbolzens 6 nicht zu klein sein, da ansonsten der gesamte Kraftstoff direkt in die Abströmbohrung 26 gelenkt wird. Daher sollte zum einen die Hohlkehle 18 nicht zu flach ausgebildet sein, sondern in Bezug zur anschließenden Querschnittsverdickung eine gewisse Mindesttiefe T (Figur 1) aufweisen, die bei einem Durchmesser des Ventilbolzens 6 in der Mitte der Dichtfläche von 1,35 mm vorzugsweise größer als 0,04 mm sein sollte. Zum anderen sollte die Hohlkehle 18 am Übergang zur Querschnittsverdickung nicht gerundet sein, weil dadurch der Neigungswinkel des aus der Hohlkehle 18 austretenden Kraftstoffstroms in Bezug zur Mittelachse 22 ebenfalls kleiner wird. Statt dessen wird zwischen der Hohlkehle 18 und der Querschnittsverdickung 20 eine umlaufende Kante 34 vorgesehen, an der aneinandergrenzende äußere Umfangsflächenabschnitte 36, 38 der Hohlkehle 18 und der Querschnittsverdickung 20 einen überstumpfen Winkel β (Figur 1) einschließen, der wenigstens 200 Grad betragen und vorzugsweise zwischen 220 Grad und 240 Grad liegen sollte. Anders als bei einem gerundeten Übergang reißt an einer solchen Kante 34 die Strömung des Kraftstoffs von der Umfangsfläche des Ventilbolzens 6 ab, was jedoch wegen der gehärteten Oberfläche des Ventilbolzens 6 keine Kavitationsschäden zur Folge hat. Der Strömungsabriss an der Kante 34 bewirkt, dass der Kraftstoff aus der Hohlkehle 18 unter einem Neigungswinkel zur Mittelachse 22 austritt, der im Wesentlichen dem Neigungswinkel α des innerhalb der Hohlkehle 18 an die Kante 34 angrenzenden Umfangsflächenabschnitts 36 entspricht. Je nachdem, wie groß dieser Neigungswinkel gewählt wird, wird beim Aufprall des Kraftstoffstroms auf den gegenüberliegenden Bereich der Innenwand 24 der Abströmbohrung 26 mehr oder weniger Kraftstoff in Richtung des Ventilspalts 12 zurück gelenkt. Durch eine geeignete Wahl dieses Neigungswinkels, der vorzugsweise zwischen 20 und 60 Grad beträgt, kann daher der Anteil des zurückströmenden Kraftstoffs auf einen solchen Wert eingestellt werden, dass einerseits durch eine Wirbelbildung Kavitationsschäden unmittelbar hinter dem Ventilsitz 10 verhindert werden, andererseits jedoch die Wirbelbildung das Abströmen des Kraftstoffs nach seinem Austritt aus dem Ventilspalt 12 nicht beeinträchtigt.To form this protective vortex 32, the angle of inclination of the fuel flow emerging from the groove 18 with respect to the central axis 22 of the valve pin 6 must not be too small, since otherwise the entire fuel is directed directly into the outflow bore 26. Therefore, on the one hand, the groove 18 should not be formed too flat, but with respect to the subsequent cross-sectional thickening a certain minimum depth T (FIG. FIG. 1 ), which at a diameter of the valve pin 6 in the middle of Sealing surface of 1.35 mm should preferably be greater than 0.04 mm. On the other hand, the groove 18 should not be rounded at the transition to the cross-sectional thickening, because thereby the inclination angle of the emerging from the groove 18 fuel flow with respect to the central axis 22 is also smaller. Instead, a circumferential edge 34 is provided between the groove 18 and the cross-sectional thickening 20, at the adjoining outer peripheral surface portions 36, 38 of the groove 18 and the cross-sectional thickening 20 has a superficial angle β (FIG. FIG. 1 ), which should be at least 200 degrees and preferably between 220 degrees and 240 degrees. Unlike a rounded transition at such an edge 34, the flow of fuel from the peripheral surface of the valve pin 6 breaks off, but this has no cavitation due to the hardened surface of the valve pin 6 result. The stall at the edge 34 causes the fuel to exit the fillet 18 at an angle of inclination to the central axis 22 that substantially corresponds to the angle of inclination α of the peripheral surface portion 36 adjacent the edge 34 within the fillet 18. Depending on how large this angle of inclination is selected, more or less fuel is directed back in the direction of the valve gap 12 upon impact of the fuel flow on the opposite region of the inner wall 24 of the discharge bore 26. By a suitable choice of this angle of inclination, which is preferably between 20 and 60 degrees, therefore, the proportion of the returning fuel can be adjusted to such a value that on the one hand vortex formation avoids cavitation damage immediately behind the valve seat 10, on the other hand, the vortex formation the flow of fuel after its exit from the valve gap 12 is not affected.

Bei allen dargestellten Ausführungsbeispielen schützt der entlang der Innenwand 24 zurückströmende Kraftstoff die letztere bis unmittelbar hinter dem Ventilspalt 12 vor kavitationsbedingten Schäden, die ansonsten infolge eines Druckabfalls im Kraftstoff bei dessen Austritt aus dem Ventilspalt 12 in den Ringraum 30 verursacht werden könnten.In all the illustrated embodiments, the fuel flowing back along the inner wall 24 protects the latter from cavitation-related damage, which might otherwise be caused by a pressure drop in the fuel as it exits the valve gap 12 into the annulus 30, just past the valve gap 12.

Während Figur 2 einen Ventilbolzen 6 zeigt, bei dem der innerhalb der Hohlkehle 18 an die Kante 34 angrenzende Umfangsflächenabschnitt 36 unter einem Neigungswinkel α von etwa 60 Grad zur Mittelachse 22 des Ventilbolzens 6 ausgerichtet ist, der Kraftstoff daher ziemlich steil auf die Innenwand 24 der Abströmbohrung 26 prallt und somit relativ viel Kraftstoff in Richtung des Ventilspalts 28 zurück gelenkt wird, zeigen die Figuren 3 und 4 zwei Ventilbolzen 6, bei denen dieser Neigungswinkel α etwa 35 Grad bzw. etwa 20 Grad beträgt, und daher entsprechend weniger Kraftstoff unter Bildung eines Wirbels 34 in Richtung des Ventilspalts 28 zurück gelenkt wird.While FIG. 2 a valve pin 6, wherein the within the groove 18 adjacent to the edge 34 peripheral surface portion 36 is aligned at an inclination angle α of about 60 degrees to the central axis 22 of the valve pin 6, the fuel therefore bounces quite steeply on the inner wall 24 of the discharge bore 26 and thus relatively much fuel is directed back in the direction of the valve gap 28, show the Figures 3 and 4 two valve bolts 6, in which this inclination angle α is about 35 degrees or about 20 degrees, and therefore correspondingly less fuel is directed back toward the valve gap 28 to form a vortex 34.

Da der Neigungswinkel α in Figur 4 bereits im Grenzbereich liegt, in dem sich noch ein Wirbel 34 bildet, ist dort die gegenüberliegende Innenwand 24 der Abströmbohrung 26 mit einer kleinen Stufe 40 versehen. Diese Stufe 40 begünstigt infolge ihrer zur Mittelachse 22 des Ventilbolzens 6 und der Abströmbohrung 26 geneigten Oberfläche das Zurücklenken eines Teils des Kraftstoffstroms in Richtung des Ventilspalts 12.Since the inclination angle α in FIG. 4 is already in the border area, in which still forms a vortex 34, where the opposite inner wall 24 of the discharge bore 26 is provided there with a small step 40. This step 40, due to its surface inclined to the central axis 22 of the valve pin 6 and the discharge bore 26, promotes the return of a portion of the fuel flow in the direction of the valve gap 12.

Die konkave Begrenzung der Hohlkehle 18 ist bei allen Ausführungsbeispielen kreisförmig, wobei der Krümmungsradius 0,2 mm nicht unterschreiten sollte, um eine kostengünstige Serienfertigung des Ventilbolzens 6 zu ermöglichen. An ihrer dem Ventilspalt 12 zugewandten Seite geht die Hohlkehle 18 vorzugsweise übergangslos in die Dichtfläche 8 über, wie bei allen Ausführungsbeispielen dargestellt.The concave boundary of the groove 18 is circular in all embodiments, wherein the radius of curvature should not fall below 0.2 mm in order to allow cost-effective mass production of the valve pin 6. At its side facing the valve gap 12, the groove 18 preferably transitions seamlessly into the sealing surface 8, as shown in all exemplary embodiments.

Die scharfe Abrisskante 34 auf der anderen Seite der Hohlkehle 18 kann bei einer Serienfertigung der Ventilbolzen 6 kostengünstig dadurch hergestellt werden, dass der Ventilbolzen 6 bei seiner Endbearbeitung beiderseits der Querschnittsverdickung 20 auf seinen endgültigen Durchmesser abgeschliffen wird, nicht jedoch im Bereich der Querschnittsverdickung 20, so dass dort der vor der schleifenden Endbearbeitung des Ventilbolzens 6 vorhandene Durchmesser erhalten bleibt, was am Übergang zur Hohlkehle 18 automatisch zur Ausbildung der Abrisskante 34 führt.The sharp tear-off edge 34 on the other side of the groove 18 can be inexpensively produced in a series production of the valve pin 6, that the valve pin 6 is ground at its final diameter on both sides of the cross-sectional thickening 20, but not in the region of the cross-sectional thickening 20, so that there existing in front of the abrasive finishing of the valve pin 6 existing diameter is maintained, which automatically leads to the formation of the tear-off edge 34 at the transition to the groove 18.

Claims (8)

  1. Valve (2) for a fuel injection system, having a valve seat (10) which is formed in a valve housing (4), and having a valve member (6) which is movable in the valve housing (4) and which has a sealing surface (8) which bears against the valve seat (10) when the valve (2) is closed, which sealing surface, when the valve (2) is open, serves together with the valve seat (10) to delimit a valve gap (12) through which fuel flows, wherein the valve member (6) has an encircling hollow groove (18) which is arranged directly downstream of the sealing surface (8) in the flow direction and which is adjoined by an encircling cross-sectional thickening (20) of the valve member (6), and wherein between the hollow groove (18) and the cross-sectional thickening (20) there is arranged an encircling edge (34) at which outer circumferential surface portions (36, 38), which adjoin one another, of the hollow groove (18) and of the cross-sectional thickening (20) converge at a reflex angle (β), characterized in that the circumferential surface portion (36) which adjoins the edge (34) at the side of the hollow groove (18) is inclined with respect to a central axis (22) of the valve member (6) by an angle (α) of between 20 and 80 degrees.
  2. Valve according to Claim 1, characterized in that the circumferential surface portion (36) which adjoins the edge (34) at the side of the hollow groove (18) is inclined with respect to a central axis (22) of the valve member (6) by an angle (α) of between 20 and 60 degrees.
  3. Valve according to Claim 1 or 2, characterized in that the outer circumferential surface portion (38) which adjoins the edge (34) at the side of the cross-sectional thickening (20) is aligned substantially parallel to a central axis (22) of the valve member (6).
  4. Valve according to one of the preceding claims, characterized in that a radius of curvature of the hollow groove (18) is greater than 0.2 mm.
  5. Valve according to one of the preceding claims, characterized in that the hollow groove (18) and the sealing surface (8) merge seamlessly into one another.
  6. Valve according to one of the preceding claims, characterized in that the cross section of the valve member (6) narrows in the flow direction downstream of the cross-sectional thickening (20).
  7. Valve according to one of the preceding claims, characterized in that an outer circumferential surface of the valve member (6) is ground at least in the region of the sealing surface (8) and of the hollow groove (18) but not in the region of the cross-sectional thickening (20).
  8. Fuel injection pump characterized by a valve according to one of the preceding claims.
EP04786716A 2003-11-05 2004-09-06 Valve for a fuel injection pump Expired - Lifetime EP1682771B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10351680A DE10351680A1 (en) 2003-11-05 2003-11-05 Valve for a fuel injection pump
PCT/DE2004/001994 WO2005045228A1 (en) 2003-11-05 2004-09-06 Valve for a fuel injection pump

Publications (2)

Publication Number Publication Date
EP1682771A1 EP1682771A1 (en) 2006-07-26
EP1682771B1 true EP1682771B1 (en) 2012-11-14

Family

ID=34559352

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04786716A Expired - Lifetime EP1682771B1 (en) 2003-11-05 2004-09-06 Valve for a fuel injection pump

Country Status (7)

Country Link
US (1) US20070119991A1 (en)
EP (1) EP1682771B1 (en)
JP (1) JP2006526729A (en)
KR (1) KR101100973B1 (en)
CN (1) CN1875184B (en)
DE (1) DE10351680A1 (en)
WO (1) WO2005045228A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720724B2 (en) * 2006-11-13 2011-07-13 トヨタ自動車株式会社 Fuel injection valve
DE102010043360A1 (en) * 2010-11-04 2012-05-10 Robert Bosch Gmbh fuel injector
DE102011004993A1 (en) * 2011-03-02 2012-09-06 Robert Bosch Gmbh Valve device for switching or metering a fluid
DE102012218667B4 (en) * 2012-10-12 2014-06-05 Continental Automotive Gmbh magnetic valve
JP6224415B2 (en) * 2013-10-29 2017-11-01 日立オートモティブシステムズ株式会社 High pressure fuel supply pump
JP6781661B2 (en) * 2017-04-20 2020-11-04 ボッシュ株式会社 Fuel injection device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1952816A (en) * 1931-04-04 1934-03-27 Bendix Res Corp Fuel injector
US4503884A (en) * 1982-06-22 1985-03-12 Spils Richard W Angle globe valve
DE3581160D1 (en) * 1984-09-14 1991-02-07 Bosch Gmbh Robert ELECTRICALLY CONTROLLED FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES.
US4941508A (en) * 1989-12-28 1990-07-17 Dana Corporation Force balanced hydraulic spool valve
DE19619523A1 (en) 1996-05-15 1997-11-20 Bosch Gmbh Robert Fuel injector for high pressure injection
DE19940296A1 (en) 1999-08-25 2001-03-01 Bosch Gmbh Robert Valve, especially for fuel injection pump, has flow channel that expands with constant gradient in flow direction starting from minimum cross-section near valve seat
DE10000501A1 (en) * 2000-01-08 2001-07-19 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
EP1118765A3 (en) * 2000-01-19 2003-11-19 CRT Common Rail Technologies AG Fuel injector for internal combustion engines
DE10008554A1 (en) 2000-02-24 2001-08-30 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
DE10031264A1 (en) * 2000-06-27 2002-01-17 Bosch Gmbh Robert Fuel injection valve for IC engines with even fuel supply to all injection openings even if valve member is misaligned
JP2002039031A (en) * 2000-07-10 2002-02-06 Robert Bosch Gmbh Fuel injector having rear setting pressure control element
DE10134526B4 (en) * 2001-07-16 2007-10-11 Robert Bosch Gmbh Switching valve for fuel injection system

Also Published As

Publication number Publication date
WO2005045228A1 (en) 2005-05-19
KR20060108655A (en) 2006-10-18
US20070119991A1 (en) 2007-05-31
JP2006526729A (en) 2006-11-24
CN1875184A (en) 2006-12-06
EP1682771A1 (en) 2006-07-26
CN1875184B (en) 2011-04-06
DE10351680A1 (en) 2005-06-09
KR101100973B1 (en) 2011-12-29

Similar Documents

Publication Publication Date Title
EP2129903B1 (en) Fuel injector having an additional outlet restrictor or having an improved arrangement of the same in the control valve
DE10123775A1 (en) Fuel injection device for internal combustion engines, in particular common rail injector, and fuel system and internal combustion engine
EP1891324B1 (en) Fuel injection valve for internal combustion engines
DE102006009070A1 (en) Fuel-injection valve for air-compressing, auto-igniting internal combustion engines comprises a valve with a corrugated washer partly surrounding the periphery of a bolt section of a valve bolt
EP0347581B1 (en) Injection pump for internal-combustion engines
EP1682771B1 (en) Valve for a fuel injection pump
DE10328331A1 (en) Fuel injection nozzle for injecting fuel into the cylinder of internal combustion engine comprisesn injection passage having micropassages tapering from the inner side of seat passage or blind hole toward the outer side of the nozzle body
DE69805999T2 (en) FUEL INJECTION PUMP FOR COMBUSTION ENGINES, ESPECIALLY SLOW-RUNNING LARGE DIESEL ENGINES FOR MARITIME
DE10116714A1 (en) Fuel injection valve for internal combustion engine, preferably for high jet speeds, has spray channels with cross-sections that expand after jet hole
DE10261737A1 (en) Component subject to internal pressure, in particular for fuel injection for internal combustion engines with a high-pressure fuel pump
EP1572420B1 (en) Method for working the edge of a high pressure-resistant part, especially for the hydro-erosive rounding of an edge and corresponding device
DE3136749A1 (en) FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES
DE3902764C2 (en) Fuel injection pump
EP2807367B1 (en) Device for injecting fuel into the combustion chamber of an internal combustion engine
EP1527272B1 (en) Fuel-injector comprising a connecting area that can withstand high pressure
WO2000042316A1 (en) Fuel injection valve
DE19843912B4 (en) fuel Injector
DE10160490B4 (en) Fuel injection device, fuel system and internal combustion engine
AT511731B1 (en) CAVITATION-OPTIMIZED THROTTLE DRILLING
DE19732880C1 (en) Pistons for an internal combustion engine
EP1003964A1 (en) Fuel injection valve
DE10031537B4 (en) Formation of an injection valve to reduce the seat load
EP4077908B1 (en) Injection nozzle for injecting fuel under high pressure
DE10148350A1 (en) Fuel injector, for a common rail direct fuel injection at an IC motor, has a fuel flow channel through the valve unit, opening into a flow zone directly upstream of the valve seat
EP3921535B1 (en) Nozzle for a fuel injector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060606

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20081017

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHUERG, STEFAN

Inventor name: STOECKLEIN, WOLFGANG

Inventor name: RAPP, HOLGER

Inventor name: CHASSAGNOUX, VIOLAINE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004013871

Country of ref document: DE

Effective date: 20130110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004013871

Country of ref document: DE

Effective date: 20130815

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170925

Year of fee payment: 14

Ref country code: IT

Payment date: 20170926

Year of fee payment: 14

Ref country code: GB

Payment date: 20170925

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180906

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191125

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004013871

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401