Nothing Special   »   [go: up one dir, main page]

EP1680142A2 - Thermosensitive, biocompatible polymer carriers with a variable physical structure for treatment, diagnosis and analysis - Google Patents

Thermosensitive, biocompatible polymer carriers with a variable physical structure for treatment, diagnosis and analysis

Info

Publication number
EP1680142A2
EP1680142A2 EP04766003A EP04766003A EP1680142A2 EP 1680142 A2 EP1680142 A2 EP 1680142A2 EP 04766003 A EP04766003 A EP 04766003A EP 04766003 A EP04766003 A EP 04766003A EP 1680142 A2 EP1680142 A2 EP 1680142A2
Authority
EP
European Patent Office
Prior art keywords
thermosensitive
magnetic
polymer particles
polymers
particles according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04766003A
Other languages
German (de)
French (fr)
Inventor
Detlef Müller-Schulte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MagnaMedics GmbH
Original Assignee
MagnaMedics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MagnaMedics GmbH filed Critical MagnaMedics GmbH
Publication of EP1680142A2 publication Critical patent/EP1680142A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0028Disruption, e.g. by heat or ultrasounds, sonophysical or sonochemical activation, e.g. thermosensitive or heat-sensitive liposomes, disruption of calculi with a medicinal preparation and ultrasounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/32Composite [nonstructural laminate] of inorganic material having metal-compound-containing layer and having defined magnetic layer

Definitions

  • Thermosensitive, biocompatible polymer carrier with changeable physical structure for therapy, diagnostics and analysis
  • the invention relates to biocompatible and thermosensitive polymer carriers of different particle sizes, which enable in vivo application for therapeutic, diagnostic or analytical purposes.
  • Substances in the form of magnetic and / or metallic colloids are encapsulated in the polymer matrix, which can be heated by supplying energy with the aid of a high-frequency magnetic alternating field, which results in a physical change in the structure of the polymer matrix in the form of a configuration change.
  • the invention further relates to the production and use of the polymer carrier.
  • Inductively heatable magnetic polymer particles are known from various publications and patents, for example from publication WO 03/101486 A2, in which inductively heatable thermosensitive polymer supports based on N-isopropylacrylamide and acrylamide derivatives are described, which are based on an inductive one Stimulus to be induced to encapsulated organic substances or Pharma_s_a. release.
  • the isopropylamides described there are the most related. Polymers with thermosensitive properties. They exhibit phase segregation at temperatures above 27 ° C, which is accompanied by a shrinking process. This shrinkage is reversible, ie when the polymer cools below 30 ° C it practically resumes its original shape.
  • This special property of the poly-N-isopropylacrylamide as well as the interesting applications derived from it as a medication depot, biosensor, cell culture substrate, cell encapsulation matrix, actuator or Ventil has long been known and has found expression in a number of publications and patents.
  • the agents or products described in the prior art have in common that they are either not physiologically harmless, or, in the case of non-magnetic polymer carriers, only by means of heat supplied directly from the outside to change the physical structure or shape can be induced or, if they are magnetic carriers, can be structurally altered in any way neither by an external stimulus nor by energy supplied from outside.
  • the w stimulus-response "carriers known from the prior art are either irregular nanoparticles or larger-volume bulk polymers which are not carriers of active substances (phar aka), as contrast agents in NMR diagnostics (magnetic resonance tomograph), suitable as media for molecular separation or as controllable micro tools for in vivo applications.
  • the object of the present invention is to produce thermosensitive and biocompatible polymer supports which are distinguished by high biocompatibility or biodegradability and which can be stimulated in a targeted manner by supplying energy in the form of magnetic induction in such a way that a change in the physical structure due to the resulting heating the polymer matrix is brought about.
  • the polymers are preferably spherical nano- or microparticulate particles or fibers, tubes or threads. Since the configuration change of the polymers according to the invention is in the range of 27-50 ° C., ie also in the range of the body temperature (37 ° C.), these carriers can be used in vivo.
  • an active substance / an active substance is understood to mean a substance which triggers a chemical, biochemical or physiological reaction in some way and can thereby produce a therapeutic, diagnostic and / or prophylactic effect or fulfill an analytical function.
  • Examples include biologically active proteins or peptides, enzymes, antibodies, antigens, nucleic acids, glycoproteins, lectins, oligosaccharides, hormones, lipids, growth factors, interleukins, cytokines, steroids, vaccines, anticoagulants, cytostatic agents, immunomodulatory agents or antibiotics ,
  • the active substances are encapsulated in the polymer particles, which is usually done by directly admixing the active substance in question to the soluble polymer phase.
  • the carriers obtained in this way and loaded with the relevant active substances can then be applied to the desired physiological or bio-analytical active sites using known administration methods such as injection, implantation, infiltration, diffusion, flow or puncture.
  • the location-specific application of the magnetic particles can be further strengthened in that the particles can be placed at the desired locations with the aid of electro-magnets or strong permanent magnets which are applied from the outside to the target or effective location.
  • the polymer particles After the polymer particles have reached their point of action, they can be heated to above body temperature by applying a high-frequency magnetic alternating field, which results in a change in the physical structure of the polymer matrix.
  • “change in the physical structure” defines the change in the original molecular configuration including the conformation due to a swelling or swelling process which leads to a change in the geometric shape, the volume or the particle size of the polymer carrier.
  • the change in volume can change manifest in a shrinking or swelling process with a parallel change in the pore size or in a change in the external shape (geometry) of the polymer.
  • the change in the physical structure can also mean the return of the molecular configuration to its original shape, caused by a heating and cooling process (Freezing process) was changed in the meantime (shape-memory-polymer, "shape-memory-polymer").
  • the change in the physical structure thus triggers a concentrated and rapid release of the encapsulated active ingredients from the matrix.
  • the time it takes for the active substance to diffuse out of the gel basically depends on the size of the polymer carrier (micro or nanoscale) as well as its molar mass, the molar mass of the active substance and that in the polymer. temperature generated by the capsule.
  • nanoscale polymer particles under otherwise analogous conditions asame active substance, temperature, polymer
  • the task of specifically releasing the encapsulated active substances or pharmaceuticals is achieved by heating the thermally sensitive polymers by means of magnetic induction, ie solved by an externally applied high-frequency alternating magnetic field, the magnetic and / or metallic substances encapsulated in the polymer matrix absorbing energy from the magnetic field and thereby being able to heat the polymer carrier above body temperature.
  • Another object of the invention is the production of polymers which shrink at temperatures above body temperature, so that the polymer carriers are applied in a dewaxed (shrunk) state at temperatures above body temperature and return to a swollen state after cooling to body temperature.
  • This phenomenon can be used in the context of therapeutic anti-tumor measures.
  • One of the fatal pathological developments in tumor development is angiogenesis. This is generally understood to mean the widespread formation of blood vessels in the tumor tissue.
  • This pathological process which was previously mainly treated with medication (or surgery), can now are surprisingly suppressed or greatly delayed with the aid of the agents according to the invention.
  • particles preferably with a particle size of 0.3 p to 5 ⁇ m, which have previously been heated to temperatures> 45 ° C.
  • the polymer carriers according to the invention can in particular be used as a matrix for encapsulating active substances and as a means for blocking blood vessels.
  • a further object of the invention is therefore to produce polymer particles which can be used as novel contrast-enhancing agents in the context of NMR diagnostics and in parallel as the basis for a controllable active substance application.
  • superparamagnetic, ferromagnetic or paramagnetic substances can lead to substantial contrast enhancement during imaging in the context of NMR diagnostics (e.g. magnetic resonance imaging, MRI).
  • NMR diagnostics e.g. magnetic resonance imaging, MRI
  • Due to the receptor-specific bioligand coupling to the agents according to the invention more precise diagnoses can be made through better localization and assignment of pathological processes, e.g. Detection of tumors in the early stages and micrometastases can be made possible.
  • a special design of the magnetic field is required with regard to field strength and frequency.
  • commercially available systems consisting of coils through which current flows and which are fed by a high-frequency generator are used.
  • the dimensions of the coils depend on the respective sample sizes and the area to be irradiated; they generally have a diameter of 5 to 30 cm and a length of 5-30 cm.
  • the required output power of the HF generators is normally between 1.5 and 4.5 kW.
  • two generator settings can be selected to heat up the magnetic samples: a) high frequency in the range of 5-20 MHz with low magnetic field strength of 100-500 A / m or b) low frequency of 0.2-0.8 MHz in connection with one high field strength of 1 to 45 kA / m. Both field parameter combinations guarantee sufficient heating output within a short application period ( ⁇ 1 min.). Also for the irradiation of larger voluminous areas, as is the case, for example, with the application of medicinal substances in certain areas of the body, larger coil geometries (30-40 cm diameter) can be used to increase the field strength to> 15kA / m by heating enough Carriers are made available.
  • thermosensitive polymer carriers are magnetic colloids in the form of ferromagnetic, ferrimagnetic or superparamagnetic nano- or microparticles, which have a high magnetization and can be inductively heated in an alternating magnetic field and preferably a Curie temperature of 30 ° C to 100 ° C.
  • the substance preferably used for this purpose is magnetite (Fe 3 0 4 ) or ⁇ -Fe 2 0 3 .
  • the production of such colloids has been adequately described in the literature.
  • iron (III) and iron (II) salt solutions with varying molar ratios (0.5: 1, 2: 1 to 4: 1) are used as the starting point, which then by adding bases or by applying heat to corresponding colloidal magnetic dispersions (“magnetic colloids”).
  • magnetic colloids colloidal magnetic dispersions
  • surface-active substances surfactants, emulsifiers, stabilizers
  • the surface-active substances used are cationic, anionic or non-ionic in nature, such as: oleic acid, lauryl sulfonate, phosphate ester, alcohol ether sulfates, alkylaryl polyether sulfates, alkylaryl polyether sulfonates, citrates, alkyl naphtalenesulfonates, polystyrene sulfonic acid, polyacrylic acid or petrolium sulfonium ethyl (anionic deionic sulfonate) (anionic ammonium sulfonate) (anionic ammonium sulfonate) (anionic ammonium sulfonate) (anionic ammonium sulfonate) (anionic ) and nonylphenoxypolyglycidol, polyvinyl alcohol, kerosene, alkylaryloxypolyethoxyethanols, nonylphenol or polyethylene glycols (non-ionic surfact
  • the particle sizes of the magnetic colloids depend, as is generally known, on various experimental parameters such as the iron salt ratio, the base concentration, the pH and the temperature.
  • the magnetic colloids suitable for the use according to the invention have a particle size of 5-800 ⁇ m, preferably that of 10-200 nm, which ensures that the magnetic colloids are present in colloidally dispersed form during the subsequent encapsulation in the polymer matrix.
  • the magnetic properties and, consequently, the heating properties of the polymer carrier can be controlled in a targeted manner by adding appropriate amounts of the colloid in question.
  • the concentrations of the magnetic colloids in the monomer or polymer batch are generally 10 to 40% by volume, the solids content of the magnetic substance, based on the polymer phase, generally being 5 to 40% by weight, preferably 10 to 30%.
  • metallic colloids can alternatively also be encapsulated in the polymer matrix.
  • all metallic materials in colloidal or finely dispersive form are suitable for this, which can be inductively heated in a high-frequency alternating field. Since the physiological applications in the invented Agents according to the invention represent an essential aspect, preference is given to using inductively heatable metal colloids which are physiologically harmless and / or chemically / physically inert.
  • the metal colloids used for the agents according to the invention generally have a particle size between 5 and 200 ⁇ m.
  • the production of such colloids which have long been used in bioanalytics for the determination of proteins and nucleic acids due to their special absorption properties in the visible range, here especially the gold colloids, are well known from the prior art and the metal colloids or powders are also known also offered commercially in a variety of ways. As is known to those skilled in the art, they are obtained consistently by reducing the corresponding metal salts or by metal spraying processes.
  • Both the metal colloids and the corresponding powders, which are mixed into the polymer batch in the desired concentration, can be used for the agents and processes according to the invention.
  • the proportion of metal in the polymer or in the particles is generally between 5 and 40% by weight.
  • thermosensitive polymers After adding the colloids, it is often advantageous to briefly sonicate the magnetic colloid-polymer mixture with the aid of an ultrasound finger or in an ultrasound bath in order to achieve a fine dispersion of the colloid. Due to the finely dispersed distribution of the colloid, a correspondingly homogeneous heat distribution in the polymer matrix is later possible, which in turn ensures a continuous release of the encapsulated active substance.
  • Polyethylene oxides, polylactides, polyglycolides, polysaccharides, polysaccharide derivatives, polyamino acids, polyethers, chitosan, polyvinyl alcohol, alginate, gelatin or copolymers or block copolymers of these substances are used as thermosensitive substances with high biocompatibility. Depending on the type of polymer, the following processes are used to produce the thermosensitive polymers:
  • Microparticulate pharmaceutical carriers based on poly (lactide) and poly (lactide-co-glycolide) can be produced by the known processes, such as, for example, solvent evaporation, phase separation or spraying processes or the salting-out technique.
  • the basic principle of this procedure is the use of water-soluble organic solvents, for example acetone, which are emulsified in an aqueous phase saturated with a salt.
  • the solvent evaporation process is preferably based on an aqueous solution of the active ingredient to be encapsulated, which is then dispersed in the polymer phase.
  • the active ingredients can also be dispersed directly in the polymer phase.
  • non-solvents preferably vegetable or mineral oils - precipitates the polymer carrier at the border phase.
  • Preferred solvents for the polymers are acetone, benzene and methylene chloride or chloroform for the poly (lactide-co-glycolide) copolymers used.
  • 0.1 to 1 mol% (based on the polymer) of proteins such as serum albumin or synthetic polymers, polyvinyl alcohol or polyvinyl pyrrolidone can be added.
  • the magnetic carriers For the synthesis of the magnetic carriers according to the invention, 5 to 40% by volume, preferably 20-40%, of an organic-based ferrofluid are generally added to the polymer phase.
  • a further advantage of the polymers based on poly (lactide) is their biodegradability over months, the polymer being hydrolyzed within months and the hydrolyzate being subsequently metabolized.
  • thermosensitive, biocompatible polymer supports is derived from poly (ethylene glycol-lactide-ethylene glycol) block copolymers. Their special properties consist in changing from a liquid state to a solid gel-like state above approx. 35 ° C.
  • This phase transition can surprisingly be used to produce thermosensitive, magnetic nanoparticles by dispersing magnetic nanoparticles or magnetic colloids, preferably with a particle size between 5 and 100 nm, in a 10 to 30% aqueous solution of the polymer and then with an ultrasound finger Treated for 10 to 120 seconds at temperatures ⁇ 15 ° C. This creates magnetic particles which are coated with the poly (ethylene glycol lactide ethylene glycol) block copolymers and form stable colloids.
  • these colloids can be used for the treatment of tumors and metastases by injecting the colloids, which are low-viscosity at room temperature, directly into the tumor tissue.
  • the subsequent inductive heating of the colloid to above body temperature (> 37 ° C) causes the colloid to solidify into a gel.
  • the blood supplying vascular systems can be blocked and further tumor growth can be suppressed.
  • further polymers can be produced which meet the criteria of biocompatibility and thermosensitivity according to the invention. This group includes those polymers that are only heat-soluble in a particular solvent, but fail when the solvent cools down.
  • Polymer-solvent systems for the preparation of the corresponding polymers which are suitable for this synthetic engineering are the following examples which in no way limit the invention: polyvinyl alcohol-dimethylfoamamide, polyvinyl alcohol-ethylene glycol, gelatin-water, agarose water, cellulose tributyrate. Ethanol, cellulose acetate butyrate methanol, cellulose acetate butyrate toluene, starch water, cellulose ZnCl 2 solution, collagen water.
  • the polymers dissolved at higher temperatures are dispersed in an organic phase which is not miscible with the polymer phase.
  • Vegetable oils or mineral oils which generally have a viscosity between 40 and 400 cp, are preferably suitable for this. In the subsequent cooling process to room temperature or temperatures ⁇ 40 ° C, these polymers precipitate out as spherical particles.
  • magnetic drug carriers By adding magnetic colloids or ferrofluids, which form stable dispersions with the polymer phase, as well as active substances, e.g. in the form of cytostatics, magnetic drug carriers are obtained.
  • polymer solutions For the synthesis of the polymer supports by means of the suspension precipitation process, 1 to 15% polymer solutions are preferably used.
  • concentration of added magnetic colloid is usually 10 to 40% by volume, based on the polymer phase.
  • Suitable substances which can be incorporated are substances which, with the polymer phases, are stable, homogeneous, i.e. form non-agglomerating colloidal dispersions. For this, e.g. Plasmids, peptides, nucleic acids, oligosaccharides or cytostatics such as Ifosfamide, melphalan, cyclophosphamide, chlorambucil, cisplatin or methotrexate are suitable.
  • the invention is not limiting additives include polyoxyethylene adducts, Alkylsulfosuc ⁇ inate, polyoxyethylene sorbitol esters, polyethylene oxide-propylene oxide block copolymers, alkylphenoxypolyethoxyethanols, Fettalkoholglycolether- organophosphate, sorbitan fatty acid ester, Sucrosestea- rat-palmitate, Fettalkoholpolyethylenglykolether, poly glycerinester, polyoxyethylene alcohols, Polyoxyethylensorbi - Tan fatty acid esters and / or polyoxyethylene acids.
  • Substances of this type are also commercially available, for example, under the trade name Hoostat, Isofol, Synperonic, Span, Tween, Brij, Aerosol OT, Hypermer, Myrj, Triton, Arlacel, Dehymuls, Eumulgin, Renex, Lameform, Pluronic or Tetronic.
  • the particle sizes of ( ⁇ 1 ⁇ m) are particularly suitable for biomedical in vivo applications, since they sustainably support tissue mobility for these applications.
  • Particles with a size of 20-200 ⁇ m are preferably used as contrast agents in NMR diagnostics and as porogens for producing adjustable pore sizes in membranes.
  • particles with a size of 200-800 nm are used particularly as a medicament depot for the targeted application of active substances, for example in the form of therapeutic, diagnostic or prophylactic agents.
  • the suspension process is usually carried out with the aid of a conventional stirrer or a dispersing tool.
  • Particle sizes in the range of 10-500 ⁇ m can be achieved with propeller stirrers with stirring speeds between 600 and 1500 rpm, particle sizes of ⁇ 10 ⁇ m can generally be achieved with stirring speeds of> 1500 rpm.
  • dispersing tools with stirring speeds of> 5000 rpm are used. in question.
  • Mixing tools that work according to the rotor-stator principle are used for this purpose.
  • the dispersions should preferably be prepared under an argon or nitrogen atmosphere or in vacuo in order to largely eliminate the introduction of air which adversely affects the suspension quality.
  • oils as a suspension medium can be dispensed with entirely in a further process approach according to the invention, in which (meth) acrylate-substituted dextrans are used, which are then suspended in a polyethylene glycol phase.
  • ratio of dextran to polyethylene glycol it is possible, as is known from the prior art (Stenekes et al. Pharm. Res., Vol. 15, 557, 1998), to vary the size of the polymer parts which form.
  • the particle large in the case of polyethylene glycol / dextran volume ratios of ⁇ 40 to larger particles > 10 ⁇ m).
  • polymer carriers can be obtained through further variations, including the degree of substitution, the acrylate substituents (eg hydroxyethyl methacrylate, glycidyl methacrlylate) and the molecular weights of the phases used (polyethylene glycol, dextran).
  • the carriers After encapsulation of the corresponding magnetic colloids, as described above, and encapsulation of certain active ingredients (peptides, plasmids, for example), the carriers can be stimulated with the help of magnetic field-induced heating within 5 minutes to give targeted and concentrated active ingredient releases.
  • Liposomes are synthetically produced spherical hollow bodies (vesicles) that are encased in a membrane consisting of a lipid layer or lipid bilayer.
  • the biocompatibility is given by the fact that the lipids constituting the membrane mainly consist of constituents of natural cell membranes. Because of the vesicle structure, the liposomes are particularly well suited to act as active substance carriers by encapsulating pharmaceuticals or other bioactive substances such as peptides or nucleic acids.
  • thermosensitive magnetic liposomes are formed which can be heated to temperatures above 37 ° C. using the magnetic field induction explained above.
  • all natural lipids such as phosphatidylcholine, phosphatidyl acid, cholesterol, phosphatidylethanolamine, monosialogangliosides, phosphatidylinositol, phosphatidylserine and sphingomyelin can be used as lipids.
  • the lipid Compositions vary both in relation to one another and in terms of concentration within certain limits.
  • compositions are: phosphatidylcholine: cholesterol: monosialoganglioside: 2: 1: 0.14; Sphingomyelin: monosialoganglioside 1: 0.07; Sphingomyelin: cholesterol: monosialoganglioside 2: 1: 0.13; Sphingomyelin: phosphatidylcholine: cholesterol: 1: 1: 1; Phosphatidylcholine: Cholesterol: Phosphatidylethanolamine: 1: 1: 0.2. Substitution with lipids that stabilize the membrane conformation, such as sphingomyelin, can reduce phagocytosis by 90%.
  • PEG polyethylene glycol
  • pegylated PEG-phosphatidylethanolamine
  • the molar ratios of the biocompatibility-increasing substituents to the other lipids are preferably between 0.1 and 0.4.
  • a dialysis method known from the prior art (M. De Cuyper et al. Prog. Coll. Poly. Sei. Vol. 82, 353, 1990) is used to produce magnetic liposomes.
  • a ferrofluid stabilized by lauric acid is dialyzed in the presence of a unilamellar lipid vesicle.
  • inductive heating of the magnetic liposomes to temperatures> 45 ° C. changes the lamellar lipid conformation in such a way that encapsulated active ingredients are released to> 60% within 1 to 6 minutes.
  • the vesicle structure breaks down completely, so that the encapsulated active ingredients are fully released within one minute.
  • thermosensitive and biocompatible agents according to the invention also include the group of polyoxyethylenes and polyoxypropylenes and copolymers of these substances with the general formula HO- (CH -CH_0) - (CH (CH -CH.O) - (CH -CH.0) -H ,
  • These polymers also known as poloxamers or Pluronic, have a high degree of biocompatibility on the one hand, and on the other hand they have a pronounced thermosensitivity due to their strong tendency to form hydrogen bonds.
  • the critical phase transition temperatures can be set in the range from 20 to 70 ° C so that the phase transition to temperatures> 40 ° C increases with increasing hydrophilic polyoxyethylene content (usually> 50 mol%) can be moved.
  • An alternative to influencing the phase transition temperature is to add polyhydroxy compounds such as sorbitol, sucrose or glycerin. These compounds shift the gelation point to lower temperatures ( ⁇ 40 ° C), whereas acids or salts such as NaCl, Na 2 S0 3 , Na 2 S0 4 , KC1 shift the phase transition to higher temperatures (> 45 ° C).
  • R1 and R2 mean a polyoxyethylene or polyoxypropylene radical and X is a polyfunctional amine. The syntheses of such copolymers are generally known from the prior art.
  • the production of magnetic micro- or nanoparticles could surprisingly be achieved by adding up to 40 vol.% Of a water-based ferrofluid to the aqueous solutions of these polymers or copolymers.
  • the mixtures are then in an organic phase immiscible with the polymer phase - preferably oils with a viscosity of 40 to 120 cp - with the addition of 0.1 to 2 mol% of a bi- or trifunctional crosslinker. suspended, which is able to cross-link the terminal hydroxyl groups.
  • these are: cyanuric chloride, diisocyanates, epichlorohydrin, dihalides, carbonyldiimidazole.
  • the mechanical suspension of these mixtures can optionally be carried out using a conventional stirrer or, to obtain nanoparticles, advantageously using a dispersing tool (eg T25 Ultraturrax, IKA, FRG) using a stirring speed > 10,000 rpm.
  • a dispersing tool eg T25 Ultraturrax, IKA, FRG
  • the volume ratio of polymer to suspension phase is usually 0.03 to 0.1.
  • thermosensitive and biocompatible polymer supports can also be produced by suspending positively or negatively charged polymers dissolved in aqueous phases in the organic phase and solidifying them by subsequent addition of oppositely charged substances to form discrete spherical polymer parts.
  • examples of this which in no way limit the invention are alginates, chitosan, nucleic acids, proteins, polyamino acids.
  • the polymers are first transferred to a 1 to 10% by weight aqueous solution.
  • a water-immiscible phase e.g. vegetable or silicone oils or chlorinated hydrocarbons, ratio polymer phase / continuous phase: 0.025-0.15
  • the dissolved polymers are crosslinked into spherical particles by adding oppositely charged substances.
  • examples of such crosslinking substances are divalent salts such as Calcium chloride for alginates, nucleic acids and polyamino acids or polyphosphates for chitosan.
  • water-based ferrofluids are added to the polymer solutions, which are able to form stable, colloidally disperse solutions with the polymer phase.
  • positively charged amines such as spermine, spermidine and protamine, which occur in the cells and envelop the DNA, can also be used to produce spherical magnetic particles.
  • a preferred synthetic route for these particles is based on a 0.5 to 10% nucleic acid buffer solution (pH> 8.4). 10 to 40% by volume of a water-based ferrofluid and, optionally, a water-soluble pharmaceutical or bioactive substance are added to the solution.
  • This approach is suspended in a water-immiscible phase, preferably consisting of oils with a viscosity of 60 to 100 cp, with stirring.
  • a water-immiscible phase preferably consisting of oils with a viscosity of 60 to 100 cp
  • the corresponding amines are added, which solidify the nucleic acid suspension into spherical particles.
  • particles with a size between 0.3 and 20 ⁇ m are obtained, with the particle sizes generally increasing with increasing stirring speed (> 3000 rpm) and falling nucleic acid concentration ( ⁇ 5%) be shifted into the nanometer range.
  • nucleic acid carrier By adding 0.1-5% by weight & s (based on the nucleic acid content) of a bioactive, preferably neutral active substance to the nucleic acid solutions, pharmaceutical carriers can be produced which can be treated with an induction coil (15 kA / m, 0.3 MHz, 4.4 kW) are heated within 1 to 5 minutes so that the encapsulated active substance is released up to 70% due to the partial swelling effect of the nucleic acid carrier within the heating period.
  • an induction coil 15 kA / m, 0.3 MHz, 4.4 kW
  • the agents according to the invention offer the possibility of coupling bioaffine ligands such as antibodies, cell receptors, anti-cell receptor antibodies, nucleic acids, oligosaccharides, lectins and antigens to the polymer carriers with which the thermosensitive ven carriers can be bound to certain target substances such as cells, biomolecules, viruses, bacteria or tissue compartments or selectively attach to these target organs according to the known affinity principle.
  • bioaffine ligands such as antibodies, cell receptors, anti-cell receptor antibodies, nucleic acids, oligosaccharides, lectins and antigens
  • the polymer carriers can be specifically coupled to T cells by coupling those antibodies which are directed against the cell surface structures such as, for example, CD2, CD3, CD4, CD8, CD19, CD14, CD15, CD34 and CD45 (“cluster of differentiation”) , B-lymphocytes, monocytes, granulocytes, stem cells and leukocytes
  • CD2, CD3, CD4, CD8, CD19, CD14, CD15, CD34 and CD45 cluster of differentiation
  • B-lymphocytes CD14, CD15, CD34 and CD45
  • monocytes granulocytes
  • stem cells and leukocytes
  • leukocytes ligand-coupled polymer carriers. Examples of these are the polysaccharides, polyvinyl alcohol, gelatin, alginates and polylactides.
  • tumor markers or antigens which do not restrict the invention, are: tumor-associated transplantation antigen (TATA), oncofetal antigen, tumor-specific transplantation antigen (TSTA), p53 protein, carcinoembryonic antigen (CEA), melanoma antigens (MAGE-1 , MAGE-B2, DAM-6, DAM-10), mucin (MUCl), human epidermis receptor (HER-2), alpha-fetoprotein (AFP), helicose antigen (HAGE), human papilloma virus (HPV- E7), Caspase-8 (CASP-8), CD3, CD10, CD20, CD28, CD30, CD25, CD64, Interleukin-2, Interleukin-9, Mamma-CA antigen, prostate-specific antigen (PSA), GD2 antigen,
  • TATA tumor-associated transplantation antigen
  • TSTA tumor-specific transplantation antigen
  • CEA carcinoembryonic antigen
  • MAGE-1 melanoma antigen
  • the corresponding antibodies can be selected either as monoclonal or polyclonal antibodies, as antibody fragments (Fab, F (from 2 ), as single chain molecules (scFv), as “diabodies”, “triabodies”, “minibodies” or bispecific antibodies.
  • Fab antibody fragments
  • F from 2
  • scFv single chain molecules
  • the antitumor agents or cytostatics known from cancer therapy are encapsulated in the polymer particles.
  • examples include: methotrexate, cis-platinum, cyclophosphamide, chlorambucil, busulfan, fluorouracil, doxorubicin, ftorafur or conjugates of these substances with proteins, peptides, antibodies or antibody fragments.
  • Conjugates of this type are known from the prior art: "Monoclonal Antibodies and Cancer Therapy", UCLA Symposia on Molecular and Cellular Biology, Reisfeld und Seil, ed., Alan R. Riss, Inc., New York, 1985 ,
  • Coupling agents which are used here are, for example: tresyl chloride, tosyl chloride, cyanogen bromide, carbodiimide, epichlorohydrin, diisocyanate, diisothiocyanate, 2-fluoro-1-methyl-pyridinium-toluene-4-sulfonate, 1,4-butanediol diglycidyl ether , N-hydroxysuccinimide, chlorocarbonate, isonitrile, hydrazide, glutaraldehyde, 1,1 ', carbonyldiidazole.
  • bioligands can also be coupled via reactive heterobifunctional compounds which can form a chemical bond both with the functional groups of the matrix (carboxyl, hydroxyl, sulfhydryl, amino groups) and with the bioligand.
  • examples in the sense of the invention are: succinimidyl-4- (N-maleiimido-methyl) -cyclohexane-1-carboxylate, 4-succinimidyl-oxycarbonyl- - (2-pyridyldithio) toluene, succinimidyl-4- (p-maleimidophenyl) butyrate, N- ⁇ -maleimidobutyryloxysuccinimide ester, 3- (2-pyridyldithio) propionylhydrazide, sulfosuccin imidyl-2- (p-azidosalicylamido) ethyl-l, 3 '-dithiopropionate.
  • the invention is explained in more detail in the following descriptive but not restrictive examples.
  • the particle sizes were determined by scattered light / laser diffraction using a Malvern MasterSizer 2000 (Malvern Instruments, FRG).
  • the mixture is dissolved in 100 ml of vegetable oil preheated to 70 ° C (viscosity 84 cp), in which 1.5% by volume Pluronic 6200, 0.8% by volume Dehymuls HRE and 2% by volume Tween 85 are dissolved, suspended with stirring (2000 rpm).
  • the mixing vessel is cooled down with ice.
  • the polymers precipitate out as pearl-shaped particles.
  • Stirring is continued for 15 minutes.
  • 100 ml of petroleum ether are added and the magnetic fraction is separated using a hand magnet. It is washed ten times alternately with petroleum ether and methanol. After drying in a vacuum to constant weight, magnetic particles with an average particle size of 12 ⁇ m are obtained.
  • the pharmaceutical carriers can be used, among other things, for the treatment of breast cancer.
  • Example 2 The pharmaceutical carriers can be used, among other things, for the treatment of breast cancer.
  • Magnetic chitosan nanoparticles are produced by ionic gelation of chitosan with sodium tripolyphosphate.
  • 3.5 ml of a 0.6% chitosan-glutamate solution (MW: 205 kDa) are dissolved in double-distilled and degassed water, the pH of which has been adjusted to 5.5, with 1.5 ml of one according to Shinkai et al., Biocatalysis, Vol. 5, 61, 1991, prepared aqueous magnetic colloid solution (average particle size 26 nm).
  • 2.8 ml of a 0.084% Na tripolyphosphate solution in which 3 mg / ml gonodropin are dissolved are added dropwise to this dispersion with vigorous stirring (4500 rpm).
  • the magnetic particles are placed on a glass column densely packed with steel wool (filling volume: approx. 4 ml; inner diameter: 0.5 cm), which is surrounded by a 3 cm long ring-shaped neodymium-boron-iron magnet.
  • the mixture is slowly dripped through (0.5 ml / min.). After the run, it is washed ten times with about 20 ml of 30 t of ethanol. This is followed by five washings with 0.1 M Na phosphate buffer, pH 7.2, followed by ten washings. see with bidest. Water.
  • the magnetic polymer fraction on the column is then redistilled with 10 ml after removal of the magnet. Water eluted. The eluate obtained is then freeze-dried.
  • Particles with an average size of 672 nm are obtained.
  • the pharmaceutical carriers can be used for hormone treatment.
  • a 2.8% by weight gelatin solution is prepared by heating to 90 ° C. in 1.5 ml of 0.05 M Na phosphate buffer, pH 7.4. The solution is then brought to 40 ° C. and first 0.5 ml of ferrofluid EMG 507 (from FerroTec, USA) are added. The dispersion is then treated in an ultrasound bath at 40 ° C. for 2 minutes. 1 ml of a 0.05 M Na phosphate buffer solution, pH 7.4, heated to 40 ° C., in which 0.25% human insulin (Sigma) and 0.5% polyvinyl alcohol (Mw: 22 kDa) were dissolved are added to the gelatin ferrofluid dispersion.
  • the resulting mixture is poured into 80 ml vegetable oil preheated to 40 ° C (viscosity 84 cp), in which 0.8 vol% Pluronic L61, 0.8 vol% Tetroni ⁇ 1101 and 2.5 vol% Dehymuls FCE are dissolved, and at 12,000 rpm with Homogenized using a dispersing tool (T25 Ultraturrax, IKA, FRG) under a nitrogen atmosphere for 2 minutes.
  • the dispersion is then cooled to ⁇ 10 ° C. by means of ice cooling, the gelatin particles precipitating.
  • the magnetic fraction is separated using a neodymium-boron-iron hand magnet and washed ten times alternately with petroleum ether and ethanol. This is followed by five washes with ⁇ is water. Polymer particles with an average size of 1.4 ⁇ m are obtained.
  • Example 5 Example 5
  • 1.5 ml of magnetic colloid (2.2 mM Fe / l, average particle size 26 nm), which was produced according to a specification by Shinkai et al., Bio-catalysis, Vol. 5, 61, 1991, are mixed with 5 ml of a 0.05 M Na carbonate buffer solution, pH 9.5, in which 10% of the polyoxyethylene-polyoxypropylene copolymer (Pluro are dissolved, mixed and sonicated for 5 minutes in an ultrasonic bath (500 W) with ice cooling. Nitrogen is then passed into the mixture at 20 ° C. for 15 minutes.
  • the dispersion is then 0.5 ml of 0.05 M Na carbonate buffer solution, pH 9.5, in which 1 wt .-% Somatotro- pin, 0.5% by weight of inositol and 0.05% by weight of human serum albumin are added.
  • the mixture is treated with ultrasound for a further two minutes and then in 50 ml of sesame oil (viscosity 153 cp) in which 2.5% by volume of Span 60 and 1.5% by volume of Dehymuls HRE7 are dissolved, with stirring (1200 rpm) and nitrogen injection Dispersed at 20 ° C. 100 ⁇ l of divinyl sulfone are pipetted in during the dispersing process. The mixture is further stirred over a period of 2 hours.
  • Example 3 Separation and washing processes take place analogously to Example 3. After freeze-drying and dispersion in physiological saline solution, polymer carriers with an average particle size of 0.767 ⁇ m are obtained. When the particles are treated in an alternating magnetic field (magnetic field: 10 kA / m; 0.6 MHz, coil diameter: 5.5 cm, 8 turns), a swelling process is triggered which releases more than 45% of the incorporated hormone within 5 minutes.
  • alternating magnetic field magnetic field: 10 kA / m; 0.6 MHz, coil diameter: 5.5 cm, 8 turns
  • Magnetic liposomes are produced according to the known methods. For this purpose, magnetite magnetic colloids (diameter approx. 15 nm) are first produced and stabilized with lauric acid at 90 ° C. 0.18 ml of this colloid (61 mg Fe 3 0 4 / ml) are mixed with 9 ml of a vesicle dispersion, which is treated by ultrasound treatment with an ultrasound finger (150 W) of a phospholipid-lidocaine mixture of dimyristoylphosphatidylglycerol sodium salt / phosphate idylethanolamine.
  • Polyethylene glycol biotin / lidocaine (concentration: 8.4 ⁇ M / ml molar; ratio 9/1 / 0.5) was obtained, dialyzed for 72 h at 37 ° C (Spectra / Por dialysis tube, Spe ⁇ trum edical Industries, Los Angeles, CA, molecular weight exclusion limit2, 000-14, 000).
  • the dialysis buffer (5 mM N-tris [hydroxymethyl] methyl-2-aminoethanesulfonic acid, TES, pH 7.0) is replaced every 5 hours. Excess vesicles are separated by means of the column filled with steel wool (see Example 3). After the separation, the magnetic fraction is washed several times with 4 ml of TES buffer.
  • the magnetic liposomes are then obtained after removal of the magnet by elution three times with 2 ml of buffer solution each.
  • the molar ratio of phospholipid / Fe 3 0 4 is 0.69.
  • the vesicular structure of the liposomes is dissolved within 5 minutes and the encapsulated lidocaine is released completely ,
  • the pharmaceutical carrier can be used as a local anesthetic.
  • a cobalt ferrite magnetic colloid (CoFe 2 0 4 ) is produced from CoCl 2 and FeCl 3 and in water with the help of a high-performance ultrasound finger (Dr. Hielscher, 80% amplitude) in the presence of 0.75% polyacrylic acid (M w : 5,500) dispersed for 30 seconds.
  • 2 ml of the colloid containing 1.9 mM Fe / ml (particle size 21 nm) are mixed with 5 ml of twice-distilled and degassed water in which 5% by weight of isopropyl cellulose are dissolved. The mixture is sonicated for 10 minutes in an ultrasonic bath at 20 ° C.
  • the mixture is then dissolved in 70 ml vegetable oil preheated to 70 ° C (viscosity 134 cp), in which 1.5% Tween 80, 2.5% Pluronic PE 3100 and 2.5% Span 85 are dissolved, using a stirrer ( 1200 rpm.) Dispersed. Stirring is continued for 10 minutes at this temperature. Solid polymer particles are formed during this process. After adding 100 ml of butanol, the magnetic fraction is separated using a hand magnet and washed several times alternately with petroleum ether and methanol. Magnetic particles with an average particle size of 16 ⁇ m are obtained.
  • 200 mg of the polymer particles produced in this way are mixed with 3 ml of 3.5 M NaOH and 5 ml of epichlorydrine and reacted for 2 hours at 55 ° C. with vigorous stirring.
  • the magnetic particles are then removed using a neodymium-iron-boron magnet. Cut.
  • the product is suspended in approx. 10 ml of water and magnetically separated again. This washing / separating process is repeated 10 times, followed by washing once with acetone.
  • the activated magnetic particle fraction is then reacted with 2 ml of 0.1 M borate buffer, pH 11.4, which contains 10% hexamethylene diamine, at 50 ° C. for 2 hours. After magnetic separation, it is washed ten times with water.
  • the product obtained is then reacted with 2 ml of 0.1 M K-phosphate buffer, pH 7.0, in which 12.5% of glutaraldehyde are dissolved, for 2 h at 30 ° C. It is then washed 20 times with water and then five times with 0.1 M Na phosphate buffer, pH 7.5, over a period of 30 minutes. By incubating 1.5 ml of 0.1 M Na phosphate buffer, pH 7.5, in which 0.2 mg of CD4 are dissolved, for three hours, polymer particles are obtained which can be used to bind the HIV (human immunodeficiency virus). By inductive heating of the virus-magnetic particle complex (4.8 kW, 0.5 MHz) temperatures (> 60 ° C) are reached within 10 minutes, which can kill the viruses.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nanotechnology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biotechnology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The invention relates to biocompatible, thermosensitive polymers that can be heated by encapsulating magnetic and/or metallic colloids or magnetic nanoparticles by means of a high-frequency, magnetic alternating field. The inductive heating of the polymer matrix triggers physical structural changes in the polymer matrix, that lead to encapsulated bioactive substances being rapidly released in the polymer matrix. Said stimulus-response principle is used to produce controllable medicament depots, contrast-reinforcing means for NMR diagnosis, and manipulable microtools, as means for blocking blood vessels and as controllable porogens during the production of membranes.

Description

Thermosensitive, biokompatible Polymerträger mit veränderbarer physikalischer Struktur für die Therapie, Diagnostik und AnalytikThermosensitive, biocompatible polymer carrier with changeable physical structure for therapy, diagnostics and analysis
Die Erfindung betrifft biokompatible und thermosensitive Polymerträger verschiedener Teilchengrößen, die eine in vivo Applikation zu therapeutischen, diagnostischen oder analytischen Zwecken ermöglichen. In die Polymermatrix sind Substanzen in Form magnetischer- und/oder metallischer Kolloide eingekapselt, die sich durch Energiezufuhr mit Hilfe eines hochfrequenten magnetischen Wechselfeldes aufheizen lassen, woraus eine physikalische Strukturveränderung der Polymermatrix in Form einer Konfigurationsänderung resultiert .The invention relates to biocompatible and thermosensitive polymer carriers of different particle sizes, which enable in vivo application for therapeutic, diagnostic or analytical purposes. Substances in the form of magnetic and / or metallic colloids are encapsulated in the polymer matrix, which can be heated by supplying energy with the aid of a high-frequency magnetic alternating field, which results in a physical change in the structure of the polymer matrix in the form of a configuration change.
Die Erfindung betrifft ferner die Herstellung und Verwendung der Polymerträger.The invention further relates to the production and use of the polymer carrier.
Indukti-v aufheizbare magnetische Polymerpartikel sind aus diversen Veröffentlichungen und Patenten bekannt, so zum Beispiel aus der Veröffentlichung WO 03/101486 A2, in der induktiv aufheizbare thermosensitive Polymerträger auf der Basis von N-Isopropylacrylamid und Acrylamid-Derivaten beschrieben werden, die aufgrund eines induktiven Stimulus dazu veranlaßt werden, eingekapselte Biosubstanzen oder Pharma_s_a. freizugeben.Inductively heatable magnetic polymer particles are known from various publications and patents, for example from publication WO 03/101486 A2, in which inductively heatable thermosensitive polymer supports based on N-isopropylacrylamide and acrylamide derivatives are described, which are based on an inductive one Stimulus to be induced to encapsulated organic substances or Pharma_s_a. release.
Die dort beschriebenen Isopropylamide sind die meist verwandten. Polymere mit thermosensitiven Eigenschaften. Sie weisen bei Temperaturen oberhalb 27 °C eine Phasenentmischung auf, die mit einem Schrumpfungsprozess einhergeht. Diese Schrumpfung ist reversibel, d.h., beim Abkühlen unter 30 °C nimmt das Polymer seine ursprüngliche Form praktisch wieder an. Diese spezielle Eigenschaft des Poly-N- Isopropylacrylamids sowie die sich daraus ableitenden interessanten Anwendungen als Medikamentendepot, Biosensor, Zellkultursubstrat, Zelleinkapselungsmatrix, Aktuator oder Ventil sind seit langem bekannt und haben ihren Ausdruck in einer Reihe von Publikationen und Patentschriften gefunden.The isopropylamides described there are the most related. Polymers with thermosensitive properties. They exhibit phase segregation at temperatures above 27 ° C, which is accompanied by a shrinking process. This shrinkage is reversible, ie when the polymer cools below 30 ° C it practically resumes its original shape. This special property of the poly-N-isopropylacrylamide as well as the interesting applications derived from it as a medication depot, biosensor, cell culture substrate, cell encapsulation matrix, actuator or Ventil has long been known and has found expression in a number of publications and patents.
Der Nachteil der dort beschriebenen Mittel ist die Verwen- dung von Acrylamid-Derivaten. Diese Verbindungsklasse ist physiologisch nicht unbedenklich, da bei der Polymerisation nicht auszuschließen ist, dass nicht vollständig abreagierte Monomere oder Oligomere noch in dem Polymeren vorhanden sind. Diese Monomeren gelten als hochtoxisch und können bei einer möglichen in vivo Applikation aus dem Polymeren heraus diffundieren. Insofern sind Wirkstoffträger aus diesen Polymeren für in vivo Applikationen nur sehr eingeschränkt verwendbar.The disadvantage of the agents described there is the use of acrylamide derivatives. This class of compounds is not physiologically unobjectionable, since it cannot be ruled out during the polymerization that incompletely reacted monomers or oligomers are still present in the polymer. These monomers are considered highly toxic and can diffuse out of the polymer in the event of a possible in vivo application. In this respect, active ingredient carriers made from these polymers can only be used to a very limited extent for in vivo applications.
Die Anmeldung WO 03/101486 A2 stellt gleichzeitig den nächs liegenden Stand der Technik dar und bietet eine gute Übersicht über denselben.The application WO 03/101486 A2 simultaneously represents the closest prior art and offers a good overview of the same.
Den weiteren dort zitierten Mitteln und Verfahren ist gemeinsam, daß die magnetische Induktion ausnahmslos zur Erwärmung der Partikel dient, um Zellen oder biologische Organismen per Überwärmung zu zerstören, oder daß sich ihre Funktion ausschließlich aus der komplementären Wechselwirkung eines auf der Matrix gebundenen Bioliganden bzw. - rezeptors mit der zu analysierenden Substanz ableitet . Ihre Einsatzgebiete beschränken sich somit auf die bekannten Felder der Tumorbehandlung sowie Auftrennung und Analyse von Biomolekülen oder der Markierung bestimmter Zellen unter Ausnutzung des klassischen Affinitätsprinzips. S e unterscheiden sich von den erfindungsgemäßen Mitteln also dadurch, daß sie, bedingt durch ihre chemische Struktur , nicht thermosensitiv sind, d.h. nicht in der Lage siid aufgrund eines inneren Wärmestimulus hervorgerufen durclx externe Induktion ihre physikalische Struktur bzw. geometrische Form zu ändern. Diese Eigenschaft stellt jedoch die Grundvoraussetzung dar, Polymerträger als manipulierbare oder steuerbare Mikro- oder Nanoträger bzw. -Werkzeuge nutzen zu können.The other means and processes cited there have in common that magnetic induction serves exclusively to heat the particles in order to destroy cells or biological organisms by overheating, or that their function derives exclusively from the complementary interaction of a bioligand bound to the matrix or receptor with the substance to be analyzed. Their areas of application are thus limited to the known fields of tumor treatment and the separation and analysis of biomolecules or the labeling of certain cells using the classic principle of affinity. They differ from the agents according to the invention in that, owing to their chemical structure, they are not thermosensitive, ie they are not able to change their physical structure or geometric shape due to an internal heat stimulus caused by external induction. However, this property is the basic prerequisite for being able to use polymer carriers as manipulable or controllable micro or nanocarriers or tools.
Edelmann et al., J. Bio ed. Mat. Res., Vol. 21, 339, 1987, beschreiben ein Ethylen-Vinylaσetat Copolymer, in das millimetergroße Magnete eingebettet sind. Durch ein oszillierendes Magnetfeld wird eingekapseltes Serum Albumin freigesetzt. Da es sich bei dem Polymeren und den eingekapselten Magneten um relativ große makroskopische Gebilde handelt, die nur per Implantation appliziert werden können und danach auch nicht aus dem Körper von selbst ausgeschieden werden, bleiben diesem Verfahren breite in vivo Anwendungen verschlosse .Edelmann et al., J. Bio ed. Mat. Res., Vol. 21, 339, 1987, describe an ethylene-vinyl acetate copolymer in which millimeter-sized magnets are embedded. Encapsulated serum albumin is released by an oscillating magnetic field. Since the polymer and the encapsulated magnet are relatively large macroscopic structures that can only be applied by implantation and then cannot be excreted from the body by themselves, broad in vivo applications are excluded from this process.
Zusammenfassend kann gesagt werden, daß den im Stand der Technik beschriebenen Mitteln bzw. Produkten gemeinsam ist, daß diese entweder physiologisch nicht unbedenklich sind, oder, soweit es sich um nicht-magnetische Polymerträger handelt, nur durch direkt von außen zugeführte Wärme zu einer Änderung der physikalischen Struktur oder Form veranlaßt werden können oder, sofern es magnetische Träger sind, weder durch einen äußeren Stimulus noch durch von außen zugeführte Energie strukturell in irgendeiner Weise veränderbar sind. Weiterhin handelt es sich bei den aus dem Stand der Technik bekannten wstimulus-response"-Trägern entweder um unregelmäßige Nanopartikel oder größervolumige Massepolymerisate, die sich nicht als Träger von Wirksubstanzen (Phar aka), als Kontrastmittel in der NMR-Diagnostik (Magnetresonanztomograph) , als Medien für die Molekülauftren- nung oder als steuerbare Mikro erkzeuge für in vivo Applikationen eignen. AufgabeIn summary, it can be said that the agents or products described in the prior art have in common that they are either not physiologically harmless, or, in the case of non-magnetic polymer carriers, only by means of heat supplied directly from the outside to change the physical structure or shape can be induced or, if they are magnetic carriers, can be structurally altered in any way neither by an external stimulus nor by energy supplied from outside. Furthermore, the w stimulus-response "carriers known from the prior art are either irregular nanoparticles or larger-volume bulk polymers which are not carriers of active substances (phar aka), as contrast agents in NMR diagnostics (magnetic resonance tomograph), suitable as media for molecular separation or as controllable micro tools for in vivo applications. task
Die Aufgabe der vorliegenden Erfindung besteht darin, thermosensitive und biokompatible Polymerträger herzustellen, die sich durch hohe Bioverträglichkeiten oder Bioabbaubar- keiten auszeichnen und die durch Energiezufuhr in Form der magnetischen Induktion gezielt so stimuliert werden können, dass aufgrund der daraus resultierenden Erwärmung eine Änderung der physikalischen Struktur der Polymermatrix herbeigeführt wird. Die Polymere sind vorzugsweise sphärische nano- oder mikropartikuläre Teilchen oder Fasern, Röhren oder Fäden. Da die Konfigurationsveränderung der erfin- dungsgemäßen Polymeren im Bereich von 27- 50 °C liegt, also auch im Bereich der Körpertemperatur (37 °C), können diese Träger in vivo angewendet werden.The object of the present invention is to produce thermosensitive and biocompatible polymer supports which are distinguished by high biocompatibility or biodegradability and which can be stimulated in a targeted manner by supplying energy in the form of magnetic induction in such a way that a change in the physical structure due to the resulting heating the polymer matrix is brought about. The polymers are preferably spherical nano- or microparticulate particles or fibers, tubes or threads. Since the configuration change of the polymers according to the invention is in the range of 27-50 ° C., ie also in the range of the body temperature (37 ° C.), these carriers can be used in vivo.
Unter Ausnutzung der induktiven Aufheizung werden Dosiersysteme für die Verabreichung bzw. Applikation von Wirksubstanzen für den medizinischen Bereich oder die Analytik geschaffen, die sich im besonderen durch ihre kontaktfreie Steuerbarkeit auszeichnen. Unter einer Wirksubstanz /einem Wirkstoff wird ein Stoff verstanden, der in irgendeiner Weise eine chemische, biochemische oder physiologische Reaktion auslöst und dabei eine therapeutische, diagnostische und/oder prophylaktische Wirkung erzeugen oder eine analytische Funktion erfüllen kann. Beispiele hierfür sind biologisch aktive Proteine oder Peptide, Enzyme, Antikörper, Antigene, Nukleinsäuren, Glykoproteine, Lektine, Oligosac- charide, Hormone, Lipide, Wachstumsfaktoren, Interleukine, Cytokine, Steroide, Vakzine, Antikoagulantien, zytostati- sche Agenzien, immunmodulatorische Agenzien oder Antibiotika. Dazu werden die Wirksubstanzen in die Polymerpartikel eingekapselt, was in der Regel durch direktes Zumischen der betreffenden Wirksubstanz zu der löslichen Polymerphase geschieht . Die so gewonnenen, mit den betreffenden Wirksubstanzen be- ladenen Träger können anschließend mit Hilfe der bekannten Verabreichungsmethoden wie Injektion, Implantation, Infiltration, Diffusion, Strömung oder Punktion an die gewünschten physiologischen oder bio-analytischen Wirkorte appli- ziert werden. Die ortspezifische Applikation der Magnetpartikel kann noch dadurch verstärkt werden, indem die Teilchen mit Hilfe von Elektro- oder starken Permanentmagneten, die von außen an den Ziel- bzw. Wirkort angelegt werden, punktuell an die gewünschten Stellen plaziert werden können. Nachdem die Polymerteilchen ihren Wirkort erreicht haben, können sie durch Anlegen eines hochfrequenten magnetischen Wechselfeldes auf oberhalb Körpertemperatur erwärmt werden, woraus eine Änderung der physikalischen Struktur der Polymermatrix resultiert. Unter „Änderung der physikalischen Struktur" wird dabei erfindungsgemäß die Veränderung der ursprünglichen Molekülkonfiguration einschließlich der Konformation aufgrund eines Quellungs- oder Entquel- lungsprozesses, der zu einer Veränderung der geometrischen Form, des Volumens oder der Teilchengröße des Polymerträgers führt, definiert. Die Volumenänderung kann sich z.B. in einem Schrumpfungs- oder Quellungsprozess mit paralleler Veränderung der Porengröße oder in einer Veränderung der äußeren Form (Geometrie) des Polymeren manifestieren. Die Veränderung der physikalischen Struktur kann auch die Rückkehr der Molekülkonfiguration in seine ursprüngliche Form bedeuten, die durch einen Erwarmungs- und Abkühlungsvorgang (Einfrierprozess) zwischenzeitlich verändert wurde (Form- Gedächtnis-Polymer, „shape-memory-polymer") . Die Änderung der physikalischen Struktur löst somit eine konzentrierte und rasche Freisetzung der eingekapselten Wirkstoffe aus der Matrix aus.Using inductive heating, dosing systems for the administration or application of active substances for the medical field or analytics are created, which are characterized in particular by their contact-free controllability. An active substance / an active substance is understood to mean a substance which triggers a chemical, biochemical or physiological reaction in some way and can thereby produce a therapeutic, diagnostic and / or prophylactic effect or fulfill an analytical function. Examples include biologically active proteins or peptides, enzymes, antibodies, antigens, nucleic acids, glycoproteins, lectins, oligosaccharides, hormones, lipids, growth factors, interleukins, cytokines, steroids, vaccines, anticoagulants, cytostatic agents, immunomodulatory agents or antibiotics , For this purpose, the active substances are encapsulated in the polymer particles, which is usually done by directly admixing the active substance in question to the soluble polymer phase. The carriers obtained in this way and loaded with the relevant active substances can then be applied to the desired physiological or bio-analytical active sites using known administration methods such as injection, implantation, infiltration, diffusion, flow or puncture. The location-specific application of the magnetic particles can be further strengthened in that the particles can be placed at the desired locations with the aid of electro-magnets or strong permanent magnets which are applied from the outside to the target or effective location. After the polymer particles have reached their point of action, they can be heated to above body temperature by applying a high-frequency magnetic alternating field, which results in a change in the physical structure of the polymer matrix. According to the invention, “change in the physical structure” defines the change in the original molecular configuration including the conformation due to a swelling or swelling process which leads to a change in the geometric shape, the volume or the particle size of the polymer carrier. The change in volume can change manifest in a shrinking or swelling process with a parallel change in the pore size or in a change in the external shape (geometry) of the polymer. The change in the physical structure can also mean the return of the molecular configuration to its original shape, caused by a heating and cooling process (Freezing process) was changed in the meantime (shape-memory-polymer, "shape-memory-polymer"). The change in the physical structure thus triggers a concentrated and rapid release of the encapsulated active ingredients from the matrix.
Die Zeit, die die Wirksubstanz benötigt, um aus dem Gel he- rauszudiffundieren, hängt grundsätzlich von der Größe des Polymerträgers (mikro- oder nanoskalig) ab sowie dessen Molmasse, der Molmasse des Wirkstoffes und der in der Poly- merkapsel erzeugten Temperatur ab. In der Regel weisen na- noskalige Polymerpartikel unter sonst analogen Bedingungen (gleiche Wirksubstanz, Temperatur, Polymer) eine um den Faktor 0,1 bis 0,5 geringere Freisetzungszeit auf als entsprechende Mikrogele (>20 um) .The time it takes for the active substance to diffuse out of the gel basically depends on the size of the polymer carrier (micro or nanoscale) as well as its molar mass, the molar mass of the active substance and that in the polymer. temperature generated by the capsule. As a rule, nanoscale polymer particles under otherwise analogous conditions (same active substance, temperature, polymer) have a release time that is 0.1 to 0.5 times shorter than corresponding microgels (> 20 μm).
Ein Gegenstand der Erfindung besteht demnach darin, die Polymeren als Träger für therapeutische, analytische oder diagnostische Applikationen nutzbar zu machen und Wirksubstanzen oder Pharmaka in die Polymerträger einzukapseln, um diese nach entsprechender in vivo Verabreichung mit Hilfe der magnetischen Induktion gezielt und steuerbar zu appli- zieren oder auch mittels Magnet an den Wirkort zu bringen.Die Aufgabe der gezielten Freigabe der eingekapselten Wirksubstanzen oder Pharmaka wird durch Erwärmung der ther- mosensitiver Polymeren mittels magnetischer Induktion, d.h. durch ein von außen angelegtes hochfrequentes magnetisches Wechselfeld gelöst, wobei die in die Polymermatrix eingekapselten magnetische und/oder metallische Substanzen aus dem Magnetfeld Energie absorbieren und dadurch den Polymerträger über Körpertemperatur aufheizen können.It is therefore an object of the invention to make the polymers usable as carriers for therapeutic, analytical or diagnostic applications and to encapsulate active substances or pharmaceuticals in the polymer carriers in order to apply them in a targeted and controllable manner after corresponding in vivo administration with the aid of magnetic induction or to bring it to the site of action by means of a magnet. The task of specifically releasing the encapsulated active substances or pharmaceuticals is achieved by heating the thermally sensitive polymers by means of magnetic induction, ie solved by an externally applied high-frequency alternating magnetic field, the magnetic and / or metallic substances encapsulated in the polymer matrix absorbing energy from the magnetic field and thereby being able to heat the polymer carrier above body temperature.
Ein weiterer Gegenstand der Erfindung ist die Herstellung von Polymeren, die bei Temperaturen oberhalb der Körpertemperatur schrumpfen, so dass die Polymerträger bei Temperaturen oberhalb Körpertemperatur in einem entquollenen (geschrumpften) Zustand appliziert werden und nach Abkühlen auf Körpertemperatur wieder in einen gequollenen Zustand übergehen. Dieses Phänomen läßt sich im Rahmen therapeutischer Antitumor-Maßnahmen anwenden. Eine der fatalen pathologischen Entwicklungen bei der Tumorentwicklung ist die Angiogenese. Hierunter versteht man allgemein eine sich stark ausbreitende Ausbildung von Blutgefäßen im Tumorgewebe. Dieser pathologische Prozess, der bisher vornehmlich medikamentös (oder operativ) behandelt wurde, kann nun überraschenderweise mit Hilfe der erfindungsgemäßen Mittel unterdrückt bzw. stark verzögert werden. Dazu werden Partikel, vorzugsweise mit einer Teilσhengröße von 0,3 p bis 5 μm, die zuvor auf Temperaturen >45 °C aufgeheizt worden sind und damit ihren maximalen Schrumpfgrad erreicht haben, in das Tumorgewebe appliziert. Infolge der anschließenden Adaptation an die Körpertemperatur beginnen die Teilchen wieder zu quellen, um schließlich ihren Gleichgewichts- quellzustand nach einigen Minuten zu erreichen. In diesem gequollenen Zustand üben die Polymerträger eine Embolisati- onsfunktion aus, d.h., sie sind befähigt, die Blutgefäße zu blockieren und dadurch einer Tumorbildung entgegenzuwirken. Diese spezielle Eigenschaft besitzen vor allem Polymere wie z.B. Hydroxyalkylcellulose, Isopropylcellulose, Polyoxye- thylene sowie Poly(ethylenglycol-lactid-glycolid) - Copolymere. Für die Bekämpfung der Angiogenese sind in der Praxis Teilchen mit einer breiten Größenverteilung (0,3 bis 10 um) geeignet, da hierdurch sämtliche Blutgefäßweiten integral erfasst werden können.Another object of the invention is the production of polymers which shrink at temperatures above body temperature, so that the polymer carriers are applied in a dewaxed (shrunk) state at temperatures above body temperature and return to a swollen state after cooling to body temperature. This phenomenon can be used in the context of therapeutic anti-tumor measures. One of the fatal pathological developments in tumor development is angiogenesis. This is generally understood to mean the widespread formation of blood vessels in the tumor tissue. This pathological process, which was previously mainly treated with medication (or surgery), can now are surprisingly suppressed or greatly delayed with the aid of the agents according to the invention. For this purpose, particles, preferably with a particle size of 0.3 p to 5 μm, which have previously been heated to temperatures> 45 ° C. and thus have reached their maximum degree of shrinkage, are applied to the tumor tissue. As a result of the subsequent adaptation to body temperature, the particles begin to swell again in order to finally reach their equilibrium swelling state after a few minutes. In this swollen state, the polymer carriers exert an embolization function, ie they are able to block the blood vessels and thereby counteract tumor formation. This special property is primarily possessed by polymers such as, for example, hydroxyalkyl cellulose, isopropyl cellulose, polyoxyethylene and poly (ethylene glycol lactide glycolide) copolymers. In practice, particles with a wide size distribution (0.3 to 10 μm) are suitable for combating angiogenesis, since this enables all blood vessel widths to be recorded integrally.
Demnach können also die erfindungsgemäßen Polymerträger aufgrund der besonderen Produkt- und Verfahrenskombination im besonderen als Matrix zur Einkapselung von Wirksubstanzen sowie als Mittel zur Blockierung von Blutgefäßen herangezogen werden.Accordingly, due to the special combination of products and processes, the polymer carriers according to the invention can in particular be used as a matrix for encapsulating active substances and as a means for blocking blood vessels.
Die Kombination der magnetfeldinduzierten Eirwärmung biokompatibler, thermosensitiver Polymerträger mit paralleler Änderung der physikalischen Struktur bzw. Trägergeometrie eröffnet somit ein Eigensσhaftsspektrum, das über das bisheriger Polymerträgersysteme substantiell hinausgeht.The combination of the magnetic field-induced heating of biocompatible, thermosensitive polymer carriers with a parallel change in the physical structure or carrier geometry thus opens up a spectrum of properties that goes far beyond the previous polymer carrier systems.
Mit der zielgerichteten Applikation der erfindungsgemäßen Polymerträger in Verbindung mit einer von außen steuerbaren Strukturveränderung wird überraschenderweise auch die Mög- lichkeit eröffnet, neue integrale Wirkkombinationen zu nutzen.With the targeted application of the polymer carrier according to the invention in connection with an externally controllable structural change, the possibility is surprisingly also opened up the possibility of using new integral combinations of effects.
So ist eine weitere Aufgabe der Erfindung daher, Polymerpartikel herzustellen, die als neuartige kontrastverstärkende Mittel im Rahmen der NMR-Diagnostik und parallel als Basis für eine steuerbare Wirkstoffapplikation verwendet werden können. Wie nach dem bereits diskutiertem Stand der Technik bekannt, können superparamagnetische, ferromagneti- sche oder paramagnetische Substanzen bei der Bildgebung im Rahmen der NMR-Diagnostik (z.B. Magnetresonanztomographie, MRT) zu einer substantiellen Kontrastvertärkung führen. Aufgrund der rezeptorspezifischen Bioligandenkopplung an die erfindungsgemäßen Mittel können genauere Diagnosen durch bessere Lokalisation und Zuordnung pathologischer Prozesse, z.B. Erkennung von Tumoren im Frühstadium und Mi- krometastasen, ermöglicht werden.A further object of the invention is therefore to produce polymer particles which can be used as novel contrast-enhancing agents in the context of NMR diagnostics and in parallel as the basis for a controllable active substance application. As is known from the state of the art already discussed, superparamagnetic, ferromagnetic or paramagnetic substances can lead to substantial contrast enhancement during imaging in the context of NMR diagnostics (e.g. magnetic resonance imaging, MRI). Due to the receptor-specific bioligand coupling to the agents according to the invention, more precise diagnoses can be made through better localization and assignment of pathological processes, e.g. Detection of tumors in the early stages and micrometastases can be made possible.
Um die vorgenannten magnetischen und metallischen Substanzen bzw. Verbindungen auf die für die analytischen, therapeutischen und diagnostischen Anwendungen relevanten Temperaturen aufheizen zu können, bedarf es einer speziellen Auslegung des Magnetfeldes im Hinblick auf Feldstärke und Frequenz. Es werden in der Regel kommerziell erhältiche Systeme bestehend aus stromdurσhflossenen Spulen, die von einem Hochfrequenzgenerator gespeist werden, benutzt. Die Abmessungen der Spulen richten sich nach den jeweiligen Pro- bengrößen und des zu bestrahlenden Areals; sie weisen allgemein einen Durchmesser von 5 bis 30 cm und eine Länge von 5-30 cm auf. Die erforderliche Ausgangsleistung der HF- Generatoren liegt normalerweise zwischen 1,5 und 4,5 kW. Zum Aufheizen der Magnetproben können grundsätzlich zwei Generatoreinstellungen gewählt werden: a) hohe Frequenz im Bereich von 5-20 MHz bei niedriger Magnetfeldstärke von 100-500 A/m oder b) niedrige Frequenz von 0,2-0,8 MHz in Verbindung mit einer hohen Feldstärke von 1 bis 45 kA/m. Beide Feldparameterkombinationen gewährleisten eine ausreichende Heizleistung innerhalb eines kurzen Applikations- zeitraumes (<1 Min.). Auch für die Bestrahlung größer volumiger Areale, so wie es z.B. bei der Applikation medizinischer Wirkstoffe in bestimmte Körperareale der Fall ist, kann mit größeren Spulengeometrien (30-40 cm Durchmesser) durch entsprechende Erhöhung der Feldstärke auf >15kA/m ausreichend Energie zur Aufheizung der Träger zur Verfügung gestellt werden.In order to be able to heat the aforementioned magnetic and metallic substances or compounds to the temperatures relevant for the analytical, therapeutic and diagnostic applications, a special design of the magnetic field is required with regard to field strength and frequency. As a rule, commercially available systems consisting of coils through which current flows and which are fed by a high-frequency generator are used. The dimensions of the coils depend on the respective sample sizes and the area to be irradiated; they generally have a diameter of 5 to 30 cm and a length of 5-30 cm. The required output power of the HF generators is normally between 1.5 and 4.5 kW. Basically two generator settings can be selected to heat up the magnetic samples: a) high frequency in the range of 5-20 MHz with low magnetic field strength of 100-500 A / m or b) low frequency of 0.2-0.8 MHz in connection with one high field strength of 1 to 45 kA / m. Both field parameter combinations guarantee sufficient heating output within a short application period (<1 min.). Also for the irradiation of larger voluminous areas, as is the case, for example, with the application of medicinal substances in certain areas of the body, larger coil geometries (30-40 cm diameter) can be used to increase the field strength to> 15kA / m by heating enough Carriers are made available.
Der Ausgangspunkt für die Synthese der thermosensitiven Polymerträger sind magnetische Kolloide in Form ferromagneti- scher, ferrimagnetischer oder superparamagnetischer Nano- oder Mikropartikel, die eine hohe Magnetisierung aufweisen und sich in einem magnetischen Wechselfeld induktiv aufheizen lassen und vorzugsweise eine Curie-Temperatur von 30 °C bis 100 °C besitzen. Die zu diesem Zweck vorzugsweise verwendete Substanz ist Magnetit (Fe304) oder γ-Fe203. Die Herstellung solcher Kolloide wird in der Literatur hinlänglich beschrieben. Zur Herstellung von Magnetit oder γ-Fe203 wird durchweg von Eisen(III)- und Eisen(II) -Salzlösungen mit variierenden molaren Verhältnissen (0,5:1, 2:1, bis 4:1) ausgegangen, die anschließend durch Zugabe von Basen oder durch Hitzezufuhr in entsprechend kolloidale Magnetdispersionen („Magnetkolloide") überführt werden. Um eine besonders durch die van-der-Waalsλsehen Kräfte bedingte Agglomeration der feinen Magnetpartikel zu verhindern, können oberflächenaktive Stoffe (Tenside, Emulgatoren, Stabilisatoren) zugesetzt werden, die ein Absetzen des Kolloids in einer wäßrigen Dispersion praktisch verhindern. Diese stabilisierten kolloidalen Dispersionen sind auch unter der Bezeichnung „Ferrofluide" bekannt und werden kommerziell angeboten (Ferrofluidics Corp., USA; Advanced Magnetiσs, USA; Taibo Co, Japan; Liquids Research Ltd., Wales; Schering AG, Deutschland) . Die verwendeten oberfächen aktiven Substanzen sind kationischer-, anionischer oder nicht-ionischer Natur wie z.B.: Ölsäure, Laurylsulfonat, Phosphatester, AlkoholetherSulfate, Alkylarylpolyethersulfate, Alkylarylpolyethersulfonate, Zitrate, Alkylnaphtalensulfonate, Polystyrolsulfonsäure, Polyacrylsäure oder Petroliumsulfonate ( anionische Tensi- de) , Dodecyltrimethylammoniumchlorid ( kationisches Tensid) sowie Nonylphenoxypolyglycidol, Polyvinylalkohol, Kerosin, Alkylaryloxypolyethoxyethanole, Nonylphenol oder Polyethy- lenglykole ( nicht-ionische Tenside) .The starting point for the synthesis of the thermosensitive polymer carriers are magnetic colloids in the form of ferromagnetic, ferrimagnetic or superparamagnetic nano- or microparticles, which have a high magnetization and can be inductively heated in an alternating magnetic field and preferably a Curie temperature of 30 ° C to 100 ° C. The substance preferably used for this purpose is magnetite (Fe 3 0 4 ) or γ-Fe 2 0 3 . The production of such colloids has been adequately described in the literature. For the production of magnetite or γ-Fe 2 0 3 , iron (III) and iron (II) salt solutions with varying molar ratios (0.5: 1, 2: 1 to 4: 1) are used as the starting point, which then by adding bases or by applying heat to corresponding colloidal magnetic dispersions (“magnetic colloids”). In order to prevent agglomeration of the fine magnetic particles, which is particularly caused by the van der Waals λ , surface-active substances (surfactants, emulsifiers, stabilizers) added, which practically prevent settling of the colloid in an aqueous dispersion. These stabilized colloidal dispersions are also known under the name “ferrofluids” and are commercially available (Ferrofluidics Corp., USA; Advanced Magnetiσs, USA; Taibo Co, Japan; Liquids Research Ltd., Wales; Schering AG, Germany). The surface-active substances used are cationic, anionic or non-ionic in nature, such as: oleic acid, lauryl sulfonate, phosphate ester, alcohol ether sulfates, alkylaryl polyether sulfates, alkylaryl polyether sulfonates, citrates, alkyl naphtalenesulfonates, polystyrene sulfonic acid, polyacrylic acid or petrolium sulfonium ethyl (anionic deionic sulfonate) (anionic ammonium sulfonate) (anionic ammonium sulfonate) (anionic ammonium sulfonate) (anionic ) and nonylphenoxypolyglycidol, polyvinyl alcohol, kerosene, alkylaryloxypolyethoxyethanols, nonylphenol or polyethylene glycols (non-ionic surfactants).
Die Teilchengrößen der Magnetkolloide hängen, wie allgemein bekannt, von verschiedenen Versuchsparametern wie z.B. dem Eisensalzverhältnis, der Basenkonzentration, des pH-Wertes sowie der Temperatur ab.The particle sizes of the magnetic colloids depend, as is generally known, on various experimental parameters such as the iron salt ratio, the base concentration, the pH and the temperature.
Die für die erfindungsgemäße Verwendung geeigneten Magnet- kolloide weisen eine Teilchengröße von 5-800 im, vorzugsweise eine solche von 10-200 nm auf, wodurch gewährleistet ist, daß die Magnetkolloide bei der anschließenden Einkapselung in die Polymermatrix in kolloiddisperser Form vorliegen. Durch gezielte Zudosierung entsprechender Mengen des betreffenden Kolloids lassen sich die magnetischen Eigenschaften und daraus folgend die Aufheizeigenschaften des Polymerträger gezielt steuern.The magnetic colloids suitable for the use according to the invention have a particle size of 5-800 μm, preferably that of 10-200 nm, which ensures that the magnetic colloids are present in colloidally dispersed form during the subsequent encapsulation in the polymer matrix. The magnetic properties and, consequently, the heating properties of the polymer carrier can be controlled in a targeted manner by adding appropriate amounts of the colloid in question.
Die Konzentrationen der Magnetkolloide im Monomer- bzw. Polymeransatz betragen in der Regel 10 bis 40 Vol. %, wobei der Feststoffgehalt der MagnetSubstanz, bezogen auf die Polymerphase, im allgemeinen 5 bis 40 Gew. -%, vorzugsweise 10 bis 30 % beträgt.The concentrations of the magnetic colloids in the monomer or polymer batch are generally 10 to 40% by volume, the solids content of the magnetic substance, based on the polymer phase, generally being 5 to 40% by weight, preferably 10 to 30%.
Neben den magnetischen Kolloiden können alternativ auch metallische Kolloide in die Polymermatrix eingekapselt werden. Grundsätzlich sind hierfür alle metallischen Werkstoffe in kolloidaler- bzw. fein dispersiver Form geeignet, die sich in einem hochfrequenten Weσhselfeld induktiv aufheizen lassen. Da die physiologischen Applikationen bei den erfin- dungsgemäßen Mitteln einen wesentlichen Aspekt darstellen, werden bevorzugt solche induktiv aufheizbaren Metallkolloide eingesetzt, die physiologisch unbedenklich und/oder chemisch-physikalisch inert sind. Hierzu zählen die Metalle der Gruppe 8 bis 11 (IUPAC Bezeichnung 1986, d.h. Fe, Co, Ni, Cu und höhere Homologe), wobei bevorzugt Gold-, Silber-, Palladium- und Platin-Kolloide oder entsprechende Pulver wegen ihrer Biokompatibilität zum Einsatz gelangen. Die für die erfindungsgemäßen Mittel eingesetzten Metallkolloide weisen in der Regel eine Partikelgröße zwischen 5 und 200 im auf. Die Herstellung solcher Kolloide, die seit langem wegen ihrer speziellen Absorptionseigenschaften im sichtbaren Bereich in der Bioanalytik zur Bestimmung von Proteinen und Nukleinsäuren eingesetzt werden, hier vor allem die Goldkolloide, sind aus dem Stand der Technik hinlänglich bekannt und die Metallkolloide oder -Pulver werden darüber hinaus auch vielfältig kommerziell angeboten. Sie werden, wie dem Fachmann auf diesem Gebiet geläufig, durchweg durch Reduktion der entsprechenden Metallsalze oder durch Metallsprühverfahren gewonnen.In addition to the magnetic colloids, metallic colloids can alternatively also be encapsulated in the polymer matrix. Basically, all metallic materials in colloidal or finely dispersive form are suitable for this, which can be inductively heated in a high-frequency alternating field. Since the physiological applications in the invented Agents according to the invention represent an essential aspect, preference is given to using inductively heatable metal colloids which are physiologically harmless and / or chemically / physically inert. These include the metals from group 8 to 11 (IUPAC name 1986, ie Fe, Co, Ni, Cu and higher homologues), gold, silver, palladium and platinum colloids or corresponding powders preferably being used because of their biocompatibility , The metal colloids used for the agents according to the invention generally have a particle size between 5 and 200 μm. The production of such colloids, which have long been used in bioanalytics for the determination of proteins and nucleic acids due to their special absorption properties in the visible range, here especially the gold colloids, are well known from the prior art and the metal colloids or powders are also known also offered commercially in a variety of ways. As is known to those skilled in the art, they are obtained consistently by reducing the corresponding metal salts or by metal spraying processes.
Für die erfindungsgemäßen Mittel und Verfahren können sowohl die Metallkolloide als auch die entsprechenden Pulver eingesetzt werden, die dem Polymeransatz in der gewünschten Konzentration zugemischt werden. Der Metallanteil in dem Polymeren bzw. in den Partikeln beträgt in der Regel zwischen 5 und 40 Gew.-%.Both the metal colloids and the corresponding powders, which are mixed into the polymer batch in the desired concentration, can be used for the agents and processes according to the invention. The proportion of metal in the polymer or in the particles is generally between 5 and 40% by weight.
Nach der Zugabe der Kolloide ist es oft von Vorteil, die Magnetkolloid-Polymermischung kurzzeitig mit Hilfe eines Ultraschallfingers oder in einem Ultraschallbad zu beschallen, um eine feine Dispersion des Kolloides zu erreichen. Durch die feindisperse Verteilung des Kolloids ist später eine entsprechend homogene Wärmeverteilung in der Polymermatrix möglich, die ihrerseits eine kontinuierliche Freisetzung der eingekapselten Wirksubstanz gewährleistet. Als thermosensitive Substanzen mit hoher Biokompatibilität kommen Polyethylenoxide, Polylactide, Polyglycolide, Poly- saccharide, Polysaccharid-Derivate, Polyaminosäuren, Poly- ether, Chitosan, Polyvinylalkohol, Alginat, Gelatine oder Copolymere oder Blockcopolymere dieser Substanzen zum Einsatz. Zur Herstellung der thermosensitiven Polymeren kommen je nach Polymerart folgende Verfahren zum Einsatz:After adding the colloids, it is often advantageous to briefly sonicate the magnetic colloid-polymer mixture with the aid of an ultrasound finger or in an ultrasound bath in order to achieve a fine dispersion of the colloid. Due to the finely dispersed distribution of the colloid, a correspondingly homogeneous heat distribution in the polymer matrix is later possible, which in turn ensures a continuous release of the encapsulated active substance. Polyethylene oxides, polylactides, polyglycolides, polysaccharides, polysaccharide derivatives, polyamino acids, polyethers, chitosan, polyvinyl alcohol, alginate, gelatin or copolymers or block copolymers of these substances are used as thermosensitive substances with high biocompatibility. Depending on the type of polymer, the following processes are used to produce the thermosensitive polymers:
a) Ringöffnende Polymerisation b) Suspensionspräzipitation c) Suspensionsvernetzungsverfahren d) Ionische Vernetzung in Suspension e) Aussalz-Emulsionsverfahren f) Solvent-Evapora ionsverfahrena) Ring-opening polymerization b) suspension precipitation c) suspension crosslinking process d) ionic crosslinking in suspension e) salt-out emulsion process f) solvent evaporation process
Diese Verfahren nach dem Stand der Technik sind allgemein bekannt und werden im folgenden in Kontext mit den erfind- gungsgemäßen Polymeren kurz erläutert.These methods according to the prior art are generally known and are briefly explained below in the context of the polymers according to the invention.
Mikropartikuläre Pharmakaträger auf Poly(lactid) - und Po- ly(laσtid-co-glycolid) -Basis können nach den bekannten Verfahren, so z.B. Solvent-Evaporations-, Phasenseparations- oder Sprühverfahren oder der Aussalztechnik, hergestellt werden. Das grundlegende Prinzip dieser Verfahrensweise ist die Verwendung wasserlöslicher organischer Lösungsmittel, z.B. Aceton, die in einer mit einem Salz gesättigten wäßrigen Phase emulgiert werden. Beim Solvent-Evaporationsver- fahren geht man vorzugsweise von einer wäßrigen Lösung des einzukapselnden Wirkstoffes aus, der anschließend in der Polymerphase dispergiert wird. Alternativ können die Wirkstoffe auch direkt in der Polymerphase dispergiert . Durch anschließende Zugabe von Nichtlösemitteln - vorzugsweise Pflanzen- oder Mineralöle - wird der Polymerträger an der Grenzphase ausgefällt. Als Lösungsmittel für die Polymeren werden vorzugsweise Aceton, Benzol und Methylenchlorid oder Chloroform für die Poly(lactid-co-glycolid) -Copolymeren verwendet. Zur besseren Stabilisierung der Kolloide können 0,1 bis lMol % (bezogen auf das Polymere) Proteine wie z.B. Serum Albumin oder synthetische Polymere, Polyvinylalkohol oder Polyvinylpyrrolidon zugesetzt werden.Microparticulate pharmaceutical carriers based on poly (lactide) and poly (lactide-co-glycolide) can be produced by the known processes, such as, for example, solvent evaporation, phase separation or spraying processes or the salting-out technique. The basic principle of this procedure is the use of water-soluble organic solvents, for example acetone, which are emulsified in an aqueous phase saturated with a salt. The solvent evaporation process is preferably based on an aqueous solution of the active ingredient to be encapsulated, which is then dispersed in the polymer phase. Alternatively, the active ingredients can also be dispersed directly in the polymer phase. Subsequent addition of non-solvents - preferably vegetable or mineral oils - precipitates the polymer carrier at the border phase. Preferred solvents for the polymers are acetone, benzene and methylene chloride or chloroform for the poly (lactide-co-glycolide) copolymers used. For better stabilization of the colloids, 0.1 to 1 mol% (based on the polymer) of proteins such as serum albumin or synthetic polymers, polyvinyl alcohol or polyvinyl pyrrolidone can be added.
Für die Synthese der erfindungsgemäßen magnetischen Träger werden der Polymerphase in der Regel 5 bis 40 Vol%, vorzugsweise 20-40 %, eines Ferrofluides auf organischer Basis zugesetzt. Ein weiterer Vorzug der Polymeren auf Po- ly(lactid) -Basis ist ihre Bioabbaubarkeit über Monate hinweg, wobei das Polymere innerhalb von Monaten hydrolysiert und die Hydrolysatβ anschließend metabolisiert werden.For the synthesis of the magnetic carriers according to the invention, 5 to 40% by volume, preferably 20-40%, of an organic-based ferrofluid are generally added to the polymer phase. A further advantage of the polymers based on poly (lactide) is their biodegradability over months, the polymer being hydrolyzed within months and the hydrolyzate being subsequently metabolized.
Eine weitere Gruppe thermosensitiver, biokompatibler Polymerträger leitet sich von Poly(ethylenglyσol-laσtid- ethylenglycol) -Blockcopolymeren ab. Deren besondere Eigenschaften bestehen darin, oberhalb von ca. 35 °C von einem flüssigen Zustand in einen festen gelartigen Zustand überzugehen. Dieser Phasenübergang kann überraschenderweise dazu genutzt werden, thermosensitive, magnetische Nanoparti- kel herzustellen, indem magnetische Nanopartikel bzw. Magnetkolloide, vorzugsweise mit einer Teilchengröße zwischen 5 und 100 nm, in einer 10 bis 30 %igen wäßrigen Lösung des Polymeren dispergiert und anschließend mit einem Ultraschallfinger 10 bis 120 Sekunden bei Temperaturen <15 °C behandelt werden. Dabei entstehen Magnetpartikel, die mit dem Poly(ethylenglycol-lactid-ethylenglycol) - Blockcopolymeren umhüllt sind und stabile Kolloide bilden. Diese Kolloide können aufgrund ihrer besonderen Gelierungs- eigenschaften für die Behandlung von Tumoren und Metastasen genutzt werden, indem die bei Raumtemperatur niederviskosen Kolloide direkt in das Tumorgewebe eingespritzt werden. Durch die anschließende induktive Erwärmung des Kolloids auf oberhalb Körpertemperatur (>37 °C) tritt eine Verfestigung des Kolloids zu einem Gel ein. Infolge der wärmeinduzierten Gelierung können die blutzuführenden Gefäßsysteme blockiert und das weitere Tumorwachstum unterdrückt werden. Mit Hilfe der Suspensionspräzipitation können weitere Polymere hergestellt werden, die die erfindungsgemäßen Kriterien der Biokompatibilität und Thermosensitivität erfüllt. Zu dieser Gruppe zählen solche Polymere, die in einem bestimmten Lösungsmittel nur in der Hitze löslich sind, beim Abkühlen des Lösungsmittels jedoch ausfallen. Polymer- Lösungsmittelsysteme zur Herstellung der entsprechenden Polymere, die für diese Syntheseteehnologie in Frage kommen, sind folgende, die Erfindung in keiner Weise einschränkende Beispiele: Polyvinylalkohol-Dimethylfo__mamid, Polyvinylal- kohol-Ethylenglykol, Gelatine-Wasser, Agarose-Wasser, Cel- lulosetributyrat- Ethanol, Celluloseaσetatbutyrat-Methanol, Celluloseacetatbutyrat-Toluol, Stärke-Wasser, Cellulose- ZnCl2-Lösung, Kollagen-Wasser.Another group of thermosensitive, biocompatible polymer supports is derived from poly (ethylene glycol-lactide-ethylene glycol) block copolymers. Their special properties consist in changing from a liquid state to a solid gel-like state above approx. 35 ° C. This phase transition can surprisingly be used to produce thermosensitive, magnetic nanoparticles by dispersing magnetic nanoparticles or magnetic colloids, preferably with a particle size between 5 and 100 nm, in a 10 to 30% aqueous solution of the polymer and then with an ultrasound finger Treated for 10 to 120 seconds at temperatures <15 ° C. This creates magnetic particles which are coated with the poly (ethylene glycol lactide ethylene glycol) block copolymers and form stable colloids. Due to their special gelling properties, these colloids can be used for the treatment of tumors and metastases by injecting the colloids, which are low-viscosity at room temperature, directly into the tumor tissue. The subsequent inductive heating of the colloid to above body temperature (> 37 ° C) causes the colloid to solidify into a gel. As a result of the heat-induced gelation, the blood supplying vascular systems can be blocked and further tumor growth can be suppressed. With the aid of the suspension precipitation, further polymers can be produced which meet the criteria of biocompatibility and thermosensitivity according to the invention. This group includes those polymers that are only heat-soluble in a particular solvent, but fail when the solvent cools down. Polymer-solvent systems for the preparation of the corresponding polymers which are suitable for this synthetic engineering are the following examples which in no way limit the invention: polyvinyl alcohol-dimethylfoamamide, polyvinyl alcohol-ethylene glycol, gelatin-water, agarose water, cellulose tributyrate. Ethanol, cellulose acetate butyrate methanol, cellulose acetate butyrate toluene, starch water, cellulose ZnCl 2 solution, collagen water.
Um zu sphärischen Partikeln zu gelangen, werden die bei höheren Temperaturen gelösten Polymeren in einer nicht mit der Polymerphase mischbaren organischen Phase dispergiert . Pflanzenöle oder Mineralöle, die in der Regel eine Viskosität zwischen 40 und 400 cp aufweisen, sind dafür bevorzugt geeignet. Beim anschließenden Abkühlungsprozess auf Raumtemperatur bzw. Temperaturen <40 °C fallen diese Polymeren als sphärische Partikel aus.In order to obtain spherical particles, the polymers dissolved at higher temperatures are dispersed in an organic phase which is not miscible with the polymer phase. Vegetable oils or mineral oils, which generally have a viscosity between 40 and 400 cp, are preferably suitable for this. In the subsequent cooling process to room temperature or temperatures <40 ° C, these polymers precipitate out as spherical particles.
Durch Zumischen magnetischer Kolloide bzw. Ferrofluide, die mit der Polymerphase stabile Dispersionen bilden, sowie Wirkstoffen, z.B. in Form von Zytostatika, werden magnetische Wirkstoffträger erhalten.By adding magnetic colloids or ferrofluids, which form stable dispersions with the polymer phase, as well as active substances, e.g. in the form of cytostatics, magnetic drug carriers are obtained.
Durch die magnetfeldinduzierte Erwärmung dieser Polymerträger kommt es zu einem ausgeprägten Aufquellungsprozess, der eine konzentrierte Freisetzung der eingekapselten Pharmaka zur Folge hat. Die Freisetzungskinetik ist dabei sowohl abhängig von der Molmasse des Polymeren als auch von dem Magnetkolloid-Gehalt, der direkten Einfluß auf die erreichbare Erwärmung ausübt. In der Regel nimmt die Quellfähigkeit mit fallender Molmasse zu und demzufolge steigen auch die Freisetzungsraten der inkorporierten Wirkstoffe.The magnetic field-induced heating of these polymer carriers leads to a pronounced swelling process, which results in a concentrated release of the encapsulated pharmaceuticals. The kinetics of release are dependent both on the molar mass of the polymer and on the magnetic colloid content, which has a direct influence on the heating which can be achieved. As a rule, the swellability decreases with decreasing molar mass and consequently the release rates of the incorporated active substances also increase.
Für die Synthese der Polymerträger mittels des Suspensions- fällungsverfahrens werden bevorzugt 1 bis 15 %ige Polymerlösungen verwendet. Die Konzentrationen an zugesetztem Magnetkolloid beträgt in der Regel 10 bis 40 Vol%, bezogen auf die Polymerphase. Als inkorporierbare Wirkstoffe kommen solche Substanzen in Frage, die mit den Polymerphasen stabile, homogene, d.h. nicht agglomerierende kolloidale Dispersionen ausbilden. Hierfür sind z.B. Plasmide, Peptide, Nukleinsäuren, Oligosaccharide oder Zytostatika wie z.B. Ifosfamid, Melphalan, Cyclophosphamid, Chlorambucil, Cis- platin oder Methotrexat geeignet.For the synthesis of the polymer supports by means of the suspension precipitation process, 1 to 15% polymer solutions are preferably used. The concentration of added magnetic colloid is usually 10 to 40% by volume, based on the polymer phase. Suitable substances which can be incorporated are substances which, with the polymer phases, are stable, homogeneous, i.e. form non-agglomerating colloidal dispersions. For this, e.g. Plasmids, peptides, nucleic acids, oligosaccharides or cytostatics such as Ifosfamide, melphalan, cyclophosphamide, chlorambucil, cisplatin or methotrexate are suitable.
Zur Verbesserung der Qualität der Suspensionen und Teilchengeometrien (Kugelform) hat sich für alle erfindungsgemäßen Polymerträger als vorteilhaft herausgestellt, den Öl- phasen mindestens eine, in der Regel aber nicht mehr als drei oberflächenaktive Substanzen zuzugeben. Beispiele für solche, die Erfindung nicht einschränkende Zusätze sind: Polyoxyethylenaddukte, Alkylsulfosucσinate, Polyoxyethylen- sorbitolester, Polyethylen-propylenoxid- Blockcopolymere, Alkylphenoxypolyethoxyethanole, Fettalkoholglycolether- Phosphorsäureester, Sorbitan-Fettsäureester, Sucrosestea- rat-Palmitatester, Fettalkoholpolyethylenglykolether, Poly- glycerinester, Polyoxyethylenalkohole, Polyoxyethylensorbi- tan-Fettsäurester und/oder Polyoxyethylensäuren. Substanzen dieser Art sind u.a. auch unter der Warenbezeichnung Ho- staphat, Isofol, Synperonic, Span, Tween, Brij, Aerosol OT, Hypermer, Myrj, Triton, Arlacel, Dehymuls, Eumulgin, Renex, Lameform, Pluronic oder Tetronic im Handel erhältlich. Zur Größenkontrolle der beim Suspensionsprozess gebildeten Polymertröpfchengröße, die unterhalb von (<1 um) liegen sollte, werden der Ölphase 0,05 - 15 Gew.-%, vorzugsweise 0,5 - 5 Gew.-?s, eines oder mehrerer Tenside zugegeben. Die Teilchengrößen von (<1 um) sind vor allem für eine biomedizinische in vivo Applikation geeignet, da sie die Gewe- begängigkeit für diese Anwendungen nachhaltig unterstützen. Partikel mit einer Größe von 20-200 um finden vorzugsweise Anwendung als Kontrastmittel in der NMR-Diagnostik sowie als Porogene zur Erzeugung einstellbarer Porenweiten in Membranen. Partikel mit einer Größe von 200-800 nm werden dagegen besonders als Medikamentendepot zur gezielten Applikation von Wirksubstanzen z.B. in Form therapeutischer, diagnostischer oder prophylaktischer Agenzien verwendet.To improve the quality of the suspensions and particle geometries (spherical shape), it has been found to be advantageous for all polymer supports according to the invention to add at least one, but generally not more than three, surface-active substances to the oil phases. Examples of such, the invention is not limiting additives include polyoxyethylene adducts, Alkylsulfosucσinate, polyoxyethylene sorbitol esters, polyethylene oxide-propylene oxide block copolymers, alkylphenoxypolyethoxyethanols, Fettalkoholglycolether- organophosphate, sorbitan fatty acid ester, Sucrosestea- rat-palmitate, Fettalkoholpolyethylenglykolether, poly glycerinester, polyoxyethylene alcohols, Polyoxyethylensorbi - Tan fatty acid esters and / or polyoxyethylene acids. Substances of this type are also commercially available, for example, under the trade name Hoostat, Isofol, Synperonic, Span, Tween, Brij, Aerosol OT, Hypermer, Myrj, Triton, Arlacel, Dehymuls, Eumulgin, Renex, Lameform, Pluronic or Tetronic. To control the size of the polymer droplet size formed during the suspension process, which should be below (<1 μm), 0.05-15% by weight, preferably 0.5-5% by weight, of one or more surfactants are added to the oil phase. The particle sizes of (<1 µm) are particularly suitable for biomedical in vivo applications, since they sustainably support tissue mobility for these applications. Particles with a size of 20-200 μm are preferably used as contrast agents in NMR diagnostics and as porogens for producing adjustable pore sizes in membranes. In contrast, particles with a size of 200-800 nm are used particularly as a medicament depot for the targeted application of active substances, for example in the form of therapeutic, diagnostic or prophylactic agents.
Der Suspensionsvorgang wird üblicherweise mit Hilfe eines konventionellen Rührers oder eines Dispergierwerkzeuges bewerkstelligt. Teilchengrößen im Bereich von 10-500 um sind mit Propellerrührer mit Rührgeschwindigkeiten zwischen 600 und 1500 U/min, Teilchengrößen von <10 μm sind in der Regel durch Rührgeschwindigkeiten von >1500 U/min realisierbar. Dagegen kommen für Teilchengrößen <1 μm nur Dispergierwerk- zeuge mit Rührgeschwindigkeiten von >5000 U/min. in Frage. Für diese Zwecke gelangen vor allem Rührwerkzeuge, die nach den Rotor-Stator-Prinzip funktionieren, zur Anwendung. Bei diesen hohen Rührgeschwindigkeiten ist die Herstellung der Dispersionen vorzugsweise unter Argon- oder Stickstoffatmo- sphäre oder im Vakuum durchzuführen, um das Einbringen von Luft, die die Suspensionsqualität negativ beeinflusst, wei- testgehend auszuschalten.The suspension process is usually carried out with the aid of a conventional stirrer or a dispersing tool. Particle sizes in the range of 10-500 μm can be achieved with propeller stirrers with stirring speeds between 600 and 1500 rpm, particle sizes of <10 μm can generally be achieved with stirring speeds of> 1500 rpm. In contrast, for particle sizes <1 μm only dispersing tools with stirring speeds of> 5000 rpm are used. in question. Mixing tools that work according to the rotor-stator principle are used for this purpose. At these high stirring speeds, the dispersions should preferably be prepared under an argon or nitrogen atmosphere or in vacuo in order to largely eliminate the introduction of air which adversely affects the suspension quality.
Auf die Verwendung von Ölen als Suspensionsmedium kann in einem weiteren erfindungsgemäßen Verfahrensansatz gänzlich verzichtet werden, in dem von (Meth)acrylat-substituierten Dextranen ausgegangen wird, die anschließend in einer Poly- ethylenglykol-Phase suspendiert werden. Durch Variation des Verhältnisses Dextran zu Polyethylenglykol kann man, wie aus dem Stand der Technik bekannt (Stenekes et al. Pharm. Res., Vol. 15, 557, 1998), die Größe der sich bildenden Po- lymerteilσhen variieren. In der Regel werden die Teilchen- großen bei Polyethylenglykol/Dextran-Volumenverhälnissen von <40 zu größeren Partikeln (>10 μm) verschoben. Durch weitere Variationen u.a. des Substitutionsgrades, der Acry- lat-Substituenten (z.B. Hydroxyethylmethacrylat, Glycidyl- methacrlylat) sowie der Molmassen der verwendeten Phasen (Polyethylenglykol, Dextran) kann eine breite Palette verschiedener Polymerträger gewonnen werden. Nach Einkapselung entsprechender Magnetkolloide, wie sie oben beschrieben sind, und Einkapselung bestimmter Wirkstoffe (Peptide, Plasmide z.B.) können die Träger mit Hilfe der magnetfeldinduzierten Erwärmung innerhalb von 5 Minuten zu einer gezielten und konzentrierten Wirkstofffreigäbe stimuliert werden.The use of oils as a suspension medium can be dispensed with entirely in a further process approach according to the invention, in which (meth) acrylate-substituted dextrans are used, which are then suspended in a polyethylene glycol phase. By varying the ratio of dextran to polyethylene glycol, it is possible, as is known from the prior art (Stenekes et al. Pharm. Res., Vol. 15, 557, 1998), to vary the size of the polymer parts which form. As a rule, the particle large in the case of polyethylene glycol / dextran volume ratios of <40 to larger particles (> 10 μm). A wide range of different polymer carriers can be obtained through further variations, including the degree of substitution, the acrylate substituents (eg hydroxyethyl methacrylate, glycidyl methacrlylate) and the molecular weights of the phases used (polyethylene glycol, dextran). After encapsulation of the corresponding magnetic colloids, as described above, and encapsulation of certain active ingredients (peptides, plasmids, for example), the carriers can be stimulated with the help of magnetic field-induced heating within 5 minutes to give targeted and concentrated active ingredient releases.
Eine weitere Gruppe biokompatibler und thermosensitiver Trägermedien im Sinne der Erfindung leitet sich von den Li- posomen ab. Liposome sind synthetisch hergestellte kugelförmige Hohlkörper (Vesikel), die aus einer Lipidsσhicht oder Lipid-Doppelschicht bestehenden Membran umhüllt sind. Die Biokompatibilität ist dadurch gegeben, dass die die Membran konstituierenden Lipide überwiegend aus Bestandteilen natürlicher Zellmembranen bestehen. Aufgrund der Vesi- kel-Struktur sind die Liposome besonders gut geeignet, durch Einkapselung von Pharmaka oder anderen bioaktiven Substanzen wie Peptiden oder Nukleinsäuren als Wirkstoffträger zu fungieren. Durch Einkapselung magnetischer Kolloide bzw. Ferrofluide in die Vesikel sowie durch Kombination bestimmter Lipide konnte überraschenderweise gezeigt werden, dass thermosensitive magnetische Liposome gebildet werden, die mit Hilfe der oben erläuterten Magnetfeldinduk- tion auf Temperaturen oberhalb von 37 °C erwärmt werden können. Als Lipide kommen grundsätzlich alle natürlichen Lipide wie z.B. Phosphatidylcholin, Phosphatidylsäure, Cho- lesterin, Phosphatidylethanolamin, Monosialoganglioside, Phosphatidylinosit, Phosphatidylserin und Sphingomyelin in Frage. Wie allgemein bekannt lassen sich die Lipid- Zusammensetzungen sowohl in bezug auf das Verhältnis untereinander als auch hinsichtlich der Konzentration in bestimmten Grenzen variieren. Beispiele für derartige Zusammensetzungen sind: Phosphatidylcholin : Cholesterin : Mono- sialoganglioside: 2 : 1 : 0,14; Sphingomyelin : Monosialo- ganglioside 1 : 0,07; Sphingomyelin : Cholesterin : Mono- sialoganglioside 2 : 1: 0,13; Sphingomyelin : Phosphatidylcholin : Cholesterin: 1 : 1 :1; Phosphatidylcholin : Cholesterin : Phosphatidylethanolamin: 1 : 1 : 0,2. Vor allem durch Substitution mit solchen Lipiden, die die Membrankonformation stabilisieren wie z.B. Sphingomyelin kann die Phagozytose um 90 % verringert werden. Auch mit Polyethy- lengylkol(PEG) -substituierten (pegylierten) Lipiden, PEG- Phosphatidylethanolamin z.B., kann ein analoger Effekt erzielt werden. Die molaren Verhältnisse der biokompatibili- tätssteigernden Substituenten zu den übrigen Lipiden liegen bevorzugt zwischen 0,1 und 0,4.Another group of biocompatible and thermosensitive carrier media in the sense of the invention is derived from the liposomes. Liposomes are synthetically produced spherical hollow bodies (vesicles) that are encased in a membrane consisting of a lipid layer or lipid bilayer. The biocompatibility is given by the fact that the lipids constituting the membrane mainly consist of constituents of natural cell membranes. Because of the vesicle structure, the liposomes are particularly well suited to act as active substance carriers by encapsulating pharmaceuticals or other bioactive substances such as peptides or nucleic acids. By encapsulating magnetic colloids or ferrofluids in the vesicles and by combining certain lipids, it has surprisingly been possible to show that thermosensitive magnetic liposomes are formed which can be heated to temperatures above 37 ° C. using the magnetic field induction explained above. In principle, all natural lipids such as phosphatidylcholine, phosphatidyl acid, cholesterol, phosphatidylethanolamine, monosialogangliosides, phosphatidylinositol, phosphatidylserine and sphingomyelin can be used as lipids. As is well known, the lipid Compositions vary both in relation to one another and in terms of concentration within certain limits. Examples of such compositions are: phosphatidylcholine: cholesterol: monosialoganglioside: 2: 1: 0.14; Sphingomyelin: monosialoganglioside 1: 0.07; Sphingomyelin: cholesterol: monosialoganglioside 2: 1: 0.13; Sphingomyelin: phosphatidylcholine: cholesterol: 1: 1: 1; Phosphatidylcholine: Cholesterol: Phosphatidylethanolamine: 1: 1: 0.2. Substitution with lipids that stabilize the membrane conformation, such as sphingomyelin, can reduce phagocytosis by 90%. An analogous effect can also be achieved with polyethylene glycol (PEG) -substituted (pegylated) lipids, PEG-phosphatidylethanolamine, for example. The molar ratios of the biocompatibility-increasing substituents to the other lipids are preferably between 0.1 and 0.4.
Zur Herstellung von Magnetliposomen wird ein aus dem Stand der Technik bekanntes Dialyse-Verfahren (M. De Cuyper et al. Prog. Coll. Poly . Sei. Vol. 82, 353, 1990) verwandt. Dazu wird ein durch Laurinsäure stabilisiertes Ferrofluid in Gegenwart eines unilamellaren Lipid-Vesikels dialysiert. Es konnte nun überraschenderweise gezeigt werden, dass sich durch induktive Aufheizung der Magnetliposome auf Temperaturen >45 °C die lamellare Lipidkonformation in der Weise ändert, dass eingekapselte Wirkstoffe innerhalb von 1 bis 6 Minuten zu >60 % freigesetzt werden. Durch weiteres Aufheizen auf >50 °C bricht die VesikelStruktur gänzlich zusammen, so dass die eingekapselten Wirkstoffe innerhalb einer Minute vollständig freigegeben werden.A dialysis method known from the prior art (M. De Cuyper et al. Prog. Coll. Poly. Sei. Vol. 82, 353, 1990) is used to produce magnetic liposomes. For this, a ferrofluid stabilized by lauric acid is dialyzed in the presence of a unilamellar lipid vesicle. It has now surprisingly been possible to show that inductive heating of the magnetic liposomes to temperatures> 45 ° C. changes the lamellar lipid conformation in such a way that encapsulated active ingredients are released to> 60% within 1 to 6 minutes. By further heating to> 50 ° C, the vesicle structure breaks down completely, so that the encapsulated active ingredients are fully released within one minute.
Zu den erfindungsgemäßen thermosensitiven und biokompatiblen Mitteln gehört auch die Gruppe der Polyoxyethylene und Polyoxypropylene sowie Copolymere dieser Stoffe mit der allgemeinen Formel HO- (CH -CH_0) - (CH(CH -CH.O) - (CH -CH.0) -H. Diese auch unter der Bezeichnung Poloxamere oder Pluronic bekannten Polymere weisen einerseits eine hohe Biokompatibilität auf, andererseits weisen sie aufgrund ihrer starken Neigung Wasserstoffbrücken auszubilden eine ausgeprägte Thermosensitivität auf. Durch gezielte Copolymerisation oder Blockσopolymerisation aus Polyoxyethylen und Polyoxy- propylen lassen sich die kritischen Phasenübergangstempera- turen im Bereich von 20 bis 70 °C so einstellen, dass mit steigendem hydrophilen Polyoxyethylen-Anteil (i.d.R. >50Mol %) der Phasenübergang auf Temperaturen >40 °C verschoben werden kann. Eine Alternative zur Beeinflussung der Phasenübergangstemperatur besteht in der Zugabe von Polyhy- droxyverbindungen wie beispielsweise Sorbit, Sucrose oder Glycerin. Diese Verbindungen verschieben den Gelierungs- punkt zu tieferen Temperaturen (<40 °C) , wohingegen Säuren oder Salze wie z.B. NaCl, Na2S03, Na2S04, KC1 den Phasenübergang zu höheren Temperaturen verschieben (>45 °C) .The thermosensitive and biocompatible agents according to the invention also include the group of polyoxyethylenes and polyoxypropylenes and copolymers of these substances with the general formula HO- (CH -CH_0) - (CH (CH -CH.O) - (CH -CH.0) -H , These polymers, also known as poloxamers or Pluronic, have a high degree of biocompatibility on the one hand, and on the other hand they have a pronounced thermosensitivity due to their strong tendency to form hydrogen bonds. By means of targeted copolymerization or block copolymerization from polyoxyethylene and polyoxypropylene, the critical phase transition temperatures can be set in the range from 20 to 70 ° C so that the phase transition to temperatures> 40 ° C increases with increasing hydrophilic polyoxyethylene content (usually> 50 mol%) can be moved. An alternative to influencing the phase transition temperature is to add polyhydroxy compounds such as sorbitol, sucrose or glycerin. These compounds shift the gelation point to lower temperatures (<40 ° C), whereas acids or salts such as NaCl, Na 2 S0 3 , Na 2 S0 4 , KC1 shift the phase transition to higher temperatures (> 45 ° C).
Durch Kombination der Polyoxyethylene und Polyoxypropylene mit Di- oder Triaminen, wie z.B. Ethylendiamin, ergibt sich eine weitere Gruppe thermosensitiver, biokompatibler Polymere der allgemeinen Formel: [(R1R2) (R1R2)]=X= [(R1R2) (R1R2)], die auch unter der Bezeichnung Poloxamine bekannt sind. Dabei bedeuten Rl und R2 einen Polyoxyethylen- oder Polyoxy- propylen-Rest und X ein polyfunktionelles Amin. Die Synthesen solcher Copolymeren sind aus dem Stand der Technik allgemein bekannt.By combining the polyoxyethylenes and polyoxypropylenes with di- or triamines, e.g. Ethylenediamine, there is a further group of thermosensitive, biocompatible polymers of the general formula: [(R1R2) (R1R2)] = X = [(R1R2) (R1R2)], which are also known under the name poloxamines. R1 and R2 mean a polyoxyethylene or polyoxypropylene radical and X is a polyfunctional amine. The syntheses of such copolymers are generally known from the prior art.
Die Herstellung magnetischer Mikro- oder Nanopartikel konnte überraschenderweise dadurch erreicht werden, dass den wäßrigen Lösungen dieser Polymeren bzw. Copolymeren bis zu 40Vol.- % eines Ferrofluides auf Wasserbasis zugemisσht werden. Die Mischungen werden sodann in einer mit der Poly- merphase nicht mischbaren organischen Phase - vorzugsweise Öle mit einer Viskosität von 40 bis 120 cp - unter Zugabe von 0,1 bis 2 Mol % eines bi- oder trifunktionellen Vernet- zers suspendiert, der in der Lage ist, die endständigen Hydroxylgruppen zu vernetzen. Beispiele hierfür sind: Cya- nurchlorid, Diisocyanate, Epichlorhydrin, Dihalogenide, Carbonyldiimidazol Das mechanische Suspendieren dieser Mischungen kann wahlweise mit einem herkömmlichen Rührer oder, zur Erzielung von Nanopartikeln, vorteilhaft mit einem Dispergierwerkzeug (z.B. T25 Ultraturrax, IKA, BRD) unter Anwendungen einer Rührgeschwindigkeit >10.000 U/min durchgeführt werden. Das Volumenverhältnis Polymer- zu Suspensionsphase beträgt in der Regel 0,03 bis 0,1.The production of magnetic micro- or nanoparticles could surprisingly be achieved by adding up to 40 vol.% Of a water-based ferrofluid to the aqueous solutions of these polymers or copolymers. The mixtures are then in an organic phase immiscible with the polymer phase - preferably oils with a viscosity of 40 to 120 cp - with the addition of 0.1 to 2 mol% of a bi- or trifunctional crosslinker. suspended, which is able to cross-link the terminal hydroxyl groups. Examples of these are: cyanuric chloride, diisocyanates, epichlorohydrin, dihalides, carbonyldiimidazole. The mechanical suspension of these mixtures can optionally be carried out using a conventional stirrer or, to obtain nanoparticles, advantageously using a dispersing tool (eg T25 Ultraturrax, IKA, FRG) using a stirring speed > 10,000 rpm. The volume ratio of polymer to suspension phase is usually 0.03 to 0.1.
Thermosensitive und biokompatible Polymerträger können überraschenderweise auch dadurch hergestellt werden, dass in wäßrigen Phasen gelöste positiv oder negativ geladener Polymere in organischer Phase suspendiert und durch anschließende Zugabe entgegengesetzt geladener Substanzen zu diskreten sphärischen Polymerteilσhen verfestigt werden. Die Erfindung in keiner Weise einschränkende Beispiele hierfür sind Alginate, Chitosan, Nukleinsäuren, Proteine Polyaminosäuren. Dazu werden die Polymeren zunächst in eine 1 bis 10 Gew.-ssige wäßrige Lösung überführt. Während der anschließenden Suspension in einer mit Wasser nicht mischbaren Phase (z.B. Pflanzen- oder Siliconöle oder chlorierte Kohlenwasserstoffe, Verhältnis Polymerphase/ kontinuierliche Phase: 0,025-0,15) werden durch Zugabe entgegengesetzt geladener Substanzen die gelösten Polymeren zu sphärischen Partikeln vernetzt. Beispiele für solche vernetzend wirkenden Substanzen sind zweiwertige Salze wie z.B. Kalziumσhlo- rid bei Alginaten, Nukleinsäuren und Polyaminosäuren oder Polyphosphate bei Chitosan.Surprisingly, thermosensitive and biocompatible polymer supports can also be produced by suspending positively or negatively charged polymers dissolved in aqueous phases in the organic phase and solidifying them by subsequent addition of oppositely charged substances to form discrete spherical polymer parts. Examples of this which in no way limit the invention are alginates, chitosan, nucleic acids, proteins, polyamino acids. For this purpose, the polymers are first transferred to a 1 to 10% by weight aqueous solution. During the subsequent suspension in a water-immiscible phase (e.g. vegetable or silicone oils or chlorinated hydrocarbons, ratio polymer phase / continuous phase: 0.025-0.15), the dissolved polymers are crosslinked into spherical particles by adding oppositely charged substances. Examples of such crosslinking substances are divalent salts such as Calcium chloride for alginates, nucleic acids and polyamino acids or polyphosphates for chitosan.
Für die Synthese magnetischer Träger werden den Polymerlösungen Ferrofluide auf Wasserbasis zugesetzt, die mit der Polymerphase stabile, kolloiddisperse Lösungen zu bilden in der Lage sind. Überraschenderweise können darüber hinaus auch positiv geladene Amine wie z.B. Spermin, Spermidin und Protamin, die in den Zellen vorkommenden und die DNA umhüllen, zur Herstellung sphärischer Magnetpartikel herangezogen werden. Ein bevorzugter Syntheseweg dieser Partikel geht dabei von einer 0,5 bis 10 %igen Nukleinsäure-Pufferlösung (pH >8,4) aus. Der Lösung werden 10 bis 40 Vol.- % eines Ferrofluids auf Wasserbasis sowie wahlweise ein wasserlösliches Pharma- kon oder bioaktive Substanz zugesetzt. Dieser Ansatz wird in einer mit Wasser nicht-mischbaren Phase, vorzugsweise bestehend aus Ölen mit einer Viskosität von 60 bis 100 cp, unter Rühren suspendiert. Während des Suspensionsvorganges werden unter Zugabe von 0,1 bis 3 Mol %, bezogen auf den Nukleinsäuregehalt, die entsprechenden Amine zugesetzt, die die Nukleinsäure-Suspension zu sphärischen Partikeln verfestigen. Es fallen je nach Rührbedingungen und Nukleinsäure- Konzentrationen Partikel mit einer Größe zwischen 0,3 und 20 μm an, wobei in der Regel die Teilchengrößen mit steigender Rührgeschwindigkeit (>3000 U/min) und fallender Nu- kleinsäure-Konzentration (<5 %) in den Nanometer-Bereich hin verschoben werden. Durch Zugabe von 0,l-5Gew.-s& (bezogen auf den Nukleinsäure-Anteil) einer bioaktiven, vorzugsweise neutralen Wirksubstanz zu den Nukleinsäure-Lösungen lassen sich Pharmakaträger herstellen, die mit einer Induktionsspule (15 kA/m, 0,3 MHz, 4,4 kW) innerhalb von 1 bis 5 Minuten so aufgeheizt werden, dass die eingekapselte Wirksubstanz aufgrund des partiellen Aufquelleffektes des Nu- kleinsäure-Trägers innerhalb der Aufheizperiode bis zu 70 % freigesetzt wird.For the synthesis of magnetic carriers, water-based ferrofluids are added to the polymer solutions, which are able to form stable, colloidally disperse solutions with the polymer phase. Surprisingly, positively charged amines such as spermine, spermidine and protamine, which occur in the cells and envelop the DNA, can also be used to produce spherical magnetic particles. A preferred synthetic route for these particles is based on a 0.5 to 10% nucleic acid buffer solution (pH> 8.4). 10 to 40% by volume of a water-based ferrofluid and, optionally, a water-soluble pharmaceutical or bioactive substance are added to the solution. This approach is suspended in a water-immiscible phase, preferably consisting of oils with a viscosity of 60 to 100 cp, with stirring. During the suspension process, with the addition of 0.1 to 3 mol%, based on the nucleic acid content, the corresponding amines are added, which solidify the nucleic acid suspension into spherical particles. Depending on the stirring conditions and nucleic acid concentrations, particles with a size between 0.3 and 20 μm are obtained, with the particle sizes generally increasing with increasing stirring speed (> 3000 rpm) and falling nucleic acid concentration (<5%) be shifted into the nanometer range. By adding 0.1-5% by weight & s (based on the nucleic acid content) of a bioactive, preferably neutral active substance to the nucleic acid solutions, pharmaceutical carriers can be produced which can be treated with an induction coil (15 kA / m, 0.3 MHz, 4.4 kW) are heated within 1 to 5 minutes so that the encapsulated active substance is released up to 70% due to the partial swelling effect of the nucleic acid carrier within the heating period.
Neben der magnetfeldinduzierten Freigabe eingekapselter Pharmaka oder bioaktiver Substanzen bieten die erfindungsgemäßen Mittel die Möglichkeit, bioaffine Liganden wie Antikörper, Zellrezeptoren, Anti-Zellrezeptor-Antikörper, Nukleinsäuren, Oligosaccharide, Lektine und Antigene an die Polymerträger zu koppeln, mit denen sich die thermosensiti- ven Träger an bestimmte Zielsubstanzen wie Zellen, Biomoleküle, Viren, Bakterien oder Gewebekompartimente binden lassen bzw. sich an diese Zielorgane gemäß dem bekannten Affinitätsprinzip selektiv anlagern. So lassen sich die Polymerträger durch Ankopplung solcher Antikörpern, die gegen die Zelloberflächenstrukturen wie z.B. CD2, CD3, CD4, CD8, CD19, CD14, CD15, CD34 und CD45 („cluster of differentiati- on") gerichtet sind, spezifisch an T-Zellen, B-Lymphozyten, Monozyten, Granulozyten, Stammzellen und Leukozyten anlagern. Für die zielgerichtete Applikation mittels liganden- gekoppelter Polymerträger kommen vor allem die erfindungs- gemäßen Mittel in Frage, die über funktionelle Gruppen in Form von Carboxyl-, Hydroxyl- oder Aminogruppen verfügen. Beispiele hier für sind die Polysaccharide, Polyvinylalko- hol, Gelatine, Alginate und Polylactide.In addition to the magnetic field-induced release of encapsulated pharmaceuticals or bioactive substances, the agents according to the invention offer the possibility of coupling bioaffine ligands such as antibodies, cell receptors, anti-cell receptor antibodies, nucleic acids, oligosaccharides, lectins and antigens to the polymer carriers with which the thermosensitive ven carriers can be bound to certain target substances such as cells, biomolecules, viruses, bacteria or tissue compartments or selectively attach to these target organs according to the known affinity principle. Thus, the polymer carriers can be specifically coupled to T cells by coupling those antibodies which are directed against the cell surface structures such as, for example, CD2, CD3, CD4, CD8, CD19, CD14, CD15, CD34 and CD45 (“cluster of differentiation”) , B-lymphocytes, monocytes, granulocytes, stem cells and leukocytes The agents according to the invention which have functional groups in the form of carboxyl, hydroxyl or amino groups are particularly suitable for targeted application by means of ligand-coupled polymer carriers. Examples of these are the polysaccharides, polyvinyl alcohol, gelatin, alginates and polylactides.
Durch Kopplung solcher Antikörper bzw. Antikörper-Fragmente, die gegen ein Tumorzellantigen gerichtet sind, ist zunächst die Voraussetzung geschaffen, die Polymerträger zielgerichtet im Tumorgewebe zu konzentrieren bzw. an die Tumorzellen anzulagern. Beispiele für solche, die Erfindung jedoch nicht einschränkende Tumormarker bzw. -Antigene sind: tumorassoziiertes Transplantationsantigen (TATA) , On- kofetales Antigen, tumorspezifisches Transplantationsantigen (TSTA) , p53-Protein, carzinoembryonales Antigen (CEA) , Melanom-Antigene (MAGE-1, MAGE-B2, DAM-6, DAM-10), Mucin (MUCl), humaner Epidermis Rezeptor (HER-2), alpha- Fetoprotein (AFP), Helicose-Antigen (HAGE), humanes Papil- loma Virus (HPV-E7), Caspase-8 (CASP-8), CD3, CD10, CD20, CD28, CD30, CD25, CD64, Interleukin-2, Interleukin-9, Mam- ma-CA-Antigen, Prostata-spezifisches Antigen (PSA) , GD2- Antigen, Melanocortin-Rezeptor (MCIR), 138H11-Antigen. Die entsprechenden Antikörper können dabei wahlweise als mo- noklonale oder polyklonale Antikörper, als Antikörper- Fragmente (Fab, F(ab 2), als Einzelkettenmoleküle (scFv), als „Diabodies", „Triabodies", „Minibodies" oder bispezifische Antikörper eingesetzt werden.By coupling such antibodies or antibody fragments that are directed against a tumor cell antigen, the prerequisite is first created to concentrate the polymer supports in the tumor tissue or to attach them to the tumor cells. Examples of such tumor markers or antigens, which do not restrict the invention, are: tumor-associated transplantation antigen (TATA), oncofetal antigen, tumor-specific transplantation antigen (TSTA), p53 protein, carcinoembryonic antigen (CEA), melanoma antigens (MAGE-1 , MAGE-B2, DAM-6, DAM-10), mucin (MUCl), human epidermis receptor (HER-2), alpha-fetoprotein (AFP), helicose antigen (HAGE), human papilloma virus (HPV- E7), Caspase-8 (CASP-8), CD3, CD10, CD20, CD28, CD30, CD25, CD64, Interleukin-2, Interleukin-9, Mamma-CA antigen, prostate-specific antigen (PSA), GD2 antigen, melanocortin receptor (MCIR), 138H11 antigen. The corresponding antibodies can be selected either as monoclonal or polyclonal antibodies, as antibody fragments (Fab, F (from 2 ), as single chain molecules (scFv), as "diabodies", "triabodies", "minibodies" or bispecific antibodies.
Zur parallelen Behandlung der Tumore werden die aus der Krebstherapie bekannten Antitumormittel bzw. Zytostatika in die Polymerpartikel eingekapselt. Beispiele hierfür sind: Methotrexat, Cis-Platin, Cyclophosphamid, Chlorambucil, Busulfan, Fluorouracil, Doxorubicin, Ftorafur oder Konjugate dieser Substanzen mit Proteinen, Peptiden, Antikörpern oder Antikörperfragmenten. Konjugate dieser Art sind aus dem Stand der Technik bekannt: „Monoclonal Antibodies and Can- cer Therapy", UCLA Symposia on Molecular and Cellular Bio- logy, Reisfeld und Seil, Hrsg., Alan R. Riss, Inc., New York, 1985.For parallel treatment of the tumors, the antitumor agents or cytostatics known from cancer therapy are encapsulated in the polymer particles. Examples include: methotrexate, cis-platinum, cyclophosphamide, chlorambucil, busulfan, fluorouracil, doxorubicin, ftorafur or conjugates of these substances with proteins, peptides, antibodies or antibody fragments. Conjugates of this type are known from the prior art: "Monoclonal Antibodies and Cancer Therapy", UCLA Symposia on Molecular and Cellular Biology, Reisfeld und Seil, ed., Alan R. Riss, Inc., New York, 1985 ,
Für die kovalenten Anbindung der Bio- bzw. Affinitätsliganden oder Rezeptoren an die Polymerträger werden die bekannten Methoden zur Kopplung bioaktiver Substanzen wie Proteine, Peptide, Oligosaccharide oder Nukleinsäuren an feste Träger genutzt. Kopplungsagenzien, die hier zum Einsatz gelangen, sind z.B.: Tresylchlorid, Tosylchlorid, Bromcyan, Carbodiimide, Epichlorhydrin, Diisocyanat, Diisothiocyana- te, 2-Fluor-l-methyl-pyridinium-toluol-4-sulfonat, 1,4- Butandiol-diglycidyläther, N-Hydroxysuccinimid, Chlorcarbo- nat, Isonitril, Hydrazid, Glutaraldehyd, 1,1', -Carbonyl- dii idazol. Darüber hinaus lassen sich die Bioliganden auch über reaktive heterobifunktionelle Verbindungen, die sowohl mit den funktioneilen Gruppen der Matrix (Carboxyl-, Hydro- xyl-, Sulfhydryl-, Aminogruppen) als auch mit dem Bioliganden eine chemische Bindung eingehen können, koppeln. Beispiele im Sinne der Erfindung sind: Succinimidyl-4- (N- maleiimido-methyl) -cyclohexan-1-carboxylat, 4-Succinimidyl- oxycarbonyl- - (2-pyridyldithio) toluol, Succinimidyl-4- (p- maleimidophenyl)butyrat, N-γ-Maleimidobutyryloxysuccinimid- ester, 3- (2-Pyridyldithio)propionylhydrazid, Sulfosuccin- imidyl-2- (p-azidosalicylamido)ethyl-l,3 '-dithiopropionat . Ein Fachmann auf diesem Gebiet kann diese Kopplungsagenzien jeder Zeit entsprechend den Angaben in „G.T. Hermanson, „Bioconjugate Techniques", Academic Press, San Diego, 1996 nutzen.The known methods for coupling bioactive substances such as proteins, peptides, oligosaccharides or nucleic acids to solid supports are used for the covalent attachment of the bio- or affinity ligands or receptors to the polymer supports. Coupling agents which are used here are, for example: tresyl chloride, tosyl chloride, cyanogen bromide, carbodiimide, epichlorohydrin, diisocyanate, diisothiocyanate, 2-fluoro-1-methyl-pyridinium-toluene-4-sulfonate, 1,4-butanediol diglycidyl ether , N-hydroxysuccinimide, chlorocarbonate, isonitrile, hydrazide, glutaraldehyde, 1,1 ', carbonyldiidazole. In addition, the bioligands can also be coupled via reactive heterobifunctional compounds which can form a chemical bond both with the functional groups of the matrix (carboxyl, hydroxyl, sulfhydryl, amino groups) and with the bioligand. Examples in the sense of the invention are: succinimidyl-4- (N-maleiimido-methyl) -cyclohexane-1-carboxylate, 4-succinimidyl-oxycarbonyl- - (2-pyridyldithio) toluene, succinimidyl-4- (p-maleimidophenyl) butyrate, N-γ-maleimidobutyryloxysuccinimide ester, 3- (2-pyridyldithio) propionylhydrazide, sulfosuccin imidyl-2- (p-azidosalicylamido) ethyl-l, 3 '-dithiopropionate. One skilled in the art can use these coupling agents at any time as described in "GT Hermanson," Bioconjugate Techniques, "Academic Press, San Diego, 1996.
Die Erfindung wird in den nachfolgenden beschreibenden, aber nicht einschränkenden Beispielen näher erläuter . Die Teilchengrößen wurden durch Streulicht/Laserbeugung mit einem Malvern MasterSizer 2000 (Malvern Instruments, BRD) bestimmt.The invention is explained in more detail in the following descriptive but not restrictive examples. The particle sizes were determined by scattered light / laser diffraction using a Malvern MasterSizer 2000 (Malvern Instruments, FRG).
Beispiel 1example 1
2,8 g Polyvinylalkohol, Molmasse 204 kDa, werden in 18 ml Ethylenglykol bei 120 °C gelöst. Nachdem die Lösung auf 80 °C heruntergekühlt ist, werden der Lösung 5 ml eines mit Laurinsäure stabilisierten Ferrofluides zugesetzt. Es folgt eine fünfminütige Behandlung im Ultraschallbad. Danach läßt man die Dispersion auf 65 °C herunter kühlen. Nachdem 50 mg Melphalan in der Polymerphase gelöst wurden, wird die Mischung in 100 ml auf 70 °C vorgeheiztem Pflanzenöl (Viskosität 84 cp), in dem 1,5 Vol% Pluronic 6200, 0,8 Vol% Dehymuls HRE und 2Vol% Tween 85 gelöst sind, unter Rühren (2000 U/min) suspendiert. Während des Suspensionsvorganges wird das Rührgefäß mit Eis heruntergekühlt. Nach ca. 3 Minuten fallen die Polymere als perlförmige Teilchen aus. Es wird 15 Minuten weitergerührt. Danach werden 100 ml Petrolether zugefügt und die magnetische Teilσhenfraktion mit Hilfe eines Handmagneten abgetrennt. Es wird lOmal abwechselnd mit Petrolether und Methanol nachgewaschen. Nach Trocknung im Vakuum bis zur Gewichtskonstanz fallen Magnetpartikel mit einer mittleren Teilchengröße von 12 μm an.2.8 g of polyvinyl alcohol, molecular weight 204 kDa, are dissolved in 18 ml of ethylene glycol at 120 ° C. After the solution has cooled down to 80 ° C., 5 ml of a ferrofluid stabilized with lauric acid are added to the solution. This is followed by a five-minute treatment in an ultrasound bath. The dispersion is then allowed to cool down to 65 ° C. After 50 mg of melphalan have been dissolved in the polymer phase, the mixture is dissolved in 100 ml of vegetable oil preheated to 70 ° C (viscosity 84 cp), in which 1.5% by volume Pluronic 6200, 0.8% by volume Dehymuls HRE and 2% by volume Tween 85 are dissolved, suspended with stirring (2000 rpm). During the suspension process, the mixing vessel is cooled down with ice. After about 3 minutes, the polymers precipitate out as pearl-shaped particles. Stirring is continued for 15 minutes. Then 100 ml of petroleum ether are added and the magnetic fraction is separated using a hand magnet. It is washed ten times alternately with petroleum ether and methanol. After drying in a vacuum to constant weight, magnetic particles with an average particle size of 12 μm are obtained.
Die Pharmakaträger können u.a. zur Behandlung von Mammakar- zinomen eingesetzt werden. Beispiel 2The pharmaceutical carriers can be used, among other things, for the treatment of breast cancer. Example 2
500 mg eines analog der Vorschrift von B. Jeong et al., Colloid Surfaces B Biointerfaces Vol. 16, 185, 1999, hergestellten Triblockcopolymeren, bestehend aus Poly(ethylenglycol-laσtid-ethylenglycol) (Mw: 11.8 KDa) , werden in 4 ml 0,1 M Na-Phosphat-Puffer, pH 7,4, gelöst und anschließend 5 Min. bei 15 °C in einem Ultraschallbad beschallt. Zu dieser Lösung werden 100 mg Kobalt-Ferrit- Pulver (CoFe204, mittlere Teilchengröße 259 nm) , das aus CoCl2 und FeCl3 hergestellt vmrde, zugegeben. Die Dispersion wird sodann unter Eiskühlung mit Hilfe eines Hochleistungs- ultraschallfinger (Fa. Dr. Hielscher, 80 % Amplitude) dreimal für 50 Sek. unter Eiskühlung und Stickstoffatmosphäre beschallt. Es entsteht ein stabiles Kolloid mit einer mittleren Teilchengröße von 645 nm.500 mg of a triblock copolymer prepared analogously to the instructions by B. Jeong et al., Colloid Surfaces B Biointerfaces Vol. 16, 185, 1999, consisting of poly (ethylene glycol lactide ethylene glycol) (Mw: 11.8 KDa), are added in 4 ml 0.1 M Na phosphate buffer, pH 7.4, dissolved and then sonicated in an ultrasonic bath at 15 ° C. for 5 minutes. 100 mg of cobalt ferrite powder (CoFe 2 0 4 , average particle size 259 nm), which was produced from CoCl 2 and FeCl 3 , are added to this solution. The dispersion is then sonicated under ice cooling using a high-performance ultrasound finger (from Dr. Hielscher, 80% amplitude) three times for 50 seconds under ice cooling and a nitrogen atmosphere. A stable colloid with an average particle size of 645 nm is formed.
Beispiel 3Example 3
Magnetische Chitosan Nanopartikel werden durch ionische Gelierung von Chitosan mit Na-Tripolyphosphat hergestellt. 3,5 ml einer 0,6 %igen Chitosan-Glutamat-Lösung (MW: 205 kDa) werden in doppelt destilliertem und entgastem Wasser, dessen pH auf 5,5 eingestellt wurde, mit 1,5 ml einer nach Shinkai et al., Biocatalysis, Vol. 5, 61, 1991, hergestellten wäßrigen Magnet-Kolloid-Lösung (mittlere Teilchengröße 26 nm) versetzt. Zu dieser Dispersion werden 2,8 ml einer 0,084 %igen Na-Tripolyphosphat Lösung, in der 3 mg/ml Gona- dotropin gelöst sind, unter starkem Rühren (4500 U/min) tropfenweise zupipettiert . Nach zweiminütigem Rühren werden die Magnetteilchen auf eine mit Stahlwolle dichtgepackte Glassäule (Füllvolumen: ca. 4 ml; Innendurchmesser: 0,5 cm) , die von einem 3 cm langen ringförmigen Neodym-Bor- Eisen-Magneten umgeben ist, aufgegeben. Man läßt die Mischung langsam (0,5 ml/Min.) durchtropfen. Nach dem Durchlauf wird zehnmal mit ca. 20 ml 30 ti ern Ethanol nachgewaschen. Dem schließt sich fünfmaliges Waschen mit 0,1 M Na- Phosphat-Puffer, pH 7.2, an, gefolgt von zehnmaligem Wa- sehen mit bidest. Wasser. Die magnetische Polymerfraktion auf der Säule wird sodann nach Wegnahme des Magneten mit 10 ml bidest. Wasser eluiert. Das gewonnene Eluat wird anschließend gefriergetrocknet .Magnetic chitosan nanoparticles are produced by ionic gelation of chitosan with sodium tripolyphosphate. 3.5 ml of a 0.6% chitosan-glutamate solution (MW: 205 kDa) are dissolved in double-distilled and degassed water, the pH of which has been adjusted to 5.5, with 1.5 ml of one according to Shinkai et al., Biocatalysis, Vol. 5, 61, 1991, prepared aqueous magnetic colloid solution (average particle size 26 nm). 2.8 ml of a 0.084% Na tripolyphosphate solution in which 3 mg / ml gonodropin are dissolved are added dropwise to this dispersion with vigorous stirring (4500 rpm). After stirring for two minutes, the magnetic particles are placed on a glass column densely packed with steel wool (filling volume: approx. 4 ml; inner diameter: 0.5 cm), which is surrounded by a 3 cm long ring-shaped neodymium-boron-iron magnet. The mixture is slowly dripped through (0.5 ml / min.). After the run, it is washed ten times with about 20 ml of 30 t of ethanol. This is followed by five washings with 0.1 M Na phosphate buffer, pH 7.2, followed by ten washings. see with bidest. Water. The magnetic polymer fraction on the column is then redistilled with 10 ml after removal of the magnet. Water eluted. The eluate obtained is then freeze-dried.
Es fallen Teilchen mit einer mittleren Größe von 672 nm an. Die Pharmakaträger können nach entsprechender Dispersion in physiologischer Kochsalzlösung zur Hormonbehandlung eingesetzt werden.Particles with an average size of 672 nm are obtained. After appropriate dispersion in physiological saline, the pharmaceutical carriers can be used for hormone treatment.
Beispiel 4Example 4
Eine 2,8 Gew.-ssige Gelatine-Lösung wird durch Erwärmen auf 90 °C in 1,5 ml 0,05 M Na-Phosphat-Puffer, pH 7,4, hergestellt. Danach wird die Lösung auf 40 °C gebracht und zunächst werden 0,5 ml Ferrofluid EMG 507 (Fa. FerroTec, USA) zugegeben. Die Dispersion wird danach 2 Minuten bei 40 °C im Ultraschallbad behandelt. 1 ml auf 40 °C erwärmte 0,05 M Na-Phosphat-Puffer-Lösung, pH 7,4, in der 0,25 % Human Insulin (Fa. Sigma) sowie 0,5 % Polyvinylalkohol (Mw: 22 kDa) gelöst sind, wird zu der Gelatine-Ferrofluid-Dispersion zugegeben. Die resultierende Mischung wird in 80 ml, auf 40 °C vorgewärmtes Pflanzenöl (Viskosität 84 cp) , in dem 0.8Vol% Pluronic L61, 0.8Vol% Tetroniσ 1101 und 2.5Vol% Dehymuls FCE gelöst sind, gegeben und bei 12.000 U/min mit Hilfe eines Dispergierwerkzeuges (T25 Ultraturrax, IKA, BRD) unter Stickstoffatmosphäre 2 Minuten homogenisiert. Danach wird die Dispersion mittels Eiskühlung auf <10 °C heruntergekühlt, wobei die Gelatinepartikel ausfallen. Nach Zugabe von 50 ml Petrolether wird die magnetische Fraktion mittels eines Neodym-Bor-Eisen Handmagneten abgetrennt und zehnmal abwechselnd mit Petrolether und Ethanol nachgewaschen. Danach erfolgt fünfmaliges Waschen mit Ξiswasser. Es werden Polymerteilchen mit einer mittleren Größe von 1,4 μm gewonnen. Beispiel 5A 2.8% by weight gelatin solution is prepared by heating to 90 ° C. in 1.5 ml of 0.05 M Na phosphate buffer, pH 7.4. The solution is then brought to 40 ° C. and first 0.5 ml of ferrofluid EMG 507 (from FerroTec, USA) are added. The dispersion is then treated in an ultrasound bath at 40 ° C. for 2 minutes. 1 ml of a 0.05 M Na phosphate buffer solution, pH 7.4, heated to 40 ° C., in which 0.25% human insulin (Sigma) and 0.5% polyvinyl alcohol (Mw: 22 kDa) were dissolved are added to the gelatin ferrofluid dispersion. The resulting mixture is poured into 80 ml vegetable oil preheated to 40 ° C (viscosity 84 cp), in which 0.8 vol% Pluronic L61, 0.8 vol% Tetroniσ 1101 and 2.5 vol% Dehymuls FCE are dissolved, and at 12,000 rpm with Homogenized using a dispersing tool (T25 Ultraturrax, IKA, FRG) under a nitrogen atmosphere for 2 minutes. The dispersion is then cooled to <10 ° C. by means of ice cooling, the gelatin particles precipitating. After adding 50 ml of petroleum ether, the magnetic fraction is separated using a neodymium-boron-iron hand magnet and washed ten times alternately with petroleum ether and ethanol. This is followed by five washes with Ξis water. Polymer particles with an average size of 1.4 μm are obtained. Example 5
80 mg eines nach einer Vorschrift von Zweers et al. (J. Biomed. Mater. Res. Part B, Vol. 66B, 559, 2002) hergestellten und im Vakuum getrockneten Poly(lactid-co- glycolid)s (Mw 110 kDa), werden in 4 ml Aceton gelöst. Der Lösung werden 1,5 ml des Ferrofluids DKS1S21 (Fa. Liquids Research Ltd., Wales) sowie 8 mg Cyclophosphamid zugefügt. Die Mischung wird anschließend mit Hilfe eines Dispergier- werkzeuges (T25 Ultraturrax, IKA, BRD) bei 20.000 U/min. in 8 ml Wasser, in dem 60 Gew.-% MgCl2 und 2 Gew.-?s Polyvinyl- alkohol (Mw 22 kDa) als Stabilisator gelöst sind, eine Minute bei Raumtemperatur dispergiert . Während des Emulgier- vorganges werden 7,5 ml Wasser zugesetzt und der Rührvorgang wird für 20 Sekunden fortgesetzt. Danach erfolgt die Hochgradientenmagnetfeld-Separation analog Beispiel 3. Nach dem Durchlauf (0,5 ml/Min.) wird zehnmal mit ca. 20 ml bidest. Wasser nachgewaschen. Der auf der Säule retendierte magnetische Polymerträger wird sodann nach Wegnahme des Magneten dreimal mit jeweils 1,5 ml physiologischer Kochsalzlösung eluiert. Es werden Nanopartikel mit einer mittleren Teilchengröße von 483 nm gewonnen. Die eingekapselten für die Tumortherapie einsetzbaren Pharmaka können mit Hilfe eines hochfrequenten Magnetfeldes (10 kA/m, 0,8 MHz, 4,8 kW) innerhalb von 5 Minuten zu >50 % freigesetzt werden.80 mg of one according to a specification by Zweers et al. (J. Biomed. Mater. Res. Part B, Vol. 66B, 559, 2002) and vacuum-dried poly (lactide-co-glycolide) s (Mw 110 kDa) are dissolved in 4 ml of acetone. 1.5 ml of the ferrofluid DKS1S21 (from Liquids Research Ltd., Wales) and 8 mg of cyclophosphamide are added to the solution. The mixture is then dispersed using a dispersing tool (T25 Ultraturrax, IKA, FRG) at 20,000 rpm. dispersed in 8 ml of water in which 60% by weight of MgCl 2 and 2% by weight of polyvinyl alcohol (Mw 22 kDa) as a stabilizer are dispersed for one minute at room temperature. 7.5 ml of water are added during the emulsification process and the stirring process is continued for 20 seconds. The high-gradient magnetic field separation is then carried out analogously to Example 3. After the run (0.5 ml / min.), The mixture is distilled ten times with about 20 ml. Washed water. The magnetic polymer support retained on the column is then eluted three times with 1.5 ml of physiological saline after removal of the magnet. Nanoparticles with an average particle size of 483 nm are obtained. The encapsulated pharmaceuticals that can be used for tumor therapy can be released to> 50% within 5 minutes using a high-frequency magnetic field (10 kA / m, 0.8 MHz, 4.8 kW).
Beispiel 6Example 6
1,5 ml Magnetkolloid (2,2 mM Fe/ l, mittlere Teilchengröße 26 nm) , das nach einer Vorschrift von Shinkai et al., Bio- catalysis, Vol. 5, 61, 1991, hergestellt wurde, werden mit 5 ml einer 0,05 M Na-Carbonat-Pufferlösung, pH 9,5, in der 10 % des Polyoxyethylen-Polyoxypropylen-Copolymeren (Pluro- gelöst sind, vermischt und 5 Min. in einem Ultraschallbad (500 W) unter Eiskühlung beschallt. In die Mischung wird sodann für 15 Minuten bei 20 °C Stickstoff eingeleitet. Der Dispersion werden sodann 0,5 ml 0,05 M Na- Carbonat-Puffer-Lösung, pH 9,5, in der 1 Gew.-% Somatotro- pin, 0,5 Gew.-% Inosit und 0,05 Gew.-% Human Serum Albumin gelöst sind, zugefügt. Die Mischung wird weitere zwei Minuten mit Ultraschall behandelt und dann in 50 ml Sesamöl (Viskosität 153 cp) in dem 2,5 Vol% Span 60 und 1,5 VolSs Dehymuls HRE7 gelöst sind, unter Rühren (1200 U/min) und Stickstoffeinleitung bei 20 °C dispergiert. Während des Dispergiervorganges werden 100 μl Divinylsulfon zupipettiert. Die Mischung wird über einen Zeitraum von 2 Stunden weiter gerührt. Separation sowie Wasσhprozesse erfolgen analog Beispiel 3. Nach Gefriertrocknung und Dispersion in physiologischer Kochsalzlösung fallen Polymerträger mit einer mittleren Teilchengröße von 0,767 μm an. Bei der Behandlung der Teilchen in einem magnetischen Wechselfeld (Magnetfeld: 10 kA/m; 0,6 MHz, Spulendurchmesser: 5,5 cm, 8 Windungen) wird ein Entquellungsprozess ausgelöst, der innerhalb von 5 Minuten mehr als45 % des inkorporierten Hormons freisetzt.1.5 ml of magnetic colloid (2.2 mM Fe / l, average particle size 26 nm), which was produced according to a specification by Shinkai et al., Bio-catalysis, Vol. 5, 61, 1991, are mixed with 5 ml of a 0.05 M Na carbonate buffer solution, pH 9.5, in which 10% of the polyoxyethylene-polyoxypropylene copolymer (Pluro are dissolved, mixed and sonicated for 5 minutes in an ultrasonic bath (500 W) with ice cooling. Nitrogen is then passed into the mixture at 20 ° C. for 15 minutes. The dispersion is then 0.5 ml of 0.05 M Na carbonate buffer solution, pH 9.5, in which 1 wt .-% Somatotro- pin, 0.5% by weight of inositol and 0.05% by weight of human serum albumin are added. The mixture is treated with ultrasound for a further two minutes and then in 50 ml of sesame oil (viscosity 153 cp) in which 2.5% by volume of Span 60 and 1.5% by volume of Dehymuls HRE7 are dissolved, with stirring (1200 rpm) and nitrogen injection Dispersed at 20 ° C. 100 μl of divinyl sulfone are pipetted in during the dispersing process. The mixture is further stirred over a period of 2 hours. Separation and washing processes take place analogously to Example 3. After freeze-drying and dispersion in physiological saline solution, polymer carriers with an average particle size of 0.767 μm are obtained. When the particles are treated in an alternating magnetic field (magnetic field: 10 kA / m; 0.6 MHz, coil diameter: 5.5 cm, 8 turns), a swelling process is triggered which releases more than 45% of the incorporated hormone within 5 minutes.
Beispiel 7Example 7
Magnetliposome werden gemäß den bekannten Verfahren hergestellt. Dazu werden zunächst Magnetit-Magnetkolloide (Durchmesser ca. 15 nm) hergestellt und mit Laurinsaure bei 90 °C stabilisiert. 0,18 ml dieses Kolloides (61 mg Fe304/ml) werden mit 9 ml einer Vesikel Dispersion, die durch Ultraschallbehandlung mittels eines Ultraschallfingers (150 W) einer Phospholipid-Lidocain-Mischung Dimyri- stoylphosphatidylglycerin Na-Salz/Phospha idylethanolamin- Polyethylengycol-biotin/Lidocain (Phospholipid- Konzentration: 8,4μM/mlmolares; Verhältnis 9/1/0,5) erhalten wurde, für 72 h bei 37 °C dialysiert (Spectra/Por Dialyse Röhrchen, Speσtrum edical Industries, Los Angeles, CA, Molmassen-Ausschlußgrenzel2, 000-14, 000) . Der Dialsyse- Puffer (5 mM N-tris [hydroxymethyl]methyl-2- aminoethanesulfonsäure, TES, pH 7.0) wird alle 5 Stunden ausgewechselt. Überschüssige Vesikel werden mittels der Stahlwolle gefüllten Kolonne (s. Beispiel 3) abgetrennt. Nach der Separation wird die Magne fraktion mehrfach mit 4 ml TES-Puffer nachgewaschen. Danach werden die Magne liposome nach Entfernen des Magneten durch dreimalige Elution mit je 2 ml Puffer-Lösung erhalten. Das molare Verhältnis Phospholipid/ Fe304 beträgt 0.69. Bei der anschließenden Behandlung der Teilchen in einem magnetischen Wechselfeld (Magnetfeld: 10 kA/m; 0,6 MHz, Spulendurchmesser: 5,5 cm, 8 Windungen) wird die vesikuläre Struktur der Liposome innerhalb von 5 Minuten aufgelöst und das eingekapselte Lidocain vollständig freigesetzt. Der Pharmakaträger kann als Lokalanästhetikum verwendet werden.Magnetic liposomes are produced according to the known methods. For this purpose, magnetite magnetic colloids (diameter approx. 15 nm) are first produced and stabilized with lauric acid at 90 ° C. 0.18 ml of this colloid (61 mg Fe 3 0 4 / ml) are mixed with 9 ml of a vesicle dispersion, which is treated by ultrasound treatment with an ultrasound finger (150 W) of a phospholipid-lidocaine mixture of dimyristoylphosphatidylglycerol sodium salt / phosphate idylethanolamine. Polyethylene glycol biotin / lidocaine (concentration: 8.4μM / ml molar; ratio 9/1 / 0.5) was obtained, dialyzed for 72 h at 37 ° C (Spectra / Por dialysis tube, Speσtrum edical Industries, Los Angeles, CA, molecular weight exclusion limit2, 000-14, 000). The dialysis buffer (5 mM N-tris [hydroxymethyl] methyl-2-aminoethanesulfonic acid, TES, pH 7.0) is replaced every 5 hours. Excess vesicles are separated by means of the column filled with steel wool (see Example 3). After the separation, the magnetic fraction is washed several times with 4 ml of TES buffer. The magnetic liposomes are then obtained after removal of the magnet by elution three times with 2 ml of buffer solution each. The molar ratio of phospholipid / Fe 3 0 4 is 0.69. In the subsequent treatment of the particles in an alternating magnetic field (magnetic field: 10 kA / m; 0.6 MHz, coil diameter: 5.5 cm, 8 turns), the vesicular structure of the liposomes is dissolved within 5 minutes and the encapsulated lidocaine is released completely , The pharmaceutical carrier can be used as a local anesthetic.
Beispiel 8Example 8
Ein Kobalt-Ferrit-Magnetkolloid (CoFe204) wird aus CoCl2 und FeCl3 hergestellt und in Wasser mit Hilfe eines Hochleistungsultraschallfinger (Fa. Dr. Hielscher, 80 % Amplitude) in Gegenwart von 0,75 % Polyaσrylsäure (Mw: 5,500) 30 Sek. dispergiert. 2 ml des 1,9 mM Fe/ml enthaltenden Kolloides (Teilchengröße 21 nm) werden mit 5 ml zweimal destilliertem und entgastem Wasser, in dem 5 Gew. -% Isopropylcellulose gelöst sind, vermischt. Die Mischung wird für 10 Minuten im Ultraschallbad bei 20 °C beschallt. Danach wird die Mischung in 70 ml auf 70 °C vorgeheiztes Pflanzenöl (Viskosität 134 cp), in dem 1,5 % Tween 80, 2,5 % Pluronic PE 3100 und 2,5 % Span 85 gelöst sind, mit Hilfe eines Rührers (1200 U/min.) dispergiert. Es wird 10 Minuten bei dieser Temperatur weitergerührt. Während dieses Vorganges werden feste Polymerpartikel gebildet. Nach Zugabe von 100 ml Bu- tanol wird die Magnetfraktion mittels eines Handmagneten abgetrennt und mehrfach abwechselnd mit Petrolether und Methanol nachgewaschen. Es werden Magnetpartikel mit einer mittleren Teilchengröße von 16 μm erhalten.A cobalt ferrite magnetic colloid (CoFe 2 0 4 ) is produced from CoCl 2 and FeCl 3 and in water with the help of a high-performance ultrasound finger (Dr. Hielscher, 80% amplitude) in the presence of 0.75% polyacrylic acid (M w : 5,500) dispersed for 30 seconds. 2 ml of the colloid containing 1.9 mM Fe / ml (particle size 21 nm) are mixed with 5 ml of twice-distilled and degassed water in which 5% by weight of isopropyl cellulose are dissolved. The mixture is sonicated for 10 minutes in an ultrasonic bath at 20 ° C. The mixture is then dissolved in 70 ml vegetable oil preheated to 70 ° C (viscosity 134 cp), in which 1.5% Tween 80, 2.5% Pluronic PE 3100 and 2.5% Span 85 are dissolved, using a stirrer ( 1200 rpm.) Dispersed. Stirring is continued for 10 minutes at this temperature. Solid polymer particles are formed during this process. After adding 100 ml of butanol, the magnetic fraction is separated using a hand magnet and washed several times alternately with petroleum ether and methanol. Magnetic particles with an average particle size of 16 μm are obtained.
200 mg der so hergestellten Polymerpartikel werden mit 3 ml 3.5 M NaOH und 5 ml Epichlorydrin versetzt und 2 h bei 55 °C unter intensivem Rühren umgesetzt. Danach werden die Magnetpartikel mittels eines Neodym-Eisen-Bor-Magneten ab- getrennt. Das Produkt wird in ca.10 ml Wasser suspendiert und nochmals magnetisch abgetrennt. Dieser Wasch/Abtrennvorgang wird lOmal wiederholt, gefolgt von einmaligem Waschen mit Aceton. Die aktivierte Magnetpartikelfraktion wird sodann mit 2 ml 0.1 M Borat-Puffer, pH 11.4, der 10 % Hexamethylendiamin enthält, bei 50 °C 2 h umgesetzt. Nach magnetischer Abtrennung wird zehnmal mit Wasser nachgewaschen. Das gewonnene Produkt wird anschließend mit 2 ml 0.1 M K-Phosphat-Puffer, pH 7.0, in dem 12.5 % Glutaraldehyd gelöst sind, für 2 h bei 30 °C zur Reaktion gebracht. Anschließend wird über einen Zeitraum von 30 Minuten zunächst 20mal mit Wasser und dann fünfmal mit 0.1 M Na-Phosphat-Puffer, pH 7.5, nachgewaschen. Durch dreistündige Inkubation von 1,5 ml 0.1 M Na-Phosphat- Puffer, pH 7.5, in dem 0.2 mg CD4 gelöst sind, werden Polymerpartikel gewonnen, die zur Bindung des HIV (human immu- nodeficiency virus) herangezogen werden können. Durch induktive Erwärmung des Virus-Magnetpartikel-Komplexes (4,8 kW, 0,5 MHz) werden innerhalb von 10 Minuten Temperaturen (>60 °C) erreicht, die die Viren abtöten können. 200 mg of the polymer particles produced in this way are mixed with 3 ml of 3.5 M NaOH and 5 ml of epichlorydrine and reacted for 2 hours at 55 ° C. with vigorous stirring. The magnetic particles are then removed using a neodymium-iron-boron magnet. Cut. The product is suspended in approx. 10 ml of water and magnetically separated again. This washing / separating process is repeated 10 times, followed by washing once with acetone. The activated magnetic particle fraction is then reacted with 2 ml of 0.1 M borate buffer, pH 11.4, which contains 10% hexamethylene diamine, at 50 ° C. for 2 hours. After magnetic separation, it is washed ten times with water. The product obtained is then reacted with 2 ml of 0.1 M K-phosphate buffer, pH 7.0, in which 12.5% of glutaraldehyde are dissolved, for 2 h at 30 ° C. It is then washed 20 times with water and then five times with 0.1 M Na phosphate buffer, pH 7.5, over a period of 30 minutes. By incubating 1.5 ml of 0.1 M Na phosphate buffer, pH 7.5, in which 0.2 mg of CD4 are dissolved, for three hours, polymer particles are obtained which can be used to bind the HIV (human immunodeficiency virus). By inductive heating of the virus-magnetic particle complex (4.8 kW, 0.5 MHz) temperatures (> 60 ° C) are reached within 10 minutes, which can kill the viruses.

Claims

Patentansprüche claims
1. Thermosensitive und biokompatible, magnetische und/oder metallische Kolloide enthaltende Polymerteilchen, die mit Hilfe eines hochfrequenten magnetischen Wechselfeldes aufheizbar sind und dadurch eine Änderung ihrer physikalischen Polymerstruktur erfahren, dadurch gekennzeichnet, daß die zur Herstellung der erfindungsgemäßen Polymerteilchen verwendeten Polymere ausgewählt sind aus der Gruppe der biokompatiblen Polymere, die Polyortho- ester, Polyalkylcyanacrylate, Polyglycolsäure, Poly- etherester, Polycarbonate, Polyhydroxyalkanoate, Polyhy- droxysäuren, Poly(ε-caprolacton) , Polyaminsosäuren, Po- lysaccharide, Polysaccharid- (Meth)acrylatderivate, Liposome, Isopropylcellulose, Hydroxyalkylσellulosen, Cellu- loseacetatbutyrat. Stärke, Stärkealkylether, Collagen, Alginat, Chitosan, Polyvinylalkohol, Gelatine, ionisch vernetzte multifunktioneile Amine oder lineare Copolyme- re, Pfropfcopolymere oder Blockcopolymere dieser Polymere oder aus den Polymeren gebildete Dendrimere enthält.1. Thermosensitive and biocompatible, magnetic and / or metallic colloids containing polymer particles, which can be heated with the aid of a high-frequency magnetic alternating field and thereby experience a change in their physical polymer structure, characterized in that the polymers used to produce the polymer particles according to the invention are selected from the group the biocompatible polymers, the polyorthoesters, polyalkyl cyanoacrylates, polyglycolic acid, polyether esters, polycarbonates, polyhydroxyalkanoates, polyhydroxy acids, poly (ε-caprolactone), polyamino acids, polysaccharides, polysaccharide (meth) acrylate derivatives, liposomes, isopropyl cellulose , Cellulose acetate butyrate. Starch, starch alkyl ether, collagen, alginate, chitosan, polyvinyl alcohol, gelatin, ionically cross-linked multifunctional amines or linear copolymers, graft copolymers or block copolymers of these polymers or dendrimers formed from the polymers.
2. Thermosensitive und biokompatible Polymerteilchen gemäß Anspruch 1, dadurch gekennzeichnet, dass die Polymere aus einem oder mehreren Copoly er(en) oder Blockcopoly- mer(en) bestehen.2. Thermosensitive and biocompatible polymer particles according to claim 1, characterized in that the polymers consist of one or more copoly er (s) or block copolymer (s).
3. Thermosensitive und biokompatible, magnetische und/oder metallische Kolloide enthaltende Polymerteilσhen, gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Änderung der physikalischen Struktur in einem Quellungs-, Entquellungs-, Lösungs- oder Gelierungsprozess oder in einer Änderung der geometrischen Form der Polymeren besteht . 3. Thermosensitive and biocompatible, containing magnetic and / or metallic colloids Polymerteilσhen, according to claim 1 or 2, characterized in that the change in the physical structure in a swelling, de-swelling, solution or gelation process or in a change in the geometric shape of the Polymers.
4. Thermosensitive und biokompatible Polymerteilchen gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es sich um sphärische nano- oder mikropartikuläre Teilchen oder Fasern, Röhren oder Fäden handelt.4. Thermosensitive and biocompatible polymer particles according to one of claims 1 to 3, characterized in that it is spherical nano- or microparticulate particles or fibers, tubes or threads.
5. Thermosensitive und biokompatible Polymerteilchen gemäß Anspruch 3, dadurch gekennzeichnet, dass die Änderung der geometrischen Form in einer Rückkehr zu einer Ursprungsform besteht, die die Polymeren vor einer wärmebedingten Formänderung innehatte („shape-memory- polymer") .5. Thermosensitive and biocompatible polymer particles according to claim 3, characterized in that the change in the geometric shape consists in a return to an original shape which the polymers held before a heat-related change in shape (“shape-memory polymer”).
6. Thermosensitive und biokompatible Polymerteilchen gemäß Anspruch 1, dadurch gekennzeichnet, dass die magnetischen Kolloide ferromagnetische, superparamagnetische oder ferrimagnetische Teilchen oder Ferrite oder ein Ferrofluid mit einer Teilchengröße <1 μm und einer Curie-Temperatur im Bereich von 30 °C bis 100 °C sind.6. Thermosensitive and biocompatible polymer particles according to claim 1, characterized in that the magnetic colloids are ferromagnetic, superparamagnetic or ferrimagnetic particles or ferrites or a ferrofluid with a particle size <1 μm and a Curie temperature in the range from 30 ° C to 100 ° C ,
7. Thermosensitive und biokompatible Polymerteilchen gemäß Anspruch 1, dadurch gekennzeichnet, dass die metallischen Kolloide aus Elementen der Gruppe 8, 9, 10 oder 11 (Gruppeneinteilung: neuer Vorschlag IUPAC 1986) bestehen.7. Thermosensitive and biocompatible polymer particles according to claim 1, characterized in that the metallic colloids consist of elements from group 8, 9, 10 or 11 (grouping: new proposal IUPAC 1986).
8. Thermosensitive und biokompatible Polymerteilchen gemäß Ansprüchen 1, 6 und 7, dadurch gekennzeichnet, dass die magnetischen und/oder metallischen Kolloide mit mindestens einer oberflächenaktiven Substanz stabilisiert sind, die ein Agglomerieren der Kolloide verhindern.8. Thermosensitive and biocompatible polymer particles according to claims 1, 6 and 7, characterized in that the magnetic and / or metallic colloids are stabilized with at least one surface-active substance which prevent agglomeration of the colloids.
9. Thermosensitive und biokompatible Polymerteilchen gemäß Anspruch 8, dadurch gekennzeichnet, dass die oberflächenaktive(n) Substanz (en) Alkyl- und/oder Arylgruppen- tragende Sulfonsäure-, Sulfonat- oder Carboxylat- Derivate oder Polyethylenglycolderivate sind. 9. Thermosensitive and biocompatible polymer particles according to claim 8, characterized in that the surface-active substance (s) are alkyl and / or aryl group-bearing sulfonic acid, sulfonate or carboxylate derivatives or polyethylene glycol derivatives.
10. Thermosensitive und biokompatible Polymerteilchen gemäß einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Polymeren mit einem polyfunktionellen Vernetzer ausgewählt aus der Gruppe, die die Dihalogenide, Diisoσyanate, Diisothiocyanate, Dioxirane, Dialdehyde, Divinyl-Derivate enthält, vernetzt sind.10. Thermosensitive and biocompatible polymer particles according to one of the preceding claims, characterized in that the polymers are crosslinked with a polyfunctional crosslinker selected from the group containing the dihalides, diisoσyanates, diisothiocyanates, dioxiranes, dialdehydes, divinyl derivatives.
11. Thermosensitive und biokompatible Polymerteilchen gemäß Anspruch 10, dadurch gekennzeichnet, dass der Vernetzer eine Konzentration von 0,05 bis 10 Mol %, bezogen auf das Polymere, aufweist.11. Thermosensitive and biocompatible polymer particles according to claim 10, characterized in that the crosslinker has a concentration of 0.05 to 10 mol%, based on the polymer.
12. Thermosensitive und biokompatible Polymerteilchen gemäß einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Polymeren mit Biomolekülen koppelnde, reaktive Gruppen aufweisen.12. Thermosensitive and biocompatible polymer particles according to one of the preceding claims, characterized in that the polymers have reactive groups coupling to biomolecules.
13. Thermosensitive und biokompatible Polymerteilchen gemäß Anspruch 11, dadurch gekennzeichnet, dass die koppelnden Gruppen mit Peptiden, Proteinen, Antikörpern, Antigenen, Enzymen, Zellrezeptor-Antikörpern, Antikörpern gegen Tumormarker, Antikörperfragmenten, künstlich hergestellten Antikörpern, abgewandelten Antikörpern, Antikörperkonjugaten, Oligosaσchariden, Glykoproteinen, Lektinen, Nukleinsäuren, Streptavidin oder Biotin umgesetzt sind.13. Thermosensitive and biocompatible polymer particles according to claim 11, characterized in that the coupling groups with peptides, proteins, antibodies, antigens, enzymes, cell receptor antibodies, antibodies against tumor markers, antibody fragments, artificially produced antibodies, modified antibodies, antibody conjugates, oligosaccharides, glycoproteins , Lectins, nucleic acids, streptavidin or biotin are implemented.
14. Thermosensitive und biokompatible Polymerteilchen gemäß einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass in den Polymeren Wirksubstanzen oder Pharmaka eingekapselt sind.14. Thermosensitive and biocompatible polymer particles according to one of the preceding claims, characterized in that active substances or pharmaceuticals are encapsulated in the polymers.
15. Thermosensitive und biokompatible Polymerteilchen gemäß Anspruch 14, dadurch gekennzeichnet, dass die eingekapselten Wirksubstanzen oder Pharmaka aus der Gruppe Hormone, Zytostatika, Antikörper, Antikörperderivate, Antikörperfragmente, Cytokine, Immunmodulatoren, Antigene, Proteine, Peptide, Lektine, Glykoproteine, Nukleinsäuren, Antisens-Nukleinsäuren, Oligosaccharide, Antibiotika oder Generika ausgewählt sind.15. Thermosensitive and biocompatible polymer particles according to claim 14, characterized in that the encapsulated active substances or pharmaceuticals from the group Hormones, cytostatics, antibodies, antibody derivatives, antibody fragments, cytokines, immunomodulators, antigens, proteins, peptides, lectins, glycoproteins, nucleic acids, antisense nucleic acids, oligosaccharides, antibiotics or generics are selected.
16. Verfahren zur Herstellung thermosensitiver und biokompatibler, mittels magnetischer Induktion aufheizbarer Polymerteilchen gemäß einem der vorhergehenden Ansprüche.16. A method for producing thermosensitive and biocompatible, by means of magnetic induction heatable polymer particles according to any one of the preceding claims.
17. Verfahren gemäß Anspruch 16, dadurch gekennzeichnet, dass die Polymeren mittels ringöffnender Polymerisation, Polykondensation, radikalischer Polymerisation oder ionischer Vernetzung hergestellt werden.17. The method according to claim 16, characterized in that the polymers are prepared by means of ring-opening polymerization, polycondensation, radical polymerization or ionic crosslinking.
18. Verfahren gemäß Anspruch 16, dadurch gekennzeichnet, dass die lösliche Polymerphase in einer nicht mit der Polymerphase mischbaren organischen Phase unter Rühren dispergiert und mittels der Suspensionspräzipitation, des Suspensions -Vernetzungs-, des Aussalz-Emulsionsoder des Solvent-Evaporationsverfahrens zu mikro- oder nanopartikulären Teilchen verfestigt wird.18. The method according to claim 16, characterized in that the soluble polymer phase is dispersed in an organic phase which is not miscible with the polymer phase with stirring and by means of the suspension precipitation, the suspension crosslinking, the salting-out emulsion or the solvent evaporation process to give micro- or nanoparticulate Particle is solidified.
19. Verfahren gemäß Ansprüchen 16 bis 18, dadurch gekennzeichnet, dass die magnetischen und/oder metallischen Kolloide der löslichen Polymerphase zugegeben werden und diese nach der Verfestigung des Polymeren in kolloiddisperser Form in der Polymermatrix vorliegen.19. The method according to claims 16 to 18, characterized in that the magnetic and / or metallic colloids are added to the soluble polymer phase and these are present in the polymer matrix after the solidification of the polymer in colloidally dispersed form.
20. Verfahren gemäß Anspruch 19, dadurch gekennzeichnet, dass als magnetische Kolloide ferromagnetische-, super- paramagnetische- oder ferrimagnetische Substanzen oder Ferrite oder Ferrofluide mit einer Teilchengröße <1 μm verwendet werden. 20. The method according to claim 19, characterized in that ferromagnetic, super-paramagnetic or ferrimagnetic substances or ferrites or ferrofluids with a particle size <1 μm are used as the magnetic colloids.
21. Verfahren gemäß Anspruch 20, dadurch gekennzeichnet, dass die Konzentration des zugesetzten magnetischen und/oder metallischen Kolloids 5 bis 40 Gew.-%, bezogen auf die Polymerphase, beträgt.21. The method according to claim 20, characterized in that the concentration of the added magnetic and / or metallic colloid is 5 to 40 wt .-%, based on the polymer phase.
22. Verfahren gemäß Anspruch 18, dadurch gekennzeichnet, dass als organische Phase Mineralöle oder Pflanzenöle mit einer Viskosität von 40 bis 400 cp, organische, nicht mit Wasser mischbare Lösungsmittel oder Polyethy- lenglykole verwendet werden.22. The method according to claim 18, characterized in that mineral oils or vegetable oils with a viscosity of 40 to 400 cp, organic, water-immiscible solvents or polyethylene glycols are used as the organic phase.
23. Verfahren gemäß Anspruch 22, dadurch gekennzeichnet, dass in der organischen Phase 0,1 bis lOVol^δ einer oder mehrerer oberflächenaktive (n) Substanz (en) gelöst wird/werden, die aus der Gruppe der Alkylsulfosuccinate, Polyoxyethylenarylether, Polyoxyethylene, Polyoxyethy- lensorbitanester, Polyoxyethylenaddukte, Polyethylenpro- pylenoxid- Blockcopolymere, Alkylphenoxypolyethoxyetha- nole, Fettalkoholpolyethylenglykolether, Polyglycerin- ester, Polyoxyethylenalkohole, Polyoxyethylensorbitan- Fettsäurester, Polyoxyethylensäuren oder Mischungen derselben ausgewählt sind.23. The method according to claim 22, characterized in that in the organic phase 0.1 to 10 vol% of one or more surface-active substance (s) is / are dissolved, which are selected from the group consisting of alkyl sulfosuccinates, polyoxyethylene aryl ethers, polyoxyethylenes, polyoxyethylene - Lensorbitan esters, polyoxyethylene adducts, polyethylene propylene oxide block copolymers, alkylphenoxypolyethoxyethanols, fatty alcohol polyethylene glycol ethers, polyglycerol esters, polyoxyethylene alcohols, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene acids or mixtures thereof.
24. Verfahren gemäß einem der Ansprüche 16 bis 23, dadurch gekennzeichnet, dass an die Polymeren Peptide, Proteine, Antikörper, Antigene, Enzyme, Zellrezeptor-Antikörper, Antikörper gegen Tumormarker, Antikörper gegen Tumorantigene, Antikörperfragmente, künstlich hergestellte Antikörper, abgewandelte Antikörper, Antikörperkonjugate, Oligosaσcharide, Glykoproteine, Lektine, Nukleinsäuren, Streptavidin oder Biotin gekoppelt werden.24. The method according to any one of claims 16 to 23, characterized in that the polymers peptides, proteins, antibodies, antigens, enzymes, cell receptor antibodies, antibodies against tumor markers, antibodies against tumor antigens, antibody fragments, artificially produced antibodies, modified antibodies, antibody conjugates , Oligosaccharides, glycoproteins, lectins, nucleic acids, streptavidin or biotin can be coupled.
25. Verfahren gemäß einem der Ansprüche 16 bis 24, dadurch gekennzeichnet, dass in die Polymerteilchen Wirksubstanzen oder Pharmaka eingekapselt werden. 25. The method according to any one of claims 16 to 24, characterized in that active substances or pharmaceuticals are encapsulated in the polymer particles.
26. Verfahren gemäß Anspruch 25, dadurch gekennzeichnet, dass als Wirksubstanz Hormone, Zytostatika, Antikörper, Cytokine, Immunmodulatoren, Antigene, Proteine, Peptide, Lektine, Glykoproteine, Nukleinsäuren, Antisense- Nukleinsäuren, Oligosaccharide, Antibiotika oder Generika verwendet werden.26. The method according to claim 25, characterized in that hormones, cytostatics, antibodies, cytokines, immunomodulators, antigens, proteins, peptides, lectins, glycoproteins, nucleic acids, antisense nucleic acids, oligosaccharides, antibiotics or generics are used as the active substance.
27. Verwendung der thermosensitiven und biokompatiblen Polymerteilchen gemäß einem der Ansprüche 1 bis 15 als kontrastverstärkende Mittel in der NMR-Diagnostik, als Träger für Wirksubstanzen in der medizinisc-hen Therapie und Diagnostik, als steuerbare Träger für Reaktanden, als Mittel zur Steuerung von mikrofluiden Prozessen, als Separationsmedium in der Säulenchromatograpliie, als Mittel zur Einstellung und Regulierung von Porengrößen in Membranen, als Mittel zur Blockierung von Blutgefäßen in der Tumorbehandlung, als künstliche Zellträger, als Separationsmedium für Nukleinsäuren, Zellen, Proteinen, Steroiden, Viren oder Bakterien. 27. Use of the thermosensitive and biocompatible polymer particles according to one of claims 1 to 15 as contrast-enhancing agents in NMR diagnostics, as carriers for active substances in medical therapy and diagnostics, as controllable carriers for reactants, as agents for controlling microfluidic processes , as a separation medium in column chromatography, as a means for adjusting and regulating pore sizes in membranes, as a means for blocking blood vessels in tumor treatment, as an artificial cell carrier, as a separation medium for nucleic acids, cells, proteins, steroids, viruses or bacteria.
EP04766003A 2003-10-28 2004-10-22 Thermosensitive, biocompatible polymer carriers with a variable physical structure for treatment, diagnosis and analysis Withdrawn EP1680142A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10350248A DE10350248A1 (en) 2003-10-28 2003-10-28 Thermosensitive, biocompatible polymer carriers with variable physical structure for therapy, diagnostics and analytics
PCT/EP2004/011937 WO2005042142A2 (en) 2003-10-28 2004-10-22 Thermosensitive, biocompatible polymer carriers with a variable physical structure for treatment, diagnosis and analysis

Publications (1)

Publication Number Publication Date
EP1680142A2 true EP1680142A2 (en) 2006-07-19

Family

ID=34529830

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04766003A Withdrawn EP1680142A2 (en) 2003-10-28 2004-10-22 Thermosensitive, biocompatible polymer carriers with a variable physical structure for treatment, diagnosis and analysis

Country Status (4)

Country Link
US (1) US20070148437A1 (en)
EP (1) EP1680142A2 (en)
DE (1) DE10350248A1 (en)
WO (1) WO2005042142A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105504314A (en) * 2014-09-22 2016-04-20 首都师范大学 Nanoparticles of cadmium alginate, lead alginate and copper alginate, and preparation method thereof, and applications of nanoparticles of cadmium alginate, lead alginate and copper alginate in preparation of electrochemical immunoassay probes
CN108059887A (en) * 2017-11-30 2018-05-22 长兴科创科技咨询有限公司 A kind of nano-magnetic coating

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005016873A1 (en) * 2005-04-12 2006-10-19 Magforce Nanotechnologies Ag New nano-particle useful for production of composition to treatment and/or prophylaxis of proliferative illnesses, cancer and bacterial infections, where nano-particle is bonded therapeutic substance
FR2902799B1 (en) 2006-06-27 2012-10-26 Millipore Corp METHOD AND UNIT FOR PREPARING A SAMPLE FOR THE MICROBIOLOGICAL ANALYSIS OF A LIQUID
RU2373957C2 (en) * 2006-10-13 2009-11-27 Александр Метталинович Тишин Therapeutic and diagnostic drug and biologically active substance carrier and application thereof for making drugs and method of regulated controlled drug or biologically active substance delivery with regulated desorption
CA2671806A1 (en) * 2006-12-08 2008-06-19 Austin M. Derfus Remotely triggered release from heatable surfaces
US8569464B2 (en) 2006-12-21 2013-10-29 Emd Millipore Corporation Purification of proteins
WO2008079280A1 (en) 2006-12-21 2008-07-03 Millipore Corporation Purification of proteins
US8362217B2 (en) 2006-12-21 2013-01-29 Emd Millipore Corporation Purification of proteins
US20100329664A1 (en) * 2007-01-23 2010-12-30 Lim Dae-Soon Shutter device for camera
ES2552842T3 (en) 2007-02-19 2015-12-02 Marine Polymer Technologies, Inc. Hemostatic compositions and therapeutic regimens
US20110182821A1 (en) * 2007-08-31 2011-07-28 Koninklijke Philips Electronics N.V. Clustered magnetic particles as tracers for magnetic particle imaging
DE102007061343B4 (en) 2007-12-17 2020-12-24 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Article made from a shape memory composite material with magnetically inducible shape transitions
DE102007061342A1 (en) 2007-12-17 2009-06-18 Gkss-Forschungszentrum Geesthacht Gmbh Articles of a shape memory composite material, process for its preparation and methods for retrieving stored forms
DE102008008522A1 (en) 2008-02-11 2009-08-13 Magforce Nanotechnologies Ag Implantable nanoparticle-containing products
US20120249375A1 (en) * 2008-05-23 2012-10-04 Nokia Corporation Magnetically controlled polymer nanocomposite material and methods for applying and curing same, and nanomagnetic composite for RF applications
US8999702B2 (en) 2008-06-11 2015-04-07 Emd Millipore Corporation Stirred tank bioreactor
EP2138527A1 (en) * 2008-06-24 2009-12-30 Freie Universität Berlin Nanoparticle, method for producing a nanoparticle, nanoparticle system and its use
US20110230568A1 (en) * 2008-07-24 2011-09-22 Childrens Medical Center Corporation Heating of polymers and other materials using radiation for drug delivery and other applications
WO2010011319A2 (en) * 2008-07-24 2010-01-28 Children's Medical Center Corporation Magnetic heating for drug delivery and other applications
WO2010011327A2 (en) * 2008-07-24 2010-01-28 Children's Medical Center Corporation Radiative heating for drug delivery and other applications
CN102257122B (en) 2008-12-16 2015-07-29 Emd密理博公司 Stirred tank reactor and method
DE102009027151A1 (en) * 2009-06-24 2010-12-30 Gkss-Forschungszentrum Geesthacht Gmbh Particles with inducible shape change
DE102009058769A1 (en) 2009-12-16 2011-06-22 MagForce Nanotechnologies AG, 10589 Temperature-dependent activation of catalytic nucleic acids for controlled drug release
KR101726707B1 (en) 2010-05-17 2017-04-13 이엠디 밀리포어 코포레이션 Stimulus responsive polymers for the purification of biomolecules
US9149045B2 (en) * 2010-12-07 2015-10-06 Kimberly-Clark Worldwide, Inc. Wipe coated with a botanical emulsion having antimicrobial properties
US20130090516A1 (en) * 2011-10-05 2013-04-11 Carnegie Mellon University Local Anesthesia By Magnet-Directed Concentration of Nanoparticle Conjugated Anesthetic
WO2013192629A1 (en) * 2012-06-22 2013-12-27 William Marsh Rice University Temperature responsive nanoparticles for magnetically detecting hydrocarbons in geological structures
WO2014015334A1 (en) * 2012-07-20 2014-01-23 Brown University System and methods for nanostructure protected delivery of treatment agent and selective release thereof
JP6179521B2 (en) * 2012-09-04 2017-08-16 Jnc株式会社 Substance measurement sensor
US9597648B2 (en) 2012-10-17 2017-03-21 The Procter & Gamble Company Non-spherical droplet
US20150352209A1 (en) * 2013-01-11 2015-12-10 National Institute For Materials Science Nanofiber having self-heating properties and biologically active substance release properties, production method for same, and nonwoven fabric having self-heating properties and biologically active substance release capabilities
WO2015081333A2 (en) * 2013-12-01 2015-06-04 Massachusetts Institute Of Technology Independent magnetically-multiplexed heating of portions of a target
CN106710786B (en) * 2015-07-29 2019-09-10 胜美达集团株式会社 The manufacturing method of miniaturized electronic devices, electronic circuit board and miniaturized electronic devices
US10191036B1 (en) 2018-03-22 2019-01-29 NUB4U, Inc. System for detecting and removing biological analytes in fluids
US11703427B2 (en) * 2018-06-25 2023-07-18 10X Genomics, Inc. Methods and systems for cell and bead processing
FR3100988B1 (en) * 2019-09-19 2023-03-10 Institut Nat Des Sciences Appliquees De Toulouse Heterogeneous catalysis process using a ferromagnetic material heated by magnetic induction and catalyst support used for said process
CN113088122A (en) * 2021-03-31 2021-07-09 成都高斯电子技术有限公司 Coating reinforcing agent and preparation method and use method thereof
CN113398848A (en) * 2021-06-24 2021-09-17 苏州市德赫亚新纺织科技有限公司 Preparation method of recyclable oxidized chitosan coated Fe304 magnetic microspheres
CN118806966A (en) * 2023-04-06 2024-10-22 苏州大学 Polymer microsphere loaded with active metal particles and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005025508A2 (en) * 2003-09-12 2005-03-24 Bankruptcy Estate Of Ferx, Inc. Magnetically targetable particles comprising magnetic components and biocompatible polymers for site-specific delivery of biologically active agents
WO2005034912A2 (en) * 2003-08-29 2005-04-21 Boston Scientific Limited Ferromagnetic particles and methods
EP2365007A2 (en) * 2003-04-16 2011-09-14 The Children's Hospital of Philadelphia Magnetically controllable drug and gene delivery stents

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3215572A (en) * 1963-10-09 1965-11-02 Papell Solomon Stephen Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles
US3652761A (en) * 1969-09-04 1972-03-28 Corning Glass Works Immunochemical composites and antigen or antibody purification therewith
US3843540A (en) * 1972-07-26 1974-10-22 Us Interior Production of magnetic fluids by peptization techniques
US3917538A (en) * 1973-01-17 1975-11-04 Ferrofluidics Corp Ferrofluid compositions and process of making same
US3970518A (en) * 1975-07-01 1976-07-20 General Electric Company Magnetic separation of biological particles
US4070246A (en) * 1976-04-09 1978-01-24 Abbott Laboratories Reactive matrices
US4169804A (en) * 1976-08-19 1979-10-02 Minnesota Mining And Manufacturing Company Magnetically responsive composite microparticle
US4115534A (en) * 1976-08-19 1978-09-19 Minnesota Mining And Manufacturing Company In vitro diagnostic test
US4357259A (en) * 1977-08-01 1982-11-02 Northwestern University Method of incorporating water-soluble heat-sensitive therapeutic agents in albumin microspheres
US4267234A (en) * 1978-03-17 1981-05-12 California Institute Of Technology Polyglutaraldehyde synthesis and protein bonding substrates
US4230685A (en) * 1979-02-28 1980-10-28 Northwestern University Method of magnetic separation of cells and the like, and microspheres for use therein
US4369226A (en) * 1979-03-19 1983-01-18 California Institute Of Technology Polyglutaraldehyde synthesis and protein bonding substrates
US4345588A (en) * 1979-04-23 1982-08-24 Northwestern University Method of delivering a therapeutic agent to a target capillary bed
US4247406A (en) * 1979-04-23 1981-01-27 Widder Kenneth J Intravascularly-administrable, magnetically-localizable biodegradable carrier
FR2461521A1 (en) * 1979-07-20 1981-02-06 Anvar MAGNETIC FLUIDS, IN PARTICULAR FERROFLUIDS, AND PROCESS FOR OBTAINING THEM
US4647447A (en) * 1981-07-24 1987-03-03 Schering Aktiengesellschaft Diagnostic media
US4452773A (en) * 1982-04-05 1984-06-05 Canadian Patents And Development Limited Magnetic iron-dextran microspheres
NO155316C (en) * 1982-04-23 1987-03-11 Sintef PROCEDURE FOR MAKING MAGNETIC POLYMER PARTICLES.
US4861705A (en) * 1983-01-31 1989-08-29 Yeda Research And Development Company, Ltd. Method for removing components of biological fluids
US4628037A (en) * 1983-05-12 1986-12-09 Advanced Magnetics, Inc. Binding assays employing magnetic particles
US4662359A (en) * 1983-08-12 1987-05-05 Robert T. Gordon Use of magnetic susceptibility probes in the treatment of cancer
US4609707A (en) * 1983-11-10 1986-09-02 Genetic Systems Corporation Synthesis of polymers containing integral antibodies
US4752638A (en) * 1983-11-10 1988-06-21 Genetic Systems Corporation Synthesis and use of polymers containing integral binding-pair members
GB2156345B (en) * 1984-03-30 1987-07-08 Squibb & Sons Inc Alkylamine salts of 3,5-diacetylamino-2,4,6-triiodobenzoic acid as x-ray contrast agents
US5746999A (en) * 1984-11-23 1998-05-05 Schering Aktiengesellschaft Magnetic particles for diagnostic purposes
US4832466A (en) * 1985-04-13 1989-05-23 Canon Kabushiki Kaisha Optical element
US4780409A (en) * 1985-05-02 1988-10-25 Genetic Systems Corporation Thermally induced phase separation immunoassay
US4675173A (en) * 1985-05-08 1987-06-23 Molecular Biosystems, Inc. Method of magnetic resonance imaging of the liver and spleen
US4912032A (en) * 1986-04-17 1990-03-27 Genetec Systems Corporation Methods for selectively reacting ligands immobilized within a temperature-sensitive polymer gel
US4827945A (en) * 1986-07-03 1989-05-09 Advanced Magnetics, Incorporated Biologically degradable superparamagnetic materials for use in clinical applications
US6020210A (en) * 1988-12-28 2000-02-01 Miltenvi Biotech Gmbh Methods and materials for high gradient magnetic separation of biological materials
US5221322A (en) * 1988-12-29 1993-06-22 Tdk Corporation Method of making ferromagnetic ultrafine particles
JPH0383914A (en) * 1989-08-18 1991-04-09 W R Grace & Co Drug carrier
DE3933210A1 (en) * 1989-10-05 1991-04-11 Basf Ag HIGHLY VISCOSE MAGNETIC LIQUIDS
ES2081384T3 (en) * 1990-04-25 1996-03-01 Hoechst Ag PHARMACEUTICAL PREPARATION CONTAINING POLYELECTROLYTE COMPLEXES IN THE FORM OF MICROPARTICLES AND AT LEAST AN ACTIVE SUBSTANCE.
US5252318A (en) * 1990-06-15 1993-10-12 Allergan, Inc. Reversible gelation compositions and methods of use
IL98744A0 (en) * 1990-07-06 1992-07-15 Gen Hospital Corp Method of studying biological tissue using monocrystalline particles
US5711884A (en) * 1990-08-22 1998-01-27 University Of Pittsburgh Of The Commonwealth System Of Higher Education Method of filtering submicron particles with gel lattice membrane filter
US5141740A (en) * 1990-11-21 1992-08-25 Mallinckrodt Medical, Inc. Complexes and compositions for magnetic resonance imaging and usage methods
US5226902A (en) * 1991-07-30 1993-07-13 University Of Utah Pulsatile drug delivery device using stimuli sensitive hydrogel
US5648208A (en) * 1991-08-01 1997-07-15 Coletica Use of a collagen as solid binding substrate for a ligand capable of reacting specifically with an element to be detected in a biological medium, reactant and implementation
US5753261A (en) * 1993-02-12 1998-05-19 Access Pharmaceuticals, Inc. Lipid-coated condensed-phase microparticle composition
US5451411A (en) * 1993-10-15 1995-09-19 University Of Washington Methods and compositions for the oral delivery of therapeutic agents
US5603955A (en) * 1994-07-18 1997-02-18 University Of Cincinnati Enhanced loading of solutes into polymer gels
US5840338A (en) * 1994-07-18 1998-11-24 Roos; Eric J. Loading of biologically active solutes into polymer gels
US5599534A (en) * 1994-08-09 1997-02-04 University Of Nebraska Reversible gel-forming composition for sustained delivery of bio-affecting substances, and method of use
DK0725628T3 (en) * 1994-08-30 2001-12-27 Alcon Lab Inc Thermal gel-forming drug delivery vehicles containing cellulose ethers
US5939485A (en) * 1995-06-19 1999-08-17 Medlogic Global Corporation Responsive polymer networks and methods of their use
DE19528029B4 (en) * 1995-07-31 2008-01-10 Chemagen Biopolymer-Technologie Aktiengesellschaft Magnetic polymer particles based on polyvinyl alcohol, process for their preparation and use
DE69620898T2 (en) * 1995-09-01 2002-11-07 University Of Washington, Seattle INTERACTIVE MOLECULAR CONJUGATES
US6014246A (en) * 1996-11-06 2000-01-11 University Of Pittsburgh Of The Commonwealth System Of Higher Education Thermally switchable optical devices
US5854078A (en) * 1996-11-06 1998-12-29 University Of Pittsburgh Polymerized crystalline colloidal array sensor methods
US5898004A (en) * 1996-11-06 1999-04-27 University Of Pittsburgh Of The Commonwealth System Of Higher Education Polymerized crystalline colloidal array sensors
US5864025A (en) * 1997-06-30 1999-01-26 Virginia Tech Intellectual Properties, Inc. Method of making magnetic, crosslinked chitosan support materials and products thereof
EP1056487B1 (en) * 1998-02-23 2004-05-12 Massachusetts Institute Of Technology Biodegradable shape memory polymers
WO2001005586A1 (en) * 1999-07-16 2001-01-25 Wm. Marsh Rice University Temperature-sensitive polymer/nanoshell composites for photothermally modulated drug delivery
US20030211045A1 (en) * 2001-02-05 2003-11-13 Danuta Leszcyznska Magnetoliposome composition for targeted treatment of biological tissue and associated methods
CA2481020A1 (en) * 2001-09-28 2003-04-03 Saoirse Corporation Localized non-invasive biological modulation system
DE10224352A1 (en) * 2002-06-01 2003-12-11 Mueller Schulte Detlef Thermosensitive polymer carrier with changeable physical structure for biochemical analysis, diagnostics and therapy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2365007A2 (en) * 2003-04-16 2011-09-14 The Children's Hospital of Philadelphia Magnetically controllable drug and gene delivery stents
WO2005034912A2 (en) * 2003-08-29 2005-04-21 Boston Scientific Limited Ferromagnetic particles and methods
WO2005025508A2 (en) * 2003-09-12 2005-03-24 Bankruptcy Estate Of Ferx, Inc. Magnetically targetable particles comprising magnetic components and biocompatible polymers for site-specific delivery of biologically active agents

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"5' AMP Sepharose 4B", pages 1 - 8, Retrieved from the Internet <URL:http://www.gelifesciences.co.jp/tech_support/manual/pdf/71709100ac.pdf> [retrieved on 20100510] *
BULTE ET AL.: "PEGylated Magnetoliposomes as Long-Circulating Drug Carriers for MR Imaging", YOU HAVE FULL TEXT ACCESS TO THIS CONTENTPROCEEDINGS OF THE INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE, no. s1, 1997, pages 1596 *
MOSBACH K ET AL: "Magnetic ferrofluids for preparation of magnetic polymers and their application in affinity chromatography", NATURE, vol. 270, no. 5634, 1977, pages 259 - 261, ISSN: 0028-0836 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105504314A (en) * 2014-09-22 2016-04-20 首都师范大学 Nanoparticles of cadmium alginate, lead alginate and copper alginate, and preparation method thereof, and applications of nanoparticles of cadmium alginate, lead alginate and copper alginate in preparation of electrochemical immunoassay probes
CN105504314B (en) * 2014-09-22 2017-10-24 首都师范大学 Alginic acid cadmium, marine alga lead plumbate and copper alginate nano particle and preparation method thereof and the application in electro-chemistry immunity probe is prepared
CN108059887A (en) * 2017-11-30 2018-05-22 长兴科创科技咨询有限公司 A kind of nano-magnetic coating

Also Published As

Publication number Publication date
US20070148437A1 (en) 2007-06-28
WO2005042142A3 (en) 2005-11-10
WO2005042142A2 (en) 2005-05-12
DE10350248A1 (en) 2005-06-16
WO2005042142A8 (en) 2005-12-08

Similar Documents

Publication Publication Date Title
WO2005042142A2 (en) Thermosensitive, biocompatible polymer carriers with a variable physical structure for treatment, diagnosis and analysis
EP1509246B1 (en) Thermosensitive polymer carriers having a modifiable physical structure for biochemical analysis, diagnosis, and therapy
Aisida et al. Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications
DE112006004066B4 (en) A magnetic carrier and medical preparation for controllably delivering and releasing drugs, methods of preparation thereof, and methods of treatment using the same
Cotin et al. Iron oxide nanoparticles for biomedical applications: synthesis, functionalization, and application
Gupta et al. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications
Avugadda et al. Esterase-cleavable 2D assemblies of magnetic iron oxide nanocubes: Exploiting enzymatic polymer disassembling to improve magnetic hyperthermia heat losses
Kuo et al. Magnetically triggered nanovehicles for controlled drug release as a colorectal cancer therapy
Tapeinos Magnetic nanoparticles and their bioapplications
Mishra et al. Efficient Nanocarriers for drug-delivery systems: types and fabrication
EP3092012B1 (en) Magnetic nanoparticles functionalized with cathecol, production and use thereof
Lanier et al. Magnetically triggered release of biologics
KR20180076885A (en) Nanocomposite, composition for contrast agent comprising the same, apparatus for manufacturing nanocomposite, and method for manufacturing the same
DE4201461A1 (en) Agent for selective hyperthermia and chemotherapy of tumours - consists of ferromagnetic particles encapsulated in matrix which is not phagocyted and is able to couple with antitumour agent
DE102006037702A1 (en) Magnetic composites for stem cell therapy and histological diagnosis comprise magnetic and/or metallic colloids and/or bioactive substances encapsulated in polymer particles capable of binding to stem cells
Hasanzadeh et al. Development of doxorubicin-adsorbed magnetic nanoparticles modified with biocompatible copolymers for targeted drug delivery in lung cancer
Niu et al. Molecular stereocomplexation for enhancing the stability of nanoparticles encapsulated in polymeric micelles for magnetic resonance imaging
Atloo et al. The Bovine Serum Albumin Coated Copper Oxide Nanoparticle for Curcumin Delivery in Biological Environment: In-vitro Drug Release
Fopase et al. Iron oxide based magnetic nanomaterials for biomedical applications
KR102641841B1 (en) Porous microspheres containing magnetic nanoparticles for delivery of a cell and a drug and manufacturing method thereof
Alomari et al. Magnetic-responsive polysaccharide-inorganic composite materials for cancer therapeutics
Khizar et al. Magnetic-Responsive Materials: Properties, Design, and Applications
KR101686341B1 (en) Synthesis method of magnetic nanoparticle for targetable drug delivery system
Herea et al. Magnetic particles for drug delivery
Constantin et al. Bio-inspired nanomaterials: a better option for nanomedicine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060527

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100111

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAGNAMEDICS GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20120622