EP1528171B1 - Wood-Concrete composite system comprising wooden construction elements, intermediate layers and concrete construction elements - Google Patents
Wood-Concrete composite system comprising wooden construction elements, intermediate layers and concrete construction elements Download PDFInfo
- Publication number
- EP1528171B1 EP1528171B1 EP04024931.0A EP04024931A EP1528171B1 EP 1528171 B1 EP1528171 B1 EP 1528171B1 EP 04024931 A EP04024931 A EP 04024931A EP 1528171 B1 EP1528171 B1 EP 1528171B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- concrete
- wood
- components
- fact
- accordance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004567 concrete Substances 0.000 title claims description 168
- 239000002131 composite material Substances 0.000 title claims description 102
- 238000010276 construction Methods 0.000 title description 10
- 239000002023 wood Substances 0.000 claims description 46
- 230000002787 reinforcement Effects 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 22
- 239000004033 plastic Substances 0.000 claims description 22
- 229920003023 plastic Polymers 0.000 claims description 22
- 239000000853 adhesive Substances 0.000 claims description 20
- 230000001070 adhesive effect Effects 0.000 claims description 20
- 229910000831 Steel Inorganic materials 0.000 claims description 14
- 239000010959 steel Substances 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 230000000694 effects Effects 0.000 claims description 11
- 230000009477 glass transition Effects 0.000 claims description 8
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 7
- 239000011707 mineral Substances 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 239000004568 cement Substances 0.000 claims description 4
- 238000004873 anchoring Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 239000004793 Polystyrene Substances 0.000 claims description 2
- 239000011372 high-strength concrete Substances 0.000 claims description 2
- 229920002223 polystyrene Polymers 0.000 claims description 2
- 239000011513 prestressed concrete Substances 0.000 claims description 2
- 239000013585 weight reducing agent Substances 0.000 claims description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 claims 1
- 235000011941 Tilia x europaea Nutrition 0.000 claims 1
- 239000000654 additive Substances 0.000 claims 1
- 239000011384 asphalt concrete Substances 0.000 claims 1
- 230000001788 irregular Effects 0.000 claims 1
- 239000004571 lime Substances 0.000 claims 1
- 238000009416 shuttering Methods 0.000 claims 1
- 238000005728 strengthening Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 49
- 230000008901 benefit Effects 0.000 description 9
- 238000009413 insulation Methods 0.000 description 8
- 239000002356 single layer Substances 0.000 description 7
- 238000004026 adhesive bonding Methods 0.000 description 5
- 238000005452 bending Methods 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 239000010426 asphalt Substances 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 239000011490 mineral wool Substances 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000000739 chaotic effect Effects 0.000 description 2
- 239000011093 chipboard Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000011269 tar Substances 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000010616 electrical installation Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000009415 formwork Methods 0.000 description 1
- 230000009643 growth defect Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000009417 prefabrication Methods 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 239000011122 softwood Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 210000002105 tongue Anatomy 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C5/00—Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
- E04C5/07—Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/02—Load-carrying floor structures formed substantially of prefabricated units
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/02—Load-carrying floor structures formed substantially of prefabricated units
- E04B5/04—Load-carrying floor structures formed substantially of prefabricated units with beams or slabs of concrete or other stone-like material, e.g. asbestos cement
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/02—Load-carrying floor structures formed substantially of prefabricated units
- E04B5/12—Load-carrying floor structures formed substantially of prefabricated units with wooden beams
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/16—Load-carrying floor structures wholly or partly cast or similarly formed in situ
- E04B5/17—Floor structures partly formed in situ
- E04B5/23—Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/16—Load-carrying floor structures wholly or partly cast or similarly formed in situ
- E04B5/32—Floor structures wholly cast in situ with or without form units or reinforcements
- E04B5/36—Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor
- E04B5/38—Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor with slab-shaped form units acting simultaneously as reinforcement; Form slabs with reinforcements extending laterally outside the element
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/48—Special adaptations of floors for incorporating ducts, e.g. for heating or ventilating
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/26—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/26—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
- E04C2/284—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
- E04C2/296—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and non-metallic or unspecified sheet-material
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/44—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose
- E04C2/52—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/29—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/16—Load-carrying floor structures wholly or partly cast or similarly formed in situ
- E04B5/17—Floor structures partly formed in situ
- E04B5/23—Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated
- E04B2005/232—Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated with special provisions for connecting wooden stiffening ribs or other wooden beam-like formations to the concrete slab
- E04B2005/237—Separate connecting elements
Definitions
- the invention relates to wood-concrete composite systems, which consist of wooden components, intermediate layers and concrete components according to the features of the preamble of claim 1.
- the known connecting element is formed as a flat flat body in the form of a steel sheet which is glued into a slot introduced in the wood so that it protrudes over a part of its surface from the wood.
- the protruding part of the connecting element is used for connection to another material.
- the known connecting element is formed as a flat flat body in the form of a steel sheet which is glued into a slot introduced in the wood so that it protrudes over a part of its surface from the wood.
- the protruding part of the connecting element has anchor tongues which anchor in the cast-on concrete.
- a wood-concrete composite element which consists of a plurality of assembled boards, which in turn comprise composite webs and an overlying concrete component.
- the bond between the concrete component and the boards or composite webs is created by - inserted in the wood recesses - embarked transverse force anchors.
- the transverse force anchors are arranged transversely to the longitudinal direction of the composite boards and thus have a geometric toothing between wood and concrete. See also DE 202 10 714 U1 ,
- a major disadvantage of the aforementioned writings is the lack of final coupling of the materials wood and concrete and the resulting limitations in the application. So it is known that a direct contact between Wood and concrete can lead to condensation and thus mold in the wood. Furthermore, in a direct contact between wood and concrete creates a sound bridge, which prevents the usability of a wood-concrete composite ceiling without further construction. Furthermore, it is known that the stiffness of a cross-section increases with increasing lever arm and thus leads to a pronounced interlayer formation to stiffer systems.
- the object of the invention is to provide wood-concrete composite systems with intermediate layers, which are equipped with high bonding forces, different cross-sectional variants, different system properties and different physical properties.
- the task of the intermediate layer is to create a decoupling of the significantly different materials wood and concrete, without reducing the stiff or rigid connection - a prerequisite for an effective composite effect - of the two materials.
- the present invention describes a wood-concrete composite system consisting of wooden components, intermediate layers and concrete components.
- the wooden components are connected to the concrete component quasi rigidly by continuously arranged connection means.
- the connecting means are formed as a flat body with corresponding openings or roughening, as a grid and / or as networks of metals and / or plastics. At least one end of the connecting means is positively connected by gluing with the wooden components. It has surprisingly been found that the bonding of two ends of the connecting means with the wood components not only produces an increase in intrinsic stability, but also provides an increase in the composite stiffness. It may be expedient to form the fasteners inhomogeneous and anisotropic, so that from this different properties (of the connecting element) in the different materials (wood component, intermediate layer, concrete component) result.
- the shape of the fasteners is in addition to the straight shape in all other odd shapes, such as curved, wavy, kinked, angled and / or just conceivable and will depend only on the application requirements.
- the arrangements of the connecting elements in the composite system according to the invention can, for example, run side by side, one behind the other, diagonally, offset, offset, undulating and / or chaotic and are only dependent on the application requirements.
- the connecting means are anchored in the wooden components by gluing at least one end in prepared slots or depressions and in the concrete component by mechanical gearing in the set cement glue.
- Another embodiment lies e.g. to glue therein the connecting means on the wooden components or partly in and partly on the wooden components, thereby producing a permanent and non-positive connection.
- the connecting means penetrate the intermediate layers as required, partially or without a frictional connection with the intermediate layers.
- the intermediate layers at least partially decouple the wooden components from the concrete components, thereby allowing a durable composite solution.
- the wood components have at least in some applications reinforcements, which bridge the structural and manufacturing weaknesses of the wood and / or wood-based materials and wood composites. It is also conceivable in some applications to increase the capacity of the timber components by reinforcement or reinforcements, thereby generating an increase in the total capacity.
- the concrete components have, on the one hand, deposits which bridge the structural weak points of the concrete and / or, on the other, deposits which change the structural-physical conditions of the wood-concrete composite system.
- the intermediate layers are at least partially given as geometrical, mechanical, structural-physical and / or structural separation or end coupling between the timber components and concrete components.
- the intermediate layers of the wood-concrete composite system can be formed as single-layer or multi-layer layers.
- the intermediate layers can be consumed and / or incorporated in liquid, solid and / or gaseous form, for example by laying, pouring, brushing and / or foaming.
- a single-layer intermediate layer consists for example of a plastic film, impregnated paper, bitumen, Kunststoffdämm Mrs, mineral insulation layer, organic insulation, renewable insulation material and cast-on or painted materials that set or harden at a later date, such as tar, adhesives, plastic mixtures.
- Other forms of single-layer intermediate layers represent all mineral or mineral-bonded materials (eg mineral-bonded lightweight board, mineral-bound and insulated leveling screed) and metallic materials (eg trapezoidal sheets, sandwich components).
- the multilayer levels are a combination of the previously described single-layer intermediate layers in any Shape and / or arrangement. The choice of the single-layer or multi-layer intermediate layers is therefore only dependent on the requirements of the wood-concrete composite systems.
- An advantage of the invention is the decoupling of the facing surfaces of the wooden components and the concrete components by the embedded intermediate layer or intermediate layers.
- building components in the concrete components can be kept away from the timber components. Wetting of the wooden components would permanently cause rot and thus destruction of the entire wood-concrete composite systems. This is especially given in bridge construction.
- intermediate layers at least in some applications, have cavities, such as e.g. Cables, pipes, hoses, ducts and conduits, e.g. Power, gas, water, air conditioning, electrical installation lines, which are used for coupling to central systems.
- cavities such as e.g. Cables, pipes, hoses, ducts and conduits, e.g. Power, gas, water, air conditioning, electrical installation lines, which are used for coupling to central systems.
- corresponding supply lines can be embedded in the "stress-neutral" intermediate layers.
- Another advantage lies in the thermal decoupling of the facing surfaces of the wooden components and the concrete components by the embedded intermediate layers.
- This process can be prevented by the arrangement of intermediate layers such as mineral insulation in conjunction with overlying foil.
- intermediate layers such as mineral insulation in conjunction with overlying foil.
- wood-concrete composite systems according to the invention provide an advantageous solution.
- Another advantage lies in the physical decoupling of the facing surfaces of the timber components and the concrete components by the embedded intermediate layers.
- additional "floating screed” arranged for impact sound insulation on the composite ceiling.
- an intermediate layer in the form of impact sound insulation it is possible to improve the sound insulation of the wood-concrete composite system according to the invention and thus to produce a surface decoupling between the concrete components and the timber components.
- this can be dispensed with in many applications on a "floating screed".
- Another advantage lies in the increase of the "inner lever arm" of the wood-concrete composite system according to the invention by increasing the distance between the bending pressure and bending tension zone.
- a solution according to the invention in the form of a box cross-section in conjunction with an intermediate layer produces an incomparable rigidity of the wood-concrete composite system.
- wide-span supporting systems for example roofs, ceilings, bridges
- Another advantage lies in the bonding of two or more ends of the connecting means with the wooden components. As a result, not only the inherent rigidity of the connecting means but also the composite stiffness between the timber components and concrete components is increased. Only then can be used according to the invention connecting means in an economical manner.
- Another advantage of the invention lies in the quasi-continuous connection between the timber components and concrete components of the wood-concrete composite system.
- single-field systems i.e., systems that protrude above a span.
- continuous systems are not only more economical but also more efficient than single-field systems.
- Another advantage is the at least partial bridging of structural vulnerabilities, such as e.g. Branches, inclusions, growth defects of the wood, which lead in the application to a limitation of the entire wood-concrete composite system.
- Another advantage is the at least partial bridging of manufacturing vulnerability, such as Finger jointing, openings, holes, which lead in the application to a limitation of the entire wood-concrete composite system.
- the wood-concrete composite system consists of wooden components and at least one adjacent concrete components characterized in that at least partially and at least a single-layer intermediate layer is formed between the wood components and concrete components, which at least partially generates a separation or decoupling of the materials wood and concrete.
- the task of the intermediate layers is thus at least partially to produce a geometric, mechanical and / or structural-physical decoupling of the materials wood and concrete.
- this decoupling must not significantly reduce the composite effect between wood and concrete, otherwise an economical solution can not be achieved.
- connecting elements with the intermediate layer or the intermediate layers.
- the connecting means have no bond to the intermediate layers.
- inventive composite system wherein the connecting elements are adhesively bonded to the concrete components.
- the connecting means can be ordered and / or chaotically arranged depending on the application.
- the term "chaotic” is here partly taken from mathematics and means not ordered or not bound to rules. By way of example, the following are named as an arrangement: one behind the other, side by side, offset, longitudinal, transverse, diagonal, wavy, curved and / or scattered.
- the fasteners are used as flat bodies, meshes and / or nets in straight and / or odd shape of metals and / or plastics.
- the connecting elements may be formed at least partially straight, curved, wavy, curved, kinked, bent and / or twisted.
- the flat bodies can be at least partially perforated, punched, drilled, roughened, stretched, pulled and / or distorted.
- An embodiment of the wood-concrete composite systems according to the invention has, for example, the plastic part to be anchored in the wood and the metal part to be anchored in the concrete.
- the connecting element would be referred to as hybrid material (metal and plastic).
- an anisotropic and inhomogeneous design of the connecting elements is selected depending on the application.
- a further embodiment consists in the bonding of two or more ends of the connecting elements according to the invention in and / or on the wooden components.
- a further embodiment of the invention consists in providing additional toothings, elevations and / or beads at least in partial regions of the connecting elements. Surprisingly, this has shown that thereby a positioning and / or fixing of the connecting elements in the corresponding openings of the wooden components to ensure ligation of the adhesive. Furthermore, the leakage of the adhesive is prevented until setting. Thus, the fasteners can be glued in the factory and transport even before the setting of the adhesive, temporarily store and / or assemble. This is also possible for wall or overhead applications.
- the connecting means are fixed by gluing in corresponding openings in the wooden components and / or on the wooden components. It is thus an embodiment of the invention conceivable to be glued in the fasteners in the timber components and others are glued to the wood components.
- the bond is preferably produced by one- or two-component adhesives. Some adhesives (e.g., epoxy resins, poly-urethane adhesives) are affected by the glass transition effect under conditions of stress and climatic conditions. The glass transition effect describes a phenomenon in which the adhesive loses its strength at the same temperature and load.
- One embodiment of the application according to the invention is an energy supply of the adhesive joint of the connecting elements and / or the adjacent components during bonding or at a later time, thereby increasing the glass transition effect to a higher temperature level and thereby increase or secure the composite effect.
- the energy supply may be initiated locally and / or areal by way of example by a stationary or mobile heat source (for example infrared). It is also conceivable to ensure the supply of heat by cable guides, which are located in the timber components, the intermediate layers and / or the concrete components.
- the wooden components of the wood-concrete composite system according to the invention are created by way of example from individual elements in the form of a beam, a screed, a board, a squared timber, a plate or a formwork and / or any combination of the aforementioned individual elements in the form of multi-part composite cross-sectional shapes.
- a further bandwidth of the embodiment consists in the reinforcements of the wooden components and / or the concrete components, e.g. By reinforcement of steel and / or plastic, tempering steels, etc. It is conceivable to create these reinforcements in or on the wooden components or concrete components.
- a further embodiment of the invention consists in the enhancement or enhancement of natural and / or manufacturing weak points of the timber components by further local measures, such. Preload, reinforcement, bridging and / or tension.
- Another bandwidth of the embodiment consists in the production of cavities or cable guides in the timber components, the intermediate layers and / or concrete components.
- the cavities can be produced by way of example through pipes, balls, channels and / or hoses.
- the lines can be produced by way of example by cables, pipes, channels and / or hoses.
- Another bandwidth of the embodiment of the invention consists in the pre-deformation (eg cant, bending, curvature and / or bias) at least of partial areas of the timber components, intermediate layers and / or concrete components before or after the composite, thereby the later occurring effects (and the resulting resulting stresses and deformations) of the assembly and the use at least partially counteract.
- pre-deformation eg cant, bending, curvature and / or bias
- a single-field carrier of a ceiling system has a central elevation (generated by central sputtering) before the fresh concrete is applied.
- the elevation will compensate for the setting of the concrete at a later date at least part of the elastic or plastic deflection of the single-field carrier.
- This method can also produce wide-stretched constructions.
- the intermediate layers of the wood-concrete composite systems according to the invention can be single-layered, multi-layered, loose and / or composite.
- the intermediate layers are placed, rolled, poured, painted, sprayed and / or foamed applied in solid, liquid and / or gaseous form and / or subsequently introduced.
- a single-layer design includes i.a. Foil, impregnated paper, bitumen board, metal plates, plastic plates, plastic insulation, mineral insulation, renewable insulation materials, composite construction materials or hybrid materials (for example as individual elements, plate elements, bulk material or roll goods) or cast-on or coated materials which set or harden at a later time (For example, tar, oil, glue, plastic mixtures).
- Multi-ply designs include any combination of the aforementioned single ply designs loosely and / or as a composite.
- the concrete components are u.a. of normal concrete, high-strength concrete, prestressed concrete, composite concrete, screed concrete, lightweight concrete, aerated concrete and / or asphaltic concrete and, moreover, may not contain mineral aggregates, such as e.g. Plastics, polystyrene, wood.
- the production of concrete components is possible in the factory or on the construction site. Furthermore, the concrete components can be partially manufactured in the factory and partly on site. It is also conceivable that sections of the concrete components are used as prefabricated elements in conjunction with locally concreted elements.
- a preferred bandwidth of the embodiment consists in the reinforcements (eg reinforcement made of steel and / or plastic, prestressing steels) of the concrete components.
- reinforcements eg reinforcement made of steel and / or plastic, prestressing steels
- a further embodiment is the generation of cavities (eg by pipes, balls, quaters, channels and / or hoses) which can be used for weight reduction, for the subsequent introduction of lines and / or for subsequent bias or bias with subsequent composite.
- conduits e.g., cables, pipes, channels, and / or hoses
- conduits e.g., cables, pipes, channels, and / or hoses
- a further embodiment of the invention is to form a plurality of layers of wood components, intermediate layers and / or concrete components one above the other and / or side by side.
- the wood-concrete composite systems according to the invention can be designed, for example, as columns, girders, beams, slabs, walls, ceilings, roofs, and / or bridge systems and, depending on the design, for example for absorbing tension, pressure -, Biegezug-, bending pressure, torsional, and / or shear stresses suitable.
- FIG. 1 A first figure.
- the Fig. 1 describes in perspective an embodiment of a portion of the wood-concrete composite system 100 according to the invention , which can be performed, for example, as a ceiling, wall and / or roof structure.
- the wood-concrete composite system 100 initially consists of wood components 110, in the form of beams 111 and a wood-based panel 112.
- the beams 111 are here positively connected to the wood-based panel 112 by gluing.
- the wood-based panel 112 is here exemplified in two places reinforced by internal reinforcements 120 in the form of synthetic fiber fabric.
- the connecting elements 130 are formed as stamped and distorted flat body (also known as expanded metal) 131 made of metal, which have a kink 132 at half the height.
- the kink 132 is formed offset in the longitudinal direction and thus forms a fork 133 in the form of a Y (fork 133 appears when viewed in the longitudinal direction).
- the buckle 132 the height positioning of the connecting elements is given and a linear predetermined breaking point in the concrete component is avoided by the bifurcation 133 .
- a reinforcing steel (not shown here) can be inserted self-positioning, which increases the overall capacity of the wood-concrete composite system.
- the intermediate layers 140 consist here by way of example of a dimensionally stable mineral wool 141 which are arranged between the beams 111 and a vapor-permeable film 142 which covers the height-equalized beams 111 and mineral wool 141 and at the same time is connected in a form-fitting manner to the connecting elements 130, for example by adhesive tapes, without a frictional connection To provide connection to the connecting elements 130 .
- the intermediate layers 140 as mineral wool 141 have cavities 144 and 145 in the transverse and longitudinal direction, which serve as supply channels of building services. Surprisingly, it has been found that the cavities 145 can also be carried out in the transverse direction through the wooden beam 111 , since the composite effect bridges the cross-sectional slot.
- a further component of the intermediate layers is exemplified by Styroporquater 143 disposed einragend on the film 142 between the bar 111 into the concrete components 150th
- the concrete components 150 are formed here by way of example by a constant plate 151 with rib-like extensions 152 in the region of the connecting elements 130 .
- the concrete components 150 have reinforcements 153 in the form of welded mesh mats 154 , which rest on the connecting elements 130 .
- the concrete components 150 furthermore have cavities 155 and lines 156 , which serve, on the one hand, for the supply of heat and, on the other hand, for the subsequent reinforcement of the concrete components 150 .
- the cavities 155 are used to introduce appropriate prestressing steels in order to enable a positive subsequent reinforcement of the concrete components 150 .
- the leads 156 are used for indirect heating of the kaugarklebung, thereby increasing the material-related glass transition temperature of the adhesive and thereby increase the carrying capacity of the kauselementverklebung under the influence of temperature.
- the concrete components further include reinforcements 157 in the form of reinforcing steels, which are arranged between the connecting elements 130 by way of example.
- the reinforcing steels 157 serve in this exemplary application to additional absorption of transverse tensile stresses that may occur in the region of the connecting elements 130 . Furthermore, surprisingly, this results in an additional toothing between the connecting elements 130 and the concrete components 150.
- a further embodiment variant (not shown here) consists of passing the reinforcing bars 157 through the openings (eg expanded metal openings) of the connecting elements 130.
- the wood-concrete composite systems 100 was here exemplarily made on site on the construction site as a ceiling system in which the individual wooden components 110 and intermediate layers 140 before concreting by an elevation (not shown, eg by support in the middle of the individual spans of the multi-field system increases ) have been pre-deformed to thereby a later To counteract stress on the wooden components during assembly and / or use of the system.
- the Fig. 2 describes in perspective an embodiment of a portion of the wood-concrete composite system 200 according to the invention , which can be performed, for example, as a bridge or ceiling structure.
- the wood-concrete composite system 200 initially consists of a wooden component 210, glued in the form of a glued laminated board 211 to the exemplary external reinforcements 212 in the form of carbon fiber reinforcements.
- the glulam panel 211 further shows, by way of example, cavities 213 and lines 214 which serve, on the one hand, for the power supply and, on the other hand, for the supply of heat.
- the cavities 213 are used to introduce appropriate electrical cables that can thus be invisibly guided by the wood-concrete composite systems.
- the lines 214 are used for indirect heating of the dacarbit, thereby increasing the material-related glass transition temperature of the adhesive and thereby increase the carrying capacity of the kauselementverklebung under the influence of temperature.
- the connecting elements 220 are here exemplified as corrugated dimensionally stable plastic mesh 221 and formed as a bent metal mesh 223 .
- the metal meshes 223 are used by way of example in a partial area of the wood-concrete composite system in that high local stresses prevail.
- the plastic grids 221 are anchored at about one-third of their height, with one end in the wooden member 210 by gluing.
- the plastic grids 221 have been made such that the grid openings 222 in the wood material 210 and in the intermediate layers 230 have smaller dimensions (close-meshed) than in the concrete component 240, thereby saving on adhesive in the anchoring in the wooden component (lower adhesive volume) and on the other to increase the intrinsic stability of the plastic grids 221 in the region of the intermediate layers 230 (no frictional lateral support).
- the undulating shape provides, on the one hand additional inherent stability and on the other hand a further mechanical interlocking between the wooden components and concrete components to be joined.
- the plastic grids 221 have in the binding region of the wooden components 210 teeth (not shown here), which ensure a mechanical fixation of the connecting elements to the setting of the adhesive.
- the metal grid 223 are glued here, for example, with two ends in corresponding openings (here slots or channels) of the wooden components and thereby provide in itself a geometrically rigid shape and at the same time a very rigid connection between the timber members 210 and the concrete components 240.
- the metal mesh 223 have in the kerf between connecting element and wood, for example, a bead (not shown here), which prevents the adhesive from exiting.
- the intermediate layers 230 consist here by way of example of a multilayer bitumen coating with embedded plastic film 231 and a PU rigid foam layer 232, which was created by way of example from individually cut and laid in association panels.
- the concrete components 240 are formed here by way of example by a constant plate 241 .
- the concrete components 240 have reinforcements 242 in the form of welded steel meshes 243 , which for example only rest on the connecting elements 220 .
- the concrete slab 241 further includes a localized reinforcement 244 in the form of a reinforcing steel 245 which has been laterally connected (for example, wire-knurled, not shown) prior to concreting and applying the welded steel mat 243 to the securing member 220 .
- the concrete components 240 furthermore have cavities 246 and lines 247 , which serve, on the one hand, for subsequent reinforcement and, on the other hand, for the climatic supply of the concrete components 240 .
- the cavities 246 are used to introduce appropriate prestressing steels in order to enable a non-positive subsequent reinforcement of the concrete components 240 .
- the position of the cavities 246 is dependent on the execution requirements and can be exemplified by, between and / or through the connectors 220 and / or 223 .
- the lines 247 serve as an example - via a coupling with a corresponding climate control center - for the climatic supply of the wood-concrete composite system and its surroundings.
- the wood-concrete composite system 200 was here prefabricated as an example in the factory as a precast and delivered as individual components Segmented to the site and mounted. Such prefabrication allows rapid construction of the structure without introducing additional moisture (eg mixing water of the reinforced concrete) in the wood-concrete composite system or buildings.
- the individual wood-concrete composite systems can be connected to the construction site immediately during assembly or some time later with each other and / or with other construction sections non-positively and / or positively. In this way, disc effects with segmented wood-concrete composite systems can be produced.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Rod-Shaped Construction Members (AREA)
- Laminated Bodies (AREA)
Description
Die Erfindung betrifft Holz-Beton-Verbundsysteme, die aus Holzbauteilen, Zwischenschichten und Betonbauteilen gemäß den Merkmalen des Oberbegriffs des Anspruchs 1 bestehen.The invention relates to wood-concrete composite systems, which consist of wooden components, intermediate layers and concrete components according to the features of the preamble of claim 1.
Aus der Patentschrift
Aus der Offenlegungsschrift
Aus der Offenlegungsschrift
Ein wesentlicher Nachteil der vorgenannten Schriften liegt in der mangelhaften Endkopplung der Materialien Holz und Beton und der daraus resultierenden Limitierungen in der Anwendung. So ist bekannt, dass ein direkter Kontakt zwischen Holz und Beton zu Schwitzwasser und somit zu Schimmelbildung im Holz führen kann. Des weiteren entsteht in einem direkten Kontakt zwischen Holz und Beton eine Schallbrücke, welche die Nutzbarkeit einer Holz-Beton-Verbunddecke ohne weiteren Aufbau verhindert. Des weiteren ist bekannt, dass die Steifigkeit eines Querschnittes mit zunehmendem Hebelarm zunimmt und somit eine ausgeprägte Zwischenschichtausbildung zu steiferen Systemen führt.A major disadvantage of the aforementioned writings is the lack of final coupling of the materials wood and concrete and the resulting limitations in the application. So it is known that a direct contact between Wood and concrete can lead to condensation and thus mold in the wood. Furthermore, in a direct contact between wood and concrete creates a sound bridge, which prevents the usability of a wood-concrete composite ceiling without further construction. Furthermore, it is known that the stiffness of a cross-section increases with increasing lever arm and thus leads to a pronounced interlayer formation to stiffer systems.
Ein weiterer Nachteil der letztgenannten Schrift liegt darin, dass jegliche Einlagen in Form von Leitungen bzw. Rohren im Holz bzw. Beton im beanspruchten Querschnitt liegt und somit auf Dauer durch die Belastungen ihre Verwendbarkeit reduziert wird.Another disadvantage of the latter document is that any deposits in the form of pipes or pipes in the wood or concrete in the claimed cross-section and thus their usefulness is permanently reduced by the loads.
Aufgabe der Erfindung ist es, Holz-Beton-Verbundsysteme mit Zwischenschichten zu schaffen, die mit hohen Verbindungskräften, verschiedenen Querschnittsvarianten, verschiedenen Systemeigenschaften und verschiedenen bauphysikalischen Eigenschaften ausgestattet sind. Die Aufgabe der Zwischenschicht ist es dabei eine Entkopplung der deutlich unterschiedlichen Materialien Holz und Beton zu schaffen, ohne dabei die steife bzw. starre Verbindung - Voraussetzung für eine effektive Verbundwirkung - der beiden Materialien zu mindern.The object of the invention is to provide wood-concrete composite systems with intermediate layers, which are equipped with high bonding forces, different cross-sectional variants, different system properties and different physical properties. The task of the intermediate layer is to create a decoupling of the significantly different materials wood and concrete, without reducing the stiff or rigid connection - a prerequisite for an effective composite effect - of the two materials.
Diese Aufgabe wird erfindungsgemäß durch die Merkmale der Ansprüche 1 ff gelöst. Die vorliegende Erfindung beschreibt ein Holz-Beton-Verbundsystem, welches aus Holzbauteilen, Zwischenschichten und Betonbauteilen besteht. Die Holzbauteile sind mit dem Betonbauteil quasi starr durch kontinuierlich angeordnete Verbindungsmittel verbunden.This object is achieved by the features of claims 1 ff. The present invention describes a wood-concrete composite system consisting of wooden components, intermediate layers and concrete components. The wooden components are connected to the concrete component quasi rigidly by continuously arranged connection means.
Die Verbindungsmittel sind als Flachkörper mit entsprechenden Öffnungen bzw. Aufrauhungen, als Gitter und/oder als Netze aus Metallen und/oder Kunststoffen ausgebildet. Zumindest ein Ende der Verbindungsmittel wird durch Klebung kraftschlüssig mit den Holzbauteilen verbunden. Es hat sich überraschend gezeigt, dass die Verklebung von zwei Enden der Verbindungsmittel mit den Holzbauteilen nicht nur eine Erhöhung der Eigenstabilität erzeugt, sondern ebenfalls eine Erhöhung der Verbundsteifigkeit liefert. Dabei kann es zweckmäßig sein die Verbindungselemente inhomogen und anisotrop auszubilden, sodass sich hieraus unterschiedliche Eigenschaften (des Verbindungselements) in den unterschiedlichen Materialien (Holzbauteil, Zwischenschicht, Betonbauteil) ergeben. Die Formgebung der Verbindungselemente ist neben der geraden Form in allen weiteren ungeraden Formen, wie z.B. gebogen, gewellt, abgeknickt, abgewinkelt und/oder gerade denkbar und wird lediglich von den Anwendungsanforderungen abhängig sein. Die Anordnungen der Verbindungselemente in dem erfindungsgemäßen Verbundsystem können z.B. nebeneinander, hintereinander, diagonal, versetzt, abgesetzt, wellenförmig und/oder chaotisch verlaufen und sind lediglich von den Anwendungsanforderungen abhängig.The connecting means are formed as a flat body with corresponding openings or roughening, as a grid and / or as networks of metals and / or plastics. At least one end of the connecting means is positively connected by gluing with the wooden components. It has surprisingly been found that the bonding of two ends of the connecting means with the wood components not only produces an increase in intrinsic stability, but also provides an increase in the composite stiffness. It may be expedient to form the fasteners inhomogeneous and anisotropic, so that from this different properties (of the connecting element) in the different materials (wood component, intermediate layer, concrete component) result. The shape of the fasteners is in addition to the straight shape in all other odd shapes, such as curved, wavy, kinked, angled and / or just conceivable and will depend only on the application requirements. The arrangements of the connecting elements in the composite system according to the invention can, for example, run side by side, one behind the other, diagonally, offset, offset, undulating and / or chaotic and are only dependent on the application requirements.
Die Verbindungsmittel sind in den Holzbauteilen durch Klebung zumindest eines Endes in vorbereitete Schlitze bzw. Vertiefungen und im Betonbauteil durch mechanische Verzahnung im abgebundenen Zementleim verankert. Eine weitere Ausführungsvariante liegt z.B. darin die Verbindungsmittel auf die Holzbauteile bzw. zum Teil in und zum Teil auf die Holzbauteile zu kleben, um dadurch eine dauerhafte und kraftschlüssige Verbindung herzustellen. Die Verbindungsmittel durchdringen dabei die Zwischenschichten je nach Anforderung mit, partiell bzw. ohne eine kraftschlüssige Verbindung mit den Zwischenschichten. Somit entkoppeln die Zwischenschichten zumindest teilweise die Holzbauteile von den Betonbauteilen und lassen dadurch eine dauerhafte Verbundlösung zu. Die Holzbauteile weisen zumindest in machen Anwendungsfällen Verstärkungen auf, welche die strukturellen und fertigungstechnischen Schwachstellen des Holzes und/oder der Holzwerkstoffe sowie Holzverbundwerkstoffe überbrücken. Es ist in einigen Anwendungen auch denkbar die Kapazität der Holzbauteile durch Bewehrung bzw. Verstärkungen zu erhöhen, um dadurch eine Erhöhung der Gesamtkapazität zu erzeugen.The connecting means are anchored in the wooden components by gluing at least one end in prepared slots or depressions and in the concrete component by mechanical gearing in the set cement glue. Another embodiment lies e.g. to glue therein the connecting means on the wooden components or partly in and partly on the wooden components, thereby producing a permanent and non-positive connection. The connecting means penetrate the intermediate layers as required, partially or without a frictional connection with the intermediate layers. Thus, the intermediate layers at least partially decouple the wooden components from the concrete components, thereby allowing a durable composite solution. The wood components have at least in some applications reinforcements, which bridge the structural and manufacturing weaknesses of the wood and / or wood-based materials and wood composites. It is also conceivable in some applications to increase the capacity of the timber components by reinforcement or reinforcements, thereby generating an increase in the total capacity.
Die Betonbauteile weisen zumindest in manchen Anwendungsfällen zum einen Einlagen auf, welche die strukturellen Schwachstellen des Betons überbrücken und/oder zum anderen Einlagen auf, welche die bauphysikalischen Gegebenheiten des Holz-Beton-Verbundsystems verändern. Die Zwischenschichten sind zumindest teilweise als geometrische, mechanische, bauphysikalische und/oder strukturelle Trennung bzw. Endkopplung zwischen den Holzbauteilen und Betonbauteilen gegeben. Die Zwischenschichten des Holz-Beton-Verbundsystems können als einlagige oder mehrlagige Ebenen ausgebildet werden. Die Zwischenschichten können in flüssiger, fester und/oder gasförmiger Form z.B. durch verlegen, gießen, streichen und/oder schäumen aufgebraucht und/oder eingebracht werden. Eine einlagige Zwischenschicht besteht beispielsweise aus einer Kunststofffolie, imprägniertem Papier, Bitumenpappe, Kunststoffdämmschicht, mineralischen Dämmschicht, organischem Dämmmaterial, nachwachsendem Dämmmaterial und aufgegossenen bzw. aufgestrichenen Materialien, die zu einem späteren Zeitpunkt abbinden bzw. aushärten, wie z.B. Teer, Kleber, Kunststoffmixturen. Weitere Formen der einlagigen Zwischenschichten stellen alle mineralischen bzw. mineralisch gebundenen Werkstoffe (z.B. mineralisch gebundene Leichtbauplatte, mineralischgebundener und gedämmter Ausgleichsestrich) sowie metallische Werkstoffe (z.B. Trapezbleche, Sandwich-Bauteile) dar. Die mehrlagigen Ebenen sind eine Kombination der zuvor beschriebenen einlagigen Zwischenschichten in beliebiger Form und/oder Anordnung. Die Wahl der einlagigen bzw. mehrlagigen Zwischenschichten ist somit lediglich von den Anforderungen an das Holz-Beton-Verbundsysteme abhängig.At least in some applications, the concrete components have, on the one hand, deposits which bridge the structural weak points of the concrete and / or, on the other, deposits which change the structural-physical conditions of the wood-concrete composite system. The intermediate layers are at least partially given as geometrical, mechanical, structural-physical and / or structural separation or end coupling between the timber components and concrete components. The intermediate layers of the wood-concrete composite system can be formed as single-layer or multi-layer layers. The intermediate layers can be consumed and / or incorporated in liquid, solid and / or gaseous form, for example by laying, pouring, brushing and / or foaming. A single-layer intermediate layer consists for example of a plastic film, impregnated paper, bitumen, Kunststoffdämmschicht, mineral insulation layer, organic insulation, renewable insulation material and cast-on or painted materials that set or harden at a later date, such as tar, adhesives, plastic mixtures. Other forms of single-layer intermediate layers represent all mineral or mineral-bonded materials (eg mineral-bonded lightweight board, mineral-bound and insulated leveling screed) and metallic materials (eg trapezoidal sheets, sandwich components). The multilayer levels are a combination of the previously described single-layer intermediate layers in any Shape and / or arrangement. The choice of the single-layer or multi-layer intermediate layers is therefore only dependent on the requirements of the wood-concrete composite systems.
Ein Vorteil der Erfindung ist die Entkopplung der sich zugewandten Oberflächen der Holzbauteile und der Betonbauteile durch die eingebetteten Zwischenschicht bzw. Zwischenschichten. Somit lassen sich Bauteilfeuchten in den Betonbauteilen von den Holzbauteilen fernhalten. Eine Durchnässung der Holzbauteile würde auf Dauer Fäulnis und somit eine Zerstörung des gesamten Holz-Beton-Verbundsysteme verursachen. Dies ist besonders im Brückenbau gegeben.An advantage of the invention is the decoupling of the facing surfaces of the wooden components and the concrete components by the embedded intermediate layer or intermediate layers. Thus, building components in the concrete components can be kept away from the timber components. Wetting of the wooden components would permanently cause rot and thus destruction of the entire wood-concrete composite systems. This is especially given in bridge construction.
Ein weiterer Vorteil ist, dass die Zwischenschichten zumindest in manchen Anwendungen Hohlräume, wie z.B. Kabel, Rohre, Schläuche, Kanäle und Leitungen, wie z.B. Strom-, Gas-, Wasser-, Klima-, Elektroinstallationsleitungen, beinhalten können, die zur Kopplung an zentrale Anlagen genutzt werden. Somit lassen sich entsprechende Versorgungsleitungen in den "belastungsneutralen" Zwischenschichten einbetten.A further advantage is that the intermediate layers, at least in some applications, have cavities, such as e.g. Cables, pipes, hoses, ducts and conduits, e.g. Power, gas, water, air conditioning, electrical installation lines, which are used for coupling to central systems. Thus, corresponding supply lines can be embedded in the "stress-neutral" intermediate layers.
Ein weiterer Vorteile liegt in der thermischen Entkopplung der sich zugewandten Oberflächen der Holzbauteile und der Betonbauteile durch die eingebetteten Zwischenschichten. Erfahrungsgemäß sind bei direkter Berührung von Holz und Beton mit Schwitzwasserbildungen zu rechnen, die auf Dauer Holzfäule und somit die Zerstörung des Holz-Beton-Verbundsystems verursachen. Dieser Prozess lässt sich durch die Anordnung von Zwischenschichten z.B. mineralische Dämmung in Verbindung mit aufliegender Folie verhindern. Insbesondere im Wand- und Dachbereich stellen derartige erfindungsgemäße Holz-Beton-Verbundsysteme eine vorteilhafte Lösung dar.Another advantage lies in the thermal decoupling of the facing surfaces of the wooden components and the concrete components by the embedded intermediate layers. Experience has shown that in direct contact of wood and concrete with condensation water can be expected, which in the long run wood rot and thus cause the destruction of the wood-concrete composite system. This process can be prevented by the arrangement of intermediate layers such as mineral insulation in conjunction with overlying foil. Especially in the wall and roof areas such wood-concrete composite systems according to the invention provide an advantageous solution.
Ein weiterer Vorteil liegt in der physikalischen Entkopplung der sich zugewandten Oberflächen der Holzbauteile und der Betonbauteile durch die eingebetteten Zwischenschichten. Erfahrungsgemäß werden beispielsweise in herkömmlichen Holz-Beton-Verbunddecken zusätzliche "schwimmende Estriche" zur Trittschalldämmung auf der Verbunddecke angeordnet. Durch eine Zwischenschicht in Form einer Trittschalldämmung ist es möglich die Schalldämmung des erfindungsgemäßen Holz-Beton-Verbundsystems zu verbessern und somit eine flächige Entkopplung zwischen den Betonbauteilen und den Holzbauteilen zu erzeugen. Somit kann hierdurch in vielen Anwendungen auf einen "schwimmenden Estrich" verzichtet werden.Another advantage lies in the physical decoupling of the facing surfaces of the timber components and the concrete components by the embedded intermediate layers. Experience has shown, for example, in conventional wood-concrete composite ceilings additional "floating screed" arranged for impact sound insulation on the composite ceiling. Through an intermediate layer in the form of impact sound insulation, it is possible to improve the sound insulation of the wood-concrete composite system according to the invention and thus to produce a surface decoupling between the concrete components and the timber components. Thus, this can be dispensed with in many applications on a "floating screed".
Ein weiterer Vorteil liegt in der Erhöhung des "inneren Hebelarmes" des erfindungsgemäßen Holz-Beton-Verbundsystems durch eine Vergrößerung des Abstandes zwischen der Biegedruck- und Biegezugzone. Erfahrungsgemäß nimmt die Steifigkeit eines Verbundsystems mit zunehmendem Hebelarm zu. Eine erfindungsgemäße Lösung in Form eines Kastenquerschnitts in Verbindung mit einer Zwischenschicht erzeugt eine unvergleichbare Steifigkeit des Holz-Beton-Verbundsystems. Somit lassen sich weitgespannte Tragsysteme (z.B. Dächer, Decken, Brücken) mit der erfindungsgemäßen Lösung realisieren.Another advantage lies in the increase of the "inner lever arm" of the wood-concrete composite system according to the invention by increasing the distance between the bending pressure and bending tension zone. Experience has shown that the stiffness of a composite system increases with increasing lever arm. A solution according to the invention in the form of a box cross-section in conjunction with an intermediate layer produces an incomparable rigidity of the wood-concrete composite system. Thus, wide-span supporting systems (for example roofs, ceilings, bridges) can be realized with the solution according to the invention.
Ein weiterer Vorteil liegt in der Verklebung von zwei und mehr Enden der Verbindungsmittel mit den Holzbauteilen. Dadurch wird nicht nur die Eigensteifigkeit der Verbindungsmittel sondern auch die Verbundsteifigkeit zwischen den Holzbauteilen und Betonbauteilen erhöht. Erst dadurch lassen sich erfindungsgemäße Verbindungsmittel in wirtschaftlicher Art und Weise einsetzen.Another advantage lies in the bonding of two or more ends of the connecting means with the wooden components. As a result, not only the inherent rigidity of the connecting means but also the composite stiffness between the timber components and concrete components is increased. Only then can be used according to the invention connecting means in an economical manner.
Ein weiterer Vorteile der Erfindung liegt in der quasi kontinuierlichen Verbindung zwischen den Holzbauteilen und Betonbauteilen des Holz-Beton-Verbundsystems. Somit können derzeitige Limitierungen auf Einfeldsysteme (d.h. Systeme, die über eine Stützweite bzw. ein Stockwerkshöhe ragen) überwunden werden. Nun lassen sich problemlos z.B. wechselnde Biegebeanspruchungen von Wand-, Wand und/oder Deckensystemen über mehrere Stützweiten bzw. Stockwerkshöhen ausbilden. Erfahrungsgemäß sind "Durchlaufsysteme" nicht nur wirtschaftlicher sondern auch leistungsfähiger als Einfeldsystem.Another advantage of the invention lies in the quasi-continuous connection between the timber components and concrete components of the wood-concrete composite system. Thus, current limitations can be overcome on single-field systems (i.e., systems that protrude above a span). Now you can easily form changing bending stresses of wall, wall and / or ceiling systems over several spans or floor heights. Experience has shown that "continuous systems" are not only more economical but also more efficient than single-field systems.
Ein weiterer Vorteil sind die zumindest partiellen Überbrückungen von strukturellen Schwachstellen, wie z.B. Äste, Einschlüsse, Wuchsfehler des Holzes, die im Anwendungsfall zu einer Limitierung des gesamten Holz-Beton-Verbundsystemsführen. Ein weiterer Vorteil sind die zumindest partiellen Überbrückungen von fertigungstechnischen Schwachstelle, wie z.B. Keilzinkungen, Öffnungen, Bohrungen, die im Anwendungsfall zu einer Limitierung des gesamten Holz-Beton-Verbundsystemsführen.Another advantage is the at least partial bridging of structural vulnerabilities, such as e.g. Branches, inclusions, growth defects of the wood, which lead in the application to a limitation of the entire wood-concrete composite system. Another advantage is the at least partial bridging of manufacturing vulnerability, such as Finger jointing, openings, holes, which lead in the application to a limitation of the entire wood-concrete composite system.
Das erfindungsgemäße Holz-Beton-Verbundsystem besteht aus Holzbauteilen und daran zumindest einseitig angrenzenden Betonbauteilen dadurch gekennzeichnet, dass zwischen den Holzbauteilen und Betonbauteilen zumindest teilweise und zumindest eine einlagige Zwischenschicht ausgebildet ist, die zumindest teilweise eine Trennung bzw. Entkopplung der Materialien Holz und Beton erzeugt. Die Aufgabe der Zwischenschichten besteht somit darin zumindest teilweise eine geometrische, mechanische und/oder bauphysikalische Entkopplung der Materialien Holz und Beton zu erzeugen. Diese Entkopplung darf allerdings nicht die Verbundwirkung zwischen Holz und Beton wesentlich reduzieren, da sonst eine wirtschaftliche Lösung nicht zu erzielen ist. Hierfür ist es erforderlich zumindest ein Verbindungselement durch Verklebung von zumindest einem Ende mit den Holzbauteilen und einer mechanischen Verzahnung des Verbindungselementes durch das Abbinden des Zementleims in den Betonbauteilen anzuordnen. Dabei ist wahlweise ein Verbund der Verbindungselemente mit der Zwischenschicht bzw. den Zwischenschichten gegeben. In einer weiteren Ausgestaltung der Erfindung ist es ebenfalls denkbar, dass die Verbindungsmittel keinerlei Verbund zu den Zwischenschichten aufweisen. Es ist ebenfalls eine Ausgestaltung des erfindungsgemäßen Verbundsystems denkbar, worin die Verbindungselemente kraftschlüssig mit den Betonbauteilen verklebt sind.The wood-concrete composite system according to the invention consists of wooden components and at least one adjacent concrete components characterized in that at least partially and at least a single-layer intermediate layer is formed between the wood components and concrete components, which at least partially generates a separation or decoupling of the materials wood and concrete. The task of the intermediate layers is thus at least partially to produce a geometric, mechanical and / or structural-physical decoupling of the materials wood and concrete. However, this decoupling must not significantly reduce the composite effect between wood and concrete, otherwise an economical solution can not be achieved. For this purpose, it is necessary to arrange at least one connecting element by bonding at least one end to the wooden components and a mechanical toothing of the connecting element by the setting of the cement paste in the concrete components. Optionally, a composite of the connecting elements with the intermediate layer or the intermediate layers is given. In a further embodiment of the invention, it is also conceivable that the connecting means have no bond to the intermediate layers. It is also an embodiment of inventive composite system conceivable, wherein the connecting elements are adhesively bonded to the concrete components.
Die Verbindungsmittel können je nach Anwendungsfall geordnet und/oder chaotisch angeordnet werden. Der Begriff "chaotisch" wird hier zum Teil aus der Mathematik übernommen und bedeutet nicht geordnet bzw. nicht an Regeln gebunden. Beispielhaft werden als Anordnung genannt: hintereinander, nebeneinander, versetzt, längs, quer, diagonal, gewellt, geschwungen und/oder gestreut.The connecting means can be ordered and / or chaotically arranged depending on the application. The term "chaotic" is here partly taken from mathematics and means not ordered or not bound to rules. By way of example, the following are named as an arrangement: one behind the other, side by side, offset, longitudinal, transverse, diagonal, wavy, curved and / or scattered.
Die Verbindungselemente werden als Flachkörper, Gitter und/oder Netze in gerader und/oder ungerader Form aus Metallen und/oder Kunststoffen verwendet. Die Verbindungselemente können zumindest teilweise gerade, gebogen, gewellt, geschwungen, geknickt, abgewinkelt und/oder verdrillt ausgebildet werden. Die Flachkörper können zumindest teilweise gelocht, gestanzt, gebohrt, aufgerauht, gestreckt, gezogen und/oder verzerrt ausgebildet werden.The fasteners are used as flat bodies, meshes and / or nets in straight and / or odd shape of metals and / or plastics. The connecting elements may be formed at least partially straight, curved, wavy, curved, kinked, bent and / or twisted. The flat bodies can be at least partially perforated, punched, drilled, roughened, stretched, pulled and / or distorted.
Eine Ausgestaltung des erfindungsgemäßen Holz-Beton-Verbundsysteme weist beispielhaft den im Holz zu verankernden Teil aus Kunststoff und den im Beton zu verankernden Teil aus Metall aus. In diesem Fall wäre das Verbindungselement als Hybridmaterial (Metall und Kunststoff) zu bezeichnen. Des weiteren ist es denkbar die geometrische Form des Verbindungselementes im Holzbauteil, den Zwischenschichten und dem Betonbauteil unterschiedlich auszubilden, sodass dadurch unterschiedliche Material- und Verbundeigenschaften gegeben sind. Somit gilt festzustellen, dass je nach Anwendungsfall eine anisotrope und inhomogene Ausgestaltung der Verbindungselemente gewählt wird.An embodiment of the wood-concrete composite systems according to the invention has, for example, the plastic part to be anchored in the wood and the metal part to be anchored in the concrete. In this case, the connecting element would be referred to as hybrid material (metal and plastic). Furthermore, it is conceivable to form the geometric shape of the connecting element in the timber component, the intermediate layers and the concrete component differently, so that different material and composite properties are given. Thus, it should be noted that depending on the application an anisotropic and inhomogeneous design of the connecting elements is selected.
Eine weitere Ausgestaltung besteht in der Verklebung von zwei oder mehr Enden der erfindungsgemäßen Verbindungselemente in und/oder auf den Holzbauteilen. Dadurch lassen sich neben der Eigenstabilität der Verbindungselemente auch die Verbundsfestigkeiten der Holz-Beton-Verbundsysteme erhöhen.A further embodiment consists in the bonding of two or more ends of the connecting elements according to the invention in and / or on the wooden components. As a result, in addition to the inherent stability of the fasteners and the composite strength of wood-concrete composite systems can be increased.
Eine weitere Ausgestaltung der Erfindung besteht darin zumindest in Teilbereichen der Verbindungselemente zusätzliche Verzahnungen, Erhebungen und/oder Wulste vorzusehen. Überraschenderweise hat dies gezeigt, dass sich dadurch eine Positionierung und/oder Fixierung der Verbindungselemente in den Entsprechenden Öffnungen der Holzbauteile bis zum Abbinden des Klebers gewährleisten läst. Des weiteren wird dadurch das Austreten des Klebers bis zum Abbinden verhindert. Somit lassen sich die Verbindungselemente im Werk verkleben und noch vor dem Abbinden des Klebers transportieren, zwischenlagern und/oder montieren. Dies ist auch für Wand bzw. Überkopfanwendungen möglich.A further embodiment of the invention consists in providing additional toothings, elevations and / or beads at least in partial regions of the connecting elements. Surprisingly, this has shown that thereby a positioning and / or fixing of the connecting elements in the corresponding openings of the wooden components to ensure ligation of the adhesive. Furthermore, the leakage of the adhesive is prevented until setting. Thus, the fasteners can be glued in the factory and transport even before the setting of the adhesive, temporarily store and / or assemble. This is also possible for wall or overhead applications.
Die Verbindungsmittel werden durch Verklebung in entsprechenden Öffnungen in den Holzbauteilen und/oder auf den Holzbauteilen fixiert. Es ist somit eine Ausgestaltung der Erfindung denkbar in der Verbindungselemente in den Holzbauteilen eingeklebt werden und andere auf den Holzbauteilen aufgeklebt werden. Die Verklebung wird vorzugsweise durch ein- oder zweikomponentige Klebstoffe erzeugt. Einige Klebstoffe (z.B. Epoxidharze, Poly-Urethanklebstoffe) sind bei entsprechenden Belastungs- und Klimabedingungen vom Glasübergangseffekt betroffen. Der Glasübergangseffekt beschreibt dabei ein Phänomen, in dem der Klebstoff bei entsprechender Temperatur und gleichzeitiger Belastung seine Festigkeit verliert. Eine Ausgestaltung der erfindungsgemäßen Anwendung liegt in einer Energiezufuhr der Klebefuge der Verbindungselemente und/oder der benachbarten Bauteile während der Verklebung oder zu einem späteren Zeitpunkt, um dadurch den Glasübergangseffekt auf ein höheres Temperaturniveau anzuheben und dadurch die Verbundwirkung zu steigern bzw. zu sichern. Die Energiezufuhr kann beispielhaft durch eine stationäre bzw. mobile Wärmequelle (z.B. infrarot) lokal und/oder flächig eingeleitet werden. Es ist ebenfalls denkbar die Wärmezufuhr durch Leitungsführungen, die sich in den Holzbauteilen, den Zwischenschichten und/oder den Betonbauteilen befinden zu gewährleisten.The connecting means are fixed by gluing in corresponding openings in the wooden components and / or on the wooden components. It is thus an embodiment of the invention conceivable to be glued in the fasteners in the timber components and others are glued to the wood components. The bond is preferably produced by one- or two-component adhesives. Some adhesives (e.g., epoxy resins, poly-urethane adhesives) are affected by the glass transition effect under conditions of stress and climatic conditions. The glass transition effect describes a phenomenon in which the adhesive loses its strength at the same temperature and load. One embodiment of the application according to the invention is an energy supply of the adhesive joint of the connecting elements and / or the adjacent components during bonding or at a later time, thereby increasing the glass transition effect to a higher temperature level and thereby increase or secure the composite effect. The energy supply may be initiated locally and / or areal by way of example by a stationary or mobile heat source (for example infrared). It is also conceivable to ensure the supply of heat by cable guides, which are located in the timber components, the intermediate layers and / or the concrete components.
Die Holzbauteile des erfindungsgemäßen Holz-Beton-Verbundsystems werden beispielhaft aus Einzelelementen in Form eines Balken, einer Bohle, einem Brett, eines Kantholzes, einer Platte oder einer Schalung erstellt und/oder einer beliebigen Kombination der vorgenannten Einzelelemente in Form von mehrteilig zusammengesetzten Querschnittsformen erstellt. Dabei bestehen die Holzbauteile aus gewachsenem Vollholz, Holzwerkstoffen und/oder Holzverbundwerkstoffen. Um die Vielfalt der sich daraus ergebenden Varianten der Holzverwendung ansatzweise zu verdeutlichen werden nachfolgend einige wenige aufgeführt: Vollholz, Nadelholz, Laubholz, Brettschichtholz, Furnierschichtholz, Furnierstreifenholz, Spanholz, Zementgebundene Spanplatten, Spanplatten, Mehrschichtplatten, OSB-Platten, Kunststoff-Holzverbundbauplatten, etc.The wooden components of the wood-concrete composite system according to the invention are created by way of example from individual elements in the form of a beam, a screed, a board, a squared timber, a plate or a formwork and / or any combination of the aforementioned individual elements in the form of multi-part composite cross-sectional shapes. There are the wooden components made of grown solid wood, wood materials and / or wood composites. In order to clarify the variety of the resulting variants of the wood usage, a few are listed below: solid wood, softwood, hardwood, glued laminated timber, laminated veneer lumber, veneer lumber, chipboard, cement bonded particleboard, chipboard, multilayer boards, OSB boards, plastic composite wood boards, etc.
Eine weitere Bandbreite der Ausgestaltung besteht in der Verstärkungen der Holzbauteile und/oder der Betonbauteile z.B. durch Bewehrung aus Stahl und/oder Kunststoff, Vorspannstähle, etc. Es ist dabei denkbar diese Verstärkungen in oder auf den Holzbauteilen bzw. Betonbauteilen zu erstellen. Eine weitere Ausgestaltung der Erfindung besteht in der Ertüchtigung bzw. Verstärkung von natürlichen und/oder fertigungstechnischen Schwachstellen der Holzbauteile durch weitere örtliche Maßnahmen, wie z.B. Vorspannungen, Bewehrungen, Überbrückungen und/oder Verspannungen.A further bandwidth of the embodiment consists in the reinforcements of the wooden components and / or the concrete components, e.g. By reinforcement of steel and / or plastic, tempering steels, etc. It is conceivable to create these reinforcements in or on the wooden components or concrete components. A further embodiment of the invention consists in the enhancement or enhancement of natural and / or manufacturing weak points of the timber components by further local measures, such. Preload, reinforcement, bridging and / or tension.
Eine weitere Bandbreite der Ausgestaltung besteht in der Erzeugung von Hohlräume bzw. Leitungsführungen in den Holzbauteilen, den Zwischenschichten und/oder Betonbauteilen. Die Hohlräume können beispielhaft durch Rohre, Kugeln, Kanäle und/oder Schläuche erzeugt werden. Die Leitungen können beispielhaft durch Kabel, Rohre, Kanäle und/oder Schläuche erzeugt werden.Another bandwidth of the embodiment consists in the production of cavities or cable guides in the timber components, the intermediate layers and / or concrete components. The cavities can be produced by way of example through pipes, balls, channels and / or hoses. The lines can be produced by way of example by cables, pipes, channels and / or hoses.
Eine weitere Bandbreite der Ausgestaltung der Erfindung besteht in der Vorverformung (z.B. Überhöhung, Biegung, Krümmung und/oder Vorspannung) zumindest von Teilbereichen der Holzbauteile, Zwischenschichten und/oder Betonbauteilen vor oder nach dem Verbund, um dadurch den spätere auftretenden Einwirkungen (und den daraus resultierenden Spannungen und Verformungen) der Montage und der Nutzung zumindest teilweise entgegenzuwirken. Somit ist beispielhaft eine Anwendung zu nennen, wo ein Einfeldträger eines Deckensystems vor dem aufbringen des Frischbetons eine mittige Überhöhung (erzeugt durch mittige Absprießung) aufweist. Die Überhöhung wird nach dem Abbinden des Beton zu einem späteren Zeitpunkt zumindest einen Teil der elastischen bzw. plastischen Durchbiegung des Einfeldträger kompensieren. Durch dieses Verfahren lassen sich auch weitgespannte Konstruktionen erzeugen.Another bandwidth of the embodiment of the invention consists in the pre-deformation (eg cant, bending, curvature and / or bias) at least of partial areas of the timber components, intermediate layers and / or concrete components before or after the composite, thereby the later occurring effects (and the resulting resulting stresses and deformations) of the assembly and the use at least partially counteract. Thus, by way of example, an application should be mentioned where a single-field carrier of a ceiling system has a central elevation (generated by central sputtering) before the fresh concrete is applied. The elevation will compensate for the setting of the concrete at a later date at least part of the elastic or plastic deflection of the single-field carrier. This method can also produce wide-stretched constructions.
Die Zwischenschichten der erfindungsgemäßen Holz-Beton-Verbundsysteme können einlagig, mehrlagig, lose und/oder im Verbund ausgebildet sein. Die Zwischenschichten werden dabei aufgelegt, gerollt, geschüttet, gestrichen, gespritzt und /oder geschäumt in fester, flüssiger und/oder gasförmiger Form aufgebracht und/oder nachträglich eingebracht. Eine einlagige Ausführung beinhaltet u.a. Folie, imprägniertem Papier, Bitumenpappe, Metallplatten, Kunststoffplatten, Kunststoffdämmung, mineralischer Dämmung, nachwachsendem Dämmmaterialen, Verbundbaumaterialien oder Hybridmaterialien (beispielsweise als Einzelelemente, Plattenelemente, Schüttgut bzw. Rollenware) oder aufgegossenen bzw. aufgestrichenen Materialien, die zu einem späteren Zeitpunkt abbinden bzw. aushärten (beispielsweise Teer, Öl, Kleber, Kunststoffmixturen). Mehrlagige Ausführungen beinhalten beliebige Kombinationen der vorgenannten einlagigen Ausführungen lose und/oder als Verbund.The intermediate layers of the wood-concrete composite systems according to the invention can be single-layered, multi-layered, loose and / or composite. The intermediate layers are placed, rolled, poured, painted, sprayed and / or foamed applied in solid, liquid and / or gaseous form and / or subsequently introduced. A single-layer design includes i.a. Foil, impregnated paper, bitumen board, metal plates, plastic plates, plastic insulation, mineral insulation, renewable insulation materials, composite construction materials or hybrid materials (for example as individual elements, plate elements, bulk material or roll goods) or cast-on or coated materials which set or harden at a later time (For example, tar, oil, glue, plastic mixtures). Multi-ply designs include any combination of the aforementioned single ply designs loosely and / or as a composite.
Die Betonbauteile bestehen u.a. aus Normalbeton, hochfestem Beton, Spannbeton, Verbundbeton, Estrichbeton, Leichtbeton, Porenbeton und/oder Asphaltbeton und können darüber hinaus nicht mineralische Zuschläge , wie z.B. Kunststoffe, Styropor, Holz aufweisen. Die Herstellung der Betonbauteile ist im Werk oder auf der Baustelle möglich. Des weiteren lassen sich die Betonbauteile zum Teil im Werk und zum Teil vor Ort hergestellt. Es ist auch denkbar, dass Abschnitte der Betonbauteile als vorgefertige Elemente in Verbindung mit örtlich anbetonierten Elementen eingesetzt werden.The concrete components are u.a. of normal concrete, high-strength concrete, prestressed concrete, composite concrete, screed concrete, lightweight concrete, aerated concrete and / or asphaltic concrete and, moreover, may not contain mineral aggregates, such as e.g. Plastics, polystyrene, wood. The production of concrete components is possible in the factory or on the construction site. Furthermore, the concrete components can be partially manufactured in the factory and partly on site. It is also conceivable that sections of the concrete components are used as prefabricated elements in conjunction with locally concreted elements.
Eine bevorzugte Bandbreite der Ausgestaltung besteht in der Verstärkungen (z.B. Bewehrung aus Stahl und/oder Kunststoff, Vorspannstähle) der Betonbauteile. Erfahrungsgemäß lassen sich erst dadurch hohe Zugkräfte, Momente und/der Querkräfte in den Betonbauteilen einleiten. Eine weitere Ausgestaltung liegt in der Erzeugung von Hohlräume (z.B. durch Rohre, Kugeln, Quater, Kanäle und/oder Schläuche) die zur Gewichtsreduzierung, zur nachträglichen Einführung von Leitungen und/oder zur nachträglichen Vorspannung bzw. Vorspannung mit nachträglichem Verbund verwendet werden können.A preferred bandwidth of the embodiment consists in the reinforcements (eg reinforcement made of steel and / or plastic, prestressing steels) of the concrete components. Experience has shown that only high tensile forces, moments and / or shear forces in the concrete components can be initiated. A further embodiment is the generation of cavities (eg by pipes, balls, quaters, channels and / or hoses) which can be used for weight reduction, for the subsequent introduction of lines and / or for subsequent bias or bias with subsequent composite.
Eine weitere Ausgestaltung liegt in der Einführung von Leitungen (z.B. Kabel, Rohre, Kanäle und/oder Schläuche) in den Betonbauteilen, die somit als Strom-, Heiz-, Technik- und/oder Versorgungsleitungen verwendet werden können. Überraschenderweise hat sich gezeigt, dass dadurch auch eine nachträgliche Erwärmung der Holz-Beton-Verbundsysteme erzeugt werden kann, um dadurch die Glasübergangstemperatur des verwendeten Klebstoffes (zur Verankerung der Verbindungselemente in den Holzbauteilen) zu erhöhen.Another embodiment lies in the introduction of conduits (e.g., cables, pipes, channels, and / or hoses) in the concrete components, which may thus be used as power, heating, engineering and / or utility lines. Surprisingly, it has been found that thereby also a subsequent heating of the wood-concrete composite systems can be produced, thereby increasing the glass transition temperature of the adhesive used (for anchoring the fasteners in the timber components).
Eine weitere Ausgestaltung der Erfindung besteht darin, mehrere Lagen von Holzbauteilen, Zwischenschichten und/oder Betonbauteilen übereinander und/oder nebeneinander auszubilden.A further embodiment of the invention is to form a plurality of layers of wood components, intermediate layers and / or concrete components one above the other and / or side by side.
Die erfindungsgemäßen Holz-Beton-Verbundsysteme können z.B. als Stützen-, Träger-, Balken-, Platten-, Wand-, Decken-, Dach-, und/oder Brückensysteme ausgebildet werden und sind je nach Bemessung z.B. zur Aufnahme von Zug-, Druck-, Biegezug-, Biegedruck-, Torsions-, und/oder Schubbeanspruchungen geeignet.The wood-concrete composite systems according to the invention can be designed, for example, as columns, girders, beams, slabs, walls, ceilings, roofs, and / or bridge systems and, depending on the design, for example for absorbing tension, pressure -, Biegezug-, bending pressure, torsional, and / or shear stresses suitable.
Die
Die Verbindungselemente 130 sind als gestanzte und verzerrte Flachkörper (auch als Streckmetall bekannt) 131 aus Metall ausgebildet, die auf halber Höhe einen Knick 132 aufweisen. Der Knick 132 wird in Längsrichtung versetzt ausgebildet und formt somit eine Gabelung 133 in Form eines Y (Gabelung 133 erscheint bei Ansicht in Längsrichtung). Überaschenderweise hat sich herausgestellt, dass durch den Knick 132 die Höhenpositionierung der Verbindungselemente gegeben ist und eine lineare Sollbruchstelle im Betonbauteil durch die Gabelung 133 vermieden wird. Des Weiteren hat sich überraschend herausgestellt, dass in die Gabelung 133 ein Bewehrungsstahl (hier nicht dargestellt) selbstpositionierenden eingelegt werden kann, der die Gesamtkapazität des Holz-Beton-Verbundsystems erhöht.The connecting
Die Zwischenschichten 140 bestehen hier beispielhaft aus einer formstabilen Mineralwolle 141 die zwischen den Balken 111 angeordnet sind und einer diffusionsoffenen Folie 142, die die höhengleichen Balken 111 und Mineralwolle 141 abdeckt und gleichzeitig formschlüssig an die Verbindungselemente 130 z.B. durch Klebebänder angeschlossen ist, ohne dabei eine kraftschlüssige Verbindung zu den Verbindungselementen 130 zu liefern. Die Zwischenschichten 140 als Mineralwolle 141 weisen Hohlräume 144 und 145 in Quer- und Längsrichtung auf, die als Versorgungskanäle der Haustechnik dienen. Überraschenerweise hat sich gezeigt, dass die Hohlräume 145 auch in Querrichtung durch den Holzbalken 111 hindurch ausführbar sind, da die Verbundwirkung die Querschnittsschächung überbrückt.The
Ein Weiterer Bestandteil der Zwischenschichten ist beispielhaft durch Styroporquater 143 dargestellt, die auf der Folie 142 zwischen den Balken 111 in die Betonbauteile 150 einragend angeordnet sind.A further component of the intermediate layers is exemplified by
Die Betonbauteile 150 sind hier beispielhaft durch eine konstante Platte 151 mit rippenartigen Ausweitungen 152 im Bereich der Verbindungselemente 130 ausgebildet. Die Betonbauteile 150 weisen Verstärkungen 153 in Form von Betonstahlmatten 154 auf, die auf den Verbindungselementen 130 ruhen.
Die Betonbauteile 150 weisen des Weiteren Hohlräume 155 und Leitungen 156 auf, die respektiv zum einen zur Wärmezufuhr und zum anderen zur nachträglichen Verstärkung der Betonbauteile 150 dienen. Die Hohlräume 155 dienen zur Einführung entsprechender Spannstähle, um eine kraftschlüssige nachträgliche Verstärkung der Betonbauteile 150 zu ermöglichen. Die Leitungen 156 dienen zur indirekten Erwärmung der Verbindungselementverklebung, um dadurch die materialbedingte Glasübergangstemperatur des Klebers zu erhöhen und dadurch die Tragfähigkeit der Verbindungselementverklebung unter Temperatureinfluss zu steigern.The
The
Die Betonbauteile weisen des Weiteren Verstärkungen 157 in Form von Bewehrungsstählen auf, die beispielhaft zwischen den Verbindungselementen 130 angeordnet sind. Die Bewehrungsstähle 157 dienen in diesem beispielhaften Anwendungsfall zu zusätzlichen Aufnahme von Querzugspannungen, die im Bereich der Verbindungselemente 130 auftreten können. Des Weiteren ergibt sich hieraus überraschenderweise eine zusätzliche Verzahnung zwischen den Verbindungselementen 130 und den Betonbauteilen 150. Eine weitere Ausführungsvariante (hier nicht dargestellt) besteht in der Durchführung der Betonstähle 157 durch die Öffnungen (z.B. Streckmetallöffnungen) der Verbindungselemente 130. The concrete components further include
Das Holz-Beton-Verbundsysteme 100 wurde hier beispielhaft vor Ort auf der Baustelle als Deckensystem hergestellt, in dem die einzelnen Holzbauteile 110 und Zwischenschichten 140 vor dem Betonieren durch eine Überhöhung (nicht dargestellt, z.B. durch Abstützung in der Mitte der einzelnen Stützweiten des Mehrfeldsystems überhöht) vorverformt wurden, um dadurch einer späteren Beanspruchung der Holzbauteile während der Montage und/oder der Nutzung des Systems entgegen zu wirken.The wood-concrete
Die
Die Verbindungselemente 220 sind hier beispielhaft als gewellte formstabile Kunststoffgitter 221 und als gebogene Metallgitter 223 ausgebildet. Die Metallgitter 223 werden beispielhaft in einem Teilbereich des Holz-Beton-Verbundsystems eingesetzt, indem hohe lokale Beanspruchungen herrschen. Die Kunststoffgitter 221 sind mit etwa einem Drittel ihrer Höhe, mit einem Ende in dem Holzbauteil 210 durch Klebung verankert sind. Die Kunststoffgitter 221 sind so hergestellt worden, dass die Gitteröffnungen 222 im Holzwerkstoff 210 und in den Zwischenschichten 230 kleinere Abmessungen (engmaschiger) aufweisen als im Betonbauteil 240, um dadurch zum einen Kleber bei der Verankerung im Holzbauteil (geringeres Klebevolumen) zu sparen und zum anderen die Eigenstabilität der Kunststoffgitter 221 im Bereich der Zwischenschichten 230 (keine kraftschlüssige seitliche Lagerung) zu erhöhen. Die gewellte Form liefert überraschenderweise zum einen eine zusätzliche Eigenstabilität und zum anderen eine weitere mechanische Verzahnung zwischen den zu verbindenden Holzbauteilen und Betonbauteilen. Die Kunststoffgitter 221 weisen im Einbindebereich der Holzbauteile 210 Verzahnungen (hier nicht dargestellt) auf, die eine mechanische Fixierung der Verbindungselemente bis zum Abbinden des Klebers gewährleisten.The connecting
Die Metallgitter 223 sind hier beispielsweise mit zwei Enden in entsprechenden Öffnungen (hier Schlitze bzw. Kanäle) der Holzbauteile eingeklebt und liefern dadurch in sich eine geometrisch steife Form und gleichzeitig eine sehr steife Verbindung zwischen den Holzbauteilen 210 und den Betonbauteilen 240. Die Metallgitter 223 weisen in der Schnittfuge zwischen Verbindungselement und Holz beispielhaft einen Wulst (hier nicht dargestellt) auf, der den Kleber vor dem Austritt hindert.The
Die Zwischenschichten 230 bestehen hier beispielhaft aus einem mehrlagigen Bitumenanstrich mit eingebetteter Kunststofffolie 231 und einer PU-Hartschaumlage 232, die beispielhaft aus einzeln zugeschnittenen und im Verband verlegten Platten erstellt wurde.The
Die Betonbauteile 240 sind hier beispielhaft durch eine konstante Platte 241 ausgebildet. Die Betonbauteile 240 weisen Verstärkungen 242 in Form von Betonstahlmatten 243 auf, die beispielhaft nur auf den Verbindungselementen 220 ruhen. Die Betonplatte 241 weist des Weiteren eine lokale Verstärkung 244 in Form eines Bewehrungsstahls 245 auf, der vor dem Betonieren und dem Aufbringen der Betonstahlmatte 243 mit dem Verbindungselement 220 zur Lagesicherung seitlich verbunden (beispielhaft durch Draht gerödelt, nicht dargestellt) wurde.The
Die Betonbauteile 240 weisen des Weiteren Hohlräume 246 und Leitungen 247 auf, die respektiv zum einen zur nachträglichen Verstärkung und zum anderen zur klimatischen Versorgung der Betonbauteile 240 dienen. Die Hohlräume 246 dienen zur Einführung entsprechender Spannstähle, um eine kraftschlüssige nachträgliche Verstärkung der Betonbauteile 240 zu ermöglichen. Die Lage der Hohlräume 246 ist dabei von den Ausführungsanforderungen abhängig und kann beispielhaft über, zwischen und/oder durch die Verbindungselemente 220 und/oder 223 ausgeführt werden.The
Die Leitungen 247 dienen beispielhaft - über eine Kopplung mit einer entsprechenden Klimazentrale - zur klimatischen Versorgung des Holz-Beton-Verbundsystems und seiner Umgebung. Dadurch werden beispielhaft energiesparende Lösungen für Hochbauten und Industriebauten ermöglicht.The
Das Holz-Beton-Verbundsystem 200 wurde hier beispielhaft im Werk als Fertigteil vorgefertigt und als Einzelbauteile Segmentiert auf die Baustelle geliefert und montiert. Eine derartige Vorfertigung erlaubt eine rasche Herstellung des Bauwerks ohne dabei zusätzliche Feuchtigkeit (z.B. Anmachwasser des Stahlbetons) in das Holz-Beton-Verbundsystem bzw. Bauwerken einzuleiten.The wood-
Die einzelnen Holz-Beton-Verbundsysteme können auf der Baustelle sofort bei der Montage oder einige Zeit später untereinander und/oder mit weiteren Bauabschnitten kraft- und/oder formschlüssig verbunden werden. Auf diese Weise lassen sich auch Scheibenwirkungen mit segmentierten Holz-Beton-Verbundsystemen erzeugen.The individual wood-concrete composite systems can be connected to the construction site immediately during assembly or some time later with each other and / or with other construction sections non-positively and / or positively. In this way, disc effects with segmented wood-concrete composite systems can be produced.
Claims (28)
- Wood-concrete composite systems (100, 200) consisting of wooden components (110, 111, 112, 210, 211) and concrete components (150,151,152, 240, 241), which border the wooden components on at least one side, whereby between the wooden and concrete components there is at least one, or at least one partial, single-ply intermediate layer (140, 141, 142, 143, 230, 231, 232), which creates at least partially a decoupling of the wooden and concrete materials, characterised by the fact that grids and/or meshes made of metals and/or plastics in the sense of connecting elements (130, 220, 223) are formed, whereby the wooden components are connected by at least one grid and/or mesh to the concrete components in the wood grain direction, whereby due to the grid and/or mesh there is no statically significant force-fit connection between the wooden parts and the intermediate layers, whereby the grid and/or mesh are anchored with adhesive by at least one end in the corresponding openings in the wooden components (110, 111, 112, 210, 211) and/or on the surface of the wooden components (110, 111, 112, 210, 211).
- Wood-concrete composite systems in accordance with Claim 1, characterised by the fact that the geometric shape of the connecting element is formed differently in the wooden component, the intermediate layers and the concrete component, so that different material and composite properties are produced.
- Wood-concrete composite systems in accordance with Claim 1 or 2, characterised by the fact that the wooden components are connected to the concrete components by at least one connecting element, whereby due to the connecting element there is no statically significant force-fit connection between the wooden parts and the intermediate layers.
- Wood-concrete composite systems in accordance with one of the Claims 1 to 3, characterised by the fact that at least one connecting element is formed as archshaped, in particular as curved with a curved body and curve ends, whereby the curve ends are fastened in and/or on the wooden components, and the curved body is held in and/or on the concrete.
- Wood-concrete composite systems in accordance with one of the Claims 1 to 4, characterised by the fact that at least the one connecting element must be arranged in such a way, that it is adhered by at least one end to the wooden components, and fastened to the concrete components by mechanical interlocking of the connecting element through the setting of the cement lime, and/or adhered to the concrete components by means of a force-fit connection.
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 5, characterised by the fact that the arrangement of the connecting elements is formed in such a way, that they are ordered and/or irregular, in particular arranged behind or beside each other and/or displaced, and/or arranged longitudinally and/or crosswise and/or diagonally.
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 6, characterised by the fact that the connecting elements (130, 220, 223) are formed in even or odd numbers in the shape of flat bodies, grids and/or meshes, and that they are anchored by adhesive in at least one end in the corresponding openings in the wooden components (110, 111, 112, 210, 211) and/or on the surface of the wooden components (110, 111, 112, 210, 211).
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 7, characterised by the fact that the design of the connecting elements (130, 220, 223) in the area of the wooden components (110, 111, 112, 210, 211), intermediate layers (140, 141, 142, 143, 230, 231, 232) and/or concrete components (150, 151, 152, 240, 241) can be formed evenly (i.e. isotropically or homogeneously) and/or unevenly (i.e. anisotropically or inhomogeneously)
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 7, characterised by the fact that the connecting elements (130, 220, 223) in the area of the wooden components (110, 111, 112, 210, 211), intermediate layers (140, 141, 142, 143, 230, 231, 232) and/or concrete components (150, 151, 152, 240, 241) can have additional interlocking, raised areas and/or beading.
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 9, characterised by the fact that, after adhesion in the wooden components (110, 111, 112, 210, 211) and/or at a later time, the connecting elements (130, 220, 223) and/or the bonds are treated with an input of energy and/or heat, in order to increase the glass transition temperature of the adhesive used to anchor the connecting elements (130, 220, 223) in the wooden components (110, 111, 112, 210, 211).
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 10, characterised by the fact that the wooden components (110, 111, 112, 210, 211) consist of at least one individual element in the form of a beam, plank, board, squared timber, plate or shuttering, and/or that they consist of any combination of the above-mentioned individual elements in the form of multi-part cross sections.
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 11, characterised by the fact that the wooden components (110, 111, 112, 210, 211) consist of mature solid wood, wooden materials and/or wooden composite materials.
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 12, characterised by the fact that reinforcements (120, e.g. reinforcement made of steel and/or plastic) and cavities (213, 214, e.g. by means of pipes, ducts and/or hoses) and/or lines (e.g. cables, pipes, ducts and/or hoses) are attached to the wooden components (110, 111, 112, 210, 211).
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 13, characterised by the fact that the natural and/or manufacturing weak points of the wooden components (110, 111, 112, 210, 211) are eliminated by means of other measures, such as for example strengthening, pre-stressing, reinforcement and/or upgrading.
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 14, characterised by the fact that, before the wooden components (110, 111, 112, 210, 211) are joined to the contiguous intermediate layers (140, 141, 142, 143, 230, 231, 232) and/or the concrete components (150, 151, 152, 240, 241), they have pre-formed features (e.g. protrusions, bends, curves and/or pre-stressing), which counteract at least partially the effects that arise later (and the resulting stresses and deformation).
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 15, characterised by the fact that the intermediate layers (140, 141, 142, 143, 230, 231, 232) can be formed as single-ply, multi-ply, loose and/or as a composite.
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 16, characterised by the fact that the intermediate layers (140, 141, 142, 143, 230, 231, 232) can be applied as laid on, rolled on, poured on, painted, sprayed and/or foamed in the form of a solid, liquid and/or gaseous substance, and/or that the layers can be introduced subsequently.
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 17, characterised by the fact that the intermediate layers (140, 141, 142, 143, 230, 231, 232) have cavities (144, 145, e.g. by means of pipes, ducts and/or hoses) and/or lines (e.g. cables, pipes, ducts and/or hoses), which are used to reduce the weight and subsequently introduce the lines and/or to subsequently heat or cool the connecting elements.
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 18, characterised by the fact that the concrete components (150, 151, 152, 240, 241) consist of normal concrete, high-strength concrete, pre-stressed concrete, composite concrete, screed concrete, lightweight concrete, porous concrete and/or asphalt concrete, and if required they can also have additives of a non-mineral form, such as for example plastic, polystyrene or wood.
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 19, characterised by the fact that the concrete components (150, 151, 152, 240, 241) are wholly manufactured on the building site itself, or are all delivered fully assembled to the building site, or are partly delivered as fully assembled parts and the remainder manufactured on site.
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 20, characterised by the fact that reinforcements (153, 154, 157, 243, 244, 245, e.g. reinforcement made of steel or plastic), and cavities (155, 246, e.g. by means of pipes, spheres, ducts and/or hoses) and/or lines (156, 247, e.g. cables, pipes, ducts and/or hoses) are embedded in the concrete components (150, 151, 152, 240, 241).
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 21, characterised by the fact that the cavities (155, 246) can be used for weight reduction, for subsequent introduction of lines and/or for pre-stressing or post-stressing with a subsequent composite.
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 22,characterised by the fact that the lines (156, 247) are used as power, heating and/or supply lines for the subsequent heating of the wood-concrete composite systems, in order to increase the glass transition temperature of the adhesive used for anchoring the connecting elements (130, 220, 223) in the wooden components.
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 23, characterised by the fact that the wood-concrete composite systems (100, 200) are wholly manufactured on the building site itself, or are all delivered fully assembled to the building site, or are partly delivered as fully assembled parts and the remainder manufactured on site.
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 24, characterised by the fact that these wood-concrete composite systems (100, 200) have pre-formed features (e.g. protrusions and/or pre-stressing), which counteract at least partially the effects that arise later (and the resulting stresses and deformation).
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 25, characterised by the fact that they can consist of several layers of wooden components (110, 111, 112, 210, 211), intermediate layers (140, 141, 142, 143, 230, 231, 232) and/or concrete components (150, 151, 152, 240, 241).
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 26, characterised by the fact that they serve as support, carrier, beam, plate, wall, ceiling, roof and/or bridging systems.
- Wood-concrete composite systems (100, 200) in accordance with one of the Claims 1 to 27, characterised by the fact that the wooden components (110, 111, 112, 210, 211) and the concrete components (150, 151, 152, 240, 241) can take up tensile or pressure loads and stresses created by flexing, torsion and/or pushing.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE20316376U DE20316376U1 (en) | 2003-10-23 | 2003-10-23 | Wood and concrete composite system has intermediate layer formed at least partially and/or at least in one layer between wood components and concrete components to create at least partially a decoupling of wood and concrete components |
DE20316376U | 2003-10-23 | ||
DE10351989A DE10351989A1 (en) | 2003-10-23 | 2003-11-07 | Wood-concrete composite systems made of wooden components, intermediate layers and concrete components |
DE10351989 | 2003-11-07 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1528171A2 EP1528171A2 (en) | 2005-05-04 |
EP1528171A3 EP1528171A3 (en) | 2005-05-25 |
EP1528171B1 true EP1528171B1 (en) | 2016-08-31 |
Family
ID=34424348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04024931.0A Expired - Lifetime EP1528171B1 (en) | 2003-10-23 | 2004-10-20 | Wood-Concrete composite system comprising wooden construction elements, intermediate layers and concrete construction elements |
Country Status (5)
Country | Link |
---|---|
US (2) | US20050086906A1 (en) |
EP (1) | EP1528171B1 (en) |
AU (1) | AU2004222807B2 (en) |
CA (1) | CA2485804C (en) |
DE (1) | DE10351989A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106988473A (en) * | 2017-05-22 | 2017-07-28 | 江苏君成建材科技有限公司 | Novel steam air entrained concrete building materials |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10351989A1 (en) * | 2003-10-23 | 2005-06-09 | Bathon, Leander | Wood-concrete composite systems made of wooden components, intermediate layers and concrete components |
BRPI0607377A2 (en) | 2005-02-25 | 2010-03-23 | Nova Chem Inc | lightweight cement composition, roadbed, composite panel construction article, insulated concrete structure, method of making a lightweight cement composition article, lightweight concrete article and lightweight structural unit |
EP1851398B1 (en) * | 2005-02-25 | 2012-05-30 | Nova Chemicals Inc. | Composite pre-formed building panels, a building and a method of constructing a building |
US7644548B2 (en) | 2005-03-22 | 2010-01-12 | Nova Chemicals Inc. | Lightweight concrete compositions |
CH698330B1 (en) * | 2005-10-14 | 2009-07-15 | Wey Modulbau Ag | Wood-concrete composite member and method for its production. |
WO2007079739A2 (en) * | 2006-01-13 | 2007-07-19 | Bathon, Leander | Construction made of individual components |
DE202006000593U1 (en) | 2006-01-13 | 2006-05-18 | Bathon, Leander, Prof. Dr. | Structures in wood-concrete composite construction |
US20080235858A1 (en) * | 2006-08-14 | 2008-10-02 | Schanz Richard W | Elevated toilet seat |
US7677009B2 (en) * | 2007-02-02 | 2010-03-16 | Nova Chemicals Inc. | Roof truss system |
CN101168977B (en) * | 2007-07-26 | 2011-12-14 | 吴淑环 | Plastering composite wall |
US8048219B2 (en) * | 2007-09-20 | 2011-11-01 | Nova Chemicals Inc. | Method of placing concrete |
US20090078161A1 (en) * | 2007-09-20 | 2009-03-26 | Nova Chemicals Inc. | Methods of minimizing concrete cracking and shrinkage |
DE102007052455A1 (en) * | 2007-11-02 | 2009-05-20 | Selle, Ricky, Dipl.-Wirtsch. Ing. | Thrust force connection system for wood-concrete composites, uses flexible connection seam between web and upper flange |
BE1018644A3 (en) * | 2007-11-13 | 2011-06-07 | Echo | FLOOR ELEMENT. |
DE202007018856U1 (en) | 2007-11-20 | 2009-07-23 | Lignotrend Ag | Ceiling for a building |
EP2072705A1 (en) * | 2007-12-21 | 2009-06-24 | Renggli AG | Wood-concrete composite element |
DE202008007139U1 (en) * | 2008-05-28 | 2009-10-08 | Schwörer Haus KG | Prefabricated building with wooden beams and integrated heating pipes |
ITBO20080361A1 (en) * | 2008-06-09 | 2009-12-10 | Cogefrin S P A | PREFABRICATED PANEL FOR CONSTRUCTION BUILDINGS AND ITS APPLICATION METHOD. |
US8240103B2 (en) * | 2009-03-12 | 2012-08-14 | Frank Warner Riepe | Wall construction method using injected urethane foam between the wall frame and autoclaved aerated concrete (AAC) blocks |
US20120058299A1 (en) * | 2009-03-17 | 2012-03-08 | Connovate Aps | Composite Sandwich Panel |
EP2574197A1 (en) * | 2010-05-20 | 2013-04-03 | Kalús, Daniel | Self-supporting heat insulating panel for the systems with active regulation of heat transition |
CN101942885A (en) * | 2010-09-16 | 2011-01-12 | 南京林业大学 | A kind of FRP-bamboo-concrete combination beam |
CN102134888B (en) * | 2011-01-24 | 2012-03-28 | 金陵科技学院 | Cast-in-place reinforced concrete hollow floor (plate) with both thermal insulation and sound insulation functions and preparation method thereof |
US8632644B2 (en) * | 2011-03-17 | 2014-01-21 | Tj Technology Holdings, Llc | Bamboo composite timbers |
AT511220B1 (en) * | 2011-04-08 | 2013-01-15 | Cree Gmbh | CEILING ELEMENT FOR THE EDUCATION OF BUILDING COVERS |
FR2977604A1 (en) | 2011-07-07 | 2013-01-11 | Ali Haydadi | MODULE FOR THE CONSTRUCTION OF A BUILDING, MODULE ASSEMBLY AND METHOD OF MANUFACTURING THE MODULE |
US8474205B1 (en) | 2011-11-08 | 2013-07-02 | William R. Watkins | Concrete foundation footing with timber support members |
CZ201248A3 (en) * | 2012-01-24 | 2013-10-02 | Ceské vysoké ucení technické v Praze, Fakulta stavební, Katedra ocelových a drevených konstrukcí | Coupling of wood-based beams connected by means of steel plates having bilaterally pressed spikes with a base plate |
CN102943434B (en) * | 2012-10-24 | 2014-11-19 | 南京林业大学 | Semi-assembly bamboo-concrete composite bridge |
EP2787140B1 (en) | 2013-04-04 | 2015-10-14 | MERK Timber GmbH | Flat ceiling in composite wood concrete construction and method for producing such a ceiling |
CA2909402C (en) * | 2013-05-06 | 2018-06-19 | University Of Canterbury | Pre-stressed beams or panels |
ITPD20130297A1 (en) * | 2013-10-31 | 2015-05-01 | Paolo Piazzon | PREFABRICATED WALL FOR BUILDING CONSISTS OF PLASTER, CONCRETE, POLYSTYRENE AND CONCRETE THAT CAN CONTAIN THE PLANTS, BE A TERMINAL OF THE HEATING AND AIR-CONDITIONING PLANT AND HAVE EXTERNAL VENTILATION. |
US9745739B2 (en) * | 2014-02-25 | 2017-08-29 | Breton Systems Llc | Wall construction method using injected urethane foam between the wall and autoclaved concrete (AAC) blocks |
CA2947119C (en) * | 2014-04-28 | 2023-09-12 | Jan Franck | Method for producing a ceiling in a building |
CN104088386A (en) * | 2014-07-25 | 2014-10-08 | 陈风平 | Cast-in-situ concrete filling component |
US10156068B2 (en) * | 2014-09-30 | 2018-12-18 | UNIVERSITé LAVAL | Built-up system, connector thereof, and method of making same |
KR101607546B1 (en) * | 2014-12-04 | 2016-03-31 | 주식회사 포스코 | Construction materials |
ES2612578A1 (en) * | 2015-11-16 | 2017-05-17 | Universidad Politécnica de Madrid | Anchoring and reinforcement system for wood and concrete collaborating structures (Machine-translation by Google Translate, not legally binding) |
CN106121114A (en) * | 2016-07-06 | 2016-11-16 | 蒋朝晖 | A kind of intelligence floor and construction method thereof |
AT518958A1 (en) * | 2016-07-15 | 2018-02-15 | Holzforschung Austria Oesterreichische Ges Fuer Holzforschung | Wood-concrete composite member |
CN106351375B (en) * | 2016-10-21 | 2020-08-18 | 王本淼 | Stress island assembled cavity floor |
CN106368361B (en) * | 2016-10-21 | 2019-04-05 | 王海崴 | A kind of assembled concealed-beam floor |
CN106381952B (en) * | 2016-10-21 | 2019-03-26 | 王海崴 | A kind of assembled overlapping cavity building roof |
DE102016012948A1 (en) * | 2016-10-28 | 2018-05-17 | Meier Betonwerke Gmbh | Prefabricated, multifunctional ceiling |
CN106677417A (en) * | 2017-01-13 | 2017-05-17 | 成都启立辰智科技有限公司 | Composite brick for building wall |
US20180347191A1 (en) * | 2017-06-01 | 2018-12-06 | 9360-4742 Quebec Inc. | Prefabricated concrete slab floor and method of fabricating the same |
CN107366305B (en) * | 2017-08-30 | 2019-03-19 | 江西省新绿地园林实业有限公司 | Sponge Urban Underground pipe gallery anti-seismic structure device |
JP6985867B2 (en) * | 2017-09-13 | 2021-12-22 | 大成建設株式会社 | Joined structure and gantry frame |
CN108005286A (en) * | 2017-11-23 | 2018-05-08 | 安徽同济建设集团有限责任公司 | A kind of construction method of the unidirectional overlapping floorboard of assembled architecture |
FR3084092B1 (en) * | 2018-07-17 | 2022-05-20 | Constructions Composites Bois | PLATE AND SLAB INTENDED TO PRODUCE A FLOOR OR A WALL AND METHODS FOR MANUFACTURING SUCH PLATES AND SLABS |
WO2020051633A1 (en) * | 2018-09-10 | 2020-03-19 | Hcsl Pty Ltd | Building panel |
WO2020107129A1 (en) * | 2018-11-30 | 2020-06-04 | Infina Technologies Inc. | Semi-prefabricated timber-concrete composite slab |
DE102019200046B3 (en) | 2019-01-04 | 2020-06-10 | Veit Dennert Kg Baustoffbetriebe | Prestressed concrete-wood composite panel, in particular for use as a building ceiling or wall panel, and process for their production |
CN109707102A (en) * | 2019-01-07 | 2019-05-03 | 湖南大学 | Lightweight assembled bamboo and wood-concrete combination beam |
FI129949B (en) * | 2019-10-16 | 2022-11-30 | Finnfoam Oy | Thermal insulation plate and its use |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1183594A (en) * | 1908-07-29 | 1916-05-16 | Roy H Robinson | Method of forming composite floor construction. |
US1084276A (en) * | 1912-11-16 | 1914-01-13 | August Jaminet | Reinforced wood panel. |
US1235636A (en) * | 1914-10-22 | 1917-08-07 | Arthur G Bagnall | Floor construction. |
US2239177A (en) * | 1937-05-12 | 1941-04-22 | Formeta Beton As | Concrete story partition construction |
US2268311A (en) * | 1939-07-07 | 1941-12-30 | Walter F Sheehan | Concrete floor construction |
US2435998A (en) * | 1943-03-31 | 1948-02-17 | Porete Mfg Company | Composite prestressed concrete beam and slab structure |
US3286418A (en) * | 1962-08-14 | 1966-11-22 | Kissam Builders Supply Company | Prestressed composite load-bearing slab |
US3446692A (en) * | 1964-06-01 | 1969-05-27 | Pullman Inc | Insulated panel and method of making same |
US3389521A (en) * | 1966-06-02 | 1968-06-25 | Werner K.H. Gregori | Concrete form structure for floors |
US3442058A (en) * | 1968-05-31 | 1969-05-06 | Eng Collaborative Ltd The | Concrete floor construction with duct-forming voids |
US3605366A (en) * | 1969-11-28 | 1971-09-20 | Gerald Zakim | Composite laminate panel construction |
GB1360822A (en) * | 1970-07-02 | 1974-07-24 | Takenaka Komuten Co | Apparatus for making concrete structures |
SE351883B (en) * | 1971-10-05 | 1972-12-11 | Straengbetong Ab | |
CA1012376A (en) * | 1974-12-30 | 1977-06-21 | Westeel-Rosco Limited | Composite structural assembly |
FR2611778B1 (en) * | 1987-02-26 | 1992-04-24 | Paris Ouest Entreprise | WOOD-CONCRETE COLLABORATION FLOOR |
ATE141986T1 (en) * | 1989-11-16 | 1996-09-15 | Sfs Handels Holding Ag | COMPOSITE CONSTRUCTION MADE OF A WOODEN BEAM OR - STRUCTURE HAVING BEAMS AND AN IN-SITE CONCRETE Slab |
CH687397A5 (en) * | 1992-11-14 | 1996-11-29 | Bettex Fabienne | Wood-concrete composite floor. |
FR2702236B1 (en) * | 1993-03-03 | 1995-08-04 | Gauthier Daniel | WOOD-CONCRETE COMPOSITE CONSTRUCTION ELEMENT. |
CH687213A5 (en) * | 1993-04-21 | 1996-10-15 | Silvatech Ag | Plate-type building component |
DE9319497U1 (en) | 1993-12-18 | 1994-03-03 | Bathon, Leander, Dr., 63768 Hösbach | A connection of wood-based materials and all types of materials with the help of adhesives |
US5497595A (en) * | 1994-08-18 | 1996-03-12 | Kalinin; Daniel | Method of reinforcing wood beams and wood beams made therefrom |
DE19605142C1 (en) * | 1996-02-13 | 1999-10-14 | Schlueter Systems Gmbh | Floor composite body |
DE29616375U1 (en) * | 1996-09-20 | 1998-01-22 | Holzbau Becker & Sohn GmbH, 59964 Medebach | Board stack element |
US5809722A (en) * | 1997-02-06 | 1998-09-22 | Keith M. Wright | Girder supported reinforced concrete slab building structures with shearing connectors, and methods of constructing the building structures and connectors |
US6119422A (en) * | 1997-11-07 | 2000-09-19 | Fin-Pan, Inc. | Impact resistant building panels |
DE19805088A1 (en) * | 1998-02-09 | 1999-08-19 | Hescheler | Wall and ceiling element for buildings which has good insulation and is easy to produce |
DE19808208A1 (en) | 1998-02-27 | 1999-09-02 | Fischer Artur Werke Gmbh | Connection element for connecting wood and concrete |
DE19818525B4 (en) | 1998-04-24 | 2004-11-25 | Bauer, Werner, Dipl.-Ing. | Wood-concrete composite member |
JP2976023B1 (en) * | 1998-05-14 | 1999-11-10 | 博 稲葉 | Composite building material and manufacturing method thereof |
US6105321A (en) * | 1998-10-19 | 2000-08-22 | Karisallen; Kenneth James | Prestressed wood composite laminate |
AT5773U1 (en) * | 2001-09-06 | 2002-11-25 | Pirnbacher Georg Ing | WOOD CONCRETE COMPOSITE COMPONENT |
DE20119279U1 (en) * | 2001-11-28 | 2002-04-11 | Bauer, Werner, 98673 Crock | Anchoring point for fastening flat connecting components in hardening building materials |
DE20210714U1 (en) * | 2002-07-10 | 2002-11-21 | Bauer, Werner, 98673 Crock | Wood-concrete composite element with integrated climate element |
US6955014B2 (en) * | 2002-11-07 | 2005-10-18 | Fabcon, Inc. | Insulated concrete cast panels with voids in billits |
US20040118063A1 (en) * | 2002-12-19 | 2004-06-24 | Shidler Edward C. | Composite board for insulated concrete walls |
DE10351989A1 (en) * | 2003-10-23 | 2005-06-09 | Bathon, Leander | Wood-concrete composite systems made of wooden components, intermediate layers and concrete components |
-
2003
- 2003-11-07 DE DE10351989A patent/DE10351989A1/en not_active Ceased
-
2004
- 2004-10-20 EP EP04024931.0A patent/EP1528171B1/en not_active Expired - Lifetime
- 2004-10-21 US US10/970,574 patent/US20050086906A1/en not_active Abandoned
- 2004-10-22 CA CA2485804A patent/CA2485804C/en not_active Expired - Lifetime
- 2004-10-22 AU AU2004222807A patent/AU2004222807B2/en not_active Expired
-
2007
- 2007-08-17 US US11/840,244 patent/US8245470B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106988473A (en) * | 2017-05-22 | 2017-07-28 | 江苏君成建材科技有限公司 | Novel steam air entrained concrete building materials |
Also Published As
Publication number | Publication date |
---|---|
US20080016803A1 (en) | 2008-01-24 |
US8245470B2 (en) | 2012-08-21 |
EP1528171A2 (en) | 2005-05-04 |
AU2004222807B2 (en) | 2010-05-06 |
CA2485804C (en) | 2012-06-19 |
US20050086906A1 (en) | 2005-04-28 |
DE10351989A1 (en) | 2005-06-09 |
CA2485804A1 (en) | 2005-04-23 |
EP1528171A3 (en) | 2005-05-25 |
AU2004222807A1 (en) | 2005-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1528171B1 (en) | Wood-Concrete composite system comprising wooden construction elements, intermediate layers and concrete construction elements | |
EP1808538B1 (en) | Construction made with individual parts | |
AT411372B (en) | COMPONENT AND METHOD FOR THE PRODUCTION THEREOF | |
DE19818525B4 (en) | Wood-concrete composite member | |
EP1669505B1 (en) | Steel-concrete composite joist with fire-resistant support for ceiling elements | |
DE20316376U1 (en) | Wood and concrete composite system has intermediate layer formed at least partially and/or at least in one layer between wood components and concrete components to create at least partially a decoupling of wood and concrete components | |
DE10254043B4 (en) | Composite construction of high load capacity | |
DE60004462T2 (en) | INSULATION ELEMENT FROM MINERAL WOOL AND ROOF CONSTRUCTION THAT HAS THIS | |
AT505266B1 (en) | BEARING ELEMENT, BEEGTRÄGERANORDNUNG AND METHOD FOR THE PRODUCTION | |
WO1999032738A1 (en) | Reinforcement for surfaces of structural elements or buildings | |
EP2024580A1 (en) | Planar concrete supporting structure and method of producing it | |
DE60011415T2 (en) | CONSTRUCTION ELEMENT FOR BUILDINGS AND STEERING PLATE FOR SUCH ELEMENT | |
EP1972734A1 (en) | Retaining body for an insulating board | |
EP3789553B1 (en) | Prefabricated construction element and prefabricated system | |
EP1889982A2 (en) | Roof truss construction made of wood, an assembly for longitudinal bracing and method for assembling such a roof construction | |
WO1988003587A1 (en) | Ceiling and/or wall element, in particular for prefabricated houses | |
WO2007079739A2 (en) | Construction made of individual components | |
DE29609800U1 (en) | Ceiling construction and ceiling element | |
AT503693B1 (en) | Planar concrete supporting structure for operating as a reinforced-concrete supporting structure like a reinforced- concrete floor has a concrete slab and intersecting ribs | |
EP1826328B1 (en) | Fastening assembly | |
AT411371B (en) | Self-supporting and load-transmitting construction element for buildings has cover layers and distance elements connected via open-pored connection region with higher load-carrying capacity | |
DE29604846U1 (en) | Roof construction | |
DE2836456A1 (en) | Large hard foam roofing or ceiling panels - are reinforced against sagging by polyester or glass fibre fabric or steel wire embedded in resinous cement | |
EP1074670A2 (en) | Building construction | |
AT507612B1 (en) | ROOF STRUCTURE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
AKX | Designation fees paid | ||
17P | Request for examination filed |
Effective date: 20060206 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20151209 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502004015296 Country of ref document: DE Representative=s name: NITZ, ASTRID, DR., DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004015296 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 825115 Country of ref document: AT Kind code of ref document: T Effective date: 20161015 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160831 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161201 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160831 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160831 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160831 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160831 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161130 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160831 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160831 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170102 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004015296 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160831 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
26N | No opposition filed |
Effective date: 20170601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161020 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161020 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20161031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160831 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20041020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160831 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230508 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231020 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231023 Year of fee payment: 20 Ref country code: DE Payment date: 20230929 Year of fee payment: 20 Ref country code: CH Payment date: 20231102 Year of fee payment: 20 Ref country code: AT Payment date: 20231020 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 502004015296 Country of ref document: DE |