Nothing Special   »   [go: up one dir, main page]

EP1509687A1 - Method for regulating the heat of an internal combustion engine for vehicles - Google Patents

Method for regulating the heat of an internal combustion engine for vehicles

Info

Publication number
EP1509687A1
EP1509687A1 EP03714903A EP03714903A EP1509687A1 EP 1509687 A1 EP1509687 A1 EP 1509687A1 EP 03714903 A EP03714903 A EP 03714903A EP 03714903 A EP03714903 A EP 03714903A EP 1509687 A1 EP1509687 A1 EP 1509687A1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
coolant
temperature
coolant temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03714903A
Other languages
German (de)
French (fr)
Other versions
EP1509687B1 (en
Inventor
Marco Braun
Christoph Burckhardt
Michael Haas
Roland LÜTZE
Alexander Müller
Michael Reusch
Ulrich Springer
Jens Von Gregory
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1509687A1 publication Critical patent/EP1509687A1/en
Application granted granted Critical
Publication of EP1509687B1 publication Critical patent/EP1509687B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • F01P2023/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/04Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/13Ambient temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/33Cylinder head temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/42Intake manifold temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/46Engine parts temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/50Temperature using two or more temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/02Intercooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/10Controlling of coolant flow the coolant being cooling-air by throttling amount of air flowing through liquid-to-air heat exchangers
    • F01P7/12Controlling of coolant flow the coolant being cooling-air by throttling amount of air flowing through liquid-to-air heat exchangers by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures

Definitions

  • the invention relates to a method for heat regulation of an internal combustion engine for vehicles with a coolant circuit and controllable devices for influencing the heat balance of the internal combustion engine, wherein a coolant temperature and other operating parameters of the internal combustion engine are recorded and the controllable devices as a function of the coolant temperature and the further operating parameters of the internal combustion engine can be controlled.
  • the water pumps are first put into operation and regulated with increasing temperature or increasing heat, then the thermostats, the radiator blind and finally the fan in Put into operation and regulated. If the temperatures of the internal combustion engine cannot be controlled by means of the coolant circuit, provision is made to reduce the performance of the internal combustion engine for safety.
  • the invention is intended to provide a method for regulating the heat of an internal combustion engine for vehicles, which can be used with minor changes for different internal combustion engines with different components.
  • a method for regulating the heat of an internal combustion engine for vehicles with a coolant circuit and controllable devices for influencing the heat balance of the internal combustion engine wherein a coolant temperature and further operating parameters of the internal combustion engine are recorded and the controllable devices are controlled as a function of the coolant temperature and the further operating parameters of the internal combustion engine in which the coolant temperature and / or the further operating parameters are regulated in such a way that at least two output values for determining a manipulated variable for the controllable devices are determined on the basis of at least two different reference variables, the at least two output values are compared and the larger output value in the manipulated variable is implemented and transferred to the controllable devices.
  • a maximum linkage of the determined output values is provided, in that only the larger output value is converted into the manipulated variable.
  • Such a Max link creates an interface for expanding the control structure. Additional functionalities or requirements can be fed into the Max link without requiring any further changes to the rest of the regulatory structure. For example, requirements from climate control or engine issues due to cooling of the exhaust gas recirculation or charge air cooling are taken into account by determining an output value based on these requirements, comparing it with the other output values and then taking it into account if it is greater than the other determined output values.
  • the problem underlying the invention is also solved by a method for heat regulation of an internal combustion engine for vehicles with a coolant circuit and controllable devices for influencing the heat balance of the internal combustion engine, wherein a coolant temperature and other operating parameters of the internal combustion engine are recorded and the controllable devices as a function of the coolant temperature and further operating parameters of the internal combustion engine can be controlled, in which the coolant temperature and / or the further operating parameters are regulated in such a way that an output value for determining a manipulated variable is specified by means of a basic map as a function of the speed and load of the internal combustion engine, and this output value is determined by means of a Controller depending on the coolant temperature and / or the other operating parameters is corrected.
  • control structure Since the regulation is carried out via the correction of a basic map, the control structure is suitable for different applications, since only the basic map or the correction controller need be changed to adapt to different internal combustion engines. This means that different motors with different components can be operated with the same control structure.
  • a hysteresis characteristic curve is used when determining a manipulated variable.
  • Such a hysteresis characteristic curve can be applied both to the controllers and to the basic characteristic diagram, especially in transition areas, for example when switching on the coolant pump to prevent uncontrolled switching.
  • setpoints of a coolant temperature and a component temperature of the internal combustion engine are determined by means of characteristic maps as a function of a speed and an injection quantity of the internal combustion engine.
  • the setpoints for coolant and component temperature can be specified depending on the operating point.
  • a clear regulatory structure can be achieved through these measures.
  • different control characteristics can be provided in the different states or controllable devices can be set to maximum or zero throughput without any control.
  • a change in the various states is triggered by exceeding or falling below predefined limit values, an ambient temperature, a component temperature of the internal combustion engine, a coolant temperature, a charge air temperature and / or a pressure of an air conditioning compressor, and in the individual states a coolant temperature and are regulated in order to regulate a component temperature of the internal combustion engine settings of a coolant pump, a heating pump, a mixing valve between a cooler and a bypass circuit, a radiator blind, a cooler fan, an air conditioning compressor and / or an injection system of the internal combustion engine.
  • FIG. 1 shows a schematic representation of an internal combustion engine for a vehicle for carrying out the method according to the invention
  • Fig. 3 shows a more detailed representation of the formation of
  • Fig. 4 shows the various possible states that the system of internal combustion engine and coolant circuit can assume.
  • an internal combustion engine 10 which is provided with a coolant circuit and is arranged in a motor vehicle.
  • a coolant circulates in the coolant circuit shown, a direction of flow of the coolant in the coolant circuit being indicated at different points by an arrow.
  • coolant reaches a controllable mixing valve 14 which is designed as a rotary slide valve.
  • the mixing valve 14 is adjusted by means of an electric motor 16, which in turn is controlled by a central control device 18.
  • a control by means of pulse-width modulated signals (PWM) is indicated in the illustration in FIG. 1.
  • PWM pulse-width modulated signals
  • the bypass line 18 opens again into a main line 24, which leads to a coolant pump 26.
  • the coolant pump 26 is driven mechanically by the internal combustion engine 10 and is provided with a magnetic coupling 28 which can be controlled by the control unit 18. By means of the magnetic coupling 28, the coolant pump 26 can also be switched on or off while the internal combustion engine 10 is running. Instead of a mechanically driven coolant pump, an electrically driven coolant pump could also be used. Starting from the coolant pump 26, the coolant returns to the internal combustion engine 10.
  • a heating circuit line 30 branches off from the line connecting the coolant outlet 12 and the mixing valve 14.
  • the heating circuit line 30 first leads to a heating pump 32, which is driven by an electric motor 34.
  • the electric motor 34 is controlled by the control unit 18 by means of pulse width modulated signals.
  • the heating circuit line 30 leads to an exhaust gas recirculation heat exchanger 36.
  • the exhaust gas recirculation heat exchanger 36 is connected in series is a heating heat exchanger 38. Starting from the heating heat exchanger 38, the heating circuit line 30 then leads to the main line 24, which leads to the coolant pump 26.
  • the vehicle radiator 22 is provided with a radiator blind 40, which can be adjusted by means of an electric motor 42, and a fan 44, which is driven by means of an electric motor 46. By actuating the electric motors 42 and 46, an adjustment of the radiator blind 40 or a speed of the fan 44 can be changed by means of the control device 18.
  • the central control unit 18 receives input signals from a coolant temperature sensor 48 and a land temperature sensor 50 in the internal combustion engine 10.
  • the coolant temperature sensor 48 measures a temperature of the coolant at the outlet 12 of the internal combustion engine 10 and the land temperature sensor 50 measures a temperature of a material area between the exhaust valves of the internal combustion engine 10
  • a connection 52 shown in dashed lines illustrates a data exchange between the internal combustion engine 10 and the central control unit 18.
  • the central control device 18 receives actual values of operating parameters of the internal combustion engine 10, and sets manipulated variables for the operation of the internal combustion engine 10, for example the injection quantity, throttle valve position, ignition timing and the like.
  • control unit 18 receives input signals from a block 54 which relate to heating and air conditioning requirements. If, for example, an increased air conditioning output is requested from block 54, control unit 18 can increase an engine load on the one hand and take measures on the other to be able to dissipate the then increased amount of heat via the coolant circuit.
  • a control structure is implemented in the control unit 18, with which, depending on the coolant temperature and others, a control structure is implemented.
  • Operating parameters of the internal combustion engine 10, the mixing valve 14, the coolant pump 26, the heating pump 32, the radiator blind 40, the fan 44 and possibly an injection system of the internal combustion engine 10 can be controlled differently.
  • several states of the system comprising the internal combustion engine 10 and the coolant circuit are defined, in each of which different measures for regulating the coolant temperature or the web temperature are taken.
  • control structure implemented in the control unit 18 is constructed in such a way that it can be adapted to different internal combustion engines 10 and / or additional requirements for operation with little effort.
  • the requirements of block 54 regarding heating and air conditioning requirements are additionally processed.
  • the central control device 18 is shown schematically in the illustration in FIG. 2. 2 serves to clarify the input variables available to the control unit 18 and the signals output as part of the control of the coolant and component temperature of the internal combustion engine 10.
  • a coolant temperature T ⁇ from the coolant temperature sensor 48 and a component temperature T B from the web temperature sensor 50 are fed to the control device 18.
  • the control unit 18 has the current engine speed n and a current injection quantity rrie available. The control of the coolant and component temperature on the basis of these input variables T ⁇ , T B , n and never is explained in detail with reference to FIG. 3.
  • the control unit 18 also has an outside air temperature T AL , a charge air temperature T LL , an exhaust gas recirculation rate AGR, the already mentioned climate requirements K, a vehicle speed v and an accelerator pedal position p available as input variables. These input variables are used to determine a state of the system from internal combustion engine 10 and to determine the coolant circuit, different measures being taken in the individual states in order to regulate the coolant and component temperature.
  • a coolant volume flow requirement is determined for the control, which is represented by block 60.
  • the volume flow requirement 60 is converted into a manipulated variable 62 for the setting of the heating pump 32 and a manipulated variable 64 for the setting of the coolant pump 26.
  • a rotary slide valve positioning 66 is requested, which is converted into a manipulated variable 68 for the setting of the mixing valve 14.
  • a cooling air mass requirement 70 is determined, which is set in a manipulated variable 72 for controlling the radiator blind 40 and in a manipulated variable 74 for controlling the fan 44.
  • a basic characteristic map 80 is used to determine a basic value for a required volume flow of the coolant on the basis of the input quantities injection quantity m e and engine speed n. This basic value from block 80 is transferred to a block 82, in which a hysteresis characteristic is applied to this basic value in order to prevent uncontrolled switching in transition areas.
  • a volume flow request is thus available at the output of block 82 and is transferred to the link units 84 and 86.
  • the determined basic value of the volume flow is corrected using the linking units.
  • the basic value is corrected by means of a controller which uses the coolant temperature T ⁇ as a reference variable and by means of the linking unit 86 the basic value is corrected by means of a controller. rigged, which uses the component temperature T B as a reference variable.
  • a setpoint T Kso ⁇ for the coolant temperature as a function of the current injection quantity m ⁇ of the current engine speed n is specified by a block 88.
  • the target value T Kso ⁇ is transferred to a linking unit 90, which also the current actual value of the coolant temperature T K ⁇ st is available from the coolant sensor 48 and which determines a control difference from these values.
  • the control difference determined in this way is transferred to a block 92, in which a hysteresis characteristic curve is applied to the control difference determined.
  • Block 92 thus transfers a correction value for the volume flow request to the linking unit 84 and adds it there to the previously determined basic value.
  • a setpoint T B soi ⁇ is first determined in a block 94 on the basis of a basic map, taking into account the injection quantity m e and the engine speed n, and in a linking unit 96 from an actual value T B i st and the setpoint T B s o i ⁇ determined a control difference.
  • a hysteresis characteristic curve is applied to the determined control difference in block 98, so that a correction value for a volume flow request is transferred from block 98 to the linking unit 86.
  • a temporal change in the component temperature is taken into account in block 100 in order to achieve a satisfactory regulation of the component temperature which is more dynamic compared to the coolant temperature.
  • the volume flow request issued by block 100 is also supplied to the linking unit 86.
  • Blocks 102 and 104 are checked to determine whether they exceed a maximum or minimum applicable value and, if necessary, limit them to these values.
  • the volume flow requests are then transferred from blocks 102 and 104 to a max-linking unit 106.
  • the max logic unit 106 it is checked which of the volume flow requests from block 102 or from block 104 is larger, and only the larger volume flow request is passed to block 108, in which a conversion characteristic is applied to the volume flow request.
  • the volume flow requirement is converted into a control signal for the coolant pump 26, which is finally amplified by means of an output stage 110 and passed on to the coolant pump 26.
  • the basic map 80 can be changed to match different internal combustion engines.
  • fundamentally different volume flow requirements could be achieved even without changing the controller taking the coolant temperature T ⁇ or the component temperature T B into account.
  • the control structure shown in FIG. 3, which can be used in the same way for the determination of manipulated variables for the control of the mixing valve 14, the radiator blind 40, the fan 44, the heating circuit pump 32 and optionally the injection system of the internal combustion engine 10, is thereby simpler Adaptable to different engines.
  • the Max logic unit 106 creates an interface into which further requirements can be fed.
  • the max link 106 gives the those regulators have access to the actuators of the coolant pump 26, the heating circuit pump 32, the mixing valve 14, the fan 44 or the radiator blind 40, which transfers the greatest demand value to the max logic unit 106.
  • Further requirements for example from a climate control system or from a cooling of the exhaust gas recirculation required at a special operating point, can thus be fed into the maximum link 106, which ensures that these requirements are taken into account when determining the manipulated variables.
  • the central control unit 18 uses the input variables available to it to determine which predetermined state the system of internal combustion engine 10 and coolant circuit is currently in.
  • seven states are predefined which the system of internal combustion engine 10 and coolant circuit can assume and in which different measures are provided in order to achieve control of the coolant temperature and the land temperature.
  • FIG. 4 shows in a column in each case the conditions for a certain state or a certain level to be assumed, as well as the measures taken in the respective state.
  • a first state corresponds to a cold start, in which a component temperature is in the range from -20 ° C to 120 ° C and a coolant temperature at the outlet from the internal combustion engine is in the range from -20 ° C to 80 ° C.
  • a temperature of the charge air after a charge air cooler is less than 60 ° C and a pressure of a refrigerant in an air conditioning circuit is below 12 bar. For example, there are low Ambient temperatures in the range of -20 ° C.
  • the objective is to accelerate the warm-up of the internal combustion engine 10 and to reach an acceptable interior temperature as quickly as possible.
  • the volume flow flowing through the heating pump 32 is regulated by means of the motor 34 via the central control unit 18.
  • the magnetic coupling 28 of the coolant pump 26 is decoupled, so that the coolant pump 26 is only passed passively but does not itself contribute to the promotion of a volume flow.
  • the mixing valve 14 is set in the first state such that the bypass line 18 is completely open and the line leading to the cooler 22 is completely closed.
  • the radiator blind 40 is completely closed, the fan 44 is switched off and an air conditioning compressor is also switched off.
  • a so-called cook protection which, when used, reduces the power of the internal combustion engine in order to reduce the amount of heat generated, is switched off.
  • a second state which, like the first state, is associated with a warm-up of the internal combustion engine and in which the interior is to be heated, the cooling water and the web between the exhaust valves are already heated.
  • the state of the system is classified by the control device 18 in the second state when low ambient temperatures, for example -20 ° C., a land temperature in the range from 120 ° C. to 160 ° C., a temperature at the cooling water outlet 12 in the range of 80 ° C. up to 90 ° C, a charge air temperature after the charge air cooler is less than 60 ° C and a refrigerant pressure of less than 12 bar.
  • the heating pump 32 is switched on and supplies 100% of the possible volume flow.
  • the exhaust gas recirculation cooler 36 and the heating heat exchanger 38 have a maximum flow.
  • the coolant pump 26 is switched on or off by optional switch the magnetic coupling on or off. This takes place depending on the coolant or web temperature.
  • the mixing valve 14 is set in the second state such that the bypass line 18 is fully open and the line leading to the cooler 22 is completely closed.
  • the radiator blind 44 and possibly further blinds in front of the charge air cooler and a condenser are closed.
  • the electric fan 44, the air conditioning compressor and the cook protection are switched off.
  • a change to a third state occurs when the internal combustion engine is already warm from operation and the land temperature and the coolant temperature are in the desired range.
  • heating in the vehicle interior is still required.
  • the system assumes the third state when low ambient temperatures, for example -20 ° C, a land temperature in the range from 140 ° C to 180 ° C, a coolant temperature at the outlet 12 in the range from 90 ° C to 95 ° C, a Charge air temperature of less than 60 ° C and a refrigerant pressure of less than 12 bar.
  • the heating pump 32 is switched on and supplies 100% of its possible volume flow.
  • the coolant pump 26 is switched on because the magnetic clutch 28 is not energized.
  • the mixing valve 14 is operated in regular operation and consequently conducts the coolant flow depending on the coolant temperature at the coolant sensor 48 and the land temperature at the component sensor 50 through the bypass line 18 and / or to the cooler 22. Since the mixing valve 14 is designed as a rotary slide valve, each Distribution of the coolant to the bypass line 18 and the cooler 22 can be set continuously in control operation. As in states one and two, the radiator blind 40 and any other blinds are closed, the fan 44, the air conditioning compressor and a cooker protection are switched off.
  • the fourth state is characterized by a land temperature in the range from 160 ° to 200 ° C, a coolant temperature from 95 ° C to 100 ° C, a charge air temperature after the charge air cooler of more than 60 ° C and a refrigerant pressure of less than 12 bar ,
  • the heating pump 32 is switched on and supplies 100% of its possible volume flow.
  • the coolant pump 26 is switched on because the magnetic coupling 28 is not energized.
  • the mixing valve 14 assumes an end position, closes the bypass line 18 completely and directs the coolant flow completely to the vehicle radiator 22.
  • the radiator blind 40 and possibly further blinds are regulated as a function of the coolant temperature and the web temperature.
  • the fan 44, the air conditioning compressor and the cook protection are switched off.
  • the system changes to a fifth state when there are higher ambient temperatures, for example around 20 ° C., so that heating in the vehicle interior is no longer necessary but also no air conditioning is necessary.
  • the fifth state is characterized by web temperatures in the range of 160 ° C to 200 ° C, coolant temperatures between 100 ° C and 115 ° C, charge air temperatures of more than 60 ° C and a refrigerant pressure of less than 12 bar.
  • the heating pump 32 is switched off, the coolant pump 26 is switched on and the mixing valve 14 closes the bypass line 18 and directs the coolant flow completely to the cooler 22.
  • the cooler blind 40 and optionally further blinds in front of the charge air cooler and the condenser are fully open.
  • the fan 44 is regulated depending on the coolant temperature and the web temperature.
  • the air conditioning compressor and the cook protection are switched off. If the ambient temperature continues to rise, the interior becomes air-conditioned and the system changes to a sixth state.
  • the sixth state is due to ambient temperatures in the range from 20 ° C to 30 ° C, land temperatures in the range from 160 ° C to 200 ° C, coolant temperatures in the range from 100 ° C to 115 ° C, charge air temperatures of more than 60 ° C and a refrigerant pressure in the range of 12 bar to 20 bar.
  • the system still tries to meet all requirements with regard to engine performance and climate performance and mobilizes all reserves that are available for heat dissipation from the internal combustion engine 10.
  • the heating pump 32 is switched off, while the coolant pump 26 is switched on.
  • the mixing valve 14 keeps the bypass line 18 closed and directs the coolant flow completely to the cooler 22.
  • the cooler blind 40 and any other blinds are fully open.
  • the fan 44 runs at maximum power and thereby enables a maximum air throughput through the cooler 22.
  • the air conditioning compressor is regulated as a function of the desired interior temperature.
  • the cook protection is switched off.
  • the operating temperatures of the engine can continue to rise and into the critical range.
  • measures must therefore be taken to protect the internal combustion engine 10 from thermal damage.
  • the seventh state is due to a high ambient temperature, for example between 30 ° C and 35 ° C, a land temperature in the range 160 ° C to 200 ° C, a coolant temperature in the critical range of more than 115 ° C, a charge air temperature of more than 60 ° C and a refrigerant pressure of more than 20 bar.
  • the heating pump 32 is switched off, the coolant pump 26 is switched on, the mixing valve closes the bypass line 18 completely and conducted the coolant flow completely to the cooler 22, the cooler blind 40 and possibly further blinds are fully open and the fan 44 runs at maximum power.
  • the air conditioning compressor is operated with reduced output and at the same time a reduced motor output is set via the cook protection. This can be done, for example, by reducing an injection quantity. If the operating temperatures drop, the system can switch back to the sixth state and the full engine and air conditioning performance is available again.
  • prioritization can take place such that the system assumes a certain state if selected operating parameters lie within a range defined for this state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

The invention relates to a method for regulating the heat of an internal combustion engine for vehicles, with a coolant circuit and controllable devices for influencing the thermal economy of the internal combustion engine. According to the invention, a coolant temperature and additional operating parameters of the internal combustion engine are recorded, and the controllable devices are controlled according to the coolant temperature and the additional operating parameters of the internal combustion engine. The invention provides that a regulation of the coolant temperature and/or of the additional operating parameters ensues in such a manner that, by using a main characteristics map, an initial value for determining a manipulated variable is prescribed according to the rotational speed and the load of the internal combustion engine, and this initial value is corrected by a controller according to the coolant temperature and/or the additional operating parameters. This method is used, e.g. for the management of heat in efficiency-optimized direct injection diesel engines.

Description

Verfahren zur Wärmeregulierung einer Brennkraftmaschine für Process for regulating the heat of an internal combustion engine for
Fahrzeugevehicles
Die Erfindung betrifft ein Verfahren zur Wärmeregulierung einer Brennkraftmaschine für Fahrzeuge mit einem Kuhlmittelkreislauf und ansteuerbaren Einrichtungen zur Beeinflussung des Wärmehaushalts der Brennkraftmaschine, wobei eine Kühl- mitteltemperatur und weitere Betriebsparameter der Brennkraftmaschine erfasst werden und die ansteuerbaren Einrichtungen in Abhängigkeit der Kühlmitteltemperatur und der weiteren Betriebsparameter der Brennkraftmaschine angesteuert werden.The invention relates to a method for heat regulation of an internal combustion engine for vehicles with a coolant circuit and controllable devices for influencing the heat balance of the internal combustion engine, wherein a coolant temperature and other operating parameters of the internal combustion engine are recorded and the controllable devices as a function of the coolant temperature and the further operating parameters of the internal combustion engine can be controlled.
Aus der deutschen Offenlegungsschrift DE 197 28 351 AI ist ein Verfahren zur Wärmeregulierung einer Brennkraftmaschine für Fahrzeuge bekannt, bei dem zu einer Kühlmitteltemperatur eine Stegtemperatur zwischen den Auslassventilen sowie Leistungskennwerte der Brennkraftmaschine berücksichtigt werden. Neben den Temperaturwerten selbst wird auch deren Veränderung pro Zeiteinheit erfasst. Als Leistungskennwert wird vorgeschlagen, die in einem Brennraum pro Zeiteinheit oder Arbeitszyklus eingebrachte Kraftstoffmenge zu berücksichtigen. Mittels des dort vorgeschlagenen Verfahrens wird die durch den Kuhlmittelkreislauf abgeführte Wärmemenge über einen e- lektrisch ansteuerbaren Lüfter, elektrisch ansteuerbare Wasserpumpen, einen elektrisch ansteuerbaren Thermostat sowie eine elektrisch ansteuerbare Kühlerjalousie geregelt. In der Startphase einer Brennkraftmaschine werden mit steigender Temperatur bzw. zunehmenden Wärmeanfall zunächst die Wasserpumpen in Betrieb genommen und geregelt, woraufhin dann die Thermostate, die Kühlerjalousie und schließlich der Lüfter in Betrieb genommen und geregelt werden. Können mittels des Kühlmittelkreislaufs die Temperaturen der Brennkraftmaschine nicht beherrscht werden, ist vorgesehen, zur Sicherheit die Leistung der Brennkraftmaschine zu reduzieren.From the German published patent application DE 197 28 351 AI a method for heat regulation of an internal combustion engine for vehicles is known, in which a web temperature between the exhaust valves and performance characteristics of the internal combustion engine are taken into account for a coolant temperature. In addition to the temperature values themselves, their change per unit of time is also recorded. As a performance parameter, it is proposed to take into account the amount of fuel introduced into a combustion chamber per unit of time or working cycle. By means of the method proposed there, the amount of heat dissipated through the coolant circuit is regulated via an electrically controllable fan, electrically controllable water pumps, an electrically controllable thermostat and an electrically controllable radiator blind. In the start-up phase of an internal combustion engine, the water pumps are first put into operation and regulated with increasing temperature or increasing heat, then the thermostats, the radiator blind and finally the fan in Put into operation and regulated. If the temperatures of the internal combustion engine cannot be controlled by means of the coolant circuit, provision is made to reduce the performance of the internal combustion engine for safety.
Mit der Erfindung soll ein Verfahren zur Wärmeregulierung einer Brennkraftmaschine für Fahrzeuge angegeben werden, das mit geringen Änderungen für verschiedene Verbrennungsmotoren mit abweichenden Komponenten einsetzbar ist.The invention is intended to provide a method for regulating the heat of an internal combustion engine for vehicles, which can be used with minor changes for different internal combustion engines with different components.
Erfindungsgemäß ist hierzu ein Verfahren zur Wärmeregulierung einer Brennkraftmaschine für Fahrzeuge mit einem Kuhlmittelkreislauf und ansteuerbaren Einrichtungen zur Beeinflussung des Wärmehaushalts der Brennkraftmaschine vorgesehen, wobei eine Kühlmitteltemperatur und weitere Betriebsparameter der Brennkraftmaschine erfasst werden und die ansteuerbaren Einrichtungen in Abhängigkeit der Kühlmitteltemperatur und der weiteren Betriebsparameter der Brennkraftmaschine angesteuert werden, bei dem eine Regelung der Kühlmitteltemperatur und/oder der weiteren Betriebsparameter in der Weise erfolgt, dass anhand von wenigstens zwei verschiedenen Führungsgrößen wenigstens zwei Ausgangswerte zur Bestimmung einer Stellgröße für die ansteuerbaren Einrichtungen ermittelt, die wenigstens zwei Ausgangswerte verglichen werden und der größere Ausgangswert in die Stellgröße umgesetzt und an die ansteuerbaren Einrichtungen übergeben wird.According to the invention, a method for regulating the heat of an internal combustion engine for vehicles with a coolant circuit and controllable devices for influencing the heat balance of the internal combustion engine is provided, wherein a coolant temperature and further operating parameters of the internal combustion engine are recorded and the controllable devices are controlled as a function of the coolant temperature and the further operating parameters of the internal combustion engine in which the coolant temperature and / or the further operating parameters are regulated in such a way that at least two output values for determining a manipulated variable for the controllable devices are determined on the basis of at least two different reference variables, the at least two output values are compared and the larger output value in the manipulated variable is implemented and transferred to the controllable devices.
Auf diese Weise ist eine Max-Verknüpfung der ermittelten Ausgangswerte bereitgestellt, indem lediglich der größere Ausgangswert in die Stellgröße umgesetzt wird. Durch eine solche Max-Verknüpfung wird eine Schnittstelle für eine Erweiterung der Regelungsstruktur geschaffen. Zusätzliche Funktionalitäten oder Anforderungen können an der Max-Verknüpfung eingespeist werden, ohne weitere Änderungen an der übrigen Regelungsstruktur zu erfordern. Beispielsweise können Anforderungen aus einer Klimasteuerung oder aus motorischen Belangen wegen einer Kühlung der Abgasrückführung oder einer Ladeluft- kühlung dadurch berücksichtigt werden, dass anhand dieser Anforderungen ein Ausgangswert ermittelt, mit den übrigen Ausgangswerten verglichen und dann berücksichtigt wird, wenn er größer als die übrigen ermittelten Ausgangswerte ist.In this way, a maximum linkage of the determined output values is provided, in that only the larger output value is converted into the manipulated variable. Such a Max link creates an interface for expanding the control structure. Additional functionalities or requirements can be fed into the Max link without requiring any further changes to the rest of the regulatory structure. For example, requirements from climate control or engine issues due to cooling of the exhaust gas recirculation or charge air cooling are taken into account by determining an output value based on these requirements, comparing it with the other output values and then taking it into account if it is greater than the other determined output values.
Das der Erfindung zugrundeliegende Problem wird auch durch ein Verfahren zur Wärmeregulierung einer Brennkraftmaschine für Fahrzeuge mit einem Kuhlmittelkreislauf und ansteuerbaren Einrichtungen zur Beeinflussung des Wärmehaushalts der Brennkraftmaschine gelöst, wobei eine Kühlmitteltemperatur und weitere Betriebsparameter der Brennkraftmaschine erfasst werden und die ansteuerbaren Einrichtungen in Abhängigkeit der Kühlmitteltemperatur und der weiteren Betriebsparameter der Brennkraftmaschine angesteuert werden, bei dem eine Regelung der Kühlmitteltemperatur und/oder der weiteren Betriebsparameter in der Weise erfolgt, dass ein Ausgangswert zur Bestimmung einer Stellgröße mittels eines Grundkennfelds in Abhängigkeit der Drehzahl und der Last der Brennkraftmaschine vorgegeben wird und dieser Ausgangswert mittels eines Reglers in Abhängigkeit der Kühlmitteltemperatur und/oder der weiteren Betriebsparameter korrigiert wird.The problem underlying the invention is also solved by a method for heat regulation of an internal combustion engine for vehicles with a coolant circuit and controllable devices for influencing the heat balance of the internal combustion engine, wherein a coolant temperature and other operating parameters of the internal combustion engine are recorded and the controllable devices as a function of the coolant temperature and further operating parameters of the internal combustion engine can be controlled, in which the coolant temperature and / or the further operating parameters are regulated in such a way that an output value for determining a manipulated variable is specified by means of a basic map as a function of the speed and load of the internal combustion engine, and this output value is determined by means of a Controller depending on the coolant temperature and / or the other operating parameters is corrected.
Indem die Regelung über die Korrektur eines Grundkennfelds erfolgt, ist die Regelungsstruktur für unterschiedliche Anwendungen geeignet, da zur Anpassung an verschiedene Verbrennungsmotoren lediglich das Grundkennfeld oder der Korrekturregler verändert werden müssen. Dadurch können verschiedene Motoren unterschiedlichen Komponenten mit der gleichen Regelungsstruktur betrieben werden.Since the regulation is carried out via the correction of a basic map, the control structure is suitable for different applications, since only the basic map or the correction controller need be changed to adapt to different internal combustion engines. This means that different motors with different components can be operated with the same control structure.
In Weiterbildung der Erfindung wird bei der Bestimmung einer Stellgröße eine Hystereskennlinie angewendet.In a development of the invention, a hysteresis characteristic curve is used when determining a manipulated variable.
Eine solche Hysteresekennlinie kann sowohl bei den Reglern als auch auf das Grundkennfeld angewendet werden, um vor allem in Übergangsbereichen, beispielsweise beim Einschalten der Kühlmittelpumpe, ein unkontrolliertes Schalten zu verhindern.Such a hysteresis characteristic curve can be applied both to the controllers and to the basic characteristic diagram, especially in transition areas, for example when switching on the coolant pump to prevent uncontrolled switching.
In Weiterbildung der Erfindung erfolgt eine Bestimmung von Sollwerten einer Kühlmitteltemperatur und einer Bauteiltemperatur der Brennkraftmaschine mittels Kennfeldern in Abhängigkeit einer Drehzahl und einer Einspritzmenge der Brennkraftmaschine .In a further development of the invention, setpoints of a coolant temperature and a component temperature of the internal combustion engine are determined by means of characteristic maps as a function of a speed and an injection quantity of the internal combustion engine.
Auf diese Weise können die Sollwerte für Kühlmittel- und Bauteiltemperatur betriebspunktabhängig vorgegeben werden.In this way, the setpoints for coolant and component temperature can be specified depending on the operating point.
In Weiterbildung der Erfindung sind mehrere Zustände des Systems aus Brennkraftmaschine und Kuhlmittelkreislauf definiert, die jeweils unterschiedlichen Werten der Kühlmittel- temperatur und/oder der weiteren Betriebsparameter zugeordnet sind und in denen die ansteuerbaren Einrichtungen zur Regelung wenigstens der Kühlmitteltemperatur wenigstens teilweise unterschiedlich angesteuert werden.In a further development of the invention, several states of the system comprising the internal combustion engine and the coolant circuit are defined, each of which is assigned to different values of the coolant temperature and / or of the further operating parameters and in which the controllable devices for controlling at least the coolant temperature are at least partially controlled differently.
Durch diese Maßnahmen kann eine übersichtliche Regelungs- struktur erreicht werden. Darüber hinaus können in den verschiedenen Zuständen unterschiedliche Regelcharakteristiken vorgesehen werden oder ansteuerbare Einrichtungen ohne jede Regelung auf Maximal- oder Nulldurchsatz gestellt werden.A clear regulatory structure can be achieved through these measures. In addition, different control characteristics can be provided in the different states or controllable devices can be set to maximum or zero throughput without any control.
In Weiterbildung der Erfindung wird ein Wechsel in die verschiedenen Zustände durch Über- oder Unterschreiten vorgegebener Grenzwerte eine Umgebungstemperatur, einer Bauteiltemperatur der Brennkraftmaschine, einer Kühlmitteltemperatur, einer Ladelufttemperatur und/oder eines Drucks eines Klimakompressors ausgelöst und in den einzelnen Zuständen werden zur Regelung einer Kühlmitteltemperatur und einer Bauteiltemperatur der Brennkraftmaschine Einstellungen einer Kühlmittelpumpe, einer Heizungspumpe, eines Mischventils zwischen einem Kühler- und einem Bypasskreis, einer Kühlerjalousie, eines Kühlerlüfters, eines Klimakompressors und/oder einer Einspritzanlage der Brennkraftmaschine verändert.In a further development of the invention, a change in the various states is triggered by exceeding or falling below predefined limit values, an ambient temperature, a component temperature of the internal combustion engine, a coolant temperature, a charge air temperature and / or a pressure of an air conditioning compressor, and in the individual states a coolant temperature and are regulated in order to regulate a component temperature of the internal combustion engine settings of a coolant pump, a heating pump, a mixing valve between a cooler and a bypass circuit, a radiator blind, a cooler fan, an air conditioning compressor and / or an injection system of the internal combustion engine.
Durch diese Maßnahmen ist der jeweils aktuelle Zustand des Wärmehaushalts einer Brennkraftmaschine genau bekannt, und es kann schnell auf Veränderungen des Wärmehaushalts reagiert werden. Dadurch muss lediglich ein geringer Sicherheitsabstand von kritischen Bereichen der Brennkraftmaschine eingehalten werden, wodurch ein optimales Wärmemanagement erreicht werden kann. Auf diese Weise kann bei geringem Verbrauch, Verschleiß sowie geringer Emission ein guter Heizbzw. Klimakomfort erreicht werden.Through these measures, the current state of the heat balance of an internal combustion engine is known exactly, and it is possible to react quickly to changes in the heat balance. As a result, only a small safety distance from critical areas of the internal combustion engine has to be maintained, as a result of which optimal heat management can be achieved. In this way, with a low consumption, wear and low emissions, a good heating or Climate comfort can be achieved.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den Ansprüchen und der folgenden Beschreibung einer bevorzugten Ausführungsform der Erfindung im Zusammenhang mit den Zeichnungen. In den Zeichnungen zeigen:Further features and advantages of the invention emerge from the claims and the following description of a preferred embodiment of the invention in conjunction with the drawings. The drawings show:
Fig. 1 eine schematische Darstellung einer Brennkraftmaschine für ein Fahrzeug zur Durchführung des erfindungsgemäßen Verfahrens,1 shows a schematic representation of an internal combustion engine for a vehicle for carrying out the method according to the invention,
Fig. 2 eine Darstellung der Eingangs- und Ausgangsgrößen des erfindungsgemäßen Verfahrens,2 shows the input and output variables of the method according to the invention,
Fig. 3 eine detailliertere Darstellung der Bildung vonFig. 3 shows a more detailed representation of the formation of
Stellgrößen bei dem erfindungsgemäßen Verfahren undControl variables in the method and
Fig. 4 eine Darstellung der verschiedenen möglichen Zustände, die das System aus Brennkraftmaschine und Kuhlmittelkreislauf einnehmen kann.Fig. 4 shows the various possible states that the system of internal combustion engine and coolant circuit can assume.
In der schematischen Darstellung der Fig. 1 ist ein Verbrennungsmotor 10 dargestellt, der mit einem Kuhlmittelkreislauf versehen und in einem Kraftfahrzeug angeordnet ist. Mittels des in der Fig. 1 schematisch dargestellten Systems aus Verbrennungsmotor 10 und Kuhlmittelkreislauf sowie den weiteren dargestellten Einrichtungen kann das erfindungsgemäße Verfahren durchgeführt werden. In dem dargestellten Kuhlmittelkreislauf zirkuliert ein Kühlmittel, wobei eine Strömungsrichtung des Kühlmittels in dem Kuhlmittelkreislauf an verschiedenen Stellen jeweils durch einen Pfeil angedeutet ist. Ausgehend von einer Auslassöffnung 12 des Verbrennungsmotors 10 gelangt Kühlmittel zu einem steuerbaren Mischventil 14, das als Drehschieber ausgebildet ist. Das Mischventil 14 wird mittels eines Elektromotors 16 verstellt, der wiederum von einem zentralen Steuergerät 18 angesteuert wird. In der Darstellung der Fig. 1 ist eine Ansteuerung mittels pulsweitenmodulierter Signale (PWM) angedeutet. Mittels des Mischventils 14 wird der vom Verbrennungsmotor 10 kommende Kühlmittelstrom über eine Bypassleitung 20 bzw. über einen Fahrzeugkühler 22 geleitet.1, an internal combustion engine 10 is shown, which is provided with a coolant circuit and is arranged in a motor vehicle. By means of the system of internal combustion engine 10 and coolant circuit, as shown schematically in FIG. 1, and the others In the devices shown, the method according to the invention can be carried out. A coolant circulates in the coolant circuit shown, a direction of flow of the coolant in the coolant circuit being indicated at different points by an arrow. Starting from an outlet opening 12 of the internal combustion engine 10, coolant reaches a controllable mixing valve 14 which is designed as a rotary slide valve. The mixing valve 14 is adjusted by means of an electric motor 16, which in turn is controlled by a central control device 18. A control by means of pulse-width modulated signals (PWM) is indicated in the illustration in FIG. 1. By means of the mixing valve 14, the coolant flow coming from the internal combustion engine 10 is conducted via a bypass line 20 or via a vehicle radiator 22.
Stromabwärts des Fahrzeugkühlers 22 mündet die Bypassleitung 18 wieder in eine Hauptleitung 24, die zu einer Kühlmittel- pumpe 26 führt. Die Kühlmittelpumpe 26 wird mechanisch vom Verbrennungsmotor 10 angetrieben und ist mit einer vom Steuergerät 18 ansteuerbaren Magnetkupplung 28 versehen. Mittels der Magnetkupplung 28 kann die Kühlmittelpumpe 26 auch bei laufendem Verbrennungsmotor 10 an- bzw. ausgeschaltet werden. Anstelle einer mechanisch angetriebenen Kühlmittelpumpe könnte auch eine elektrisch angetriebene Kühlmittelpumpe zum Einsatz kommen. Ausgehend von der Kühlmittelpumpe 26 gelangt das Kühlmittel wieder in den Verbrennungsmotor 10.Downstream of the vehicle radiator 22, the bypass line 18 opens again into a main line 24, which leads to a coolant pump 26. The coolant pump 26 is driven mechanically by the internal combustion engine 10 and is provided with a magnetic coupling 28 which can be controlled by the control unit 18. By means of the magnetic coupling 28, the coolant pump 26 can also be switched on or off while the internal combustion engine 10 is running. Instead of a mechanically driven coolant pump, an electrically driven coolant pump could also be used. Starting from the coolant pump 26, the coolant returns to the internal combustion engine 10.
Stromaufwärts des Mischventils 14 zweigt eine Heizungskreisleitung 30 von der, den Kühlmittelauslass 12 und das Mischventil 14 verbindenden Leitung ab. Die Heizungskreisleitung 30 führt zunächst zu einer Heizungspumpe 32, die mittels eines Elektromotors 34 angetrieben wird. Der Elektromotor 34 wird vom Steuergerät 18 mittels pulsweitenmodulierter Signale angesteuert. Stromabwärts der Heizungspumpe 32 führt die Heizungskreisleitung 30 zu einem Abgasrückführ-Wärmetauscher 36. Dem Abgasrückführ-Wärmetauscher 36 in Reihe nachgeschaltet ist ein Heizungs-Wärmetauscher 38. Ausgehend von dem Hei- zungs-Wärmetauscher 38 führt die Heizungskreisleitung 30 dann zu der Hauptleitung 24, die zur Kühlmittelpumpe 26 führt.Upstream of the mixing valve 14, a heating circuit line 30 branches off from the line connecting the coolant outlet 12 and the mixing valve 14. The heating circuit line 30 first leads to a heating pump 32, which is driven by an electric motor 34. The electric motor 34 is controlled by the control unit 18 by means of pulse width modulated signals. Downstream of the heating pump 32, the heating circuit line 30 leads to an exhaust gas recirculation heat exchanger 36. The exhaust gas recirculation heat exchanger 36 is connected in series is a heating heat exchanger 38. Starting from the heating heat exchanger 38, the heating circuit line 30 then leads to the main line 24, which leads to the coolant pump 26.
Der Fahrzeugkühler 22 ist mit einer Kühlerjalousie 40, die mittels eines Elektromotors 42 verstellt werden kann, sowie einem Lüfter 44 versehen, der mittels eines Elektromotors 46 angetrieben wird. Durch Ansteuerung der Elektromotoren 42 bzw. 46 kann mittels des Steuergeräts 18 eine Einstellung der Kühlerjalousie 40 bzw. eine Drehzahl des Lüfters 44 verändert werden.The vehicle radiator 22 is provided with a radiator blind 40, which can be adjusted by means of an electric motor 42, and a fan 44, which is driven by means of an electric motor 46. By actuating the electric motors 42 and 46, an adjustment of the radiator blind 40 or a speed of the fan 44 can be changed by means of the control device 18.
Das zentrale Steuergerät 18 erhält Eingangssignale von einem Kühlmitteltemperatursensor 48 sowie einem Stegtemperatursensor 50 in dem Verbrennungsmotor 10. Der Kühlmitteltemperatursensor 48 misst eine Temperatur des Kühlmittels am Austritt 12 des Verbrennungsmotors 10 und der Stegtemperatursensor 50 misst eine Temperatur eines Materialbereichs zwischen den Auslassventilen des Verbrennungsmotors 10. Durch eine strich- liert dargestellte Verbindung 52 ist ein Datenaustausch zwischen dem Verbrennungsmotor 10 und dem zentralen Steuergerät 18 verdeutlicht. Mittels eines Datenaustauschs über die Verbindung 52 erhält das zentrale Steuergerät 18 Istwerte von Betriebsparametern des Verbrennungsmotors 10 gibt Stellgrößen für den Betrieb des Verbrennungsmotors 10 vor, beispielsweise Einspritzmenge, Drosselklappenstellung, Zündzeitpunkt und dergleichen. Darüber hinaus erhält das zentrale Steuergerät 18 von einem Block 54 Eingangssignale, die Heizungs- und Klimaanforderungen betreffen. Wird beispielsweise vom Block 54 eine erhöhte Klimatisierungsleistung angefordert, kann das Steuergerät 18 einerseits eine Motorlast erhöhen und andererseits Maßnahmen treffen, um die dann erhöhte Wärmemenge über den Kuhlmittelkreislauf abführen zu können.The central control unit 18 receives input signals from a coolant temperature sensor 48 and a land temperature sensor 50 in the internal combustion engine 10. The coolant temperature sensor 48 measures a temperature of the coolant at the outlet 12 of the internal combustion engine 10 and the land temperature sensor 50 measures a temperature of a material area between the exhaust valves of the internal combustion engine 10 A connection 52 shown in dashed lines illustrates a data exchange between the internal combustion engine 10 and the central control unit 18. By means of a data exchange via the connection 52, the central control device 18 receives actual values of operating parameters of the internal combustion engine 10, and sets manipulated variables for the operation of the internal combustion engine 10, for example the injection quantity, throttle valve position, ignition timing and the like. In addition, the central control unit 18 receives input signals from a block 54 which relate to heating and air conditioning requirements. If, for example, an increased air conditioning output is requested from block 54, control unit 18 can increase an engine load on the one hand and take measures on the other to be able to dissipate the then increased amount of heat via the coolant circuit.
Um eine bedarfsgerechte Motorkühlung zu ermöglichen, ist in das Steuergerät 18 eine Regelungsstruktur implementiert, mit der in Abhängigkeit der Kühlmitteltemperatur sowie weiterer Betriebsparameter des Verbrennungsmotors 10 das Mischventil 14, die Kühlmittelpumpe 26, die Heizungspumpe 32, die Kühlerjalousie 40, der Lüfter 44 und gegebenenfalls eine Einspritz- anlage des Verbrennungsmotors 10 unterschiedlich angesteuert werden können. Hierzu sind mehrere Zustände des Systems aus Verbrennungsmotor 10 und Kuhlmittelkreislauf definiert, in denen jeweils unterschiedliche Maßnahmen zur Regelung der Kühlmitteltemperatur bzw. der Stegtemperatur ergriffen werden.In order to enable engine cooling to meet requirements, a control structure is implemented in the control unit 18, with which, depending on the coolant temperature and others, a control structure is implemented Operating parameters of the internal combustion engine 10, the mixing valve 14, the coolant pump 26, the heating pump 32, the radiator blind 40, the fan 44 and possibly an injection system of the internal combustion engine 10 can be controlled differently. For this purpose, several states of the system comprising the internal combustion engine 10 and the coolant circuit are defined, in each of which different measures for regulating the coolant temperature or the web temperature are taken.
Die in das Steuergerät 18 implementierte Regelungsstruktur ist dabei so aufgebaut, dass sie mit geringem Aufwand an unterschiedliche Verbrennungsmotoren 10 und/oder zusätzliche Anforderungen für den Betrieb angepasst werden kann. So werden in dem in der Fig. 1 dargestellten Beispiel die Anforderungen des Blocks 54 betreffend Heizungs- und Klimaanforderungen zusätzlich verarbeitet.The control structure implemented in the control unit 18 is constructed in such a way that it can be adapted to different internal combustion engines 10 and / or additional requirements for operation with little effort. In the example shown in FIG. 1, the requirements of block 54 regarding heating and air conditioning requirements are additionally processed.
In der Darstellung der Fig. 2 ist das zentrale Steuergerät 18 schematisch dargestellt. Fig. 2 dient zur Verdeutlichung der dem Steuergerät 18 zur Verfügung stehenden Eingangsgrößen und der im Rahmen der Regelung Kühlmittel- und Bauteiltemperatur des Verbrennungsmotors 10 ausgegebenen Signale. Dem Steuergerät 18 werden eine Kühlmitteltemperatur Tκ von dem Kühlmittel- temperatursensor 48 und eine Bauteiltemperatur TB von dem Stegtemperatursensor 50 zugeführt. Darüber hinaus stehen dem Steuergerät 18 die aktuelle Motordrehzahl n sowie eine aktuelle Einspritzmenge rrie zur Verfügung. Die Regelung der Kühlmittel- und Bauteiltemperatur anhand dieser Eingangsgrößen Tκ, TB, n und nie wird detailliert anhand der Fig. 3 erläutert.The central control device 18 is shown schematically in the illustration in FIG. 2. 2 serves to clarify the input variables available to the control unit 18 and the signals output as part of the control of the coolant and component temperature of the internal combustion engine 10. A coolant temperature T κ from the coolant temperature sensor 48 and a component temperature T B from the web temperature sensor 50 are fed to the control device 18. In addition, the control unit 18 has the current engine speed n and a current injection quantity rrie available. The control of the coolant and component temperature on the basis of these input variables T κ , T B , n and never is explained in detail with reference to FIG. 3.
Weiterhin stehen dem Steuergerät 18 als Eingangsgrößen eine Außenlufttemperatur TAL, eine Ladelufttemperatur TLL, eine Ab- gasrückführrate AGR, die bereits erwähnten Klimaanforderungen K, eine Fahrzeuggeschwindigkeit v sowie eine Fahrpedalstellung p zur Verfügung. Diese Eingangsgrößen werden dazu verwendet, einen Zustand des Systems aus Verbrennungsmotor 10 und Kuhlmittelkreislauf zu bestimmen, wobei in den einzelnen Zuständen unterschiedliche Maßnahmen getroffen werden, um die Kühlmittel- und Bauteiltemperatur zu regeln. Nach Bestimmung des Systemszustands wird zur Regelung eine Kühlmittelvolumenstromanforderung bestimmt, die durch den Block 60 dargestellt ist. Die Volumenstromanforderung 60 wird in eine Stellgröße 62 für die Einstellung der Heizungspumpe 32 sowie eine Stellgröße 64 für die Einstellung der Kühlmittelpumpe 26 umgesetzt .The control unit 18 also has an outside air temperature T AL , a charge air temperature T LL , an exhaust gas recirculation rate AGR, the already mentioned climate requirements K, a vehicle speed v and an accelerator pedal position p available as input variables. These input variables are used to determine a state of the system from internal combustion engine 10 and to determine the coolant circuit, different measures being taken in the individual states in order to regulate the coolant and component temperature. After determining the system state, a coolant volume flow requirement is determined for the control, which is represented by block 60. The volume flow requirement 60 is converted into a manipulated variable 62 for the setting of the heating pump 32 and a manipulated variable 64 for the setting of the coolant pump 26.
Darüber hinaus wird eine Drehschieberpositionierung 66 angefordert, die in eine Stellgröße 68 für die Einstellung des Mischventils 14 umgesetzt wird.In addition, a rotary slide valve positioning 66 is requested, which is converted into a manipulated variable 68 for the setting of the mixing valve 14.
Schließlich wird eine Kühlluftmassenanforderung 70 bestimmt, die in eine Stellgröße 72 zur Ansteuerung der Kühlerjalousie 40 sowie in eine Stellgröße 74 zur Ansteuerung des Lüfters 44 gesetzt wird.Finally, a cooling air mass requirement 70 is determined, which is set in a manipulated variable 72 for controlling the radiator blind 40 and in a manipulated variable 74 for controlling the fan 44.
In der Darstellung der Fig. 3 ist die Bestimmung der Stellgrößen gemäß dem erfindungsgemäßen Verfahren detaillierter dargestellt. Die Bestimmung einer Stellgröße wird anhand des Reglers für die Kühlmittelpumpe 26 beschrieben. Mittels eines Grundkennfelds 80 wird anhand der Eingangsgrößen Einspritzmenge me sowie Motordrehzahl n ein Grundwert für einen benötigten Volumenstrom des Kühlmittels ermittelt. Dieser Grundwert aus dem Block 80 wird an einen Block 82 übergeben, in dem auf diesen Grundwert eine Hysteresekennlinie angewendet wird, um in Übergangsbereichen ein unkontrolliertes Schalten zu verhindern. Am Ausgang des Blocks 82 steht somit eine Volumenstromanforderung zur Verfügung, die an die Verknüpfungs- einheiten 84 und 86 übergeben wird. Mittels der Verknüpfungseinheiten wird der ermittelte Grundwert des Volumenstroms korrigiert. In der Verknüpfungseinheit 84 wird der Grundwert mittels eines Reglers korrigiert, der die Kühlmitteltemperatur Tκ als Führungsgröße verwendet und mittels der Verknüpfungseinheit 86 wird der Grundwert mittels eines Reglers kor- rigiert, der die Bauteiltemperatur TB als Führungsgröße verwendet .3 shows the determination of the manipulated variables in accordance with the method according to the invention in more detail. The determination of a manipulated variable is described using the controller for the coolant pump 26. A basic characteristic map 80 is used to determine a basic value for a required volume flow of the coolant on the basis of the input quantities injection quantity m e and engine speed n. This basic value from block 80 is transferred to a block 82, in which a hysteresis characteristic is applied to this basic value in order to prevent uncontrolled switching in transition areas. A volume flow request is thus available at the output of block 82 and is transferred to the link units 84 and 86. The determined basic value of the volume flow is corrected using the linking units. In the linking unit 84, the basic value is corrected by means of a controller which uses the coolant temperature T κ as a reference variable and by means of the linking unit 86 the basic value is corrected by means of a controller. rigged, which uses the component temperature T B as a reference variable.
Zur Ermittlung des Korrekturwerts wird durch einen Block 88 ein Sollwert TKsoιι für die Kühlmitteltemperatur in Abhängigkeit der aktuellen Einspritzmenge m^ der aktuellen Motordrehzahl n vorgegeben. Der Sollwert TKsoιι wird einer Verknüpfungseinheit 90 übergeben, der auch der aktuelle Istwert der Kühlmitteltemperatur TKιst vom Kühlmittelsensor 48 zur Verfügung steht und die aus diesen Werten eine Regeldifferenz ermittelt. Die so ermittelte Regeldifferenz wird an einen Block 92 übergeben, in dem auf die ermittelte Regeldifferenz eine Hysteresekennlinie angewendet wird. Vom Block 92 wird somit ein Korrekturwert für die Volumenstromanforderung an die Verknüpfungseinheit 84 übergeben und dort auf den zuvor ermittelten Grundwert aufaddiert .To determine the correction value, a setpoint T Kso ιι for the coolant temperature as a function of the current injection quantity m ^ of the current engine speed n is specified by a block 88. The target value T Kso ιι is transferred to a linking unit 90, which also the current actual value of the coolant temperature T K ι st is available from the coolant sensor 48 and which determines a control difference from these values. The control difference determined in this way is transferred to a block 92, in which a hysteresis characteristic curve is applied to the control difference determined. Block 92 thus transfers a correction value for the volume flow request to the linking unit 84 and adds it there to the previously determined basic value.
In ähnlicher Weise wird zur Berücksichtigung der Bauteiltemperatur TB in einem Block 94 anhand eines Grundkennfelds unter Berücksichtigung der Einspritzmenge me sowie der Motordrehzahl n zunächst ein Sollwert TBsoiι ermittelt und in einer Verknüpfungseinheit 96 aus einem Istwert TBist und dem Sollwert TBsoiι eine Regeldifferenz ermittelt. Auf die ermittelte Regeldifferenz wird im Block 98 eine Hysteresekennlinie angewendet, so dass vom Block 98 ein Korrekturwert für eine Volumenstromanforderung an die Verknüpfungseinheit 86 übergeben wird. Parallel zur Anwendung der Hysteresekennlinie in Block 98 wird im Block 100 eine zeitliche Veränderung der Bauteiltemperatur berücksichtigt, um eine zufriedenstellende Regelung der im Vergleich zur Kühlmitteltemperatur dynamischeren Bauteiltemperatur zu erreichen. Auch die vom Block 100 ausgegebene Volumenstromanforderung wird der Verknüpfungseinheit 86 zugeführt .Similarly, in order to take into account the component temperature T B , a setpoint T B soiι is first determined in a block 94 on the basis of a basic map, taking into account the injection quantity m e and the engine speed n, and in a linking unit 96 from an actual value T B i st and the setpoint T B s o iι determined a control difference. A hysteresis characteristic curve is applied to the determined control difference in block 98, so that a correction value for a volume flow request is transferred from block 98 to the linking unit 86. Parallel to the application of the hysteresis characteristic in block 98, a temporal change in the component temperature is taken into account in block 100 in order to achieve a satisfactory regulation of the component temperature which is more dynamic compared to the coolant temperature. The volume flow request issued by block 100 is also supplied to the linking unit 86.
Sowohl die Volumenstromanforderung aus dem Block 84 als auch die Volumenstromanforderung aus dem Block 86 werden in einem Block 102 bzw. 104 daraufhin geprüft, ob sie einen maximal bzw. minimal applizierbaren Wert überschreiten und gegebenenfalls auf diese Werte beschränkt.Both the volume flow request from block 84 and the volume flow request from block 86 are combined in one Blocks 102 and 104 are checked to determine whether they exceed a maximum or minimum applicable value and, if necessary, limit them to these values.
Von den Blöcken 102 und 104 werden die Volumenstromanforderungen daraufhin an eine Max-Verknüpfungseinheit 106 übergeben. In der Max-Verknüpfungseinheit 106 wird geprüft, welche der Volumenstromanforderungen vom Block 102 oder vom Block 104 größer ist, und lediglich die größere Volumenstromanforderung wird an einen Block 108 übergeben, in dem eine Umsetzungskennlinie auf die Volumenstromanforderung angewendet wird. Dadurch wird die Volumenstromanforderung in ein Ansteu- ersignal für die Kühlmittelpumpe 26 umgesetzt, das schließlich mittels einer Endstufe 110 verstärkt und an die Kühlmittelpumpe 26 weitergegeben wird.The volume flow requests are then transferred from blocks 102 and 104 to a max-linking unit 106. In the max logic unit 106, it is checked which of the volume flow requests from block 102 or from block 104 is larger, and only the larger volume flow request is passed to block 108, in which a conversion characteristic is applied to the volume flow request. As a result, the volume flow requirement is converted into a control signal for the coolant pump 26, which is finally amplified by means of an output stage 110 and passed on to the coolant pump 26.
Die Regelungsstruktur gemäß Fig. 3 ist in einfacher Weise veränderbar, um die Regelung auf verschiedene Verbrennungsmotoren und/oder verschiedene Zusatzeinrichtungen und Anforderungen abzustimmen. So kann zu Abstimmung auf unterschiedliche Verbrennungsmotoren beispielsweise das Grundkennfeld 80 verändert werden. Dadurch könnten auch ohne Veränderung der die Kühlmitteltemperatur Tκ bzw. die Bauteiltemperatur TB berücksichtigenden Regler grundlegend andere Volumenstromanforderungen erreicht werden. Die in der Fig. 3 dargestellte Regelungsstruktur, die in gleicher Weise für die Bestimmung von Stellgrößen für die Ansteuerung Mischventils 14, die Kühlerjalousie 40, den Lüfter 44, die Heizungskreislaufpumpe 32 sowie gegebenenfalls die Einspritzanlage des Verbrennungsmotors 10 verwendet werden kann, ist dadurch in einfacher Weise an verschiedene Motoren anpassbar.3 can be changed in a simple manner in order to adapt the control to different internal combustion engines and / or different additional devices and requirements. For example, the basic map 80 can be changed to match different internal combustion engines. As a result, fundamentally different volume flow requirements could be achieved even without changing the controller taking the coolant temperature T κ or the component temperature T B into account. The control structure shown in FIG. 3, which can be used in the same way for the determination of manipulated variables for the control of the mixing valve 14, the radiator blind 40, the fan 44, the heating circuit pump 32 and optionally the injection system of the internal combustion engine 10, is thereby simpler Adaptable to different engines.
Darüber hinaus können auch zusätzliche Anforderungen durch die in der Fig. 3 dargestellte Regelungsstruktur integriert werden. Hierzu schafft die Max-Verknüpfungseinheit 106 eine Schnittstelle, in die weitere Anforderungen eingespeist werden können. Durch die Max-Verknüpfung 106 erhält jeweils der- jenige Regler den Durchgriff auf die Steller der Kühlmittelpumpe 26, der Heizungskreislaufpumpe 32, des Mischventils 14, des Lüfters 44 oder der Kühlerjalousie 40, der den größten Anforderungswert an die Max-Verknüpfungseinheit 106 übergibt. Weitere Anforderungen, beispielsweise aus einer Klimasteuerung oder aus einer in einem speziell Betriebspunkt erforderlichen Kühlung der Abgasrückführung, können somit in die Max- Verknüpfung 106 eingespeist werden, wodurch sichergestellt ist, dass diese Anforderungen bei der Bestimmung der Stellgrößen berücksichtigt werden.In addition, additional requirements can also be integrated through the control structure shown in FIG. 3. For this purpose, the Max logic unit 106 creates an interface into which further requirements can be fed. The max link 106 gives the those regulators have access to the actuators of the coolant pump 26, the heating circuit pump 32, the mixing valve 14, the fan 44 or the radiator blind 40, which transfers the greatest demand value to the max logic unit 106. Further requirements, for example from a climate control system or from a cooling of the exhaust gas recirculation required at a special operating point, can thus be fed into the maximum link 106, which ensures that these requirements are taken into account when determining the manipulated variables.
Wie im Zusammenhang mit der Fig. 2 bereits erörtert wurde, bestimmt die zentrale Steuereinheit 18 anhand der ihr vorliegenden Eingangsgrößen welchen vorbestimmten Zustand das System aus Verbrennungsmotor 10 und Kuhlmittelkreislauf gerade einnimmt. Bei der bevorzugten Ausführungsform der Erfindung sind sieben Zustände vordefiniert, die das System aus Verbrennungsmotor 10 und Kuhlmittelkreislauf einnehmen kann und in denen jeweils unterschiedliche Maßnahmen vorgesehen sind, um eine Regelung der Kühlmitteltemperatur und der Stegtemperatur zu erreichen.As has already been discussed in connection with FIG. 2, the central control unit 18 uses the input variables available to it to determine which predetermined state the system of internal combustion engine 10 and coolant circuit is currently in. In the preferred embodiment of the invention, seven states are predefined which the system of internal combustion engine 10 and coolant circuit can assume and in which different measures are provided in order to achieve control of the coolant temperature and the land temperature.
Diese sieben möglichen Zustände oder Stufen bei der erfindungsgemäßen Wärmemanagementregelung werden anhand der Fig. 4 nachstehend beschrieben. Dabei zeigt die Übersicht der Fig. 4 in jeweils einer Spalte die Bedingungen dafür, dass ein bestimmter Zustand oder eine bestimmte Stufe eingenommen werden, sowie die in dem jeweiligen Zustand getroffenen Maßnahmen.These seven possible states or stages in the heat management control according to the invention are described below with reference to FIG. 4. The overview of FIG. 4 shows in a column in each case the conditions for a certain state or a certain level to be assumed, as well as the measures taken in the respective state.
Ein erster Zustand entspricht einem Kaltstart, bei dem eine Bauteiltemperatur im Bereich von -20°C bis 120°C und eine Kühlmitteltemperatur am Austritt aus dem Verbrennungsmotor im Bereich von -20°C bis 80°C liegt. Eine Temperatur der Ladeluft nach einem Ladeluftkühler ist kleiner als 60°C und ein Druck eines Kältemittels in einem Klimatisierungskreislauf liegt unterhalb von 12 bar. Beispielsweise liegen niedrige Umgebungstemperaturen im Bereich von -20°C vor. In diesem ersten Zustand ist die Zielsetzung, den Warmlauf des Verbrennungsmotors 10 zu beschleunigen und möglich schnell eine akzeptable Innenraumtemperatur zu erreichen. Hierzu wird der durch die Heizungspumpe 32 fließende Volumenstrom mittels des Motors 34 über die zentrale Steuereinheit 18 geregelt. Dadurch werden auch der Abgasrückführ-Wärmetauscher 36 sowie der Heizungs-Wärmetauscher 38 durchströmt, so dass eine rasche Erwärmung des Innenraums erwartet werden kann. Die Magnetkupplung 28 der Kühlmittelpumpe 26 ist entkoppelt, so dass die Kühlmittelpumpe 26 lediglich passiv durchströmt wird aber nicht selbst zur Förderung eines Volumenstroms beiträgt . Das Mischventil 14 ist im ersten Zustand so eingestellt, dass die Bypassleitung 18 vollständig geöffnet ist und die zum Kühler 22 führende Leitung vollständig geschlossen ist. Die Kühlerjalousie 40 ist vollständig geschlossen, der Lüfter 44 ausgeschaltet und auch ein Klimakompressor ist ausgeschaltet. Ein sogenannter Kochschutz, bei dessen Anwendung die Leistung des Verbrennungsmotors reduziert wird, um die anfallende Wärmemenge zu reduzieren, ist ausgeschaltet.A first state corresponds to a cold start, in which a component temperature is in the range from -20 ° C to 120 ° C and a coolant temperature at the outlet from the internal combustion engine is in the range from -20 ° C to 80 ° C. A temperature of the charge air after a charge air cooler is less than 60 ° C and a pressure of a refrigerant in an air conditioning circuit is below 12 bar. For example, there are low Ambient temperatures in the range of -20 ° C. In this first state, the objective is to accelerate the warm-up of the internal combustion engine 10 and to reach an acceptable interior temperature as quickly as possible. For this purpose, the volume flow flowing through the heating pump 32 is regulated by means of the motor 34 via the central control unit 18. This also flows through the exhaust gas recirculation heat exchanger 36 and the heating heat exchanger 38, so that a rapid heating of the interior can be expected. The magnetic coupling 28 of the coolant pump 26 is decoupled, so that the coolant pump 26 is only passed passively but does not itself contribute to the promotion of a volume flow. The mixing valve 14 is set in the first state such that the bypass line 18 is completely open and the line leading to the cooler 22 is completely closed. The radiator blind 40 is completely closed, the fan 44 is switched off and an air conditioning compressor is also switched off. A so-called cook protection, which, when used, reduces the power of the internal combustion engine in order to reduce the amount of heat generated, is switched off.
In einem zweiten Zustand, der wie der erste Zustand einem Warmlauf des Verbrennungsmotors zugeordnet ist und in dem eine Heizung des Innenraums erfolgen soll, ist das Kühlwasser sowie der Steg zwischen den Auslassventilen bereits erwärmt. Im einzelnen wird der Zustand des Systems vom Steuergerät 18 in den zweiten Zustand eingeordnet, wenn tiefe Umgebungstemperaturen, beispielsweise -20°C, eine Stegtemperatur im Bereich von 120°C bis 160°C, eine Temperatur am Kühlwasseraustritt 12 im Bereich von 80°C bis 90°C, eine Ladelufttemperatur nach dem Ladeluftkühler kleiner als 60°C und ein Kältemitteldruck von weniger als 12 bar vorliegen. In diesem zweiten Zustand ist, um den Innenraum möglichst schnell aufzuheizen, die Heizungspumpe 32 eingeschaltet und liefert 100% des möglichen Volumenstroms. Dadurch werden der Abgasrückführküh- ler 36 und der Heizungswärmetauscher 38 maximal durchströmt. Die Kühlmittelpumpe 26 wird durch wahlweises Ein- oder Aus- schalten der Magnetkupplung zu- oder abgeschaltet. Dies erfolgt in Abhängigkeit der Kühlmittel- bzw. Stegtemperatur. Das Mischventil 14 ist im zweiten Zustand so eingestellt, dass die Bypassleitung 18 voll geöffnet und die zum Kühler 22 führende Leitung vollständig geschlossen ist. Die Kühlerjalousie 44 sowie gegebenenfalls weitere Jalousien vor dem La- deluftkühler und einem Kondensator sind geschlossen. Der E- lektrolüfter 44, der Klimakompressor und der Kochschutz sind ausgeschaltet .In a second state, which, like the first state, is associated with a warm-up of the internal combustion engine and in which the interior is to be heated, the cooling water and the web between the exhaust valves are already heated. In detail, the state of the system is classified by the control device 18 in the second state when low ambient temperatures, for example -20 ° C., a land temperature in the range from 120 ° C. to 160 ° C., a temperature at the cooling water outlet 12 in the range of 80 ° C. up to 90 ° C, a charge air temperature after the charge air cooler is less than 60 ° C and a refrigerant pressure of less than 12 bar. In this second state, in order to heat up the interior as quickly as possible, the heating pump 32 is switched on and supplies 100% of the possible volume flow. As a result, the exhaust gas recirculation cooler 36 and the heating heat exchanger 38 have a maximum flow. The coolant pump 26 is switched on or off by optional switch the magnetic coupling on or off. This takes place depending on the coolant or web temperature. The mixing valve 14 is set in the second state such that the bypass line 18 is fully open and the line leading to the cooler 22 is completely closed. The radiator blind 44 and possibly further blinds in front of the charge air cooler and a condenser are closed. The electric fan 44, the air conditioning compressor and the cook protection are switched off.
Ein Wechsel in einen dritten Zustand erfolgt dann, wenn der Verbrennungsmotor bereits betriebswarm ist und sich die Stegtemperatur und die Kühlmitteltemperatur im Sollbereich bewegen. Im dritten Zustand ist weiterhin eine Heizung im Fahrzeuginnenraum erforderlich. Im einzelnen nimmt das System den dritten Zustand ein, wenn tiefe Umgebungstemperaturen, beispielsweise -20°C, eine Stegtemperatur im Bereich von 140°C bis 180°C, eine Kühlmitteltemperatur am Austritt 12 im Bereich von 90°C bis 95°C, eine Ladelufttemperatur von weniger als 60°C und ein Kältemitteldruck von weniger als 12 bar vorliegen. In diesem dritten Zustand ist die Heizungspumpe 32 eingeschaltet und liefert 100% ihres möglichen Volumenstroms. Die Kühlmittelpumpe 26 ist zugeschaltet, da die Magnetkupplung 28 unbestromt ist. Das Mischventil 14 wird im Regelbetrieb gefahren und leitet infolgedessen den Kühlmittelström in Abhängigkeit von der Kühlmitteltemperatur am Kühlmittel - sensor 48 und der Stegtemperatur am Bauteilsensor 50 durch die Bypassleitung 18 und/oder zum Kühler 22. Da das Mischventil 14 als Drehschieber ausgebildet ist, kann jede Verteilung des Kühlmittels auf die Bypassleitung 18 und den Kühler 22 im Regelbetrieb stufenlos eingestellt werden. Wie in den Zuständen eins und zwei sind die Kühlerjalousie 40 sowie gegebenenfalls weitere Jalousien geschlossen, der Lüfter 44, der Klimakompressor sowie ein Kochschutz sind ausgeschaltet.A change to a third state occurs when the internal combustion engine is already warm from operation and the land temperature and the coolant temperature are in the desired range. In the third state, heating in the vehicle interior is still required. Specifically, the system assumes the third state when low ambient temperatures, for example -20 ° C, a land temperature in the range from 140 ° C to 180 ° C, a coolant temperature at the outlet 12 in the range from 90 ° C to 95 ° C, a Charge air temperature of less than 60 ° C and a refrigerant pressure of less than 12 bar. In this third state, the heating pump 32 is switched on and supplies 100% of its possible volume flow. The coolant pump 26 is switched on because the magnetic clutch 28 is not energized. The mixing valve 14 is operated in regular operation and consequently conducts the coolant flow depending on the coolant temperature at the coolant sensor 48 and the land temperature at the component sensor 50 through the bypass line 18 and / or to the cooler 22. Since the mixing valve 14 is designed as a rotary slide valve, each Distribution of the coolant to the bypass line 18 and the cooler 22 can be set continuously in control operation. As in states one and two, the radiator blind 40 and any other blinds are closed, the fan 44, the air conditioning compressor and a cooker protection are switched off.
Bei weiterer Erwärmung des Verbrennungsmotors 10 wird in einen vierten Zustand gewechselt, in dem die Betriebstemperatu- ren bereits am oberen Rand des Sollbereichs liegen. Auch in diesem vierten Zustand muss aufgrund tiefer Umgebungstemperaturen eine Heizung des Fahrzeuginnenraums erfolgen. Im einzelnen ist der vierte Zustand durch eine Stegtemperatur im Bereich von 160° bis 200°C, eine Kühlmitteltemperatur von 95°C bis 100°C, eine Ladelufttemperatur nach dem Ladeluftkühler von mehr als 60°C und einen Kältemitteldruck von weniger als 12 bar gekennzeichnet. In diesem vierten Zustand ist die Heizungspumpe 32 eingeschaltet und liefert 100% ihres möglichen Volumenstroms. Die Kühlmittelpumpe 26 ist, da die Magnetkupplung 28 unbestromt ist, zugeschaltet. Das Mischventil 14 nimmt eine Endstellung ein, verschließt die Bypassleitung 18 vollständig und leitet den Kühlmittelström vollständig zum Fahrzeugkühler 22. Die Kühlerjalousie 40 sowie gegebenenfalls weitere Jalousien werden in Abhängigkeit der Kühlmitteltemperatur und der Stegtemperatur geregelt. Der Lüfter 44, der Klimakompressor und der Kochschutz sind ausgeschaltet.If the internal combustion engine 10 is heated further, a change is made to a fourth state in which the operating temperature already lie at the top of the target range. In this fourth state, too, the vehicle interior must be heated due to low ambient temperatures. Specifically, the fourth state is characterized by a land temperature in the range from 160 ° to 200 ° C, a coolant temperature from 95 ° C to 100 ° C, a charge air temperature after the charge air cooler of more than 60 ° C and a refrigerant pressure of less than 12 bar , In this fourth state, the heating pump 32 is switched on and supplies 100% of its possible volume flow. The coolant pump 26 is switched on because the magnetic coupling 28 is not energized. The mixing valve 14 assumes an end position, closes the bypass line 18 completely and directs the coolant flow completely to the vehicle radiator 22. The radiator blind 40 and possibly further blinds are regulated as a function of the coolant temperature and the web temperature. The fan 44, the air conditioning compressor and the cook protection are switched off.
Das System wechselt in einen fünften Zustand, wenn höhere Umgebungstemperaturen, beispielsweise um 20°C, vorliegen, so dass keine Heizung im Fahrzeuginnenraum mehr erforderlich ist aber auch noch keine Klimatisierung nötig ist. Der fünfte Zustand ist im einzelnen durch Stegtemperaturen im Bereich von 160°C bis 200°C, Kühlmitteltemperaturen zwischen 100°C und 115°C, Ladelufttemperaturen von mehr als 60°C und einen Kältemitteldruck von weniger als 12 bar gekennzeichnet. Im fünften Zustand ist die Heizungspumpe 32 ausgeschaltet, die Kühlmittelpumpe 26 ist zugeschaltet und das Mischventil 14 verschließt die Bypassleitung 18 und leitet den Kühlmittelstrom vollständig zum Kühler 22. Die Kühlerjalousie 40 sowie gegebenenfalls weitere Jalousien vor dem Ladeluftkühler und dem Kondensator sind vollständig geöffnet. Der Lüfter 44 wird in Abhängigkeit der Kühlmitteltemperatur und der Stegtemperatur geregelt. Der Klimakompressor und der Kochschutz sind ausgeschaltet . Bei einem weiterem Anstieg der Umgebungstemperaturen wird eine Klimatisierung des Innenraums erforderlich und das System wechselt in einen sechsten Zustand. Im einzelnen ist der sechste Zustand durch Umgebungstemperaturen im Bereich von 20°C bis 30°C, Stegtemperaturen im Bereich von 160°C bis 200°C, Kühlmitteltemperaturen im Bereich von 100°C bis 115°C, Ladelufttemperaturen von mehr als 60°C und einen Kältemitteldruck im Bereich von 12 bar bis 20 bar gekennzeichnet. In diesem Zustand versucht das System noch alle Anforderungen bezüglich Motorleistung und Klimaleistung zu erfüllen und mobilisiert alle Reserven, die zur Wärmeabfuhr von dem Verbrennungsmotor 10 zur Verfügung stehen. Die Heizungspumpe 32 ist ausgeschaltet, die Kühlmittelpumpe 26 dahingegen wird zugeschaltet. Das Mischventil 14 hält die Bypassleitung 18 weiterhin verschlossen und leitet den Kühlmittelstrom vollständig zum Kühler 22. Die Kühlerjalousie 40 sowie gegebenenfalls weitere Jalousien sind vollständig geöffnet. Der Lüfter 44 läuft mit maximaler Leistung und ermöglicht dadurch einen maximalen Luftdurchsatz durch den Kühler 22. Der Klimakompressor wird in Abhängigkeit der gewünschten Innenraumtemperatur geregelt. Der Kochschutz ist ausgeschaltet.The system changes to a fifth state when there are higher ambient temperatures, for example around 20 ° C., so that heating in the vehicle interior is no longer necessary but also no air conditioning is necessary. The fifth state is characterized by web temperatures in the range of 160 ° C to 200 ° C, coolant temperatures between 100 ° C and 115 ° C, charge air temperatures of more than 60 ° C and a refrigerant pressure of less than 12 bar. In the fifth state, the heating pump 32 is switched off, the coolant pump 26 is switched on and the mixing valve 14 closes the bypass line 18 and directs the coolant flow completely to the cooler 22. The cooler blind 40 and optionally further blinds in front of the charge air cooler and the condenser are fully open. The fan 44 is regulated depending on the coolant temperature and the web temperature. The air conditioning compressor and the cook protection are switched off. If the ambient temperature continues to rise, the interior becomes air-conditioned and the system changes to a sixth state. Specifically, the sixth state is due to ambient temperatures in the range from 20 ° C to 30 ° C, land temperatures in the range from 160 ° C to 200 ° C, coolant temperatures in the range from 100 ° C to 115 ° C, charge air temperatures of more than 60 ° C and a refrigerant pressure in the range of 12 bar to 20 bar. In this state, the system still tries to meet all requirements with regard to engine performance and climate performance and mobilizes all reserves that are available for heat dissipation from the internal combustion engine 10. The heating pump 32 is switched off, while the coolant pump 26 is switched on. The mixing valve 14 keeps the bypass line 18 closed and directs the coolant flow completely to the cooler 22. The cooler blind 40 and any other blinds are fully open. The fan 44 runs at maximum power and thereby enables a maximum air throughput through the cooler 22. The air conditioning compressor is regulated as a function of the desired interior temperature. The cook protection is switched off.
Bei einem weiteren Anstieg der Umgebungstemperaturen und/oder ungünstigen Randbedingungen, wie hohe Motorleistung und geringer Fahrgeschwindigkeit, können die Betriebstemperaturen des Motors weiter und in den kritischen Bereich steigen. In diesem siebten Zustand müssen somit Maßnahmen getroffen werden, um den Verbrennungsmotor 10 vor thermischen Schäden zu bewahren. Im einzelnen ist der siebte Zustand durch eine hohe Umgebungstemperatur, beispielsweise zwischen 30°C und 35°C, eine Stegtemperatur im Bereich 160°C bis 200°C, eine Kühlmitteltemperatur im kritischen Bereich von mehr als 115°C, eine Ladelufttemperatur von mehr als 60°C und einen Kältemitteldruck von mehr als 20 bar gekennzeichnet. Sämtliche Reserven zur Wärmeabfuhr sind mobilisiert und die Heizungspumpe 32 ist ausgeschaltet, die Kühlmittelpumpe 26 zugeschaltet, das Mischventil verschließt die Bypassleitung 18 vollständig und leitete den Kühlmittelstrom vollständig zum Kühler 22, die Kühlerjalousie 40 sowie gegebenenfalls weitere Jalousien sind vollständig geöffnet und der Lüfter 44 läuft mit maximaler Leistung. Um einen weiteren Temperaturanstieg zu verhindern, wird der Klimakompressor mit reduzierter Leistung gefahren und gleichzeitig wird über den Kochschutz eine reduzierte Motorleistung eingestellt. Dies kann beispielsweise dadurch erfolgen, dass eine Einspritzmenge reduziert wird. Sinken die Betriebstemperaturen ab, kann das System wieder in den sechsten Zustand wechseln und die volle Motor- und Klimaleistung steht wieder zur Verfügung.With a further increase in the ambient temperatures and / or unfavorable boundary conditions, such as high engine power and low driving speed, the operating temperatures of the engine can continue to rise and into the critical range. In this seventh state, measures must therefore be taken to protect the internal combustion engine 10 from thermal damage. Specifically, the seventh state is due to a high ambient temperature, for example between 30 ° C and 35 ° C, a land temperature in the range 160 ° C to 200 ° C, a coolant temperature in the critical range of more than 115 ° C, a charge air temperature of more than 60 ° C and a refrigerant pressure of more than 20 bar. All reserves for heat dissipation are mobilized and the heating pump 32 is switched off, the coolant pump 26 is switched on, the mixing valve closes the bypass line 18 completely and conducted the coolant flow completely to the cooler 22, the cooler blind 40 and possibly further blinds are fully open and the fan 44 runs at maximum power. In order to prevent a further rise in temperature, the air conditioning compressor is operated with reduced output and at the same time a reduced motor output is set via the cook protection. This can be done, for example, by reducing an injection quantity. If the operating temperatures drop, the system can switch back to the sixth state and the full engine and air conditioning performance is available again.
Sind nicht alle Randbedingungen für eine bestimmte Stufe oder einen bestimmten Zustand erfüllt, kann eine Priorisierung dahingehend erfolgen, dass das System einen bestimmten Zustand einnimmt, wenn ausgewählte Betriebsparameter innerhalb eines für diesen Zustand definierten Bereichs liegen. If not all boundary conditions for a certain level or a certain state are fulfilled, prioritization can take place such that the system assumes a certain state if selected operating parameters lie within a range defined for this state.

Claims

Patentansprüche claims
1. Verfahren zur Wärmeregulierung einer Brennkraftmaschine für Fahrzeuge mit einem Kuhlmittelkreislauf und ansteuerbaren Einrichtungen zur Beeinflussung des Wärmehaushalts der Brennkraftmaschine (10) , wobei eine Kühlmitteltemperatur und weitere Betriebsparameter der Brennkraftmaschine (10) erfasst werden und die ansteuerbaren Einrichtungen (14, 26, 32, 40, 66) in Abhängigkeit der Kühlmitteltemperatur und der weiteren Betriebsparameter der Brennkraftmaschine (10) angesteuert werden, d a d u r c h g e k e n n z e i c h n e t, d a s s eine Regelung der Kühlmitteltemperatur und/oder der weiteren Betriebsparameter in der Weise erfolgt, dass anhand von wenigstens zwei verschiedenen Führungsgrößen (Tκ, TB) wenigstens zwei Ausgangswerte zur Bestimmung einer Stellgröße für die ansteuerbaren Einrichtungen (14, 26, 32, 40, 44) ermittelt, die wenigstens zwei Ausgangswerte verglichen werden und der größere Ausgangswert in die Stellgröße umgesetzt und an die ansteuerbaren Einrichtungen (14, 26, 32, 40, 44) übergeben wird.1. Method for regulating the heat of an internal combustion engine for vehicles with a coolant circuit and controllable devices for influencing the heat balance of the internal combustion engine (10), wherein a coolant temperature and further operating parameters of the internal combustion engine (10) are recorded and the controllable devices (14, 26, 32, 40 , 66) are controlled as a function of the coolant temperature and the further operating parameters of the internal combustion engine (10), characterized in that the coolant temperature and / or the further operating parameters are regulated in such a way that on the basis of at least two different reference variables (T κ , T B ) at least two output values for determining a manipulated variable for the controllable devices (14, 26, 32, 40, 44) are determined, the at least two output values are compared and the larger output value is converted into the manipulated variable and sent to the controllable devices (14, 26, 32 . 40, 44) is passed.
2. Verfahren, insbesondere nach Anspruch 1, zur Wärmeregulierung einer Brennkraftmaschine für Fahrzeuge mit einem Kuhlmittelkreislauf und ansteuerbaren Einrichtungen zur Beeinflussung des Wärmehaushalts der Brennkraftmaschine (10) , wobei eine Kühlmitteltemperatur und weitere Betriebsparameter der Brennkraftmaschine (10) erfasst werden und die ansteuerbaren Einrichtungen (14, 26, 32, 40, 44) in Abhängigkeit der Kühlmitteltemperatur und der weiteren Betriebsparameter der Brennkraftmaschine (10) angesteuert werden, d a d u r c h g e k e n n z e i c h n e t , d a s s eine Regelung der Kühlmitteltemperatur und/oder der weiteren Betriebsparameter in der Weise erfolgt, dass ein Ausgangswert zur Bestimmung einer Stellgröße mittels eines Grundkennfelds (80) in Abhängigkeit der Drehzahl und der Last der Brennkraftmaschine vorgegeben wird und dieser Ausgangswert mittels eines Reglers in Abhängigkeit der Kühl- mitteltemperatur und/oder der weiteren Betriebsparameter korrigiert wird.2. The method, in particular according to claim 1, for thermoregulating an internal combustion engine for vehicles with a coolant circuit and controllable devices for influencing the heat balance of the internal combustion engine (10), wherein a coolant temperature and other operating parameters of the internal combustion engine (10) are recorded and the controllable devices (14 , 26, 32, 40, 44) are controlled as a function of the coolant temperature and the further operating parameters of the internal combustion engine (10), characterized in that the coolant temperature and / or the further operating parameters are controlled in such a way that an output value for determining a manipulated variable is specified by means of a basic map (80) as a function of the speed and load of the internal combustion engine and this output value is determined as a function of a controller the coolant temperature and / or the other operating parameters is corrected.
3. Verfahren nach Anspruch 1 oder 2 , d a d u r c h g e k e n n z e i c h n e t , d a s s bei der Bestimmung einer Stellgröße eine Hysteresekennlinie (82, 92, 98) angewendet wird.3. The method according to claim 1 or 2, d a d u r c h g e k e n n z e i c h n e t, that a hysteresis characteristic curve (82, 92, 98) is used in the determination of a manipulated variable.
4. Verfahren nach einem der vorstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , d a s s eine Bestimmung von Sollwerten einer Kühlmitteltemperatur (TRSOII) und einer Bauteiltemperatur (TBsoιι) der Brennkraftmaschine (10) mittels Kennfeldern (88, 94) in Abhängigkeit einer Drehzahl und einer Einspritzmenge der Brennkraftmaschine (10) erfolgt.4. The method according to any one of the preceding claims, characterized in that a determination of target values of a coolant temperature (T RSOI I) and a component temperature (T Bso ιι) of the internal combustion engine (10) by means of maps (88, 94) as a function of a speed and an injection quantity the internal combustion engine (10).
5. Verfahren nach einem der vorstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , d a s s mehrere Zustände des Systems aus Brennkraftmaschine (10) und Kuhlmittelkreislauf definiert sind, die jeweils unterschiedlichen Werten der Kühlmitteltemperatur und/oder der weiteren Betriebsparameter zugeordnet sind und in denen die ansteuerbaren Einrichtungen (14, 26, 32, 40, 44) zur Regelung wenigstens der Kühlmitteltemperatur wenigstens teilweise unterschiedlich angesteuert werden.5. The method according to any one of the preceding claims, characterized in that several states of the system of internal combustion engine (10) and coolant circuit are defined, each associated with different values of the coolant temperature and / or the other operating parameters and in which the controllable devices (14, 26th , 32, 40, 44) for controlling at least the coolant temperature are at least partially controlled differently.
6. Verfahren nach einem der vorstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , d a s s ein Wechsel in die verschiedenen Zustände durch Über- oder Unterschreiten vorgegebener Grenzwerte einer Umgebungstem- peratur, einer Bauteiltemperatur der Brennkraftmaschine, einer Kühlmitteltemperatur, einer Ladelufttemperatur und/oder eines Drucks eines Klimakompressors ausgelöst wird und in den einzelnen Zuständen zur Regelung einer Kühlmitteltemperatur und einer Bauteiltemperatur der Brennkraftmaschine (10) die Einstellungen einer Kühlmittelpumpe (26) , einer Heizungspumpe (32) , eines Mischventils (14) zwischen einem Kühler- und einem Bypasskreis, einer Kühlerjalousie (40) , eines Kühlerlüfters (44) , eines Klimakompressors und/oder einer Einspritzanlage der Brennkraftmaschine (10) verändert werden. 6. The method according to any one of the preceding claims, characterized in that a change in the various states by exceeding or falling below predetermined limits of an ambient temperature temperature, a component temperature of the internal combustion engine, a coolant temperature, a charge air temperature and / or a pressure of an air conditioning compressor is triggered and in the individual states for controlling a coolant temperature and a component temperature of the internal combustion engine (10) the settings of a coolant pump (26), a heating pump (32 ), a mixing valve (14) between a cooler and a bypass circuit, a radiator blind (40), a radiator fan (44), an air conditioning compressor and / or an injection system of the internal combustion engine (10) can be changed.
EP03714903A 2002-05-31 2003-03-29 Method for regulating the heat of an internal combustion engine for vehicles Expired - Lifetime EP1509687B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10224063 2002-05-31
DE10224063A DE10224063A1 (en) 2002-05-31 2002-05-31 Method for heat regulation of an internal combustion engine for vehicles
PCT/EP2003/003301 WO2003102394A1 (en) 2002-05-31 2003-03-29 Method for regulating the heat of an internal combustion engine for vehicles

Publications (2)

Publication Number Publication Date
EP1509687A1 true EP1509687A1 (en) 2005-03-02
EP1509687B1 EP1509687B1 (en) 2010-09-01

Family

ID=29432461

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03714903A Expired - Lifetime EP1509687B1 (en) 2002-05-31 2003-03-29 Method for regulating the heat of an internal combustion engine for vehicles

Country Status (5)

Country Link
US (1) US7128026B2 (en)
EP (1) EP1509687B1 (en)
JP (1) JP4164690B2 (en)
DE (2) DE10224063A1 (en)
WO (1) WO2003102394A1 (en)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10336599B4 (en) * 2003-08-08 2016-08-04 Daimler Ag Method for controlling a thermostat in a cooling circuit of an internal combustion engine
DE102004006591A1 (en) * 2004-02-10 2005-08-25 Behr Gmbh & Co. Kg Heating arrangement and method for heating control
WO2005125295A2 (en) * 2004-06-17 2005-12-29 Avl List Gmbh Device for cooling at least one electrical and/or electronic power component
DE102004034066B4 (en) * 2004-07-15 2012-10-31 Bayerische Motoren Werke Aktiengesellschaft Device for controlling the cooling of an internal combustion engine for motor vehicles
DE102004059004A1 (en) * 2004-12-08 2006-06-14 Daimlerchrysler Ag Heating operation of an internal combustion engine
ATE454543T1 (en) * 2004-12-23 2010-01-15 Valeo Thermique Moteur Sa SYSTEM FOR CONTROLLING THE THERMAL ENERGY OF A MOTOR VEHICLE ENGINE BY ADJUSTING THE SYSTEM'S FLUID DRIVES
FR2890700B1 (en) * 2005-09-13 2007-11-02 Renault Sas MOTOR VEHICLE COMPRISING RECIRCULATED GAS CIRCUIT COOLED AT LOW TEMPERATURE
EP1948917B1 (en) * 2005-11-10 2012-08-08 Behr GmbH & Co. KG Circulation system, mixing element
US7409928B2 (en) * 2006-01-27 2008-08-12 Gm Global Technology Operations, Inc. Method for designing an engine component temperature estimator
CA2651087C (en) 2006-05-08 2015-07-07 Magna Powertrain Inc. Vehicle cooling system with directed flows
GB2442742A (en) * 2006-10-12 2008-04-16 Ford Global Tech Llc Cooling system for an internal combustion engine comprising an exhaust gas cooler
US8430068B2 (en) * 2007-05-31 2013-04-30 James Wallace Harris Cooling system having inlet control and outlet regulation
EP2096276A1 (en) * 2008-02-28 2009-09-02 Behr GmbH & Co. KG Method for the control of an engine supercharging system, control system, computer programm product, storage medium and an engine supercharging system
DE102008052014A1 (en) 2008-10-17 2010-04-22 Daimler Ag Heat exchanger arrangement for vehicle, has radiator for cooling internal combustion engine, and heating heat exchanger
US20100114463A1 (en) * 2008-10-30 2010-05-06 Caterpillar Inc. System for cold starting machine
DE202009003807U1 (en) 2009-03-20 2010-08-12 Voss Automotive Gmbh Electric heating system for a fluid line system
US8256387B2 (en) * 2009-04-28 2012-09-04 Denso International America, Inc. Radiator shutter using film door technology
DE102009054783B4 (en) * 2009-12-16 2017-06-01 Ford Global Technologies, Llc A method of performing temperature management in a cooling system based on a matrix controller
DE102009058585A1 (en) * 2009-12-17 2011-06-22 Bayerische Motoren Werke Aktiengesellschaft, 80809 Cooling arrangement for a motor vehicle internal combustion engine and method for operating the same
DE102010002605B4 (en) * 2010-03-05 2013-12-12 Ford Global Technologies, Llc Method for shortening the warm-up phase by means of heat recovery from recirculated exhaust gases
DE102010010624A1 (en) * 2010-03-09 2011-09-15 GM Global Technology Operations LLC , (n. d. Ges. d. Staates Delaware) Coaxial heat exchanger for a motor vehicle exhaust system
KR20110120766A (en) * 2010-04-29 2011-11-04 현대자동차주식회사 Apparatus for control water pump of hybrid vehicle and method thereof
FR2961264B1 (en) * 2010-06-09 2015-10-09 Peugeot Citroen Automobiles Sa METHOD FOR CONTROLLING THE COMBUSTION OF A THERMAL MOTOR AND METHOD FOR DETECTING A DYSFUNCTION OF SAID MOTOR
US20120097464A1 (en) * 2010-10-22 2012-04-26 Gm Global Technology Operations, Inc. Control of a shutter via bi-directional communication using a single wire
US8689917B2 (en) 2010-10-22 2014-04-08 GM Global Technology Operations LLC Method for monitoring operation of a shutter
EP2636866A1 (en) * 2010-11-01 2013-09-11 Toyota Jidosha Kabushiki Kaisha Cooling system for internal combustion engine
DE102010060319B4 (en) * 2010-11-03 2012-05-31 Ford Global Technologies, Llc. cooling system
US8443921B2 (en) * 2010-11-09 2013-05-21 GM Global Technology Operations LLC System and method for increasing operating efficiency of a powertrain by controlling an aero shutter
KR20120060508A (en) * 2010-12-02 2012-06-12 현대자동차주식회사 Control Method for Electric Thermostat and Control Apparatus thereof
DE102011004327A1 (en) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Method for operating a rail vehicle
DE102011108953B4 (en) * 2011-07-29 2014-11-27 Audi Ag Coolant circuit for an internal combustion engine and method for operating a coolant circuit
US9416720B2 (en) 2011-12-01 2016-08-16 Paccar Inc Systems and methods for controlling a variable speed water pump
DE102012200003B4 (en) * 2012-01-02 2015-04-30 Ford Global Technologies, Llc Liquid-cooled internal combustion engine and method for operating such an internal combustion engine
DE102012200746A1 (en) * 2012-01-19 2013-07-25 Ford Global Technologies, Llc Internal combustion engine having a pump arranged in the coolant circuit and method for operating such an internal combustion engine
JP5892469B2 (en) * 2012-03-09 2016-03-23 スズキ株式会社 Cooling device for internal combustion engine for vehicle
US8997483B2 (en) * 2012-05-21 2015-04-07 GM Global Technology Operations LLC Engine thermal management system and method for split cooling and integrated exhaust manifold applications
US9657632B2 (en) 2012-08-01 2017-05-23 GM Global Technology Operations LLC Method and apparatus for remote torque control of an aerodynamic air shutter mechanism
FR3001797A1 (en) * 2013-02-06 2014-08-08 Peugeot Citroen Automobiles Sa Method for cooling and protecting air/fluid heat exchanger equipped in car, involves protecting air/fluid heat exchanger against nucleate boiling of coolant i.e. water glycol mixture flowing into air/fluid heat exchanger
US9394858B2 (en) * 2013-03-11 2016-07-19 Ford Global Technologies, Llc Charge air cooling control for boosted engines to actively maintain targeted intake manifold air temperature
US9115635B2 (en) 2013-03-22 2015-08-25 Ford Global Technologies, Llc Inferred engine local temperature estimator
FR3008175A1 (en) * 2013-07-04 2015-01-09 Valeo Systemes Thermiques DEVICE FOR CONTROLLING THE CIRCULATION OF A COOLANT FOR A HEAT EXCHANGER, PARTICULARLY A MOTOR VEHICLE MOTOR VEHICLE SUPERCORDITION AIR COOLER
US20150041229A1 (en) * 2013-08-08 2015-02-12 Honda Motor Co., Ltd. Front end arrangement with active radiator damper and active radiator control method
DE102013219144B4 (en) * 2013-09-24 2022-02-03 Bayerische Motoren Werke Aktiengesellschaft Heat management system for motor vehicles
JP6201888B2 (en) * 2014-05-14 2017-09-27 トヨタ自動車株式会社 Cooling device for internal combustion engine
FR3022591B1 (en) * 2014-06-20 2016-06-10 Renault Sa METHOD FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE
DE102014015638A1 (en) * 2014-10-22 2016-04-28 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Controlling a coolant pump and / or a control valve of a cooling system for a ...
JP6072752B2 (en) 2014-11-12 2017-02-01 本田技研工業株式会社 Cooling control device for internal combustion engine
GB2535159A (en) * 2015-02-09 2016-08-17 Gm Global Tech Operations Llc Method of controlling a cooling circuit of an internal combustion engine
EP3056706A1 (en) 2015-02-16 2016-08-17 Honeywell International Inc. An approach for aftertreatment system modeling and model identification
EP3734375B1 (en) 2015-07-31 2023-04-05 Garrett Transportation I Inc. Quadratic program solver for mpc using variable ordering
US10272779B2 (en) 2015-08-05 2019-04-30 Garrett Transportation I Inc. System and approach for dynamic vehicle speed optimization
DE102015117592A1 (en) 2015-10-15 2017-04-20 Volkswagen Aktiengesellschaft Controlling a coolant pump in a charging gas cooling circuit
KR101807046B1 (en) * 2016-04-01 2017-12-08 현대자동차 주식회사 Engine cooling system having coolant temperautre sensor
US10728249B2 (en) 2016-04-26 2020-07-28 Garrett Transporation I Inc. Approach for securing a vehicle access port
US10124750B2 (en) 2016-04-26 2018-11-13 Honeywell International Inc. Vehicle security module system
US10036338B2 (en) * 2016-04-26 2018-07-31 Honeywell International Inc. Condition-based powertrain control system
EP3548729B1 (en) 2016-11-29 2023-02-22 Garrett Transportation I Inc. An inferential flow sensor
JP6589906B2 (en) * 2017-02-16 2019-10-16 トヨタ自動車株式会社 Control device for internal combustion engine
DE102017202638B4 (en) 2017-02-20 2022-04-28 Ford Global Technologies, Llc Predictive thermal management for motor vehicles
US20190010858A1 (en) 2017-07-10 2019-01-10 GM Global Technology Operations LLC Controlling engine coolant fluid temperature
DE102017123468A1 (en) 2017-10-10 2019-04-11 Volkswagen Aktiengesellschaft Method for operating an internal combustion engine, internal combustion engine and motor vehicle
US11057213B2 (en) 2017-10-13 2021-07-06 Garrett Transportation I, Inc. Authentication system for electronic control unit on a bus
DE102018104409A1 (en) 2018-02-27 2019-08-29 Volkswagen Aktiengesellschaft Cooling system and internal combustion engine
KR102496812B1 (en) * 2018-08-06 2023-02-06 현대자동차 주식회사 Control method of cooling system
CN111485988B (en) * 2019-01-29 2024-07-16 日立安斯泰莫汽车系统(苏州)有限公司 Thermostat control device and thermostat control method
DE102019208959A1 (en) * 2019-06-19 2020-12-24 Volkswagen Aktiengesellschaft Internal combustion engine with a cooling system comprising an EGR cooler
DE102020128706B4 (en) 2020-11-02 2023-06-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method and control for regulating a fan of a cooling device of an internal combustion engine of a motor vehicle
US11578642B1 (en) 2021-08-05 2023-02-14 Garrett Transportation I Inc. Thermostat leak detection
CN113969820B (en) * 2021-11-01 2024-08-30 重庆康鹏汽车部件有限公司 Intelligent engine thermal management system with environmental temperature monitoring function
CN118423168B (en) * 2024-07-04 2024-09-20 宁波茂珹车辆部件有限公司 Automobile electronic fan heat dissipation method, system, storage medium and terminal

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3024209A1 (en) * 1979-07-02 1981-01-22 Guenter Dr Rinnerthaler Liq. cooling system for automobile engine with electronic control - regulating circulation pump or variable selective blocking element and by=pass line
DE3231766A1 (en) * 1982-08-26 1984-03-01 Robert Bosch Gmbh, 7000 Stuttgart DEVICE FOR REGULATING THE IDLE SPEED IN AN INTERNAL COMBUSTION ENGINE
DE3408215A1 (en) * 1984-02-01 1985-08-01 Robert Bosch Gmbh, 7000 Stuttgart CONTROL AND REGULATING METHOD FOR THE OPERATING CHARACTERISTICS OF AN INTERNAL COMBUSTION ENGINE
US4489680A (en) * 1984-01-23 1984-12-25 Borg-Warner Corporation Engine temperature control system
US4549504A (en) * 1984-07-19 1985-10-29 Evans Products Company Electronic controller for regulating temperature within an internal combustion engine system
US4930455A (en) * 1986-07-07 1990-06-05 Eaton Corporation Controlling engine coolant flow and valve assembly therefor
DE3625375A1 (en) * 1986-07-26 1988-02-04 Porsche Ag COOLING FLAP AND BLOWER CONTROL FOR MOTOR VEHICLES
DE3810174C2 (en) * 1988-03-25 1996-09-19 Hella Kg Hueck & Co Device for regulating the coolant temperature of an internal combustion engine, in particular in motor vehicles
DE69325044T2 (en) * 1992-02-19 1999-09-30 Honda Giken Kogyo K.K., Tokio/Tokyo Machine cooling system
DE4324178A1 (en) * 1993-07-19 1995-01-26 Bayerische Motoren Werke Ag Cooling system for an internal combustion engine of a motor vehicle with a thermostatic valve that contains an electrically heated expansion element
ES2112717B1 (en) * 1993-07-19 1998-12-01 Bayerische Motoren Werke Ag COOLING ARRANGEMENT FOR AN INTERNAL COMBUSTION ENGINE OF AN AUTOMOBILE.
DE4337717A1 (en) * 1993-11-05 1995-05-11 Graf Peter Von Ingelheim Control device for cooling circuits of internal combustion engines with throttle valves or directional control valves which can assume two positions
DE19500648B4 (en) * 1995-01-12 2010-12-30 Behr Thermot-Tronik Gmbh Cooling system for an internal combustion engine of a motor vehicle with a thermostatic valve
DE19508104C2 (en) * 1995-03-08 2000-05-25 Volkswagen Ag Method for regulating a cooling circuit of an internal combustion engine
DE19719792B4 (en) * 1997-05-10 2004-03-25 Behr Gmbh & Co. Method and device for regulating the temperature of a medium
DE69835855T2 (en) * 1997-07-02 2007-04-19 Nippon Thermostat Co. Ltd., Kiyose Device and method for cooling control for an internal combustion engine
DE19728351B4 (en) 1997-07-03 2004-07-22 Daimlerchrysler Ag Method for thermoregulation of an internal combustion engine
DE19939138A1 (en) * 1999-08-18 2001-02-22 Bosch Gmbh Robert Method for regulating the temperature of the coolant of an internal combustion engine by means of an electrically operated coolant pump
DE19951362A1 (en) * 1999-10-26 2001-05-03 Bosch Gmbh Robert Method for regulating the cooling water temperature of a motor vehicle with an internal combustion engine
US6352055B1 (en) * 1999-11-24 2002-03-05 Caterpillar Inc. Engine water pump control system
JP4337207B2 (en) * 2000-02-10 2009-09-30 株式会社デンソー Cooling device for liquid-cooled internal combustion engine
DE10016405A1 (en) * 2000-04-01 2001-10-11 Bosch Gmbh Robert Cooling circuit
JP2002222018A (en) * 2001-01-26 2002-08-09 Honda Motor Co Ltd Supply controller for working medium in heat exchanger
DE10155339A1 (en) * 2001-11-10 2003-05-22 Daimler Chrysler Ag Method for operating an internal combustion engine and motor vehicle
EP1316695B1 (en) * 2001-11-30 2006-12-20 BorgWarner Inc. Fan control of a cooling system of an internal combustion engine
JP4241211B2 (en) * 2003-06-19 2009-03-18 トヨタ自動車株式会社 Secondary air supply device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03102394A1 *

Also Published As

Publication number Publication date
JP4164690B2 (en) 2008-10-15
WO2003102394A1 (en) 2003-12-11
EP1509687B1 (en) 2010-09-01
US7128026B2 (en) 2006-10-31
DE10224063A1 (en) 2003-12-11
US20060005790A1 (en) 2006-01-12
DE50313040D1 (en) 2010-10-14
JP2005529269A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
EP1509687B1 (en) Method for regulating the heat of an internal combustion engine for vehicles
EP0744539B1 (en) Cooling system with an electrically controlled actuator
EP1947308B1 (en) Integrated motor cooling system
DE602004004016T3 (en) Method for controlling the valve of an exhaust system
DE10155339A1 (en) Method for operating an internal combustion engine and motor vehicle
DE102012202531A1 (en) Cooling system for an internal combustion engine
DE102007056360B4 (en) Method for controlling an internal combustion engine
WO2017055017A1 (en) Control system for air-conditioning a vehicle
EP1319815A2 (en) Cooling circuit of a liquid cooled internal combustion engine
EP0512298B1 (en) Heating device for vehicles
DE10332949A1 (en) Device for cooling and preheating
EP1461517B1 (en) Method for controlling electrically-operated components of a cooling system, computer programme, controller, cooling system and internal combustion engine
EP1561020A1 (en) Thermostatic valve for a cooling system of an internal combustion engine
EP1524418A1 (en) Method for controlling a fan with multiple characteristics and control program for the power control of the fan
EP1505323B1 (en) Valve with full shut-off position
EP2530273B1 (en) Construction machine with automatic ventilator rotation speed regulator
EP2507080B1 (en) Vehicle having a coolant circuit for heat distribution to vehicle assemblies
DE10228355A1 (en) Internal combustion engine heat regulation involves controlling influencing devices according to prevailing state associated with certain coolant temperatures and/or other operating parameter values
DE102006008826A1 (en) Method for operating drive apparatus of vehicle e.g. motor vehicle, involves bringing charged air or an intake air or intake air in operating condition on temperature by fluid intercooler
EP1461516B1 (en) Method for controlling electrically-operated components of a cooling system, computer programme, controller, cooling system and internal combustion engine
DE19519378A1 (en) Cooling system with electrically adjustable actuator
WO2005017327A1 (en) Method for triggering a thermostat
EP1523612B1 (en) Method and device for regulating the temperature of a coolant in an internal combustion engine
EP1140532B1 (en) Heating system for the interior of a vehicle
DE10329563B9 (en) Method and device for the needs-based cooling of internal combustion engines using a bypass valve and at least one heat sink

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AG

17Q First examination report despatched

Effective date: 20071108

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLER AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50313040

Country of ref document: DE

Date of ref document: 20101014

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110606

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50313040

Country of ref document: DE

Effective date: 20110606

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170327

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170330

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170531

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50313040

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331