EP1566082B1 - Cyclotron - Google Patents
Cyclotron Download PDFInfo
- Publication number
- EP1566082B1 EP1566082B1 EP03776680A EP03776680A EP1566082B1 EP 1566082 B1 EP1566082 B1 EP 1566082B1 EP 03776680 A EP03776680 A EP 03776680A EP 03776680 A EP03776680 A EP 03776680A EP 1566082 B1 EP1566082 B1 EP 1566082B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cyclotron
- intensity
- coils
- poles
- central axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000006698 induction Effects 0.000 claims abstract description 38
- 239000002245 particle Substances 0.000 claims abstract description 28
- 230000004907 flux Effects 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims description 24
- 238000005259 measurement Methods 0.000 claims description 4
- 239000002243 precursor Substances 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims 2
- 238000009434 installation Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000000605 extraction Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000003416 augmentation Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009206 nuclear medicine Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
- H05H7/10—Arrangements for ejecting particles from orbits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H13/00—Magnetic resonance accelerators; Cyclotrons
Definitions
- the present invention relates to a cyclotron and method that allows easy and efficient adjustment of the position of a charged particle beam.
- Cyclotrons are circular accelerators for accelerating charged particles such as positive ions (protons, deuterons, helions, alpha particles, etc.) or negative ions (H - , D - , etc.), which are used between others for the production of radioactive isotopes, for radiotherapy, or for experimental purposes.
- positive ions protons, deuterons, helions, alpha particles, etc.
- negative ions H - , D - , etc.
- the first cyclotrons included a magnetic circuit which consisted simply of two symmetrical poles arranged on either side of a median plane and separated by an air gap in which the accelerated particles circulate.
- the magnetic circuit is completed by flow returns to close said circuit and yokes serving as base plates to the poles.
- the poles are surrounded by a pair of induction coils traversed by a current, which generates a uniform and constant magnetic field capable of confining the particles in a substantially circular path or more precisely according to a spiral-shaped trajectory in the median plane.
- azimuthal field variation machines have been designed.
- the poles of the electromagnet are then divided into sectors alternately having a reduced air gap and a larger air gap.
- the azimuthal variation of the resulting field has the effect of ensuring the vertical and horizontal focusing of the beam during the acceleration.
- the document EP-A-0222786 describes an example of a compact isochronous cyclotron.
- the document US Patent 3868522 discloses an isochronous cyclotron using a superconducting air core magnet producing high intensity magnetic fields in which, to provide an axial focusing field, iron sectors with spiral edges act as aeroelastic poles positioned in the magnetic field so that the saturation of the iron in the sectors gives an increased field between the sectors and a slightly diminished field on the outside.
- the document US Patent 4639634 describes a cyclotron where the vertical defocus coils are arranged along a circular path in which is disposed the target. The elongated and curved coils have the effect of destroying the vertical focus and therefore widen the beam before the impact with the target, so that the target is not damaged.
- a large field of application for cyclotrons is the use of accelerated particles to bombard targets for the production of radioisotopes.
- said beam of accelerated particles can be extracted from the cyclotron.
- a known method is the "stripping" extraction method. Accelerated particles are most often negatively charged ions consisting of a nucleus and several electrons.
- the beam In the vicinity of the periphery of the cyclotron, the beam is directed towards a thin sheet, called “stripping sheet", generally made of carbon.
- This stripping sheet has the effect of tearing the peripheral electrons ions, changing their charge.
- the curvature of the trajectory is then reversed, and the beam is led to the outside of the machine, by an orifice made in the flux return of the magnetic circuit.
- Another known method of beam extraction is self-extraction, by means of a sudden radial variation of the induction field at the periphery of the cyclotron. This method is described in detail in the documents WO-A-97/14279 and WO-A-01/05199 .
- the charged particle beam is directed to a target which contains at least one precursor element of the radioisotope to be produced.
- the beam be directed towards the center of the target.
- a limiting factor in the productivity of a radioisotope production facility is the ability of the target to dissipate the thermal power it receives through the beam. If said target receives a beam intensity (or current) too high, it may be damaged.
- the irradiation intensities are limited to 40 ⁇ A, whereas cyclotrons used in nuclear medicine are capable of delivering beams with intensities of up to 80 to 100 ⁇ A. Therefore, we can not use fully the production capacity of the cyclotron in this case, mainly because we can not sufficiently cool the target.
- two stripping sheets are disposed at the periphery of the cyclotron diametrically opposite to the central axis of the machine.
- the beam is thus divided into two fractions substantially equal.
- one of the targets may receive a beam intensity substantially different from that received by the other target. It can be done while one of the targets is damaged by a current too important. This situation can occur in particular when, during a long irradiation, for example several hours, certain parameters of the machine then undergo a drift, especially as a result of the gradual heating of its elements.
- the document EP-A-1069 809 proposes the use of harmonic coils in order to make the two beams of particles coming from the same double beam installation substantially equivalent, that is to say having an equivalent intensity.
- harmonic coils of small dimension between the poles of the electromagnet. Two coils are traversed by opposite currents that produce an increase in the magnetic field in a region of the gap, and a decrease in the magnetic field in the region of the gap diametrically opposite.
- This solution thus makes it possible to regulate the intensity of the beams, but has the following disadvantages: in particular, the harmonic coils must be located at the level of the hills, where the gap is the narrowest.
- FIG. 1 A third solution known and already used by the applicant is illustrated in the figure 1 .
- the high-frequency alternating voltage applied to the acceleration electrodes (dies) is varied, the following situation is observed: if the amplitude of the high-frequency voltage applied to the dies (Vdee) is gradually increased, observe a corresponding increase in the total intensity of the beam produced by the cyclotron, which is explained by the increase of the efficiency of the ion source with this voltage.
- the intensities reaching each of the targets oscillate around a mean value, and that for certain precise values of Vdee, where the curves intersect, the intensities are equal. It is therefore sufficient to choose the voltage Vdee equal to one of these values to equalize the intensity of the beam reaching each of the targets.
- these two curves do not intersect never. It is then impossible to balance the currents striking the two targets by this method.
- the present invention aims to provide a device and a method that do not have the disadvantages of devices and methods of the state of the art described above.
- An important object of the invention is to propose a device and a method making it possible to precisely adjust the intensity of the accelerated charged particle beam extracted from a cyclotron on said target, so as to obtain at the level of said target the effect technique sought (for example, the production of a radioelement of interest from a precursor element contained in said target) and this without destruction of the target, but while making full use of the production capacity of the cyclotron.
- the present invention aims in particular to provide a device and a method that can be used in an irradiation installation, and in particular an installation with a compact isochronous cyclotron, in which it is sought to simultaneously irradiate at least two targets, that is, ie for a dual or multiple beam irradiation facility.
- the present invention therefore aims in particular to provide a device and a method that seek to adjust and equalize the intensity of each of the beams received by several targets simultaneously.
- said compensation coils surround portions of the flow returns disposed diametrically opposite to the central axis of the cyclotron.
- the current intensity of the current source is adjusted or adjusted to maximize the intensity of the beam striking the target.
- the present invention also relates to the use of the method and device for the production of radioisotopes for medical use from a target comprising a precursor of said radioisotope.
- the method and the device are used for a double or multiple beam installation according to which the intensity of the fraction of the beam striking each of said targets is balanced.
- the figure 1 represents the intensity of the beam striking each of the two targets of a double beam cyclotron, as a function of the high frequency alternating voltage applied to the beams.
- the figure 2 is a view of a cyclotron according to the invention corresponding to a top view in a section in the median plane of the cyclotron.
- the figure 3 represents a cyclotron view of the figure 2 , perspective view complementary to the view of the figure 2 .
- the figure 4 represents a diagram of a control loop implementing the method according to the present invention.
- the magnetic circuit consists essentially of an electromagnet in the form of two poles, an upper pole 1 (not shown in FIGS. Figs. 2 and 3 ) and a lower pole 1 ', arranged symmetrically with respect to a median plane 110 perpendicular to the central axis 100 of the cyclotron.
- These poles 1,1 ' have essentially a cylindrical shape and are separated by a gap 120.
- the magnetic circuit is completed by flux returns 2 which close the circuit.
- the two upper and lower poles 1 'of the electromagnet comprise (are divided into) each several sectors in order to create alternately hills, that is to say sectors where the air gap is narrow, identified by the references S1, S2, S3, S4, and valleys, that is to say sectors where the gap is important, identified by the references V1, V2, V3 V4.
- openings 10 are located in the flux returns 2. These openings 10 may advantageously allow passage to one or more beam lines, or accommodate in their volume one or more targets that can be used simultaneously or separately.
- a pair of solenoid coils 5,5 ' is wound around said poles 1,1'. Said pair of coils 5,5 'is called a pair of main coils “induction” and is able to generate a constant magnetic field called "main magnetic field”.
- the cyclotron also comprises two additional coils, called “re-centering coils” or “compensation coils” 6,7.
- These coils 6,7 surround portions of the flux returns 2 and are disposed diametrically opposite to the central axis 100.
- These coils, which are wired in series, are supplied with direct current by a DC type 8 source. whose intensity is adjustable.
- Each compensation coil 6.7 is thus able to locally modify the magnetic field.
- these two compensation coils 6, 7 are arranged in such a way that, in its vicinity, one of these coils 6 increases the main field created by the main coils 5, 5 'while the other coil 7 decreases, its neighborhood, the main field created by the main coils 5,5 '.
- the cyclotron comprises as stripping means stripping sheets (or strippers) 3,4.
- stripping sheets or strippers
- these sheets are made of carbon and their function is to tear the peripheral electrons out of the ions, thus changing their charge. In this case, the curvature of the trajectory of said ions is thus reversed and the particle beam is led outside the cyclotron by an opening made in the flux return element of the magnetic circuit.
- the first sheet 3 is disposed on the bisector S of the pole, the second sheet 4 at 11 ° upstream of this first.
- Each of these strippers 3,4 can be put into service or in the retracted position by means of a motorized device.
- the displacement of the trajectories of the accelerated particles will have the effect of, on the one hand, increasing the fraction of the beam striking the strippers situated in the sectors S1 and S4, and on the other hand of decreasing the fraction of the beam striking the strippers situated at the level of sectors S2 and S3.
- By reversing the direction of the current in the compensation coils 6, 7, of course we will obtain the opposite effect, namely an increase in the fraction of the beam striking the strippers located at sectors S2 and S3, and a decrease in the fraction of the beam striking the strippers located at sectors S1 and S4.
- the Applicant has experimented with a practical solution in which the compensation coils 6, each comprising 60 turns, are fed by a source 8 of direct current capable of supplying an intensity of 20 A, which was suitable for adjusting an industrial cyclotron.
- the figure 4 describes in detail a diagram showing a control loop of a cyclotron implementing the method according to the present invention.
- a conventional regulator 20 of known type which can adjust the intensity of the current in the compensation coils 6,7 through the variation of the supply current of the source 8 as a function of the intensities of the beam measured by detectors 210 at the targets 200.
- the intensity of the beam current striking each of the targets 200 is thus finely and flexibly adjusted.
- a current in the opposite direction may be injected by the source 8 into the compensation coils 6,7 if a correction in the opposite direction is necessary. This maximizes the total intensity striking the target (s). In the case of a dual beam installation, it is thus possible to adjust the current of the compensation coils so that each of the targets receives the same beam intensity.
- the device according to the invention is particularly simple to implement. It can easily be installed on an existing machine, without major intervention on the magnetic circuit, and without intervention inside the vacuum chamber, which is an advantage compared, for example, with the use of harmonic coils placed in the air gap of the hills as described in the state of the art.
- the invention should not be understood as being limited to the embodiment described above, but relates to other variants and applications.
- the invention is not limited to an application to dual beam installations, but can be applied to single or multiple beam installations, for example quadruple.
- the invention also applies to the use of more than two re-centering coils, for example four re-centering coils, arranged at 90 °, and giving the possibility of recentering the beam in all directions or of changing the shape of the trajectories. . It can be applied to a superconducting cyclotron or a resistive cyclotron.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Particle Accelerators (AREA)
Abstract
Description
La présente invention se rapporte à un cyclotron et à un procédé qui permettent un ajustement aisé et efficace de la position d'un faisceau de particules chargées.The present invention relates to a cyclotron and method that allows easy and efficient adjustment of the position of a charged particle beam.
Les cyclotrons sont des accélérateurs circulaires permettant d'accélérer des particules chargées telles que des ions positifs (protons, deutons, hélions, particules alpha, etc.) ou des ions négatifs (H-, D-, etc.), qui sont utilisées entre autres pour la production d'isotopes radioactifs, pour la radiothérapie, ou à des fins expérimentales.Cyclotrons are circular accelerators for accelerating charged particles such as positive ions (protons, deuterons, helions, alpha particles, etc.) or negative ions (H - , D - , etc.), which are used between others for the production of radioactive isotopes, for radiotherapy, or for experimental purposes.
Les premiers cyclotrons comprenaient un circuit magnétique qui était simplement constitué de deux pôles symétriques disposés de part et d'autre d'un plan médian et séparés par un entrefer dans lequel circulent les particules accélérées. Le circuit magnétique est complété par des retours de flux en vue de fermer ledit circuit et des culasses servant de plaques de base aux pôles. Les pôles sont entourés par une paire de bobines d'induction parcourues par un courant, qui génère un champ magnétique uniforme et constant apte à confiner les particules selon une trajectoire essentiellement circulaire ou plus précisément selon une trajectoire en forme de spirale dans le plan médian.The first cyclotrons included a magnetic circuit which consisted simply of two symmetrical poles arranged on either side of a median plane and separated by an air gap in which the accelerated particles circulate. The magnetic circuit is completed by flow returns to close said circuit and yokes serving as base plates to the poles. The poles are surrounded by a pair of induction coils traversed by a current, which generates a uniform and constant magnetic field capable of confining the particles in a substantially circular path or more precisely according to a spiral-shaped trajectory in the median plane.
Dans une variante améliorée, on a conçu des machines à variation azimutale de champ. Les pôles de l'électro-aimant sont alors divisés en secteurs présentant alternativement un entrefer réduit et un entrefer plus grand. La variation azimutale du champ qui en résulte a pour effet d'assurer la focalisation verticale et horizontale du faisceau au cours de l'accélération.In an improved variant, azimuthal field variation machines have been designed. The poles of the electromagnet are then divided into sectors alternately having a reduced air gap and a larger air gap. The azimuthal variation of the resulting field has the effect of ensuring the vertical and horizontal focusing of the beam during the acceleration.
Parmi les cyclotrons à variation azimutale de champ, il convient de distinguer les cyclotrons de type compact, dont le champ est créé par une paire de bobines circulaires principales, et les cyclotrons à secteurs séparés, dans lesquels la structure magnétique est divisée en unités séparées entièrement autonomes, où chaque paire de pôles dispose de ses propres bobines.Among cyclotrons with azimuthal field variation, it is necessary to distinguish between compact cyclotrons, whose field is created by a pair of main circular coils, and separated sector cyclotrons, in which the magnetic structure is divided into separate units entirely. autonomous, where each pair of poles has its own coils.
Le document
Le document
Le document
The document
The document
Un grand champ d'application des cyclotrons est l'utilisation des particules accélérées pour bombarder des cibles en vue de la production de radio-isotopes. Dans ce but, on peut extraire ledit faisceau de particules accélérées hors du cyclotron. Parmi les méthodes d'extraction, une méthode connue est la méthode d'extraction par « stripping ». Les particules accélérées sont le plus souvent des ions chargés négativement constitués d'un noyau et de plusieurs électrons.A large field of application for cyclotrons is the use of accelerated particles to bombard targets for the production of radioisotopes. For this purpose, said beam of accelerated particles can be extracted from the cyclotron. Among the extraction methods, a known method is the "stripping" extraction method. Accelerated particles are most often negatively charged ions consisting of a nucleus and several electrons.
Au voisinage de la périphérie du cyclotron, le faisceau est dirigé vers une feuille mince, dite « feuille de stripping », réalisée généralement en carbone. Cette feuille de stripping a pour effet d'arracher les électrons périphériques des ions, changeant ainsi leur charge. La courbure de la trajectoire est alors inversée, et le faisceau est conduit à l'extérieur de la machine, par un orifice pratiqué dans le retour de flux du circuit magnétique.In the vicinity of the periphery of the cyclotron, the beam is directed towards a thin sheet, called "stripping sheet", generally made of carbon. This stripping sheet has the effect of tearing the peripheral electrons ions, changing their charge. The curvature of the trajectory is then reversed, and the beam is led to the outside of the machine, by an orifice made in the flux return of the magnetic circuit.
Une autre méthode connue d'extraction du faisceau est l'auto-extraction, au moyen d'une variation radiale brusque du champ d'induction à la périphérie du cyclotron. Cette méthode est décrite en détail dans les documents
Pour l'application particulière de la production de radio-isotopes, le faisceau de particules chargées est dirigé vers une cible qui contient au moins un élément précurseur du radio-isotope à produire. Dans ce cas, il est particulièrement souhaitable que le faisceau soit dirigé vers le centre de la cible.For the particular application of the production of radioisotopes, the charged particle beam is directed to a target which contains at least one precursor element of the radioisotope to be produced. In this case, it is particularly desirable that the beam be directed towards the center of the target.
Un élément limitatif de la productivité d'une installation de production de radio-isotopes est la capacité de la cible à dissiper la puissance thermique qu'elle reçoit par le faisceau. Si ladite cible reçoit une intensité de faisceau (ou courant) trop importante, elle risque d'être endommagée. Pour certains types de cible, les intensités d'irradiation sont limitées à 40 µA, alors que les cyclotrons utilisés en médecine nucléaire sont capables de débiter des faisceaux avec des intensités pouvant atteindre 80 à 100 µA. On ne peut donc pas utiliser pleinement les capacités de production du cyclotron dans ce cas de figure, ceci essentiellement du fait que l'on ne parvient pas à refroidir suffisamment la cible.A limiting factor in the productivity of a radioisotope production facility is the ability of the target to dissipate the thermal power it receives through the beam. If said target receives a beam intensity (or current) too high, it may be damaged. For some target types, the irradiation intensities are limited to 40 μ A, whereas cyclotrons used in nuclear medicine are capable of delivering beams with intensities of up to 80 to 100 μ A. Therefore, we can not use fully the production capacity of the cyclotron in this case, mainly because we can not sufficiently cool the target.
Dans le but d'augmenter la productivité d'une installation de production de radio-isotopes tout en ne dépassant pas la limite de courant acceptable pour une cible, on a proposé des installations à double faisceau. Selon une telle configuration, deux feuilles de stripping sont disposées à la périphérie du cyclotron de manière diamétralement opposée par rapport à l'axe central de la machine. Le faisceau est ainsi divisé en deux fractions sensiblement égales. Néanmoins, en raison par exemple d'un défaut de symétrie du cyclotron, il se pourrait qu'une des cibles reçoive une intensité de faisceau essentiellement différente de celle reçue par l'autre cible. Il peut se faire alors qu'une des cibles soit endommagée par un courant trop important. Cette situation peut se produire en particulier lorsqu'au cours d'une longue irradiation, par exemple de plusieurs heures, certains paramètres de la machine subissent alors une dérive, notamment à la suite de l'échauffement progressif de ses éléments.In order to increase the productivity of a radioisotope production facility while not exceeding the acceptable current limit for a target, dual beam installations have been proposed. According to such a configuration, two stripping sheets are disposed at the periphery of the cyclotron diametrically opposite to the central axis of the machine. The beam is thus divided into two fractions substantially equal. However, due to, for example, a defect in cyclotron symmetry, one of the targets may receive a beam intensity substantially different from that received by the other target. It can be done while one of the targets is damaged by a current too important. This situation can occur in particular when, during a long irradiation, for example several hours, certain parameters of the machine then undergo a drift, especially as a result of the gradual heating of its elements.
Pour résoudre ce problème, il est connu de proposer des feuilles de stripping déplaçables radialement. Cette solution est utilisée par exemple dans la machine Cyclone 30 de la Demanderesse. Par un déplacement radial de la feuille de stripping vers l'intérieur ou l'extérieur du cyclotron, on augmente ou on diminue la fraction du faisceau interceptée par la feuille. Dans une machine à double faisceau, on peut, en déplaçant l'une des deux feuilles vers l'intérieur, et l'autre feuille vers l'extérieur, assurer une répartition équilibrée de l'intensité du faisceau frappant chacune des cibles. Cette solution est cependant délicate et coûteuse, puisqu'elle requiert l'installation d'équipements mobiles réglables au sein même de la machine, c'est-à-dire dans la chambre à vide.To solve this problem, it is known to provide radially displaceable stripping sheets. This solution is used for example in the
Le document
Une troisième solution connue et déjà utilisée par la demanderesse est illustrée à la
La présente invention vise à proposer un dispositif et un procédé qui ne présentent pas les inconvénients des dispositifs et procédés de l'état de la technique décrits ci-dessus.The present invention aims to provide a device and a method that do not have the disadvantages of devices and methods of the state of the art described above.
Un but important de l'invention est de proposer un dispositif et un procédé permettant de régler avec précision l'intensité du faisceau de particules chargées accélérées extrait d'un cyclotron sur ladite cible, de manière à obtenir au niveau de ladite cible l'effet technique recherché (par exemple, la production d'un radioélément d'intérêt à partir d'un élément précurseur contenu dans ladite cible) et ceci sans destruction de la cible, mais tout en utilisant pleinement les capacités de production du cyclotron.An important object of the invention is to propose a device and a method making it possible to precisely adjust the intensity of the accelerated charged particle beam extracted from a cyclotron on said target, so as to obtain at the level of said target the effect technique sought (for example, the production of a radioelement of interest from a precursor element contained in said target) and this without destruction of the target, but while making full use of the production capacity of the cyclotron.
La présente invention vise notamment à proposer un dispositif et un procédé qui puissent être utilisés dans une installation d'irradiation, et en particulier une installation avec un cyclotron isochrone compact, dans lequel on cherche à irradier simultanément au moins deux cibles, c'est-à-dire pour une installation d'irradiation à double ou multiple faisceau.The present invention aims in particular to provide a device and a method that can be used in an irradiation installation, and in particular an installation with a compact isochronous cyclotron, in which it is sought to simultaneously irradiate at least two targets, that is, ie for a dual or multiple beam irradiation facility.
La présente invention vise donc en particulier à proposer un dispositif et un procédé qui cherchent à régler et à égaliser l'intensité de chacun des faisceaux reçus par plusieurs cibles simultanément.The present invention therefore aims in particular to provide a device and a method that seek to adjust and equalize the intensity of each of the beams received by several targets simultaneously.
La présente invention se rapporte à un cyclotron apte à produire un faisceau de particules chargées accélérées destinées à l'irradiation d'au moins une cible, ledit cyclotron comprenant un circuit magnétique essentiellement constitué :
- d'un électro-aimant avec au moins deux pôles, un pôle supérieur et un pôle inférieur, lesdits pôles étant disposés de manière symétrique par rapport à un plan médian perpendiculaire à l'axe central du cyclotron, et séparés par un entrefer où circulent les particules chargées et de retours de flux pour fermer ledit circuit magnétique;
- d'une paire de bobines d'induction principales pour créer un champ d'induction principal essentiellement constant dans l'entrefer, entre lesdits pôles,
- et des moyens de centrage dudit faisceau comprenant au moins une paire de bobines de compensation alimentées par une source de courant et aptes à moduler l'intensité du champ d'induction principal produit par lesdites bobines principales en vue d'obtenir une augmentation de l'intensité du champ d'induction dans une première zone du cyclotron et une diminution de l'intensité du champ d'induction dans une seconde zone du cyclotron diamétralement opposée par rapport à l'axe central du cyclotron.
- an electromagnet with at least two poles, an upper pole and a lower pole, said poles being arranged symmetrically with respect to a median plane perpendicular to the central axis of the cyclotron, and separated by an air gap where the charged particles and flux returns for closing said magnetic circuit;
- a pair of main induction coils for creating a substantially constant main induction field in the gap between said poles,
- and centering means of said beam comprising at least one pair of compensation coils fed by a current source and able to modulate the intensity of the main induction field produced by said main coils in order to obtain an increase of the intensity of the induction field in a first zone of the cyclotron and a decrease of the intensity of the induction field in a second zone of the cyclotron diametrically opposite with respect to the central axis of the cyclotron.
Selon l'invention, lesdites bobines de compensation entourent des portions des retours de flux disposées de manière diamétralement opposée par rapport à l'axe central du cyclotron.According to the invention, said compensation coils surround portions of the flow returns disposed diametrically opposite to the central axis of the cyclotron.
La présente invention se rapporte également à un procédé de centrage d'un faisceau extrait d'un cyclotron sur une cible, ledit cyclotron comprenant un circuit magnétique essentiellement constitué de :
- un électro-aimant avec au moins deux pôles, un pôle supérieur et un pôle inférieur, lesdits pôles étant disposés de manière symétrique par rapport à un plan médian perpendiculaire à l'axe central du cyclotron et séparés par un entrefer où circulent les particules chargées et de retours de flux pour fermer ledit circuit magnétique;
- une paire de bobines d'induction principales pour créer un champ d'induction principal essentiellement constant dans l'entrefer, entre lesdits pôles.
- an electromagnet with at least two poles, an upper pole and a lower pole, said poles being arranged symmetrically with respect to a median plane perpendicular to the central axis of the cyclotron and separated by a gap where the charged particles circulate and flux returns for closing said magnetic circuit;
- a pair of main induction coils for creating a substantially constant main induction field in the gap between said poles.
Ledit procédé est caractérisé par la succession d'étapes suivantes :
- on munit le cyclotron d'au moins une paire de bobines de compensation disposées de manière à entourer des portions diamétralement opposées des retours de flux par rapport à l'axe central du cyclotron;
- on alimente la paire de bobines principales de manière à créer un champ magnétique essentiellement constant dans l'entrefer du cyclotron,
- on alimente les bobines de compensation par l'intermédiaire d'une source de courant de manière à augmenter l'intensité du champ d'induction dans une première zone du cyclotron et à diminuer l'intensité du champ d'induction dans une seconde zone située de manière diamétralement opposée par rapport à l'axe central du cyclotron.
- the cyclotron is provided with at least one pair of compensation coils arranged so as to surround diametrically opposite portions of the flux returns with respect to the central axis of the cyclotron;
- the pair of main coils is fed so as to create a substantially constant magnetic field in the cyclotron gap,
- the compensation coils are fed through a current source so as to increase the intensity of the induction field in a first zone of the cyclotron and to reduce the intensity of the induction field in a second zone located diametrically opposite to the central axis of the cyclotron.
De préférence, dans ledit procédé, on règle ou ajuste l'intensité de courant de la source de courant afin de maximiser l'intensité du faisceau frappant la cible.Preferably, in said method, the current intensity of the current source is adjusted or adjusted to maximize the intensity of the beam striking the target.
Avantageusement, dans ledit procédé :
- on mesure l'intensité de courant de faisceau au niveau de ladite cible à l'aide d'un détecteur,
- on transmet cette mesure à un régulateur, et
- en fonction de cette mesure, on règle ou ajuste l'intensité de courant dans les bobines de compensation par l'intermédiaire d'un ajustement du courant de l'alimentation.
- the intensity of the beam current is measured at said target by means of a detector,
- this measurement is transmitted to a regulator, and
- depending on this measurement, the current intensity in the compensation coils is adjusted or adjusted by adjusting the supply current.
La présente invention concerne également l'utilisation du procédé et du dispositif pour la production de radio-isotopes à usage médical à partir d'une cible comprenant un précurseur dudit radio-isotope.The present invention also relates to the use of the method and device for the production of radioisotopes for medical use from a target comprising a precursor of said radioisotope.
Avantageusement, on utilise le procédé et le dispositif pour une installation à double ou multiple faisceau selon laquelle on équilibre l'intensité de la fraction du faisceau frappant chacune desdites cibles.Advantageously, the method and the device are used for a double or multiple beam installation according to which the intensity of the fraction of the beam striking each of said targets is balanced.
La
La
La
La
Les
- a- un circuit magnétique,
- b-un dispositif d'accélération RF,
- c- une chambre à vide,
- d-des moyens d'injection des particules chargées,
- e- des moyens d'extraction des particules chargées accélérées.
- a- a magnetic circuit,
- b-an RF acceleration device,
- c- a vacuum chamber,
- d-means for injecting the charged particles,
- e- means for extracting accelerated charged particles.
Le circuit magnétique est essentiellement constitué d'un électro-aimant se présentant sous forme de deux pôles, un pôle supérieur 1 (non représenté aux
Par ailleurs, le circuit magnétique est complété par des retours de flux 2 qui ferment le circuit.Moreover, the magnetic circuit is completed by flux returns 2 which close the circuit.
Selon la forme d'exécution particulière représentée aux figures, les deux pôles supérieur 1 et inférieur 1' de l'électro-aimant comprennent (sont divisés en) chacun plusieurs secteurs en vue de créer alternativement des collines, c'est-à-dire des secteurs où l'entrefer est étroit, repérées par les références S1,S2,S3,S4, et des vallées, c'est-à-dire des secteurs où l'entrefer est important, repérées par les références V1,V2,V3,V4.According to the particular embodiment shown in the figures, the two upper and lower poles 1 'of the electromagnet comprise (are divided into) each several sectors in order to create alternately hills, that is to say sectors where the air gap is narrow, identified by the references S1, S2, S3, S4, and valleys, that is to say sectors where the gap is important, identified by the references V1, V2, V3 V4.
Avantageusement, des ouvertures 10 sont localisées dans les retours de flux 2. Ces ouvertures 10 peuvent avantageusement livrer passage à une ou plusieurs lignes de faisceau, ou loger dans leur volume une ou de plusieurs cibles que l'on peut utiliser simultanément ou séparément.Advantageously,
En outre, une paire de bobines solénoïdes 5,5' est enroulée autour desdits pôles 1,1'. Ladite paire de bobines 5,5' est appelée «paire de bobines principales d'induction» et est apte à générer un champ magnétique constant dit « champ magnétique principal ».In addition, a pair of
Selon l'invention, le cyclotron comprend également deux bobines additionnelles, dites « bobines de recentrage » ou « bobines de compensation » 6,7. Ces bobines 6,7 entourent des portions des retours de flux 2 et sont disposées de manière diamétralement opposée par rapport à l'axe central 100. Ces bobines, qui sont câblées en série, sont alimentées en courant continu par une source de type 8 D.C. dont l'intensité est réglable. Chaque bobine de compensation 6,7 est ainsi capable de modifier localement le champ magnétique.According to the invention, the cyclotron also comprises two additional coils, called "re-centering coils" or "compensation coils" 6,7. These
Plus précisément, ces deux bobines de compensation 6,7 sont agencées de telle sorte que, à son voisinage,une de ces bobines 6 augmente le champ principal créé par les bobines principales 5,5' tandis que l'autre bobine 7 diminue, à son voisinage, le champ principal créé par les bobines principales 5,5'.More precisely, these two
En d'autres termes, selon l'invention, grâce à l'utilisation des bobines de compensation 6,7, on obtient localement une augmentation du champ d'induction magnétique résultant au niveau d'une zone A située au niveau des secteurs S1 et S2. Parallèlement, on obtient une diminution du champ d'induction magnétique résultant au niveau d'une zone B située au niveau des secteurs S3 et S4. Pour autant, le champ moyen s'exerçant sur une particule au cours d'un tour dans la machine, défini comme la moyenne des champs d'induction créés sur l'ensemble du parcours d'une particule chargée, reste cependant sensiblement inchangé.In other words, according to the invention, by using
L'augmentation de l'intensité du champ résultant dans les secteurs avoisinants S1 et S2 (zone A) a pour effet de réduire le rayon de courbure des trajectoires des particules dans ces secteurs. Inversement, la diminution du champ dans les secteurs opposés S3 et S4 (zone B) a pour effet d'y augmenter le rayon de courbure des trajectoires des particules. Il en résulte un déplacement des trajectoires des particules. Les trajectoires restent sensiblement circulaires, mais ne sont plus centrées sur l'axe central du cyclotron, mais légèrement excentrées vers le bas de la
Par ailleurs, on notera que bien que des ouvertures supplémentaires puissent être pratiquées dans les retours de flux 2 pour faire passer les spires des bobines de compensation 6,7, il est possible et aisé de faire passer celles-ci par les ouvertures 10 existantes prévues pour l'installation des cibles.Furthermore, it will be noted that although additional openings may be made in the flow returns 2 to pass the turns of the compensation coils 6,7, it is possible and easy to pass them through the existing
En outre, le cyclotron comprend comme moyens d'extraction des feuilles de stripping (ou strippers) 3,4. Avantageusement, ces feuilles sont réalisées en carbone et ont pour fonction d'arracher les électrons périphériques des ions, changeant ainsi leur charge. Dans ce cas, la courbure de la trajectoire desdits ions est ainsi inversée et le faisceau de particules est conduit à l'extérieur du cyclotron par une ouverture pratiquée dans l'élément retour de flux du circuit magnétique. La première feuille 3 est disposée sur la bissectrice S du pôle, la seconde feuille 4 à 11° en amont de cette première. Chacun de ces strippers 3,4 peut être mis en service ou en position de retrait au moyen d'un dispositif motorisé.In addition, the cyclotron comprises as stripping means stripping sheets (or strippers) 3,4. Advantageously, these sheets are made of carbon and their function is to tear the peripheral electrons out of the ions, thus changing their charge. In this case, the curvature of the trajectory of said ions is thus reversed and the particle beam is led outside the cyclotron by an opening made in the flux return element of the magnetic circuit. The
Le déplacement des trajectoires des particules accélérées aura pour effet d'une part d'augmenter la fraction du faisceau frappant les strippers situés au niveau des secteurs S1 et S4, et d'autre part de diminuer la fraction du faisceau frappant les strippers situés au niveau des secteurs S2 et S3. En inversant le sens du courant dans les bobines de compensation 6, 7, on obtiendra bien sûr l'effet inverse, à savoir une augmentation de la fraction du faisceau frappant les strippers situés au niveau des secteurs S2 et S3, et une diminution de la fraction du faisceau frappant les strippers situés au niveau des secteurs S1 et S4.The displacement of the trajectories of the accelerated particles will have the effect of, on the one hand, increasing the fraction of the beam striking the strippers situated in the sectors S1 and S4, and on the other hand of decreasing the fraction of the beam striking the strippers situated at the level of sectors S2 and S3. By reversing the direction of the current in the compensation coils 6, 7, of course we will obtain the opposite effect, namely an increase in the fraction of the beam striking the strippers located at sectors S2 and S3, and a decrease in the fraction of the beam striking the strippers located at sectors S1 and S4.
La Demanderesse a expérimenté une solution pratique selon laquelle les bobines de compensation 6,7 comportant chacune 60 spires sont alimentées par une source 8 de courant continu capable de fournir une intensité de 20 A, qui convenait au réglage d'un cyclotron industriel.The Applicant has experimented with a practical solution in which the compensation coils 6, each comprising 60 turns, are fed by a
La
En ajustant l'intensité du courant fourni par la source 8 et traversant les bobines de compensation 6,7, on ajuste ainsi de manière fine et souple l'intensité du courant de faisceau frappant chacune des cibles 200. Un courant en sens opposé peut être injecté par la source 8 dans les bobines de compensation 6,7 si une correction en sens opposé est nécessaire. On maximise ainsi l'intensité totale frappant la ou les cibles. Dans le cas d'une installation à double faisceau, on peut ainsi régler le courant des bobines de compensation pour que chacune des cibles reçoive la même intensité de faisceau.By adjusting the intensity of the current supplied by the
En conclusion, le dispositif suivant l'invention est particulièrement simple à mettre en oeuvre. Il peut aisément être installé sur une machine existante, sans intervention majeure sur le circuit magnétique, et sans intervention à l'intérieur de la chambre à vide, ce qui constitue un avantage par rapport, par exemple, à l'utilisation de bobines harmoniques placées dans l'entrefer des collines telles que décrites dans l'état de la technique.In conclusion, the device according to the invention is particularly simple to implement. It can easily be installed on an existing machine, without major intervention on the magnetic circuit, and without intervention inside the vacuum chamber, which is an advantage compared, for example, with the use of harmonic coils placed in the air gap of the hills as described in the state of the art.
On notera que l'invention ne doit pas être comprise comme étant limitée à l'exemple de réalisation décrit ci-dessus, mais porte sur d'autres variantes et applications. En particulier, l'invention n'est pas limitée à une application aux installations à double faisceau, mais peut s'appliquer aux installations à faisceau simple ou multiple, par exemple quadruple. L'invention s'applique également à l'usage de plus de deux bobines de recentrage, par exemple quatre bobines de recentrage, disposées à 90°, et donnant la possibilité de recentrer le faisceau dans toutes les directions ou de changer la forme des trajectoires. Elle peut s'appliquer à un cyclotron supraconducteur ou à un cyclotron résistif.Note that the invention should not be understood as being limited to the embodiment described above, but relates to other variants and applications. In particular, the invention is not limited to an application to dual beam installations, but can be applied to single or multiple beam installations, for example quadruple. The invention also applies to the use of more than two re-centering coils, for example four re-centering coils, arranged at 90 °, and giving the possibility of recentering the beam in all directions or of changing the shape of the trajectories. . It can be applied to a superconducting cyclotron or a resistive cyclotron.
Claims (6)
- A cyclotron capable of producing a beam of accelerated charged particles intended for the irradiation of at least one target (200), said cyclotron comprising a magnetic circuit that is essentially comprised of:- an electromagnet with at least two poles (1, 1'), an upper pole (1) and a lower pole (1'), said poles being disposed symmetrically with relation to a median plane (110) that is perpendicular to the central axis (100) of the cyclotron, and separated by a gap (120) where charged particles and flux returns (2) circulate to close said magnetic circuit;- a pair of main induction coils (5, 5') for creating an essentially constant main induction field in the gap, between said poles 1 and 1',- and means for centering said beam comprising at least one pair of bucking coils (6, 7) powered by a power supply (8) and capable of modulating the intensity of the main induction field by said main coils (5, 5') in order to obtain an increase in the intensity of the induction field in a first area of the cyclotron and a reduction in intensity of the induction field in a second area of the cyclotron that is diametrically opposed with relation to the central axis (100) of the cyclotron,characterized in that the bucking coils (6, 7) surround portions of the flux returns (2) disposed in diametric opposition with relation to the central axis (100) of the cyclotron.
- A method for centering a beam extracted from a cyclotron on a target, said cyclotron comprising a magnetic circuit essentially comprised of:- an electromagnet with at least two poles (1, 1'), an upper pole (1) and a lower pole (1'), said poles being symmetrically disposed with relation to a median plane (110) that is perpendicular to the central axis (100) of the cyclotron and separated by a gap (120) where the charged particles and flux returns (2) circulate to close said magnetic circuit;- a pair of main induction coils (5, 5') for creating an essentially constant main induction field in the gap (120), between said poles (1, 1'),characterized in that:- the cyclotron is equipped with at least one pair of bucking coils (6, 7) disposed in such a way as to surround the diametrically opposed portions of the flux returns (2) with relation to the central axis of the cyclotron;- the pair of main coils (5, 5') is powered in such a way as to create an essentially constant magnetic field in the gap (120) of the cyclotron,- the bucking coils (6, 7) are powered through a power supply (8) in such a way as to increase the intensity of the induction field in a first area of the cyclotron and to reduce the intensity of the induction field in a second area situated in diametric opposition with relation to the central axis (100) of the cyclotron.
- The method according to claim 2, characterized in that the intensity of the current of the power supply (8) is regulated or adjusted in order to maximize the intensity of the beam hitting the target (200).
- The method according to claim 3, characterized in that:- the intensity of the current of the beam is measured at said target (200) by using a detector (210),- this measurement is transmitted to a regulator, and- according to this measurement, the intensity of the current in the bucking coils (6, 7) is regulated or adjusted through an adjustment in the supply current (8).
- The utilization of the method and device according to any one of the previous claims for producing radioisotopes for medical uses from a target comprising a precursor of said radioisotope.
- The utilization of the method and device according to any one of claims 1 to 5 for a double or multiple beam system according to which the intensity of the fraction of the beam hitting each of said targets is balanced.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03776680A EP1566082B1 (en) | 2002-11-25 | 2003-11-14 | Cyclotron |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02447230 | 2002-11-25 | ||
EP02447230 | 2002-11-25 | ||
PCT/BE2003/000196 WO2004049770A1 (en) | 2002-11-25 | 2003-11-14 | Cyclotron |
EP03776680A EP1566082B1 (en) | 2002-11-25 | 2003-11-14 | Cyclotron |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1566082A1 EP1566082A1 (en) | 2005-08-24 |
EP1566082B1 true EP1566082B1 (en) | 2012-05-30 |
Family
ID=32338255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03776680A Expired - Lifetime EP1566082B1 (en) | 2002-11-25 | 2003-11-14 | Cyclotron |
Country Status (6)
Country | Link |
---|---|
US (1) | US7446490B2 (en) |
EP (1) | EP1566082B1 (en) |
JP (1) | JP4653489B2 (en) |
AU (1) | AU2003286006A1 (en) |
ES (1) | ES2385709T3 (en) |
WO (1) | WO2004049770A1 (en) |
Families Citing this family (127)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2558978T3 (en) | 2004-07-21 | 2016-02-09 | Mevion Medical Systems, Inc. | Programmable radiofrequency waveform generator for a synchro-cyclotron |
JP3896420B2 (en) * | 2005-04-27 | 2007-03-22 | 大学共同利用機関法人 高エネルギー加速器研究機構 | All ion accelerator and its control method |
EP2389979A3 (en) | 2005-11-18 | 2012-02-29 | Still River Systems, Inc. | Charged particle radiation therapy |
US7902530B1 (en) * | 2006-04-06 | 2011-03-08 | Velayudhan Sahadevan | Multiple medical accelerators and a kV-CT incorporated radiation therapy device and semi-automated custom reshapeable blocks for all field synchronous image guided 3-D-conformal-intensity modulated radiation therapy |
WO2009056165A1 (en) * | 2007-10-29 | 2009-05-07 | Ion Beam Applications S.A. | Device and method for fast beam current modulation in a particle accelerator |
US8581523B2 (en) | 2007-11-30 | 2013-11-12 | Mevion Medical Systems, Inc. | Interrupted particle source |
US8933650B2 (en) | 2007-11-30 | 2015-01-13 | Mevion Medical Systems, Inc. | Matching a resonant frequency of a resonant cavity to a frequency of an input voltage |
US9579525B2 (en) | 2008-05-22 | 2017-02-28 | Vladimir Balakin | Multi-axis charged particle cancer therapy method and apparatus |
US8718231B2 (en) | 2008-05-22 | 2014-05-06 | Vladimir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US8399866B2 (en) | 2008-05-22 | 2013-03-19 | Vladimir Balakin | Charged particle extraction apparatus and method of use thereof |
WO2009142549A2 (en) | 2008-05-22 | 2009-11-26 | Vladimir Yegorovich Balakin | Multi-axis charged particle cancer therapy method and apparatus |
US9782140B2 (en) | 2008-05-22 | 2017-10-10 | Susan L. Michaud | Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof |
US8309941B2 (en) | 2008-05-22 | 2012-11-13 | Vladimir Balakin | Charged particle cancer therapy and patient breath monitoring method and apparatus |
US8519365B2 (en) | 2008-05-22 | 2013-08-27 | Vladimir Balakin | Charged particle cancer therapy imaging method and apparatus |
US9855444B2 (en) | 2008-05-22 | 2018-01-02 | Scott Penfold | X-ray detector for proton transit detection apparatus and method of use thereof |
US8129694B2 (en) | 2008-05-22 | 2012-03-06 | Vladimir Balakin | Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system |
US8896239B2 (en) | 2008-05-22 | 2014-11-25 | Vladimir Yegorovich Balakin | Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system |
US9937362B2 (en) | 2008-05-22 | 2018-04-10 | W. Davis Lee | Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof |
US8198607B2 (en) | 2008-05-22 | 2012-06-12 | Vladimir Balakin | Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US10548551B2 (en) | 2008-05-22 | 2020-02-04 | W. Davis Lee | Depth resolved scintillation detector array imaging apparatus and method of use thereof |
US8373146B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US10070831B2 (en) | 2008-05-22 | 2018-09-11 | James P. Bennett | Integrated cancer therapy—imaging apparatus and method of use thereof |
US7939809B2 (en) | 2008-05-22 | 2011-05-10 | Vladimir Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8710462B2 (en) | 2008-05-22 | 2014-04-29 | Vladimir Balakin | Charged particle cancer therapy beam path control method and apparatus |
US9737272B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle cancer therapy beam state determination apparatus and method of use thereof |
US10684380B2 (en) | 2008-05-22 | 2020-06-16 | W. Davis Lee | Multiple scintillation detector array imaging apparatus and method of use thereof |
US8624528B2 (en) | 2008-05-22 | 2014-01-07 | Vladimir Balakin | Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods |
US9744380B2 (en) | 2008-05-22 | 2017-08-29 | Susan L. Michaud | Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof |
EP2283709B1 (en) | 2008-05-22 | 2018-07-11 | Vladimir Yegorovich Balakin | Charged particle cancer therapy patient positioning apparatus |
US8969834B2 (en) | 2008-05-22 | 2015-03-03 | Vladimir Balakin | Charged particle therapy patient constraint apparatus and method of use thereof |
US9682254B2 (en) | 2008-05-22 | 2017-06-20 | Vladimir Balakin | Cancer surface searing apparatus and method of use thereof |
US8598543B2 (en) | 2008-05-22 | 2013-12-03 | Vladimir Balakin | Multi-axis/multi-field charged particle cancer therapy method and apparatus |
US10029122B2 (en) | 2008-05-22 | 2018-07-24 | Susan L. Michaud | Charged particle—patient motion control system apparatus and method of use thereof |
US9177751B2 (en) | 2008-05-22 | 2015-11-03 | Vladimir Balakin | Carbon ion beam injector apparatus and method of use thereof |
US9974978B2 (en) | 2008-05-22 | 2018-05-22 | W. Davis Lee | Scintillation array apparatus and method of use thereof |
US8569717B2 (en) | 2008-05-22 | 2013-10-29 | Vladimir Balakin | Intensity modulated three-dimensional radiation scanning method and apparatus |
US8093564B2 (en) | 2008-05-22 | 2012-01-10 | Vladimir Balakin | Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system |
US9056199B2 (en) | 2008-05-22 | 2015-06-16 | Vladimir Balakin | Charged particle treatment, rapid patient positioning apparatus and method of use thereof |
WO2009142547A2 (en) | 2008-05-22 | 2009-11-26 | Vladimir Yegorovich Balakin | Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system |
US8642978B2 (en) | 2008-05-22 | 2014-02-04 | Vladimir Balakin | Charged particle cancer therapy dose distribution method and apparatus |
US8368038B2 (en) | 2008-05-22 | 2013-02-05 | Vladimir Balakin | Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron |
US9168392B1 (en) | 2008-05-22 | 2015-10-27 | Vladimir Balakin | Charged particle cancer therapy system X-ray apparatus and method of use thereof |
NZ589387A (en) | 2008-05-22 | 2012-11-30 | Vladimir Yegorovich Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8373145B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Charged particle cancer therapy system magnet control method and apparatus |
US9737734B2 (en) | 2008-05-22 | 2017-08-22 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US8188688B2 (en) | 2008-05-22 | 2012-05-29 | Vladimir Balakin | Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system |
US9498649B2 (en) | 2008-05-22 | 2016-11-22 | Vladimir Balakin | Charged particle cancer therapy patient constraint apparatus and method of use thereof |
US9044600B2 (en) | 2008-05-22 | 2015-06-02 | Vladimir Balakin | Proton tomography apparatus and method of operation therefor |
US8374314B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system |
US10092776B2 (en) | 2008-05-22 | 2018-10-09 | Susan L. Michaud | Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof |
US9981147B2 (en) | 2008-05-22 | 2018-05-29 | W. Davis Lee | Ion beam extraction apparatus and method of use thereof |
US9616252B2 (en) | 2008-05-22 | 2017-04-11 | Vladimir Balakin | Multi-field cancer therapy apparatus and method of use thereof |
US10143854B2 (en) | 2008-05-22 | 2018-12-04 | Susan L. Michaud | Dual rotation charged particle imaging / treatment apparatus and method of use thereof |
US8907309B2 (en) | 2009-04-17 | 2014-12-09 | Stephen L. Spotts | Treatment delivery control system and method of operation thereof |
US8436327B2 (en) | 2008-05-22 | 2013-05-07 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus |
US8637833B2 (en) | 2008-05-22 | 2014-01-28 | Vladimir Balakin | Synchrotron power supply apparatus and method of use thereof |
US9737733B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle state determination apparatus and method of use thereof |
US8144832B2 (en) | 2008-05-22 | 2012-03-27 | Vladimir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US8373143B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy |
US8487278B2 (en) | 2008-05-22 | 2013-07-16 | Vladimir Yegorovich Balakin | X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
CA2725493C (en) | 2008-05-22 | 2015-08-18 | Vladimir Yegorovich Balakin | Charged particle cancer therapy beam path control method and apparatus |
US8288742B2 (en) | 2008-05-22 | 2012-10-16 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US8129699B2 (en) | 2008-05-22 | 2012-03-06 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration |
US9155911B1 (en) | 2008-05-22 | 2015-10-13 | Vladimir Balakin | Ion source method and apparatus used in conjunction with a charged particle cancer therapy system |
AU2009249863B2 (en) | 2008-05-22 | 2013-12-12 | Vladimir Yegorovich Balakin | Multi-field charged particle cancer therapy method and apparatus |
US8378311B2 (en) | 2008-05-22 | 2013-02-19 | Vladimir Balakin | Synchrotron power cycling apparatus and method of use thereof |
US8975600B2 (en) | 2008-05-22 | 2015-03-10 | Vladimir Balakin | Treatment delivery control system and method of operation thereof |
US9910166B2 (en) | 2008-05-22 | 2018-03-06 | Stephen L. Spotts | Redundant charged particle state determination apparatus and method of use thereof |
US8178859B2 (en) | 2008-05-22 | 2012-05-15 | Vladimir Balakin | Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system |
US9095040B2 (en) | 2008-05-22 | 2015-07-28 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8089054B2 (en) | 2008-05-22 | 2012-01-03 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8378321B2 (en) | 2008-05-22 | 2013-02-19 | Vladimir Balakin | Charged particle cancer therapy and patient positioning method and apparatus |
US8229072B2 (en) * | 2008-07-14 | 2012-07-24 | Vladimir Balakin | Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
US8625739B2 (en) | 2008-07-14 | 2014-01-07 | Vladimir Balakin | Charged particle cancer therapy x-ray method and apparatus |
US8627822B2 (en) | 2008-07-14 | 2014-01-14 | Vladimir Balakin | Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system |
SG173879A1 (en) | 2009-03-04 | 2011-10-28 | Protom Aozt | Multi-field charged particle cancer therapy method and apparatus |
JP5031796B2 (en) * | 2009-06-11 | 2012-09-26 | 住友重機械工業株式会社 | Particle acceleration system |
US10376717B2 (en) | 2010-04-16 | 2019-08-13 | James P. Bennett | Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof |
US10625097B2 (en) | 2010-04-16 | 2020-04-21 | Jillian Reno | Semi-automated cancer therapy treatment apparatus and method of use thereof |
US10555710B2 (en) | 2010-04-16 | 2020-02-11 | James P. Bennett | Simultaneous multi-axes imaging apparatus and method of use thereof |
US10518109B2 (en) | 2010-04-16 | 2019-12-31 | Jillian Reno | Transformable charged particle beam path cancer therapy apparatus and method of use thereof |
US10188877B2 (en) | 2010-04-16 | 2019-01-29 | W. Davis Lee | Fiducial marker/cancer imaging and treatment apparatus and method of use thereof |
US10086214B2 (en) | 2010-04-16 | 2018-10-02 | Vladimir Balakin | Integrated tomography—cancer treatment apparatus and method of use thereof |
US10556126B2 (en) | 2010-04-16 | 2020-02-11 | Mark R. Amato | Automated radiation treatment plan development apparatus and method of use thereof |
US10589128B2 (en) | 2010-04-16 | 2020-03-17 | Susan L. Michaud | Treatment beam path verification in a cancer therapy apparatus and method of use thereof |
US10751551B2 (en) | 2010-04-16 | 2020-08-25 | James P. Bennett | Integrated imaging-cancer treatment apparatus and method of use thereof |
US10179250B2 (en) | 2010-04-16 | 2019-01-15 | Nick Ruebel | Auto-updated and implemented radiation treatment plan apparatus and method of use thereof |
US10638988B2 (en) | 2010-04-16 | 2020-05-05 | Scott Penfold | Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof |
US10349906B2 (en) | 2010-04-16 | 2019-07-16 | James P. Bennett | Multiplexed proton tomography imaging apparatus and method of use thereof |
US11648420B2 (en) | 2010-04-16 | 2023-05-16 | Vladimir Balakin | Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof |
US9737731B2 (en) | 2010-04-16 | 2017-08-22 | Vladimir Balakin | Synchrotron energy control apparatus and method of use thereof |
US9336916B2 (en) | 2010-05-14 | 2016-05-10 | Tcnet, Llc | Tc-99m produced by proton irradiation of a fluid target system |
US8963112B1 (en) | 2011-05-25 | 2015-02-24 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US9269467B2 (en) | 2011-06-02 | 2016-02-23 | Nigel Raymond Stevenson | General radioisotope production method employing PET-style target systems |
KR101331074B1 (en) * | 2012-07-26 | 2013-11-19 | 성균관대학교산학협력단 | Magnetic field profile measuring apparatus for electromagnet of cyclotron |
US9155186B2 (en) | 2012-09-28 | 2015-10-06 | Mevion Medical Systems, Inc. | Focusing a particle beam using magnetic field flutter |
JP6138947B2 (en) | 2012-09-28 | 2017-05-31 | メビオン・メディカル・システムズ・インコーポレーテッド | Magnetic field regenerator |
WO2014052721A1 (en) | 2012-09-28 | 2014-04-03 | Mevion Medical Systems, Inc. | Control system for a particle accelerator |
US9545528B2 (en) | 2012-09-28 | 2017-01-17 | Mevion Medical Systems, Inc. | Controlling particle therapy |
US8927950B2 (en) | 2012-09-28 | 2015-01-06 | Mevion Medical Systems, Inc. | Focusing a particle beam |
US10254739B2 (en) | 2012-09-28 | 2019-04-09 | Mevion Medical Systems, Inc. | Coil positioning system |
CN104813750B (en) | 2012-09-28 | 2018-01-12 | 梅维昂医疗系统股份有限公司 | Adjust the magnetic insert of main coil position |
EP2900325B1 (en) | 2012-09-28 | 2018-01-03 | Mevion Medical Systems, Inc. | Adjusting energy of a particle beam |
TW201424467A (en) | 2012-09-28 | 2014-06-16 | Mevion Medical Systems Inc | Controlling intensity of a particle beam |
US8933651B2 (en) | 2012-11-16 | 2015-01-13 | Vladimir Balakin | Charged particle accelerator magnet apparatus and method of use thereof |
US8791656B1 (en) | 2013-05-31 | 2014-07-29 | Mevion Medical Systems, Inc. | Active return system |
US9730308B2 (en) | 2013-06-12 | 2017-08-08 | Mevion Medical Systems, Inc. | Particle accelerator that produces charged particles having variable energies |
CN110237447B (en) | 2013-09-27 | 2021-11-02 | 梅维昂医疗系统股份有限公司 | Particle therapy system |
US10675487B2 (en) | 2013-12-20 | 2020-06-09 | Mevion Medical Systems, Inc. | Energy degrader enabling high-speed energy switching |
US9962560B2 (en) | 2013-12-20 | 2018-05-08 | Mevion Medical Systems, Inc. | Collimator and energy degrader |
US9661736B2 (en) | 2014-02-20 | 2017-05-23 | Mevion Medical Systems, Inc. | Scanning system for a particle therapy system |
KR101539029B1 (en) * | 2014-09-01 | 2015-07-24 | 성균관대학교산학협력단 | Methode for providing Electromagnetic system for cyclotron |
US9950194B2 (en) | 2014-09-09 | 2018-04-24 | Mevion Medical Systems, Inc. | Patient positioning system |
EP3024306B1 (en) * | 2014-11-19 | 2019-08-07 | Ion Beam Applications S.A. | High current cyclotron |
US10786689B2 (en) | 2015-11-10 | 2020-09-29 | Mevion Medical Systems, Inc. | Adaptive aperture |
US9907981B2 (en) | 2016-03-07 | 2018-03-06 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
JP6380939B2 (en) * | 2016-05-09 | 2018-08-29 | 日本メジフィジックス株式会社 | Cyclotron control device, cyclotron, cyclotron control program, and method for producing radiopharmaceutical |
EP3244710B1 (en) * | 2016-05-13 | 2018-09-05 | Ion Beam Applications S.A. | Compact cyclotron |
US10064264B2 (en) * | 2016-05-13 | 2018-08-28 | Ion Beam Applications S.A. | Pole insert for cyclotron |
US10037863B2 (en) | 2016-05-27 | 2018-07-31 | Mark R. Amato | Continuous ion beam kinetic energy dissipater apparatus and method of use thereof |
GB2552151A (en) * | 2016-07-08 | 2018-01-17 | Univ Oslo | Cyclotron target |
CN109803723B (en) | 2016-07-08 | 2021-05-14 | 迈胜医疗设备有限公司 | Particle therapy system |
US11103730B2 (en) | 2017-02-23 | 2021-08-31 | Mevion Medical Systems, Inc. | Automated treatment in particle therapy |
JP6940676B2 (en) | 2017-06-30 | 2021-09-29 | メビオン・メディカル・システムズ・インコーポレーテッド | Configurable collimator controlled using a linear motor |
WO2020185543A1 (en) | 2019-03-08 | 2020-09-17 | Mevion Medical Systems, Inc. | Collimator and energy degrader for a particle therapy system |
US12106925B2 (en) * | 2021-12-23 | 2024-10-01 | Applied Materials, Inc. | Cyclotron having continuously variable energy output |
CN115460759B (en) * | 2022-11-08 | 2023-03-24 | 合肥中科离子医学技术装备有限公司 | Cyclotron |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1395308A (en) | 1964-05-15 | 1965-04-09 | Ass Elect Ind | Improvements to cyclotrons |
DE1223968B (en) * | 1964-11-19 | 1966-09-01 | Licentia Gmbh | Sector-focused cyclotron |
CA966893A (en) | 1973-06-19 | 1975-04-29 | Her Majesty In Right Of Canada As Represented By Atomic Energy Of Canada Limited | Superconducting cyclotron |
FR2544580B1 (en) * | 1983-04-12 | 1985-07-05 | Cgr Mev | FOCUS-DEFOCUS SYSTEM CYCLOTRON |
US5666883A (en) * | 1994-05-24 | 1997-09-16 | Power Superconductor Applications Co., Inc. | Method and apparatus for use of alternating current in primary suspension magnets for electrodynamic guidance with superconducting fields |
JP2000082599A (en) * | 1998-09-02 | 2000-03-21 | Mitsubishi Electric Corp | Electromagnet for circular accelerator |
EP1069809A1 (en) * | 1999-07-13 | 2001-01-17 | Ion Beam Applications S.A. | Isochronous cyclotron and method of extraction of charged particles from such cyclotron |
JP2002008899A (en) * | 2000-06-19 | 2002-01-11 | Ishikawajima Harima Heavy Ind Co Ltd | Eddy current correcting device of vacuum chamber |
-
2003
- 2003-11-14 EP EP03776680A patent/EP1566082B1/en not_active Expired - Lifetime
- 2003-11-14 WO PCT/BE2003/000196 patent/WO2004049770A1/en active Application Filing
- 2003-11-14 JP JP2004554083A patent/JP4653489B2/en not_active Expired - Fee Related
- 2003-11-14 US US10/536,333 patent/US7446490B2/en not_active Expired - Fee Related
- 2003-11-14 ES ES03776680T patent/ES2385709T3/en not_active Expired - Lifetime
- 2003-11-14 AU AU2003286006A patent/AU2003286006A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO2004049770A1 (en) | 2004-06-10 |
EP1566082A1 (en) | 2005-08-24 |
US20060255285A1 (en) | 2006-11-16 |
AU2003286006A1 (en) | 2004-06-18 |
JP4653489B2 (en) | 2011-03-16 |
ES2385709T3 (en) | 2012-07-30 |
US7446490B2 (en) | 2008-11-04 |
JP2006507633A (en) | 2006-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1566082B1 (en) | Cyclotron | |
EP0613607B1 (en) | Compact isochronic cyclotron | |
EP0853867B1 (en) | Method for sweeping charged particles out of an isochronous cyclotron, and device therefor | |
CA2804336C (en) | Cyclotron comprising a means for modifying the magnetic field profile and associated method | |
EP1195078B1 (en) | Isochronous cyclotron and its use for extraction of charged particles | |
EP1496727B1 (en) | Closed electron drift plasma accelerator | |
JP6818678B2 (en) | Improved metal ion filtration methods and equipment | |
US20120168639A1 (en) | High gradient lens for charged particle beam | |
FR2544580A1 (en) | CYCLOTRON WITH FOCUSING SYSTEM-DEFOCUSING | |
FR3071886B1 (en) | TWO-STAGE HALL EFFECTOR | |
US7315140B2 (en) | Cyclotron with beam phase selector | |
EP2633741B1 (en) | Synchrocyclotron | |
FR2962622A1 (en) | Accelerator i.e. fixed field alternating gradient accelerator for use in e.g. preparation room of hospital to accelerate hadrons for treatment of cancer of patient, has electromagnet applying magnetic field to packets of particles | |
BE1031179B1 (en) | CYCLOTRON | |
FR2841790A1 (en) | Assembly to irradiate a tumor target, with a beam containing hadrons, has optical units to unify the lateral density and three-dimension controls set the irradiation at the target | |
EP0022711A1 (en) | Process and agitating means for ameliorating the quality of continuous cast metals | |
FR2901492A1 (en) | Magnetic separator e.g. linear type magnetic separator, for treating e.g. pulp, has pole pieces associated to permanent magnets to generate magnetic field between pieces, and extraction unit in magnetic field through which pulp circulates | |
JP2020030882A (en) | Accelerator and particle beam irradiation device, and beam extraction method | |
Dolya | A multi beam proton accelerator | |
JP6663618B2 (en) | Accelerator and particle beam irradiation device | |
WO2023170116A1 (en) | Cyclotron having separate bi-sectors | |
JP2005001341A (en) | Device for separating metal part of optical disk | |
FR3123139A1 (en) | Multipolar electromagnet | |
WO2018042539A1 (en) | Circular accelerator | |
JP2005158548A (en) | Plasma source device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050616 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H05H 7/10 20060101AFI20101014BHEP |
|
RTI1 | Title (correction) |
Free format text: IMPROVED CYCLOTRON |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
17Q | First examination report despatched |
Effective date: 20110711 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: CYCLOTRON |
|
GRAF | Information related to payment of grant fee modified |
Free format text: ORIGINAL CODE: EPIDOSCIGR3 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 560570 Country of ref document: AT Kind code of ref document: T Effective date: 20120615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 60341102 Country of ref document: DE Effective date: 20120726 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2385709 Country of ref document: ES Kind code of ref document: T3 Effective date: 20120730 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120530 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120530 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 560570 Country of ref document: AT Kind code of ref document: T Effective date: 20120530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120831 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120530 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120530 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120530 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120530 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120530 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120530 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120530 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121001 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130301 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 60341102 Country of ref document: DE Effective date: 20130301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120830 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20031114 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20141127 Year of fee payment: 12 Ref country code: ES Payment date: 20141126 Year of fee payment: 12 Ref country code: FR Payment date: 20141118 Year of fee payment: 12 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20151114 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151130 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20161228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151115 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20171129 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20171127 Year of fee payment: 15 Ref country code: SE Payment date: 20171129 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60341102 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181115 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 |