Nothing Special   »   [go: up one dir, main page]

EP1558899A2 - Messelement zur bestimmung einer strömungsgeschwindigkeit - Google Patents

Messelement zur bestimmung einer strömungsgeschwindigkeit

Info

Publication number
EP1558899A2
EP1558899A2 EP03769222A EP03769222A EP1558899A2 EP 1558899 A2 EP1558899 A2 EP 1558899A2 EP 03769222 A EP03769222 A EP 03769222A EP 03769222 A EP03769222 A EP 03769222A EP 1558899 A2 EP1558899 A2 EP 1558899A2
Authority
EP
European Patent Office
Prior art keywords
measuring element
fluid
measuring
conductor
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03769222A
Other languages
English (en)
French (fr)
Inventor
Siegfried Birkle
Thomas Bosselmann
Michael Willsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Publication of EP1558899A2 publication Critical patent/EP1558899A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/6884Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element making use of temperature dependence of optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft

Definitions

  • the present invention relates to a measuring element for determining a flow velocity of a fluid flowing around the measuring element with a conductor for guiding an electromagnetic wave along its longitudinal extent and at least one electrical heating element arranged adjacent to the conductor.
  • the invention further relates to a turbomachine with a measuring element according to the invention and a method for determining a flow velocity of a fluid.
  • a flow rate is determined by volume counters, in which the amount of flowing fluid is measured in a certain time through a predetermined line cross section.
  • the volume counters have two oval wheels which are arranged in a measuring chamber and which roll against one another, the flow speed being determined from the rotational speed.
  • differential pressure methods are known, a predetermined constriction being provided in a line cross section and the flow velocity being determined from a pressure difference before the constriction and in the constriction.
  • Inductive or ultrasonic flow meters are also known.
  • a disadvantage of the previously known methods is that they are limited with regard to their possible uses, in particular if a flow channel is difficult to access, or if special requirements have to be met with regard to the physical and / or chemical stress. Even with large flow cross sections, the measuring elements of the prior art are inaccurate in that they only allow a selective measurement and cannot detect flow deviations transverse to the flow direction. In addition, the known measuring methods for determining the flow rate are largely unsuitable for determining the flow rate or the distribution of the flow rate in a flow channel of a flow machine with sufficient accuracy
  • thermocouple arrangements with complex designs are used in gas turbines in order to determine a flow velocity at least at some predetermined points. This takes advantage of the fact that a heated thermocouple is cooled accordingly by the flow in the flow channel.
  • the present invention is therefore based on the object of providing a measuring element and a method with which a flow profile transverse to the flow direction can be determined.
  • the invention provides a measuring element for determining a flow velocity of a fluid flowing around the measuring element with a conductor for guiding an electromagnetic wave along its longitudinal extent and at least one electrical heating element arranged adjacent to the conductor, with which the conductor can be subjected to heat is proposed, wherein an electromagnetic wave that can be coupled into the conductor can be influenced in accordance with the temperature of the conductor that is dependent on the flow velocity of the fluid.
  • the measuring element can be tharide heating element heatable, with a temperature distribution in the longitudinal extent corresponding to the local flow velocity results on the measuring element.
  • the measuring element according to the invention is therefore suitable for determining a multiplicity of local flow velocities with just a single measuring element.
  • the effects of measuring elements on the flow channel, for example of a turbomachine, can thus be significantly reduced.
  • the present invention can be used to reduce the number of measuring elements and the measuring element evaluation systems required for this. The avoidance of moving parts in connection with the reduction of the number of parts compared to conventional solutions also enables a high reliability of the measuring arrangement.
  • the measuring element according to the invention can advantageously be used in particular in the case of safety-relevant measuring devices or in measuring devices in the large machine sector in which measuring accuracy and measuring reliability are particularly important.
  • the measuring element can be formed, for example, from a ceramic material or a plastic.
  • the heating element can, for example, be integrated in the measuring element in the form of a heating wire.
  • the heating element can also be formed from a tube through which a heating fluid is passed in order to heat the measuring element.
  • Measuring element are created with which changes in flow velocity can be determined quickly due to its low thermal capacity.
  • the measuring element be rod-shaped.
  • the measuring element is advantageously easy to assemble and can be inserted into the flow channel, for example, through an opening. It can also be achieved that maintenance of the measuring element is made possible with little installation effort. To do this, the corresponding fastenings are loosened and the measuring element is pulled out through the opening.
  • the measuring element can of course have any other shape.
  • the measuring element can be circular in order to determine a flow profile on a specific predetermined radius of a flow channel.
  • it can also be designed as an Archimedean spiral in order to determine a flow profile as a function of the radius and the circumferential angle of a flow.
  • the measuring element be elastic.
  • the measuring element can advantageously be preformed for a short time, whereby the number of different measuring element shapes can be reduced. Storage costs can be saved.
  • the conductor is an optical waveguide.
  • the measuring element can advantageously be produced in a very compact and inexpensive manner.
  • the optical waveguide is preferably a glass fiber.
  • the glass fiber can have a high temperature resistance, which makes it particularly suitable for use in a turbomachine, for example.
  • the optical waveguide can also be formed by a plastic fiber.
  • the heating element be formed by an electrically conductive coating on the conductor.
  • the design of the measuring element can thus be further simplified.
  • the heating element can thus be connected in one piece to the conductor in a simple manner, so that, in addition to cost-effective production, the heating element can also have a protective function.
  • the conductive coating can be formed, for example, from a metal such as tungsten or also from an alloy such as steel or the like.
  • the heating element have a constant electrical resistance coating. In this way, it can advantageously be achieved that the measuring element is exposed to heat evenly over its longitudinal extent.
  • the resistance coating is understood to mean the electrical resistance per unit length.
  • the resistance coating is largely independent of the temperature in the operating temperature range. It can thus be achieved that the heat supply along the longitudinal extent of the measuring element is essentially independent of the current local temperature. The measurement accuracy as well as the reliability of the measurement can be increased.
  • the heating element can be formed, for example, from a material such as constantan or the like.
  • the heating element is formed by a heating conductor shaped as a heating loop. It can advantageously be achieved that the measuring element is to be connected at only one end to a corresponding unit for supplying the heating element.
  • the heating loop can be designed, for example, as an elongated coil enclosing the measuring element, the two connections of the heating conductor being arranged at one end of the measuring element.
  • the heating element can also be formed by parallel individual conductors which are connected in series so that both connections are arranged at one end of the measuring element. By arranging the heating conductor accordingly, it can be achieved that the measuring element can be subjected to heat essentially uniformly.
  • the measuring element have a casing.
  • the measuring element can thus be protected against chemical stress, for example be protected.
  • the casing enables mechanical protection, for example during assembly.
  • the casing be made of a ceramic material.
  • the ceramic sheathing can advantageously be used to form a measuring element for high temperature loads.
  • the casing be formed by a metal sleeve.
  • the measuring element can advantageously be protected against electrostatic charging by the metal sleeve being connectable to a ground potential.
  • the metal sleeve also form the heating element. Components and costs can be further reduced.
  • the invention proposes a method for determining a flow velocity of a fluid with a measuring element according to the invention, around which the fluid flows, an electromagnetic wave being coupled into a conductor of the measuring element guiding the shaft, the electromagnetic wave depending on the measuring element.
  • the influence of the local temperature corresponding to the flow velocity of the fluid, the influence of the electromagnetic wave is determined and the flow velocity of the fluid along the longitudinal extent of the measuring element is determined therefrom.
  • a course of the flow velocity along the measuring element can advantageously be determined with the invention.
  • the electromagnetic wave can be, for example, a coherent wave from a laser.
  • the electromagnetic wave is formed by an electromagnetic pulse. Energy can advantageously be saved and the measurement accuracy be increased.
  • the electromagnetic pulse can be generated, for example, by a pulsed laser, which is coupled into the conductor for the electromagnetic wave via suitable known coupling means.
  • the measuring element be heated in its longitudinal extent by a heating element during the measurement.
  • the flow rate can advantageously be determined from the decrease in temperature due to the fluid flow, since the electromagnetic wave is influenced as a function of the temperature.
  • the amount of heat applied is constant.
  • the coating of heat is to be understood as the heat supplied per unit length.
  • a constant electrical current be applied to the heating element.
  • a constant heat application can thus be achieved in accordance with Ohm's law.
  • the heating element can of course also be supplied with an alternating current.
  • the heating effect of the heating element can be influenced by varying the frequency if the frequency moves into a range in which current displacement effects take effect.
  • the flow velocity of the fluid along the longitudinal extent of the measuring element is determined from the difference of at least two measurements with different heat exposure. Can be advantageous through the Difference measurement of the measurement superimposed interference effects can be reduced. The accuracy of the measurement result can be further increased.
  • a gas stream of a gas turbine be used as the fluid.
  • the effort for determining the flow velocity in a gas turbine can advantageously be reduced, for example, by reducing the number of measuring elements and their evaluation units.
  • a measuring element according to the invention can be inexpensively adapted to the physical and / or chemical requirements in the flow channel of a gas turbine. A precise measurement of a flow distribution in the cross section of a flow channel can be achieved.
  • the invention proposes a turbomachine with rotor blades arranged on a rotor shaft rotatably mounted in a housing and with non-rotatably arranged guide vanes, with a measuring element according to the invention arranged in a flow channel of the turbomachine for measuring the fluid flow velocity.
  • a measurement arrangement with a large number of measurement elements which is customary in the prior art can be saved.
  • it can be achieved that a continuous flow velocity curve along the longitudinal extent of the measuring element can be determined using the measuring element according to the invention. In this way, local changes in flow velocity can advantageously be determined, which would not be detectable in the context of a conventional measurement or could only be detected at great expense, since here measurements are only carried out at discrete points.
  • the turbomachine can be a steam turbine, for example, but in particular it can also be a gas turbine. Monitoring is particularly important for large machines. Attention should be paid to the fact that malfunctions can lead to failures with high consequential costs and malfunctions with a high risk potential. In this way, the reliability of an operation of the turbomachine can be increased.
  • the measuring element be arranged radially to an axis of the rotor shaft in the flow channel.
  • the flow velocity can advantageously be determined as a function of the radius of the axis of the rotor shaft.
  • several can be in the flow channel
  • Measuring elements can be provided in order to be able to determine the flow velocity at different circumferential positions of the flow channel.
  • the measuring element be arranged coaxially to the axis of the rotor shaft along a circular line in the flow channel.
  • the flow profile can advantageously be determined over the circumference in the flow channel.
  • a plurality of measuring elements can also be arranged along circular lines with different radii in order to be able to additionally determine information about the flow profile at a different distance from the axis to the rotor shaft.
  • a plurality of measuring elements be arranged axially spaced apart in the flow channel. In this way, axial changes in the flow velocity can advantageously be recorded and evaluated.
  • Several differently shaped measuring elements can also be used to obtain the desired information about the flow pattern. For example, radial, rod-shaped measuring elements can be combined with measuring elements arranged along a circular line in the flow channel.
  • the measuring elements be operated according to the method according to the invention. Further advantages and features can be found in the following description of exemplary embodiments. Components that remain essentially the same are identified by the same reference numerals. Furthermore, with regard to the same features and functions, reference is made to the description of the exemplary embodiment in FIG. 1.
  • Fig. 1 is a side view of a measuring element according to the invention in a rod-shaped design with a connector at one end
  • Fig. 2 is a section through a measuring element with a
  • FIG. 3 shows a section through a further embodiment of a measuring element with a coaxial heating element surrounding the glass fiber
  • FIG. 4 shows a section through a further embodiment of a measuring element with a heating element applied directly to a surface of the glass fiber
  • FIG. 5 shows a basic circuit diagram for a 6 shows a path temperature diagram which shows a relationship between the position and the measured associated temperature with homogeneous flow without heating
  • FIG. 7 shows a path temperature diagram as in FIG. 6 but with heat supply
  • 8 shows a path-temperature diagram as in FIG. 7, the flow being inhomogeneous
  • FIG. 9 shows a path-flow speed diagram which shows a flow speed distribution according to FIG. 8, FIG.
  • FIG. 10 shows a section through a gas turbine with a measuring element according to the invention
  • 11 shows a section through a turbine guide vane with measuring elements according to the invention
  • FIG. 12 shows a section through the turbine shown in FIG. 10 along a line XII-XII
  • FIG. 13 shows a further embodiment of a measuring element according to the invention.
  • FIG. 1 shows a side view of a measuring element 1 according to the invention with a plug connector 15 attached to one end of the measuring element 1 for connecting the measuring element to an evaluation unit (not shown).
  • the measuring element 1 is designed in the form of a rod and is elastic so that the geometric shape can be adapted to the specified requirements.
  • 2 shows a first embodiment of a measuring element 1 according to the invention with two heating elements 5 between which a glass fiber is arranged in the middle. The arrangement is embedded in a ceramic material 16, which in turn is surrounded by a passivating casing 8.
  • the measuring element 13 shows a schematic view of the measuring element 1, the two heating wires 5 at one end of the measuring element 1 being connected in series with one another via an electrical connection 28.
  • the measuring element 1 can therefore advantageously be completely contacted at one end.
  • the second end is freely available, whereby particularly simple assembly and / or handling of the measuring element 1 can be achieved.
  • Several measuring points are indicated in the measuring element 1, each of which is designed as a fiber Bragg grating sensor. Using a fiber Bragg grating sensor, a measurement variable, here a temperature and thus indirectly the flow velocity, can be determined very well in an optical manner.
  • FIG 3 shows a further embodiment of a measuring element 2 according to the invention with a glass fiber 4 which is surrounded by a ceramic material 16.
  • a heating element 6 surrounds the measuring element 2 is completely circumferential and at the same time forms a casing.
  • FIG. 4 shows a section through a third embodiment in accordance with the present invention, the glass fiber 4 being vapor-coated with a metal layer 17, which at the same time forms a jacket and a heating element.
  • This embodiment according to the invention is characterized by an elasticity, so that the spatial extent of the measuring element 3 can be adjusted as required.
  • the measuring element 3 according to the invention is distinguished by a particularly simple production method in which the glass fiber 4 is coated with the desired electrical conductor in a coating process of a conventional, known type.
  • the heating elements 5 and 6 used in the configurations are preferably formed from a metal or from a metal alloy.
  • a metal alloy for example steel, copper, aluminum, bronze, constantan or the like can be used.
  • a coating with a metal for example in the flow duct of a gas turbine, a coating with a metal such as tungsten or the like is preferable.
  • conductive ones can also be used.
  • the embodiment according to FIG. 4 is distinguished by the fact that it has a particularly low heat capacity compared to the other two versions, so that changes in the flow rate over time can be detected quickly.
  • the heating element 5, 6 each has a constant electrical resistance coating.
  • the resistance coating in the operating temperature range is largely independent of the temperature. An application of a constant current to the heating element 5, 6 or to an alternating current with a constant effective value thus leads to a uniform over the length of the heating element Heat generation, so that the measuring element is exposed to heat evenly over its longitudinal extent.
  • FIG. 5 shows a basic circuit diagram for a measuring setup 18 according to the invention.
  • a measuring element 2 is connected at its respective ends to its heating element 6 via a circuit 19, a switching element 24 and a current meter 20 with an electrical energy source 21.
  • the electrical energy source 21 is a current source via which a constant direct current can be predetermined.
  • the glass fiber 4 of the measuring element 2 is connected to an evaluation unit 23 via an optical connecting fiber 25.
  • a flow of fluid 22 flows around the measuring element 2, which has a different flow velocity along the longitudinal extent of the measuring element 2, indicated by the arrows of different lengths.
  • a laser pulse is coupled into the glass fiber 4 of the measuring element 2 via the optical connecting fiber 25 in order to determine the flow velocity of the fluid.
  • the effect is used for the measurement that an electromagnetic wave, which is coupled into a glass fiber, is scattered as it passes through the fiber. Part of the scattered light is scattered in the opposite direction so that it can be detected at the entrance of the glass fiber.
  • the backscattered electromagnetic wave is preferably recorded at a point in time at which no electromagnetic wave is coupled into the glass fiber.
  • the temperature dependence of this effect allows conclusions to be drawn about the temperature of the glass fiber.
  • the backscattered signal consists of different components that are differently suited to the measurement requirements. For example, the backscattered signal contains a randomly scattered portion, but with which only a low local resolution can be achieved. In the present case, therefore, fiber grating technology is used, with which a high spatial resolution can be achieved, which is particularly necessary for the use of temperature measurement in machines.
  • the laser pulse for this is generated in a known manner with devices of the prior art.
  • the measuring element 2 assumes a local temperature.
  • part of the laser pulse is scattered back into the glass fiber 4.
  • This backscattered signal is fed via the optical connecting fiber 25 to the evaluation unit 23, which uses this to determine a temperature distribution along the measuring element and determines the flow velocity of the fluid from the temperature distribution.
  • the switch 24 With the switch 24 open, it is possible to use this device to determine the temperature of the fluid flow 22 along the measuring element 2. Then the switching element 24 is closed and the measuring element 2 is subjected to heat. The flow velocity of the fluid along the measuring element 2 is now determined by means of the renewed measurement. To improve the measurement accuracy, the electrical energy source 21 can be adjusted with regard to the current supplied. In this way, the measurement can be repeated with different heat loads, the differences being used to infer the flow velocity.
  • the switch can be both a mechanical switch and an electronic switch, as are known in the prior art in a large number of designs and shapes. However, the switch can also be formed in one piece with the energy source 21, it being possible to provide not only a switching function but also a control function for the current.
  • FIGS. 6 to 8 show path / temperature diagrams, the course of the temperature shown in FIG. 6 along the longitudinal extent of the measuring element 1, 2, 3 being without heat application in the case of a homogeneous flow.
  • FIG. 7, on the other hand shows a profile as in FIG. 6, but the measuring element 1, 2, 3 is additionally subjected to heat.
  • 8 shows a temperature distribution on the measuring element 1, 2, 3, which is dependent on the flow profile represented by the different flow arrows 22 in FIG. 5. The elevated temperature is clearly recognizable in the area in which the lower flow is identified in FIG. 5.
  • FIG. 9 shows a speed path diagram in which the flow speed determined by the evaluation unit 23 is shown as the result of the measurement according to FIG. 8.
  • FIG. 10 shows a partial section through a gas turbine 9 with blades 11 arranged on a rotor shaft 10 rotatably mounted in a housing 26 and with non-rotatably arranged guide blades 12.
  • a measuring element 2 projects into a flow channel 13 of the gas turbine 9 through an opening 27.
  • the measuring element is arranged radially to an axis 14 of the rotor shaft 10 in the flow channel 13.
  • a second measuring element 2 is arranged in the flow channel of the gas turbine 9 in the same way.
  • FIG. 12 shows a section through the turbine 9. In the flow channel 13 of the turbine 9, two measuring elements 2 are arranged radially, with which both the temperature of the gas flow in the flow channel 13 and the speed can be determined.
  • FIG. 11 shows a section through a guide vane 11 of the turbine 9, measuring elements 2 being arranged parallel to a radial axis of the guide vane 11.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Das Messelement (1) zur Bestimmung einer Strömungsgeschwin-digkeit eines das Messelement (1) umströmenden Fluids (22) umfasst einen Leiter (4) zum Führen einer elektromagnetischen Welle entlang seiner Längserstreckung und wenigstens ein zum Leiter (4) benachbart angeordnetes, elektrisches Heizelement (5). Mittels des Heizelements (5) ist der Leiter (4) mit Wärme beaufschlagbar. Eine in den Leiter (4) einkoppelbare elektromagnetische Welle ist entsprechend der von der Strö-mungsgeschwindigkeit des Fluids abhängigen Temperatur des Leiters (4) beeinflussbar.

Description

Beschreibung
Messelement zur Bestimmung einer Strömungsgeschwindigkeit
Die vorliegende Erfindung betrifft ein Messelement zur Bestimmung einer Strömungsgeschwindigkeit eines das Messelement umströmenden Fluids mit einem Leiter zum Führen einer elektromagnetischen Welle entlang seiner Längserstreckung und wenigstens einem zum Leiter benachbart angeordneten, elektri- sehen Heizelement. Ferner betrifft die Erfindung eine Strömungsmaschine mit einem erfindungsgemäßen Messelement sowie ein Verfahren zum Bestimmen einer Strömungsgeschwindigkeit eines Fluids .
Im Stand der Technik sind eine Vielzahl von Strömungsmessern bekannt. So wird beispielsweise durch Nolumenzähler ein Durchfluss bestimmt, in dem die Menge des strömenden Fluids durch einen vorgegebenen Leitungsquerschnitt in einer bestimmten Zeit gemessen wird. Die Volumenzähler weisen dazu zwei in einer Messkammer angeordnete Ovalräder auf, die gegeneinander abrollen, wobei aus der Drehzahl die Strömungsgeschwindigkeit ermittelt wird. Des weiteren sind Wirkdruckverfahren bekannt, wobei in einem Leitungsquerschnitt eine vorgegebene Einschnürung vorgesehen ist und aus einer Druckdif- ferenz vor der Einschnürung und in der Einschnürung die Strömungsgeschwindigkeit ermittelt wird. Auch induktive oder Ultraschall-Strömungsmesser sind bekannt.
Nachteilig bei den vorbekannten Verfahren ist, dass diese hinsichtlich ihrer Einsatzmöglichkeit beschränkt sind, insbesondere wenn ein Strömungskanal schlecht zugänglich ist, bzw. wenn hinsichtlich der physikalischen und/oder chemischen Beanspruchung besondere Anforderungen zu erfüllen sind. Auch bei großen Strömungsquerschnitten sind die Messelemente des Stands der Technik insofern ungenau, als dass sie nur eine punktuelle Messung erlauben und Strömungsverlaufsabweichungen quer zur Strömungsrichtung nicht erfassen können. Darüber hinaus sind die bekannten Messverfahren zur Bestimmung der Strömungsgeschwindigkeit weitgehend ungeeignet, um in einem Strömungskanal einer Strömungsmaschine hinreichend genau die Strömungsgeschwindigkeit bzw. die Verteilung der
Strömungsgeschwindigkeit quer zur Strömungsrichtung zu ermitteln. Insbesondere wird die Ermittlung dadurch erschwert, dass im Strömungskanal einer Strömungsmaschine an die einsetzbaren Werkstoffe hohe Anforderungen hinsichtlich der che- mischen und/oder physikalischen Beanspruchung zu stellen sind. Daher werden bei Gasturbinen aufwendig konstruierte Thermoelementanordnungen verwendet, um wenigstens an einigen vorgegebenen Stellen eine Strömungsgeschwindigkeit zu ermitteln. Dabei wird ausgenutzt, dass durch die Strömung im Strö- mungskanal ein aufgeheiztes Thermoelement entsprechend gekühlt wird.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Messelement sowie ein Verfahren bereitzustellen, mit dem ein Strömungsverlauf quer zur Strömungsrichtung ermittelbar ist.
Als Lösung der oben genannten Aufgabe wird mit der Erfindung ein Messelement zur Bestimmung einer Strömungsgeschwindigkeit eines das Messelement umströmenden Fluids mit einem Leiter zum Führen einer elektromagnetischen Welle entlang seiner Längserstreckung und wenigstens einem zum Leiter benachbart angeordneten, elektrischen Heizelement, mit welchem der Leiter mit Wärme beaufschlagbar ist, vorgeschlagen, wobei eine in den Leiter einkoppelbare elektromagnetische Welle entsprechend der von der Strömungsgeschwindigkeit des Fluids abhängigen Temperatur des Leiters beeinflussbar ist.
Erstmals ist es somit möglich, aus einer Beeinflussung der elektromagnetischen Welle durch die Temperatur des Leiters die Strömungsgeschwindigkeit entlang der Längserstreckung des Messelements zu ermitteln. Das Messelement ist über das elek- trische Heizelement beheizbar, wobei sich am Messelement eine Temperaturverteilung in Längserstreckung entsprechend der lokalen Strömungsgeschwindigkeit ergibt. Das erfindungsgemäße Messelement ist somit geeignet, mit nur einem einzigen Mess- element eine Vielzahl von lokalen Strömungsgeschwindigkeiten zu ermitteln. Die Einwirkungen von Messelementen auf den Strömungskanal beispielsweise einer Strömungsmaschine können somit deutlich reduziert werden. Darüber hinaus kann mit der vorliegenden Erfindung eine Reduzierung der Anzahl der Mess- elemente und der dazu erforderlichen Messelement-Auswertesysteme erreicht werden. Die Vermeidung beweglicher Teile in Verbindung mit der Reduzierung der Anzahl der Teile gegenüber konventionellen Lösungen ermöglicht zudem eine hohe Zuverlässigkeit der Messanordnung. Vorteilhaft ist das erfindungsge- mäße Messelement insbesondere bei sicherheitsrelevanten Messeinrichtungen oder bei Messeinrichtungen im Großmaschinenbereich einsetzbar, bei denen Messgenauigkeit und Messzuverlässigkeit besonders wichtig sind. Je nach physikalischen und/ oder chemischen Anforderungen kann das Messelement beispiels- weise aus einem keramischen Werkstoff oder einem Kunststoff gebildet sein. Das Heizelement kann beispielsweise in Form eines Heizdrahtes mit in das Messelement integriert sein. Das Heizelement kann jedoch auch aus einer Röhre gebildet sein, durch die ein Heizfluid geleitet wird, um das Messelement zu beheizen. Ferner kann mit der vorliegenden Erfindung ein
Messelement geschaffen werden, mit welchem schnell Strömungsgeschwindigkeitsänderungen aufgrund seiner geringen thermischen Kapazität ermittelbar sind.
Es wird ferner vorgeschlagen, dass das Messelement stabförmig ausgebildet ist. Vorteilhaft ist das Messelement einfach zu montieren und kann beispielsweise durch eine Öffnung in den Strömungskanal eingeführt werden. Ferner kann erreicht werden, dass mit geringem Montageaufwand eine Wartung des Mess- elements ermöglicht wird. Dazu werden die entsprechenden Befestigungen gelöst und das Messelement durch die Öffnung herausgezogen. Daneben kann das Messelement natürlich jede be- liebige andere Form aufweisen. Beispielsweise kann das Messelement kreisförmig ausgebildet sein, um einen Strömungsverlauf auf einem bestimmten vorgegebenen Radius eines Strömungskanals zu ermitteln. Es kann jedoch auch als archimedi- sehe Spirale ausgebildet sein, um einen Strömungsverlauf in Abhängigkeit vom Radius und vom Umfangswinkel einer Strömung zu ermitteln.
In einer weiteren Ausgestaltung wird vorgeschlagen, dass das Messelement elastisch ist. So kann vorteilhaft das Messelement je nach Einsatz kurzfristig vorgeformt werden, wodurch die Anzahl der verschiedenen Messelementformen reduziert werden kann. Kosten für Lagerhaltung können eingespart werden.
In einer weiteren Ausgestaltung wird vorgeschlagen, dass der Leiter ein Lichtwellenleiter ist. Das Messelement kann vorteilhaft sehr kompakt und kostengünstig hergestellt werden. Vorzugsweise ist der Lichtwellenleiter eine Glasfaser. Insbesondere bei hohen physikalischen und/oder chemischen Bean- spruchungen kann ein Einsatz einer Glasfaser vorgesehen sein. Die Glasfaser kann eine hohe Temperaturbeständigkeit aufweisen, wodurch sie beispielsweise für den Einsatz in einer Strömungsmaschine besonders geeignet ist. Je nach Anwendungsfall kann der Lichtwellenleiter jedoch auch durch eine Kunst- stofffaser gebildet sein.
Weiterhin wird vorgeschlagen, dass das Heizelement durch eine elektrisch leitfähige Beschichtung des Leiters gebildet ist. So kann die Bauform des Messelements weiter vereinfacht wer- den. Das Heizelement kann so auf einfache Weise einstückig mit dem Leiter verbunden sein, so dass neben einer kostengünstigen Herstellung auch eine Schutzfunktion des Leiters durch das Heizelement erreicht werden kann. Die leitfähige Beschichtung kann beispielsweise aus einem Metall wie Wolfram oder auch aus einer Legierung wie beispielsweise Stahl oder dergleichen gebildet sein. Es wird ferner vorgeschlagen, dass das Heizelement einen konstanten elektrischen Widerstandsbelag aufweist. So kann vorteilhaft erreicht werden, dass das Messelement über seine Längserstreckung gleichmäßig mit Wärme beaufschlagt wird. Un- ter Widerstandsbelag ist im Rahmen dieser Anmeldung der elektrische Widerstand pro Längeneinheit zu verstehen.
Darüber hinaus wird vorgeschlagen, dass der Widerstandsbelag im Betriebstemperaturbereich weitgehend unabhängig von der Temperatur ist. So kann erreicht werden, dass die Wärmezufuhr entlang der Längserstreckung des Messelements im wesentlichen unabhängig von der aktuellen lokalen Temperatur ist. Die Messgenauigkeit sowie auch die Zuverlässigkeit der Messung kann erhöht werden. Dazu kann das Heizelement beispielsweise aus einem Werkstoff wie Konstantan oder dergleichen gebildet sein.
In einer weiteren Ausgestaltung der vorliegenden Erfindung wird vorgeschlagen, dass das Heizelement durch einen als Heizschleife geformten Heizleiter gebildet ist. Es kann vorteilhaft erreicht werden, dass das Messelement an nur einem Ende mit einer entsprechenden Einheit zur Heizelementversorgung zu verbinden ist. Die Heizschleife kann beispielsweise als eine das Messelement umschließende, langgestreckte Spule ausgebildet sein, wobei die beiden Anschlüsse des Heizleiters an einem Ende des Messelements angeordnet sind. Das Heizelement kann daneben jedoch auch durch parallel verlaufende Einzelleiter gebildet sein, die in Reihenschaltung so miteinander verbunden sind, dass beide Anschlüsse an einem Ende des Messelements angeordnet sind. Durch entsprechende Anordnung des Heizleiters kann erreicht werden, dass das Messelement im wesentlichen gleichmäßig mit Wärme beaufschlagbar ist.
In einer vorteilhaften Weiterbildung wird vorgeschlagen, dass das Messelement eine Ummantelung aufweist. Das Messelement kann so beispielsweise gegen eine chemische Beanspruchung ge- schützt werden. Darüber hinaus ermöglicht die Ummantelung einen mechanischen Schutz, beispielsweise während der Montage.
Es wird ferner vorgeschlagen, dass die Ummantelung aus einem keramischen Werkstoff besteht. Mit der keramischen Ummantelung kann vorteilhaft ein Messelement für eine hohe Temperaturbeanspruchung gebildet werden.
Daneben wird vorgeschlagen, dass die Ummantelung durch eine Metallhülse gebildet ist. So kann vorteilhaft das Messelement beispielsweise gegen eine elektrostatische Aufladung geschützt werden, indem die Metallhülse mit einem Erdpotential verbindbar ist.
Darüber hinaus wird vorgeschlagen, dass die Metallhülse zugleich das Heizelement bildet. Bauteile und Kosten können weiter reduziert werden.
Ferner wird mit der Erfindung ein Verfahren zum Bestimmen ei- ner Strömungsgeschwindigkeit eines Fluids mit einem erfindungsgemäßen, von dem Fluid umströmten Messelement vorgeschlagen, wobei eine elektromagnetische Welle in einen die Welle führenden Leiter des Messelements eingekoppelt wird, die elektromagnetische Welle durch das Messelement in Abhän- gigkeit von dessen der Strömungsgeschwindigkeit des Fluids entsprechenden, lokalen Temperatur beeinflusst, die Beeinflussung der elektromagnetischen Welle ermittelt und daraus die Strömungsgeschwindigkeit des Fluids entlang der Längserstreckung des Messelements bestimmt wird. Mit der Erfindung kann vorteilhaft ein Verlauf der Strömungsgeschwindigkeit entlang des Messelements bestimmt werden. Die elektromagnetische Welle kann beispielsweise eine kohärente Welle aus einem Laser sein.
Darüber hinaus wird vorgeschlagen, dass die elektromagnetische Welle durch einen elektromagnetischen Impuls gebildet ist. Vorteilhaft kann Energie eingespart sowie die Messgenau- igkeit erhöht werden. Der elektromagnetische Impuls kann beispielsweise durch einen gepulsten Laser erzeugt werden, der über geeignete bekannte Kopplungsmittel in den Leiter für die elektromagnetische Welle eingekoppelt wird.
Ferner wird vorgeschlagen, dass das Messelement während der Messung in seiner Längserstreckung durch ein Heizelement erwärmt wird. Aus der Temperaturabnahme aufgrund der Fluidströ- mung kann vorteilhaft die Strömungsgeschwindigkeit ermittelt werden, da die elektromagnetische Welle in Abhängigkeit von der Temperatur beeinflusst wird. Insbesondere ist der Belag der Wärmebeaufschlagung konstant. Unter Belag der Wärmebeaufschlagung ist in dieser Beschreibung die pro Längeneinheit zugeführte Wärme zu verstehen.
Um eine zeitlich konstante Wärmebeaufschlagung erreichen zu können, wird vorgeschlagen, dass das Heizelement mit einem konstanten elektrischen Strom beaufschlagt wird. Insbesondere bei einem über die Längserstreckung des Messelements konstan- ten Widerstandsverlauf kann somit gemäß dem ohmschen Gesetz eine konstante Wärmebeaufschlagung erreicht werden. Daneben kann natürlich das Heizelement auch mit einem Wechselstrom gespeist werden. Insbesondere kann durch Variation der Frequenz die Heizwirkung des Heizelements beeinflusst werden, wenn sich die Frequenz in einen Bereich bewegt, in dem Stromverdrängungseffekte wirksam werden.
In einer vorteilhaften Weiterbildung des erfindungsgemäßen Verfahrens wird vorgeschlagen, dass mehrere Messungen mit un- terschiedlicher Wärmebeaufschlagung durchgeführt werden. So kann die Messgenauigkeit weiter erhöht werden.
In einer weiteren Ausgestaltung des vorliegenden Verfahrens wird vorgeschlagen, dass aus der Differenz wenigstens zweier Messungen mit unterschiedlicher Wärmebeaufschlagung die Strömungsgeschwindigkeit des Fluids entlang der Längserstreckung des Messelements bestimmt wird. Vorteilhaft können durch die Differenzmessung der Messung überlagerte Störeffekte reduziert werden. Die Genauigkeit des Messergebnisses kann weiter erhöht werden.
Weiterhin wird vorgeschlagen, dass als Fluid ein Gasstrom einer Gasturbine verwendet wird. Der Aufwand zur Bestimmung der Strömungsgeschwindigkeit in einer Gasturbine kann vorteilhaft reduziert werden, indem beispielsweise die Anzahl der Messelemente sowie deren Auswerteeinheiten vermindert werden kann. Darüber hinaus kann ein erfindungsgemäßes Messelement kostengünstig an die physikalischen und/oder chemischen Anforderungen im Strömungskanal einer Gasturbine angepasst werden. Eine genaue Messung einer Strömungsverteilung im Querschnitt eines Strömungskanals kann erreicht werden.
Ferner wird mit der Erfindung eine Strömungsmaschine mit an einer in einem Gehäuse drehbar gelagerten Rotorwelle angeordneten Laufschaufeln und mit drehfest angeordneten Leitschaufeln vorgeschlagen, wobei ein in einem Strömungskanal der Strömungsmaschine angeordnetes erfindungsgemäßes Messelement zur Messung der Fluidströmungsgeschwindigkeit angeordnet ist. Eine im Stand der Technik übliche Messanordnung mit einer Vielzahl von Messelementen kann eingespart werden. Darüber hinaus kann erreicht werden, dass mit dem erfindungsgemäßen Messelement ein kontinuierlicher Strömungsgeschwindigkeitsverlauf entlang der Längserstreckung des Messelements ermittelt werden kann. So können vorteilhaft lokale Strömungsgeschwindigkeitsänderungen ermittelt werden, die im Rahmen einer konventionellen Messung nicht oder nur mit hohem Aufwand erfassbar wären, da hier nur an diskreten Stellen gemessen wird. Gefährliche Zustände beispielsweise im Schaufelbereich können rechtzeitig ermittelt werden, bevor es zu Beschädigungen von Schaufeln kommt. Insgesamt kann eine deutlich Verbesserung der Überwachung der Strömungsmaschine erreicht werden. Die Strömungsmaschine kann beispielsweise eine Dampfturbine sein, sie kann aber insbesondere auch eine Gasturbine sein. Gerade bei Großmaschinen ist auf die Überwachung ein besonde- res Augenmerk zu legen, da Störungen zu Ausfällen mit hohen Folgekosten sowie zu Störungen mit einem hohen Gefährdungspotential führen können. So kann die Zuverlässigkeit eines Betriebs der Strömungsmaschine erhöht werden.
Es wird vorgeschlagen, dass das Messelement radial zu einer Achse der Rotorwelle im Strömungskanal angeordnet ist. Vorteilhaft kann die Strömungsgeschwindigkeit in Abhängigkeit des Radius von der Achse der Rotorwelle ermittelt werden. Selbstverständlich können im Strömungskanal auch mehrere
Messelemente vorgesehen sein, um die Strömungsgeschwindigkeit an unterschiedlichen Umfangspositionen des Strömungskanals ermitteln zu können.
Darüber hinaus wird vorgeschlagen, dass das Messelement koaxial zur Achse der Rotorwelle entlang einer Kreislinie im Strömungskanal angeordnet ist. So kann vorteilhaft der Strömungsverlauf über dem Umfang im Strömungskanal ermittelt werden. Es können jedoch auch mehrere Messelemente entlang Kreislinien mit unterschiedlichen Radien angeordnet sein, um zusätzlich Informationen über den Strömungsverlauf in unterschiedlichem Abstand von der Achse zu der Rotorwelle ermitteln zu können.
Es wird ferner vorgeschlagen, dass im Strömungskanal axial beabstandet mehrere Messelemente angeordnet sind. So können vorteilhaft axiale Änderungen der Strömungsgeschwindigkeit erfasst und ausgewertet werden. Es können auch mehrere unterschiedlich geformte Messelemente verwendet werden, um die ge- wünschten Informationen über den Strömungsverlauf zu erhalten. So können beispielsweise radiale, stabförmige Messelemente mit entlang einer Kreislinie im Strömungskanal angeordneten Messelementen kombiniert werden. Insbesondere wird vorgeschlagen, dass die Messelemente gemäß dem erfindungsgemäßen Verfahren betrieben werden. Weitere Vorteile und Merkmale sind der folgenden Beschreibung von Ausführungsbeispielen zu entnehmen. Im wesentlichen gleichbleibende Bauteile sind mit den gleichen Bezugszeichen bezeichnet. Ferner wird bezüglich gleicher Merkmale und Funk- tionen auf die Beschreibung zum Ausführungsbeispiel in Fig. 1 verwiesen.
Es zeigen:
Fig. 1 eine Seitenansicht eines erfindungsgemäßen Messelements in stabförmiger Ausführung mit einem Anschlussstecker an einem Ende, Fig. 2 einen Schnitt durch ein Messelement mit einer
Glasfaser sowie zwei parallel dazu angeordneten Heizleitern,
Fig. 3 einen Schnitt durch eine weitere Ausgestaltung eines Messelements mit einem die Glasfaser umgebenden koaxialen Heizelement, Fig. 4 einen Schnitt durch eine weitere Ausgestaltung ei- nes Messelements mit einem direkt auf einer Oberfläche der Glasfaser aufgebrachten Heizelement, Fig. 5 ein Prinzipschaltbild für eine Messanordnung zur Ausführung des erfindungsgemäßen Messverfahrens, Fig. 6 ein Weg-Temperaturdiagramm, welches einen Zusammen- Zusammenhang zwischen der Position und der gemessenen zugehörigen Temperatur bei homogener Strömung ohne Beheizung, Fig. 7 ein Weg-Temperaturdiagramm wie in Fig. 6 jedoch mit Wärmezufuhr, Fig. 8 ein Weg-Temperaturdiagramm wie in Fig. 7, wobei die Strömung inhomogen ist, Fig. 9 ein Weg-Strömungsgeschwindigkeitsdiagramm, welches eine Strömungsgeschwindigkeitsverteilung gemäß Fig. 8 darstellt, Fig. 10 einen Schnitt durch eine Gasturbine mit einem erfindungsgemäßen Messelement, Fig. 11 einen Schnitt durch eine Turbinenleitschaufel mit erfindungsgemäßen Messelementen, Fig. 12 einen Schnitt durch die in Fig. 10 dargestellte Turbine entlang einer Linie XII-XII und Fig. 13 eine weitere Ausgestaltung eines erfindungsgemäßen Messelements .
Fig. 1 zeigt eine Seitenansicht eines erfindungsgemäßen Messelements 1 mit einem an einem Ende des Messelements 1 ange- brachten Steckverbinder 15 zum Anschluss des Messelements an eine nicht näher dargestellte Auswerteeinheit. Das Messelement 1 ist stabförmig elastisch ausgebildet, so dass die geometrische Form den vorgegebenen Anforderungen angepasst werden kann. Fig. 2 zeigt eine erste Ausgestaltung eines erfin- dungsgemäßen Messelements 1 mit zwei Heizelementen 5 zwischen denen mittig eine Glasfaser angeordnet ist. Die Anordnung ist in einem keramischen Werkstoff 16 eingebettet, der seinerseits von einer passivierenden Ummantelung 8 umgeben ist.
Fig. 13 zeigt eine schematische Ansicht des Messelements 1, wobei die beiden Heizdrähte 5 an einem Ende des Messelements 1 über eine elektrische Verbindung 28 miteinander in Serie geschaltet sind. In dieser Ausgestaltung ist daher vorteilhaft das Messelement 1 an einem Ende vollständig kontaktier- bar. Das zweite Ende ist frei verfügbar, wodurch eine besonders einfache Montage und/oder Handhabung des Messelements 1 erreicht werden kann. Im Messelement 1 sind mehrere Messstellen angedeutet, die jeweils als Faser-Bragg-Gitter-Sensor ausgebildet sind. Mittels eines Faser-Bragg-Gitter-Sensors lässt sich eine Messgröße, hier eine Temperatur und damit indirekt die Strömungsgeschwindigkeit, sehr gut auf optische Weise ermitteln.
Fig. 3 zeigt eine weitere Ausgestaltung eines erfindungsgemä- ßen Messelements 2 mit einer Glasfaser 4, die von einem keramischen Werkstoff 16 umgeben ist. Ein Heizelement 6 umgibt das Messelement 2 voll umfänglich und bildet zugleich eine Ummantelung.
In Fig. 4 ist ein Schnitt durch eine dritte Ausgestaltung ge- maß der vorliegenden Erfindung dargestellt, wobei die Glasfaser 4 mit einer Metallschicht 17 bedampft ist, die zugleich eine Ummantelung sowie ein Heizelement bildet. Diese erfindungsgemäße Ausgestaltung zeichnet sich durch eine Elastizität aus, so dass das Messelement 3 in seiner räumlichen Aus- dehnung bedarfsgerecht angepasst werden kann. Zudem zeichnet sich das erfindungsgemäße Messelement 3 durch ein besonders einfaches Herstellverfahren aus, in dem die Glasfaser 4 in einem Beschichtungsprozess konventioneller, bekannter Art mit dem gewünschten elektrischen Leiter beschichtet wird.
Die in den Ausgestaltungen verwendeten Heizelemente 5 und 6 sind vorzugsweise aus einem Metall gebildet oder aus einer Metalllegierung. In Abhängigkeit von der physikalischen und/oder chemischen Beanspruchung können beispielsweise Stahl, Kupfer, Aluminium, Bronze, Konstantan oder dergleichen verwendet werden. Für Hochtemperaturanwendungen beispielsweise im Strömungskanal einer Gasturbine ist eine Beschichtung mit einem Metall wie Wolfram oder dergleichen vorzuziehen. Für Anwendungen bei niedrigen Temperaturen in einer chemisch aggressiven Umgebung können beispielsweise auch leitfähige
Polymere eingesetzt werden. Darüber hinaus zeichnet sich die Ausgestaltung gemäß Fig. 4 dadurch aus, dass sie eine besonders geringe Wärmekapazität gegenüber den beiden anderen Versionen aufweist, so dass zeitliche Änderungen der Strömungs- geschwindigkeit rasch erfasst werden können. In den hier dargestellten Ausführungsbeispielen weist das Heizelement 5, 6 jeweils einen konstanten elektrischen Widerstandsbelag auf. Insbesondere ist der Widerstandsbelag im Betriebstemperaturbereich weitgehend unabhängig von der Temperatur. Eine Beauf- schlagung des Heizelements 5, 6 mit einem konstanten Strom bzw. mit einem Wechselstrom mit konstantem Effektivwert führt somit zu einer über die Länge des Heizelements gleichmäßigen Wärmeerzeugung, so dass das Messelement über seine Längserstreckung gleichmäßig mit Wärme beaufschlagt wird.
Fig. 5 zeigt ein Prinzipschaltbild für einen erfindungsgemä- ßen Messaufbau 18. Ein Messelement 2 ist an seinen jeweiligen Enden mit seinem Heizelement 6 über einen Stromkreis 19, ein Schaltelement 24 und einen Strommesser 20 mit einer elektrischen Energiequelle 21 verbunden. Die elektrische Energiequelle 21 ist in dieser Ausgestaltung eine Stromquelle, über die ein konstanter Gleichstrom vorgebbar ist. Des weiteren ist die Glasfaser 4 des Messelements 2 über eine optische Verbindungsfaser 25 mit einer Auswerteeinheit 23 verbunden. Das Messelement 2 wird von einer Fluidströmung 22 umströmt, die entlang der Längserstreckung des Messelements 2 eine un- terschiedliche Strömungsgeschwindigkeit aufweist, angedeutet durch die unterschiedlich langen Pfeile. Erfindungsgemäß wird zum Bestimmen der Strömungsgeschwindigkeit des Fluids durch die Auswerteeinheit ein Laserimpuls über die optische Verbindungsfaser 25 in die Glasfaser 4 des Messelements 2 eingekop- pelt. Für die Messung wird der Effekt ausgenutzt, dass eine elektromagnetische Welle, die in eine Glasfaser eingekoppelt wird, beim Durchlauf durch die Faser gestreut wird. Ein Teil des gestreuten Lichts wird in die Gegenrichtung gestreut, so dass es am Eingang der Glasfaser erfasst werden kann. Vor- zugsweise erfolgt die Erfassung der zurückgestreuten elektromagnetischen Welle zu einem Zeitpunkt, in dem keine elektromagnetische Welle in die Glasfaser eingekoppelt wird. Durch die Temperaturabhängigkeit dieses Effekts lässt sich auf die Temperatur der Glasfaser schließen. Das zurückgestreute Sig- nal besteht aus unterschiedlichen Komponenten, die hinsichtlich der Messanforderungen unterschiedlich geeignet sind. Beispielsweise enthält das zurückgestreute Signal einen Ra- man-gestreuten Anteil, mit dem jedoch nur eine geringe örtliche Auflösung erreichbar ist. Im Vorliegenden wird daher die Faserbragggittertechnologie angewendet, mit der eine hohe Ortsauflösung erreichbar ist, die insbesondere für den Einsatz der Temperaturmessung in Maschinen erforderlich ist. Der Laserimpuls dazu wird auf bekannte Weise mit Geräten des Stands der Technik erzeugt. In Abhängigkeit von der lokalen Strömungsgeschwindigkeit 22 nimmt das Messelement 2 eine lo- kale Temperatur ein. In Abhängigkeit von der Temperatur wird ein Teil des Laserimpulses in der Glasfaser 4 zurückgestreut. Dieses zurückgestreute Signal wird über die optische Verbindungsfaser 25 der Auswerteeinheit 23 zugeführt, die daraus eine Temperaturverteilung entlang des Messelements ermittelt und aus der Temperaturverteilung die Strömungsgeschwindigkeit des Fluids bestimmt.
Bei geöffnetem Schalter 24 ist es möglich, mit dieser Vorrichtung die Temperatur der Fluidströmung 22 entlang des Messelements 2 zu bestimmen. Danach wird das Schaltelement 24 geschlossen und das Messelement 2 mit Wärme beaufschlagt. Mittels der erneuten Messung wird nunmehr die Strömungsgeschwindigkeit des Fluids entlang des Messelements 2 bestimmt. Zur Verbesserung der Messgenauigkeit ist die elektrische E- nergiequelle 21 hinsichtlich des gelieferten Stroms einstellbar. So kann die Messung mit unterschiedlichen Wärmebeaufschlagungen wiederholt werden, wobei aus den Differenzen auf die Strömungsgeschwindigkeit geschlossen wird. Der Schalter kann sowohl ein mechanischer Schalter als auch ein elektroni- scher Schalter sein, wie sie im Stand der Technik in einer Vielzahl von Bauarten und -formen bekannt sind. Der Schalter kann jedoch auch einstückig mit der Energiequelle 21 ausgebildet sein, wobei nicht nur eine Schaltfunktion sondern auch eine Steuerfunktion für den Strom vorgesehen sein kann.
Die Figuren 6 bis 8 zeigen Weg/Temperatur-Diagramme, wobei der in Fig. 6 dargestellte Verlauf der Temperatur entlang der Längserstreckung des Messelements 1, 2, 3 ohne Wärmebeaufschlagung bei homogener Strömung ist. Fig. 7 zeigt dagegen einen Verlauf wie in Fig. 6, wobei das Messelement 1, 2, 3 jedoch zusätzlich mit Wärme beaufschlagt ist. Fig. 8 zeigt eine Temperaturverteilung auf dem Messelement 1, 2, 3, welche von dem durch die unterschiedlichen Strömungspfeile 22 in Fig. 5 dargestellten Strömungsverlauf abhängig ist. Deutlich erkennbar ist die erhöhte Temperatur in dem Bereich, in dem in Fig. 5 die geringere Strömung gekennzeichnet ist. Fig. 9 zeigt ein Geschwindigkeitswegdiagramm, in welchem die durch die Auswerteeinheit 23 ermittelte Strömungsgeschwindigkeit als Ergebnis der Messung nach Fig. 8 dargestellt ist.
Fig. 10 zeigt einen teilweisen Schnitt durch eine Gasturbine 9 mit an einer in einem Gehäuse 26 drehbar gelagerten Rotorwelle 10 angeordneten Laufschaufeln 11 und mit drehfest angeordneten Leitschaufeln 12. In einen Strömungskanal 13 der Gasturbine 9 ragt ein Messelement 2 durch eine Öffnung 27. Das Messelement ist radial zu einer Achse 14 der Rotorwelle 10 im Strömungskanal 13 angeordnet. Axial versetzt zum ersten Messelement 2 ist ein zweites Messelement 2 im Strömungskanal der Gasturbine 9 in gleicher Weise angeordnet. Fig. 12 zeigt einen Schnitt durch die Turbine 9. Im Strömungskanal 13 der Turbine 9 sind radial zwei Messelemente 2 angeordnet, mit de- nen sowohl die Temperatur der Gasströmung im Strömungskanal 13 als auch die Geschwindigkeit ermittelt werden können.
Fig. 11 zeigt einen Schnitt durch eine Leitschaufel 11 der Turbine 9, wobei parallel zu einer radialen Achse der Leit- schaufei 11 Messelemente 2 angeordnet sind.
Die in den Figuren dargestellten Ausführungsbeispiele dienen lediglich der Erläuterung der Erfindung und sind für diese nicht beschränkend. So können insbesondere die Art des Mess- elements, insbesondere seine geometrische Ausformung, variieren, ohne den Schutzbereich der Erfindung zu verlassen. Darüber hinaus können natürlich auch mehrere Elemente zusammengeschaltet werden, um bestimmte Änderungen der Strömungsgeschwindigkeit genauer untersuchen zu können.

Claims

Patentansprüche
1. Messelement (1, 2, 3) zur Bestimmung einer Strömungsgeschwindigkeit eines das Messelement (1, 2, 3) umströmenden Fluids mit einem Leiter (4) zum Führen einer elektromagnetischen Welle entlang seiner Längserstreckung und wenigstens einem zum Leiter (4) benachbart angeordneten, elektrischen Heizelement (5, 6), mittels welchem der Leiter (4) mit Wärme beaufschlagbar ist, dadurch gekennzeichnet, dass eine in den Leiter einkoppelbare elektromagnetische Welle entsprechend der von der Strömungsgeschwindigkeit des Fluids abhängigen Temperatur des Leiters (4) beeinflussbar ist.
2. Messelement nach Anspruch 1, dadurch gekennzeich- net, dass das Messelement (1, 2, 3) stabförmig ausgebildet ist.
3. Messelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Messelement (1, 2, 3) elastisch ist.
4. Messelement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Leiter (4) ein Lichtwellenleiter ist.
5. Messelement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Heizelement (5, 6) aus Metall gebildet ist.
6. Messelement nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Heizelement (5, 6) durch eine elektrisch leitfähige Beschichtung des Leiters gebildet ist.
7. Messelement nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Heizelement (5, 6) einen kon- stanten elektrischen Widerstandsbelag aufweist.
8. Messelement nach Anspruch 7, dadurch gekennzeichnet, dass der Widerstandsbelag im Betriebstemperaturbereich weitgehend unabhängig von der Temperatur ist.
9. Messelement nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass das Heizelement durch einen als Heizschleife geformten Heizleiter gebildet ist.
10. Messelement nach einem der Ansprüche 1 bis 6, gekenn- zeichnet durch eine Ummantelung (8).
11. Messelement nach Anspruch 10, dadurch gekennzeichnet, dass die Ummantelung (8) aus einem keramischen Werkstoff besteht.
12. Messelement nach Anspruch 10, dadurch gekennzeichnet, dass die Ummantelung (8) aus Metall besteht.
13. Messelement nach Anspruch 12, dadurch gekenn- zeichnet, dass die Ummantelung (6) zugleich das Heizelement bildet.
14. Verfahren zum Bestimmen einer Strömungsgeschwindigkeit eines Fluids mit einem von dem Fluid umströmten Messelement (1, 2, 3) nach einem der vorhergehenden Ansprüche, wobei eine elektromagnetische Welle in einen die Welle führenden Leiter (4) des Messelements (1, 2, 3) eingekoppelt wird, die elektromagnetische Welle durch das Messelement (1, 2, 3) in Abhängigkeit von dessen der Strömungsgeschwindigkeit des Fluids entsprechenden lokalen Temperatur beeinflusst, die Beeinflussung der elektromagnetischen Welle ermittelt und daraus die Strömungsgeschwindigkeit des Fluids entlang der Längserstreckung des Messelements (1, 2, 3) bestimmt wird.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die elektromagnetische Welle durch einen elektromagnetischen Impuls gebildet ist.
16. Verfahren nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass das Messelement (1, 2, 3) während der Messung in seiner Längserstreckung durch ein Heizelement (5, 6) erwärmt wird.
17. Verfahren nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass das Heizelement (5, 6) mit einem konstanten elektrischen Strom beaufschlagt wird.
18. Verfahren nach einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, dass mehrere Messungen mit unterschiedlicher Wärmebeaufschlagung durchgeführt werden.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass aus der Differenz wenigstens zweier Messungen mit unterschiedlicher Wärmebeaufschlagung die Strömungsgeschwindigkeit des Fluids entlang der Längserstreckung des Messelements (1, 2, 3) bestimmt wird.
20. Verfahren nach einem der Ansprüche 14 bis 19, dadurch gekennzeichnet, dass als Fluid ein Gasstrom einer Gasturbine (9) verwendet wird.
21. Strömungsmaschine (9) mit an einer in einem Gehäuse drehbar gelagerten Rotorwelle (10) angeordneten Laufschaufeln (11) und mit drehfest angeordneten Leitschaufeln (12), gekennzeichnet durch ein in einem Strömungskanal (13) der Strömungsmaschine (9) angeordnetes Messelement (1, 2, 3) nach einem der Ansprüche 1 bis 13 zur Messung einer Flu- idströmungsgeschwindigkeit .
22. Strömungsmaschine nach Anspruch 21, dadurch gekennzeichnet, dass das Messelement (1, 2, 3) radial zu einer Achse (14) der Rotorwelle (10) im Strömungskanal (13) angeordnet ist.
23. Strömungsmaschine nach Anspruch 21 oder 22, dadurch gekennzeichnet, dass das Messelement (1, 2, 3) koaxial zur Achse (14) der Rotorwelle (10) entlang einer Kreislinie im Strömungskanal (13) angeordnet ist.
24. Strömungsmaschine nach einem der Ansprüche 21 bis 23, dadurch gekennzeichnet, dass im Strömungskanal (13) axial beabstandet mehrere Messelemente (1, 2, 3) angeordnet sind.
25. Strömungsmaschine nach einem der Ansprüche 21 bis 24, dadurch gekennzeichnet, dass die Strömungsgeschwindigkeit des Fluids mit einem Verfahren nach einem der Ansprüche 14 bis 20 bestimmbar ist.
EP03769222A 2002-11-06 2003-09-26 Messelement zur bestimmung einer strömungsgeschwindigkeit Withdrawn EP1558899A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10251701 2002-11-06
DE10251701A DE10251701B4 (de) 2002-11-06 2002-11-06 Messelement zur Bestimmung einer Strömungsgeschwindigkeit
PCT/DE2003/003221 WO2004042326A2 (de) 2002-11-06 2003-09-26 Messelement zur bestimmung einer strömungsgeschwindigkeit

Publications (1)

Publication Number Publication Date
EP1558899A2 true EP1558899A2 (de) 2005-08-03

Family

ID=32239951

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03769222A Withdrawn EP1558899A2 (de) 2002-11-06 2003-09-26 Messelement zur bestimmung einer strömungsgeschwindigkeit

Country Status (5)

Country Link
US (1) US7302844B2 (de)
EP (1) EP1558899A2 (de)
JP (1) JP2006504966A (de)
DE (1) DE10251701B4 (de)
WO (1) WO2004042326A2 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1591627A1 (de) * 2004-04-27 2005-11-02 Siemens Aktiengesellschaft Regeleinrichtung für einen Kompressor sowie Verwendung eines Bragg-Gitter-Sensors bei einer Regeleinrichtung
GB2416394B (en) 2004-07-17 2006-11-22 Sensor Highway Ltd Method and apparatus for measuring fluid properties
DE102006012230B3 (de) * 2006-03-16 2007-06-14 Siemens Ag Strömungsmessvorrichtung zur Bestimmung einer Strömungsrichtung
DE102006012229B3 (de) 2006-03-16 2007-06-14 Siemens Ag Strömungsmessvorrichtung zur Bestimmung einer Strömungsrichtung
DE102006041461A1 (de) * 2006-09-04 2008-03-20 Siemens Ag Windenergieanlage mit einer Windgeschwindigkeitsmessvorrichtung zur Bestimmung einer Geschwindigkeit des die Windenergieanlage anströmenden Windes
EP2098842A1 (de) * 2006-12-28 2009-09-09 Sumitomo Electric Industries, Ltd. Verfahren zur messung einer physikalischen fluidmenge und steuerverfahren
DE102009043345A1 (de) * 2009-09-29 2011-05-12 Siemens Aktiengesellschaft Abgaserzeugende Einrichtung, insbesondere Schiff, mit einer Abgasvolumenbestimmung
EP2483642B1 (de) * 2009-09-29 2013-08-14 Siemens Aktiengesellschaft Abgasvolumenbestimmungsvorrichtung
IL205084A (en) 2010-04-14 2017-08-31 Vasa Applied Tech Ltd Probe learned flow
CN102221632B (zh) * 2011-03-07 2012-12-05 河海大学 一种活塞式磁浮传动可直读多功能风速计
US9557344B2 (en) * 2011-07-12 2017-01-31 The Hong Kong Polytechnic University Sensor for measuring flow speed of a fluid
US9885235B2 (en) * 2013-12-27 2018-02-06 Halliburton Energy Services, Inc. Multi-phase fluid flow profile measurement
US20170261290A1 (en) * 2016-03-11 2017-09-14 David Kristopher Bonine Systems, Devices, and Methods for Wind Indication
WO2017205711A1 (en) 2016-05-27 2017-11-30 Carrier Corporation Method for determining reduced airflow in transport refrigeration system
US11193854B2 (en) 2018-06-20 2021-12-07 Rolls-Royce Plc Estimating fluid parameter
CN109405906B (zh) * 2018-11-23 2024-08-06 宁波水表(集团)股份有限公司 一种流量计量装置以及流量计量方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1220147B (de) * 1962-04-12 1966-06-30 Daimler Benz Ag Messeinrichtung zum Ermitteln der Richtung stroemender Medien
US5004913A (en) * 1982-08-06 1991-04-02 Marcos Kleinerman Remote measurement of physical variables with fiber optic systems - methods, materials and devices
SU1508170A1 (ru) * 1987-07-06 1989-09-15 Казанский Авиационный Институт Им.А.Н.Туполева Оптико-волоконный термоанемометр
DE3816045A1 (de) * 1987-09-11 1989-05-24 Flowtec Ag Lichtleitereinrichtung, insbesondere fuer massendurchflussmesser
US4986671A (en) 1989-04-12 1991-01-22 Luxtron Corporation Three-parameter optical fiber sensor and system
US5115127A (en) * 1990-01-03 1992-05-19 The United States Of America As Represented By The Secretary Of The Navy Optical fiber sensor for measuring physical properties of fluids
JPH06323165A (ja) * 1993-05-17 1994-11-22 Hitachi Ltd ガスタービン用制御装置及び制御方法
FR2722293B1 (fr) * 1994-07-08 2000-04-07 Inst Francais Du Petrole Debitmetre polyphasique
DE19544011B4 (de) * 1995-11-27 2004-10-07 Alstom Strömungsmaschine
DE19825500C1 (de) * 1998-06-08 2000-03-30 Gtc Kappelmeyer Gmbh Verfahren und Vorrichtung zur Messung von Fluidbewegungen mittels Lichtwellenleiter
EA200100277A1 (ru) * 1998-08-25 2002-06-27 Сенсор Хайвей Лимитед Способ использования нагревателя с волоконно-оптической струной в стволе скважины
DE19950111C1 (de) 1999-09-21 2001-02-15 Geso Ges Fuer Sensorik Geotech Sensorkabel für faseroptische Temperaturmessungen
US6782150B2 (en) * 2000-11-29 2004-08-24 Weatherford/Lamb, Inc. Apparatus for sensing fluid in a pipe
US6634238B2 (en) * 2001-07-09 2003-10-21 Endress + Hauser Flowtec Ag Method of operating an electromagnetic flowmeter
CN100419386C (zh) * 2001-09-20 2008-09-17 株式会社山武 电磁流量计

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004042326A2 *

Also Published As

Publication number Publication date
DE10251701B4 (de) 2006-05-04
US7302844B2 (en) 2007-12-04
US20060117844A1 (en) 2006-06-08
JP2006504966A (ja) 2006-02-09
WO2004042326A2 (de) 2004-05-21
DE10251701A1 (de) 2004-06-03
WO2004042326A3 (de) 2004-09-16

Similar Documents

Publication Publication Date Title
EP1994371B1 (de) Strömungsmessvorrichtung zur bestimmung einer strömungsrichtung
DE10251701B4 (de) Messelement zur Bestimmung einer Strömungsgeschwindigkeit
DE102013227051B4 (de) Messanordnung und Verfahren zur Temperaturmessung sowie Sensorkabel für eine derartige Messanordnung
EP2843778B1 (de) Schleifringeinheit und Verfahren zur Zustandsüberwachung einer Schleifringeinheit
EP2483642B1 (de) Abgasvolumenbestimmungsvorrichtung
EP1994372B1 (de) Strömungsmessvorrichtung zur bestimmung einer strömungsrichtung
EP2580434B1 (de) Verfahren zur einstellung der zwischen schaufelblattspitzen von laufschaufeln und einer kanalwand vorhandenen radialspalte sowie vorrichtung zur messung eines radialspalts einer axial durchströmbaren turbomaschine
DE102006041461A1 (de) Windenergieanlage mit einer Windgeschwindigkeitsmessvorrichtung zur Bestimmung einer Geschwindigkeit des die Windenergieanlage anströmenden Windes
WO2017216061A1 (de) Verfahren zur überwachung einer leitung und messanordnung mit einer leitung
DE102009045956A1 (de) Verfahren zur Erfassung des Durchflusses und thermisches Durchflussmessgerät
WO2016102124A1 (de) Thermisches durchflussmessgerät
DE102009045958A1 (de) Thermisches Durchflussmessgerät
DE19848109B4 (de) Durchflussmengenfühler
EP1189044B1 (de) Dampfturbine und Verfahren zur Messung der Schwingung einer Laufschaufel in einem Strömungskanal einer Dampfturbine
DE69026410T2 (de) Verfahren und Vorrichtung zur Feststellung von geladenen Teilchen in einer Gasströmung
EP3930421B1 (de) Heizeinrichtung mit einer temperaturmesseinrichtung und verfahren zur temperaturmessung an der heizeinrichtung und zur herstellung
DE102019205665B4 (de) Verfahren und Vorrichtung zur Messung einer lokalen Flussgeschwindigkeit eines Fluids
EP3285048A1 (de) Verfahren und sensorvorrichtung zur bestimmung der temperatur eines mediums und der durchflussmenge des mediums durch einen strömungsquerschnitt sowie deren verwendung
DE102020134519A1 (de) Thermisches Durchflussmessgerät und thermisches Durchflussmesssystem
DE102013109217A1 (de) Messsonde zum Messen der elektrischen Leitfähigkeit in gering leitenden Flüssigkeiten
DE69600162T2 (de) Verfahren zur Ansaugluftmengenmessung einer Brennkraftmaschine mit elektronischer Einspritzung
DE102004036725B4 (de) System zur Ermittlung einer Beschädigung einer Wand für einen Strömungskanal einer Strömungsmaschine
DE1926510C (de) Vorrichtung zur Analyse von Gasen auf Komponenten mit paramagnetischer Suszeptibilität
DE102011103454A1 (de) Strömungsmesseinrichtung
EP1668348B1 (de) System zur ermittlung einer beschädigung einer wand für einen strömungskanal einer strömungsmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050429

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20110519

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150401